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Abstract
Binary diffing is a commonly used technique for detecting syntactic and semantic similarities and/or differences between two
programs’ binary executables (not source code). Here we present REveal, a binary diffing application. REveal is based on
the detection of Function Call Graph (FCG) approximate isomorphism and improves both speed and accuracy, mainly by
the use of two techniques. First, we propose the use of hierarchical Community Detection (CD) in executables’ FCGs, for
the purpose of detecting groups of densely connected functions, thus partitioning them in smaller groups. Moreover, we use
Locality-Sensitive Hashing (LSH) for further grouping of similar functions in hash buckets. Both techniques are used in a
divide-and-conquer fashion to simplify the diffing process of the programs being compared, practically reducing it to diffing
of their FCG communities and LSH buckets.

Keywords Binary diffing · Community detection · Locality-sensitive hashing · Divide-and-conquer

1 Introduction

Binary diffing is a commonly used technique for detecting
syntactic and semantic similarities or, equivalently, differ-
ences, between two programs’ binary executables, when
access to their source code is not an option. Inmost real world
applications, binary diffing involves using various reverse
engineering techniques to recover information from the sub-
ject executables, representing the recovered knowledge as
a series of labeled graphs and computing a form of bijec-
tion between the latter. Examples of such graphs include the
FunctionCall Graph (FCG), theControl FlowGraph (CFG),
the Program Dependence Graph (PDG) and others. The said
bijection is usually some form of graph isomorphism and this
often means computing theMaximum Common Subgraph or
Multiple Common Subgraphs of the two compared graphs.
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Generally, the graph isomorphism problem belongs to the
NP class and, consequently, related problems can only be
solved approximately, by compromising precision in favor
of acceptable running times.

A common technique, implemented in many binary diff-
ing tools, including our prototype REveal, is approaching
the problem of computing the Multiple Common Subgraphs
of compared FCGs using function matching. In function
matching, functions, that uniquely stand out based on their
characteristics, are first matched, effectively creating an ini-
tial partialmapping of vertices between the compared graphs.
Following that, functions “related to” already matched func-
tions are compared and matched in an attempt to maximize
the aforementioned mapping. This can be done (a) by using
the recovered program structure (e.g by matching succes-
sors and predecessors in the FCG [14,15,17]) and/or (b) by
exploiting the locality characteristics inherent in the program
linking process performed bymost compilers (e.g. bymatch-
ing functions nearby in the program’s address space [28]).
When no more new vertices can be matched, the process
ends. In the literature, the former phase is usually referred to
as the pre-filtering phase, while the latter as the propagation
phase.

This paper presents two techniques for improving both the
speed and accuracy of the overall binary diffing process as
described in the previous paragraph. First, we propose the use
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of hierarchical Community Detection (CD) in executables’
FCGs, for the purpose of detecting groups of densely con-
nected functions, thus partitioning them in smaller groups.
Moreover, we propose the use of Locality-Sensitive Hashing
(LSH) for further grouping of similar, in terms of features,
functions in hash buckets. Effectively, CD and LSH can be
seen as complementary forms of partitioning; the former
groups functions with respect to how they relate to their
neighbors, while the latter probabilistically groups functions
based on a hashing scheme of their features’ values. In prac-
tice, this is equivalent to a 2-stage partitioning scheme where
functions are divided into smaller groups by two mutually
independent processes. Both techniques are used in a divide-
and-conquer fashion to simplify the diffing process of the
programs being compared, practically reducing it to diffing
of their FCG communities and LSH buckets.

Overall, in this paperwemake the following contributions:

• We present a fast and reliable hierarchical CD algorithm,
based onNode Similarity-basedAlgorithm (NSA) [9] and
Louvain [3,16], for partitioning FCGs in non-overlapping
clusters of densely-connected functions. To our knowl-
edge, use of CD algorithms in binary diffing has not been
previously studied.

• We examine further splitting of communities in hash
buckets of similar, in terms of characteristics, functions
using LSH and, more specifically, a form ofminhashing.
[4]

• Based on the previous constructs, we develop a divide-
and-conquer algorithm for binary diffing, which results,
not only in speed improvements, but also in increased
matching precision. We prove this by comparing our
algorithms, implemented in REveal, against other binary
diffing tools of the public domain, namely Diaphora and
YaDiff, as well as an older version of REveal [28].

The rest of this paper is organized as follows. Section
2 gives an overview of previous work in the fields of binary
diffing,CDaswell asLSH.Preliminaries on graph theory and
the notations used in this paper are given in Sect. 3. Section
4 presents the overall proposed CD and LSH based binary
diffing algorithm, while Sect. 5 delves into its CD aspects
and Sect. 6 elaborates on its LSH implementation. Last but
not least, in Sect. 7 we evaluate our algorithm against those
implemented in other tools and we conclude in Sect. 8 with a
summary of current work and an overview of future research
directions.

2 Previous work

When two graphs are similar, it is highly likely that their
community structure will be similar as well. Based on this

simple observation, many graph theoretical problems can be
approached as follows:

1. decompose the subject graph in smaller, but more com-
pact, structures,

2. look for local solutions in the decomposed components,
3. form a global solution by combining local solutions.

This divide-and-conquer methodology has been success-
fully applied tomany graph problems including (relevantly to
our problem) the approximate graph isomorphism problem
[1,24,32]. Even though community detection has been exten-
sively used for tasks like knowledge extraction and graph
classification, in various scientific domains, little has been
done on computing theMaximum Common Subgraph of two
graphs.

The idea of comparing two networks, by gradually com-
pressing them in more compact representations, is presented
at [42]. Using spatial clustering, cluster alignment using
Earth Moving Distance (EMD) and Graph Convolutional
Networks (GCNs), the authors essentially perform hierarchi-
cal community detection, based on label propagation, and
matching of communities between the compared graphs. The
Hierarchical Graph Matching Network (HGMN), as it is
termed, can be used on any network, including CFGs and
FCGs recovered from binary executables, as long as each
vertex in the network can be abstractly represented by a fea-
ture vector (otherwise a feature vector of all-ones can be
used). The effectiveness of HGMN is showcased in a series
of experiments, where it is proven that it outperforms other
graph-theoretic, as well as learning-based, approaches both
in accuracy and efficiency.

Surprisingly, public literature on hierarchical graph iso-
morphism is very limited, with most research focused on
graph classification. For example, seminal work on malware
clustering is presented at [31]. First, the authors define cost
functions for primitive graph edit operations and propose the
use of GED for computing the similarity between two FCGs.
Two major clustering algorithms are evaluated, namely k-
medoids andDBSCAN. The authors conclude that DBSCAN
is more promising for the task of partitioning malware sam-
ples or, equivalently, their FCGs into a set of an unknown
number of clusters.

In [30], authors classify Android malware applications in
clusters using DBSCAN. When a new malware sample is
received, 4-tuples, holding structural information of meth-
ods, are first extracted. The 4-tuples of the new sample are
matched with those of the representative mean of each clus-
ter. A similarity score is computed as the ratio of matched
methods over the total number of methods and the sample is
added in the cluster with the highest matching score.

Community detection in FCGs is demonstrated in [37].
The authors investigate the potential of extracting cohesion
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information on classes of object-oriented programs based on
method communities recovered using a variety of algorithms
including Louvain. Despite the fact that [37] is focused on
computing software quality metrics, its conclusions might as
well be applied for binary diffing purposes, especially when
type information is available in the binary executables under
comparison.

Yet another interesting technique of detecting components
in binary code is presented in [29]. The authors construct a
Decomposition Graph which is, in fact, the union of three
other graphs, namely the Sequence Graph (SG), the Data
Reference Graph (DRG) and the FCG. Newman’s commu-
nity detection algorithmwithmodularity optimization is used
to recover the resulting graph’s community structure in a hier-
archical approach.

LSH was first introduced in [25]. This paper discusses the
problem of nearest neighbor search and proposes LSH as
a means of dealing with the Curse of Dimensionality (i.e.,
the fact that as the number of dimensions of the input space
grows, nearest neighbor search algorithms become less and
less efficient, to the point where they do no better than brute-
force linear search). The techniques in [25] have a query time

complexity ofO(dn
1
ε ) (where n is the number of points, and

d the dimensionality). This was later improved by Gionis et

al. [22] resulting in a query time of O(dn
1

ε+1 ).
More recently, LSH was used for binary diffing purposes

in [35]. Basic blocks are first represented as a bag-of-words
and converted to a large vector whose length is equal to the
length of the alphabet (i.e., the number of instruction types
of a given computer architecture). Each element in the afore-
mentioned vector holds the number of occurrences of the
corresponding instruction. Then, an arbitrary number of ran-
dom hyperplanes of the same dimensionality are created. For
each basic block, the angle it forms with each of the afore-
mentionedhyperplanes is computed and the signof the cosine
of the angle is saved as a single bit (e.g. 0 means negative
cosine, 1 positive). The concatenation of these bits, is effec-
tively a hash of a basic block, which is used to group similar
blocks and speed-up the nearest-neighbor search.

Binary diffing [14,15,17] is actively used, by researchers
in various scientific domains, for tasks like malware clas-
sification [6,7,23], patch analysis [26], plagiarism detection
[33], propagation of profiling information [40] and others.
Various high quality tools for performing binary diffing tasks
can be found in the public domain with [2,11,43] being some
of them. An interesting summary of the capabilities of many
modern binary diffing solutions is given in [12]. In this paper
we extend REveal [27,28], our prototype tool which is being
actively developed and tested.

3 Preliminaries

In the following sections we use uppercase letters to repre-
sent sets, and lowercase letters to represent primitive objects.
Furthermore, we use the notation �x�P to indicate that x is
rounded up to the nearest prime number.

3.1 Graph theory

We represent digraphs (i.e., directed graphs) with the nota-
tion G = 〈

V , E
〉
, where V (or V (G)) is the digraph’s vertex

set and E ⊆ V × V (or E(G)) is the digraph’s edge set. In
what follows we will usually say, for brevity, graphwhen we
actually mean digraph. Given a vertex v ∈ V , we define the
set of successors of v as succ(v) = {s | (v, s) ∈ E} and the
set of predecessors of v as pred(v) = {p | (p, v) ∈ E}.
The set of all neighbors of v is represented as neigh(v) =
succ(v) ∪ pred(v).

We assume that, succ(v), pred(v) and neigh(v) hold the
corresponding vertex sets ordered by an arbitrary total order-
ing relationdefinedoverV i.e., if succ(v) = {s0, s1, ..., sn−1},
for some v ∈ V , then r(s0) ≤ r(s1) ≤ ... ≤ r(sn−1), where
r : V → R is a sorting function defined over the vertex set,
that returns vertex ordinals; numbers via which the afore-
mentioned total ordering is achieved. If, for a given sorting
function r , r(s0) < r(s1) < ... < r(sn−1) holds, then r is
said to be strict . Notice that from the previous definition, it
follows that r(si ) 	= r(s j ) ∀ i, j and i 	= j , that is, no two
vertices should have the same ordinal number. Ordinals can
be assigned to vertices in an application-specific manner.

We allow vertices and edges of a graph to carry attributes
which can take arbitrary values.We use the notation v.attr to
refer to the value of attribute attr of vertex v and (u, v).attr
to refer to the attribute of edge (u, v).

For each graph G, we define a feature function f : V →
R
d mapping each vertex ofG to a feature vector of dimension

d. Feature vectors are assumed to hold the characteristics of
the objects represented by the corresponding vertices. When
domain-specific features are not available, simple centrality
metrics might be used (e.g. a feature vector of one element
holding the vertex’s degree). Similarly, we define the inverse
of f , f −1 : R

d → P(V ), which returns the set of all vertices
of G that are characterized by a given feature vector.

Given a graph G = 〈
V , E

〉
, we can partition vertices of

G in non-overlapping communities Ci ⊆ V , 0 ≤ i < NC ,
where NC is the number of communities and Ci ∩ C j =
∅, ∀ i, j with i 	= j . The process via which communities
are detected is referred to as Community Detection (CD).
Furthermore, we can define the Community Graph (CG) to
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be a graph whose set of vertices is V = {Ci | 0 ≤ i < NC }
and there is an edge from Ci to C j iff {succ(v) | v ∈
Ci } ∩ {pred(v) | v ∈ C j } 	= ∅ (i.e., there’s at least
one edge in G from a vertex in Ci to a vertex in C j and
this holds for i = j as well). Hierarchical CD algorithms
repeat the same process on the resulting CG, thus producing
another, higher level CG where vertices represent communi-
ties of communities. This process can be repeated NL times,
to generate a set of communities Cli , where 0 ≤ l < NL is
the level index and i the index of a community in that level.
In this case NL CGs can be computed, one for each level.
Notice that, usually, levels have different number of com-
munities. More specifically, the higher the level, the less the
number of communities, otherwise hierarchical community
detection would make no sense.

3.2 Program representations

We define a program P to be a set of NF functions P = {Fi |
0 ≤ i < NF }, a function F to be a set of NB basic blocks
(straight-line machine code sequences with no branches in,
except to the entry, and no branches out, except at the exit)
F = {Bi | 0 ≤ i < NB} and a basic block B to be a set
of NI instructions B = {Ii | 0 ≤ i < NI }. Binary diffing
involves comparing two programs, namely P1, the primary
subject, and P2, the secondary subject, and forming a 1-1
mapping M , that corresponds functions of P1 to functions
of P2, M = {F1 → F2 | F1 ∈ P1, F2 ∈ P2}. Similar
mappings can be further created for function basic blocks
and instructions, depending on the required level of detail.

For each function F , in a program P , we define a digraph
CFG = 〈

V , E
〉
, where V is the set of F’s basic blocks, while

the set of edges E denotes the possible execution flow paths
between the function’s basic blocks. If e = (Bi , Bj ) ∈ E ,
then control flow can reach basic block Bj immediately after
Bi (i.e., Bj ∈ succ(Bi )). Digraph CFG is usually referred
to as F’s Control Flow Graph (CFG). 1

A program P can also be treated as a digraph of program
functions, referred to as the program’s Function Call Graph
(FCG). FCG of program P is a digraph whose vertices cor-
respond to individual functions (or, equivalently of function
CFGs), that is V = {F | F ∈ P}. For each control transfer
instruction in basic block Bk ∈ Fi , that transfers execution
to basic block Bl ∈ Fj (this also covers the case of Fi = Fj ),
an edge (Fi , Fj ) exists in E . Multiple such edges (Fi , Fj )

can be replaced with a single weighted edge with a weight
equal to the number of calls from Fi to Fj .

As uniquely identifying vertices by centrality measures
is generally not possible, a common ordering of vertices
in program related graphs (like FCGs and CFGs) can be

1 Even though the CFG (and the FCG defined in the sequel) are
digraphs, we will follow standard usage and call them graphs.

based on the address, in program memory, of the structure
represented by each vertex (like functions or basic block
accordingly). That is r , defined in the previous section, is
raddress : V → N, where raddress(v) is a function that
returns the address of vertex v in programmemory. For CGs,
an address can be assigned to each vertex based on the min-
imum or the maximum address of the elements contained in
each community.

Furthermore, we define a dataset as D = 〈
G, S, r , f

〉
,

whereG is a CG (i.e., community graph) or FCG, S ⊆ V (G),
r a sorting function defined over V (S) and f the feature
function of G. Generally, the presented algorithms process
functions of P in datasets using various strategies. For exam-
ple, given a function F ∈ P , a dataset can be constructed
consisting of P’s FCG, S = neigh(F), raddress and the
FCG’s feature function. When G is a FCG, the correspond-
ing dataset is referred to as a function dataset, in the opposite
case it is termed a community dataset.

Last but not least, for a previous discussion on feature
selection for vertices of a FCG the reader is referred to [27,28]
and [39].

3.3 Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a process by which sim-
ilar inputs are hashed to the same bucket. Unlike normal
cryptographic hash functions, that need tominimize the num-
ber of hash collisions, LSH functions attempt to maximize
them for inputswhich are “close to each other” in a givenmet-
ric spaceM. More specifically, given two points p, q ∈ M
and a LSH function h : M → N, mapping points in M to
hash bucket indexes, the following should hold:

1. If d(p, q) < R, then h(p) = h(q) with probability at
least p1

2. If d(p, q) ≥ cR, then h(p) = h(q) with probability no
more than p2 
 p1

In the above relations, R is a distance threshold, below
which points are considered to be “close by”, while c > 1
is the approximation factor. The first relation indicates that,
when p and q are nearby, according to a distance function
d defined on M’s points, then they should hash to the same
bucket with probability at least p1. The second relation rep-
resents the case of a hash collision for inputs which are not
nearby. Obviously, for the LSH function h to be meaningful,
p1 must be much higher than p2, so that hashing dissimilar
objects in the same bucket is less probable than the opposite
case.

Among its many applications, LSH is commonly used for
solving the k-nearest neighbor problem. A family of L LSH
functions H = {hi | 0 ≤ i < L} (e.g. minhashing [4], based
on min-wise independent permutations, or simhashing [8],
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based on random projections) is first constructed. Inputs are
hashed using all such functions and eventually are split up in
buckets. Given an input query point q, its k-nearest neighbors
can be found by hashing q using all hash functions in H and
looking for neighbors in the resulting L buckets. Search stops
when k candidates have been found, or k “best” points have
been drawn from the overall result set.

4 A community-based functionmatching
algorithm

We begin by giving a high level overview of the overall
matching process, carried out by REveal, in Algorithm 1
and a call-graph of the most essential procedures, presented
in this paper, in Fig. 1.

Before proceeding to a detailed description of the above
blocks (in separate subsections), let us give a brief overview
of the workflow described in Fig. 1.

• At the top of the diagram we have match_programs
which, upon conclusion, will return the mapping MF of
functions of program P1 to functions of program P2. This
function calls match_comms and match_funcs.

• match_comms is called first to detect the community
structure of programs P1 and P2, effectively aggregating
functions into groups (i.e. communities). It returns amap-
ping MC of communities of program P1 to communities
of program P2.

• Given MC , populated by match_comms, match_
funcs begins the actual function matching process.
It basically executes consecutive rounds of exact and
inexact matching of functions within the matched com-
munities (in MC) until no more new matches can be
found.

• match_funcs_in_comms is the actual workhorse
used by match_funcs. It is able to perform rounds
of exact and inexact function matching by utilizing
the information in MC . A boolean argument passed to
match_funcs_in_comms determines whether exact
or inexact matching will take place.

• match, calledbymatch_comms andmatch_funcs_
in_comms, matches datasets (as defined in Sect. 3.2), in
an abstract manner. It expects two datasets as inputs and
uses the data features to match dataset elements. It does
not distinguish between community datasets and function
datasets, as the underlying matching strategies and algo-
rithms are the same. It keeps applying various matching
strategies (described below) until newmatches cannot be
found.

• Blocks named*_matcher implement the actualmatch-
ing strategies as described in [28]. Matching strategies
are, practically, ways of constructing “smaller” datasets

Fig. 1 Call-graph of most essential algorithms presented in this paper

of related functions, so that those smaller datasets can
be matched for speed and efficiency purposes. For exam-
ple, structural_matcherwill construct temporary
datasets, consisting of neighbors of already matched
functions, and will attempt to match these to expand MF
with new entries.

• match_datasets takes these smaller datasets, gener-
ated by the abovementioned blocks, and calls match_
datasets_inexactormatch_datasets_exact
to actually populate amappingwith new entries. The said
mapping can either be MC or MF since, as it was previ-
ously mentioned, the same abstract algorithms are used
for both community and function matching.

Before proceeding, it is also useful to detail the ways in
which the current implementation of REveal improves upon
the previous one [27,28]. Briefly, the new version of REveal:

• Implements community detection andmatching using the
algorithms presented in Sect. 5.

• Performs inexact matching, in addition to exact imple-
mented in the previous version.

• Increases matching speed using LSH (Sect. 6).

We continue by elaborating on the various functional
blocks of Fig. 1.
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4.1 Algorithm 1: match_programs

Algorithm 1 expects the two programs under comparison,
namely P1 and P2, to be given as inputs. The output of Algo-
rithm 1 is the set MF (stands for Matched Functions), with
elements of the form F1 → F2, mapping function F1 of P1
to function F2 of P2.

Algorithm 1 Main matching algorithm
1: procedure match_programs(P1, P2)
2: D1 ← 〈

FCGP1 , V (FCGP1 ), raddress , fP1
〉

3: D2 ← 〈
FCGP2 , V (FCGP2 ), raddress , fP2

〉

4: MC ← match_comms(D1, D2)

5: MF ← match_ f uncs(D1, D2, MC)

6: return MF
7: end procedure

Given input programs P1 and P2, match_programs
begins by constructing the corresponding datasets D1 and
D2 at lines 2 and 3. These datasets hold the two programs’
FCGs, while the sorting functions are set to raddress and
the feature functions, fP1 and fP2, return program function
features (e.g. [27,28,39]) of P1 and P2 respectively. The algo-
rithm continues by detecting and matching communities in
the programs’ FCGs, by means of match_comms (line 4),
and proceeds by using the recovered community structure,
in MC (stands forMatched Communities), in order to match
program functions via match_funcs (line 5). Algorithm
1 terminates by returning MF .

4.2 Algorithm 2: match_comms

Algorithm 2, begins by initializing MC to an empty list (line
2).More specifically,MC is a list of sets, with the set at index
i holding elements of the form C1 → C2, where C1 ⊆ P1
and C2 ⊆ P2, representing matched communities at level
num_levels−1− i of the community hierarchy of the com-
pared programs. The community hierarchies themselves are
recovered at lines 3–4, using techniques and algorithms pre-
sented in Sect. 5, and implemented by detect_comms.
The aforementioned function returns a list of community
datasets, with the i-th set holding information on the com-
munity structure at level i in the corresponding program’s
community hierarchy. The higher the value of i the bigger
(i.e. more abstract) the communities. For example, assuming
P1 consists of a 2-level community hierarchy, CD1,0 repre-
sents communities of functions, while CD1,1 communities
consisting ofCD1,0’s communities. Evidently, the process of
community detection is repeated for both programs and the
results are stored in CD1 and CD2 for the first and second
programs respectively.

Algorithm 2 Community detection and matching
1: procedure match_comms(D1, D2)
2: MC ← ∅

3: CD1 ← detect_comms(D1)

4: CD2 ← detect_comms(D2)

5: num_levels ← min(‖CD1‖, ‖CD2‖)
6: for all i ← 1 to num_levels do
7: MCi ← ∅

8: change ← true
9: while change = true do
10: change ← f alse
11: if match(CD1,−i , CD2,−i , MCi , f alse) > 0 then
12: change ← true
13: end if
14: if match(CD1,−i , CD2,−i , MCi , true) > 0 then
15: change ← true
16: end if
17: end while
18: MC ← MC ∪ {MCi }
19: end for
20: return MC
21: end procedure

With a NL1-level community hierarchy having been
recovered from P1 and a NL2-level from P2, a process of
matching the communities in each level begins, with only
min(NL1, NL2) (line 5) levels actually being considered. The
process of matching communities is carried out level by level
starting fromhigher ones (i.e. larger,more abstract communi-
ties) to lower ones (i.e. smaller, more concrete communities).
Notice how the following loop iterates from 1 to num_levels
(line 6), but indices in CD1,−i and CD2,−i are negative sig-
nifying reverse element access (i.e. −1 is the last set, −2 the
second to last etc.). In each iteration a new empty set MCi is
initialized (line 7) and match (defined later on) is invoked
to match communities in the community datasets. A round of
exact matching (last argument of match is f alse) follows
a round of inexact matching (last argument of match set to
true) and the whole process repeats until no more commu-
nities can be matched (lines 8–17). In each iteration MCi is
appended in MC (line 18). Ultimately, MC is returned (line
20) for use by match_funcs.

4.3 Algorithm 3: match_funcs

The entry point to function matching can be seen in Algo-
rithm 3. The two function datasets D1 and D2, as well as the
matched community hierarchy information in MC , returned
by match_comms, are expected as inputs. MF , is a set
that holds matched function pairs and is initially set to the
empty set (line 2), while the loop, at lines 4–12, repeatedly
appends new entries in it. At the core of the aforemen-
tioned loop, match_funcs_in_comms (defined later on)
is called twice at lines 6 and 9. The last argument deter-
mines the type of function matching round that will take
place; f alse means exact matching, while true inexact. In
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Algorithm 3 Function matching
1: procedure match_ f uncs(D1, D2, MC)
2: MF ← ∅
3: change ← true
4: while change = true do
5: change ← f alse
6: if match_ f uncs_in_comms(D1, D2,

MC, MF, f alse) > 0 then
7: change ← true
8: end if
9: if match_ f uncs_in_comms(D1, D2,

MC, MF, true) > 0 then
10: change ← true
11: end if
12: end while
13: return MF
14: end procedure

essence, once no more functions can be matched exactly,
inexact matches are looked up and if that generates new find-
ings, the exact matching round needs to be repeated. When
the loop breaks, MF is returned (line 13).

4.4 Algorithm 4: match_funcs_in_comms

Algorithm 4, which is at the heart of our divide-and-conquer
approach, expects 5 input parameters; two function datasets
D1 and D2, the set of sets of matched communities, as
returned by match_comms (defined previously), an ini-
tially empty set of matched functions MF and a boolean
argument is_inexact , whose value determines whether the
current matching round will be an exact or inexact one. The
main logic ofAlgorithm4 is implemented in twonested loops
at lines 6–14 and 7–13. The outer loop iterates over all sets of
matched communities (one for each level in the community

Algorithm 4 Function matching
1: procedure match_ f uncs_in_comms(D1, D2,

MC, MF, is_inexact)
2: n ← ‖MF‖
3: change ← true
4: while change = true do
5: change ← f alse
6: for all MCi ∈ MC do
7: for all C1 → C2 ∈ MCi do
8: D′

1 ← 〈
G(D1), {F | F ∈ C1}, raddress , fP1

〉

9: D′
2 ← 〈

G(D2), {F | F ∈ C2}, raddress , fP2
〉

10: if match(D′
1, D′

2, MF, is_inexact) > 0 then
11: change ← true
12: end if
13: end for
14: end for
15: if match(D1, D2, MF, is_inexact) > 0 then
16: change ← true
17: end if
18: end while
19: return ‖MF‖ − n
20: end procedure

hierarchy). The inner loop iterates over all matched commu-
nities of each such set. Given a valid match C1 → C2, two
new function datasets D′

1 and D′
2 are created. The vertex sub-

sets, in these datasets, are set to the functions contained in
C1 and C2 respectively, effectively forming a smaller set of
potential match candidates. It’s essential to note that, since
the outer loop, at lines 6–14, iterates through all community
levels, all but the last level hold communities of communities.
In this case, {F | F ∈ C} practically means “all functions
which belong to communities of community C transitively”.
The new, smaller datasets are passed to function match,
which populatesMF withmatched function pairs of the form
F1 → F2, where F1 ∈ C1 (and, of course, F1 ∈ P1) and
F2 ∈ C2 (and F2 ∈ P2). Once all community levels have
been handled, a final attempt to match functions in D1 and
D2 is made at line 15. Note that D1 and D2 are the initial
function datasets and that this step accounts for any poten-
tial discrepancies in the way communities were recovered,
by giving a chance to functions, erroneously identified as
belonging to different communities, to bematched if they are
the same (exact matching case) or similar (inexact matching
case). A third, outmost loop, at lines 4–18, guarantees that the
overall process repeats as long as new findings are detected.
Finally the total number of additionalmatched function pairs,
appended in MF , is returned at line 19.

4.5 Algorithm 5: match

The pseudocode for method match is given in Algorithm 5.
It is comprised of an outer loop (lines 4–15) that executes as
long assingleton_matcher,structural_matcher
or monotonic_matcher return an integer greater than
0. For brevity, the pseudocode and semantics of the three

Algorithm 5Match round
1: procedure match(D1, D2, M, is_inexact)
2: n ← ‖M‖
3: change ← true
4: while change = true do
5: change ← f alse
6: if singleton_matcher(D1, D2, M,

is_inexact) > 0 then
7: change ← true
8: end if
9: if structural_matcher(D1, D2, M,

is_inexact) > 0 then
10: change ← true
11: end if
12: if monotonic_matcher(D1, D2, M,

is_inexact) > 0 then
13: change ← true
14: end if
15: end while
16: return ‖M‖ − n
17: end procedure

123



326 C. Karamitas, A. Kehagias

aforementioned methods are omitted (for more information
readers are referred to [28]).

5 Community detection

5.1 Introductory remarks

Before we present in more detail the components of Algo-
rithm 2 (match_comms), let us briefly discuss the commu-
nity detection problem.

An important aspect of graphs is their community struc-
ture which can be recovered by vertex clustering. By this
we mean the separation of vertices into clusters, with many
edges joining vertices of the same cluster and compara-
tively few edges joining vertices of different clusters. The
community detection problem is not well posed, because
there are many possible definitions of cluster (i.e., commu-
nity) and choosing a particular definition is to some degree
arbitrary. Hence many different approaches appear in the
related literature [19,20]. However it is worth noting that
intuitively, we can recognize that many real-life graphs do
exhibit community structure. That is, while detecting groups
of densely-connected or related vertices may indeed be pos-
sible by visual inspection, no universal algorithm is currently
known to reliably do this.

Choosing a community detection algorithm for graph
analysis applications is a task that requires many param-
eters to be taken into account. Apart from an algorithm’s
ability to detect high quality communities, its capability to
handle large networks, possibly with millions of vertices,
and the memory footprint, execution time is also an essential
aspect and a major criterion for making the final choice. One
of the most popular community detection algorithms, is the
Louvain algorithm [3,16], characterized by its capability to
handle very large graphs with reasonable time and memory
requirements. Hence we have decided to use this algorithm
as a core component of our REveal algorithm, the reference
implementation presented in this paper.

Despite its good performance, it is well known that the
Louvain community detection algorithm suffers from some
weaknesses. To begin with, according to [38], a vertex acting
as a “bridge” between two groups of vertices in a commu-
nity, may, for modularity optimization purposes, be moved
in a different community, resulting in the former being dis-
connected. Iteratively applying Louvain may further worsen
the problem. Furthermore, being a Local Modularity Opti-
mization (LMO) algorithm, the Louvain algorithm may fail
to discover small communities due to the resolution limit
problem, described by Fortunato and Barthelemy [18]. To
highlight another weakness of the Louvain algorithm con-
sider the following: given two versions of the same program,
community detection in their FCGs can be thought of as the

problem of detecting communities in a dynamic graph1. In
this case, due to its inherent randomness, the Louvain algo-
rithm produces unstable partitionings, for t and t + 1, and is
thus unsuitable for this purpose. This “instability” problem
is further explored in [10]. 2

Due to the aforementioned problems, in certain applica-
tions ([21,34]), theLouvain algorithm is only used to improve
the modularity of an existing partitioning, instead of gener-
ating one from scratch. That is, in the first iteration of the
Louvain algorithm, graph vertices are already grouped in a
set of preliminary initial communities, possibly produced by
other means, as opposed to forming singleton communities.
Then, Louvain is applied to fine-tune the initial partitioning.
In [34], for example, the authors present a divisive commu-
nity detection algorithm, referred to as MILPA, which uses
the Louvain algorithm in such a post-processing fashion.

Following this approach, we propose the use of a Label
Propagation Algorithm (LPA), for the purpose of comput-
ing an initial set of communities on a given FCG, followed
by an application of the Louvain algorithm for improving
the aforementioned community structure’s modularity score.
TheLPAalgorithmused is amodified and trimmed downver-
sion ofNode Similarity-basedAlgorithm (NSA) described by
Cheng et al [9]. The process is repeated as long as the num-
ber of detected communities changes. Our final community
detection algorithm is summarized in Algorithm 6. As it will
become apparent in the following sections, to “stabilize” the
partitionings produced, the community detection algorithms
were modified to introduce determinism in the overall pro-
cess.

Let us nowdiscuss, in separate subsections, the algorithms
invoked by Algorithm 2 (match_comms).

5.2 Algorithm 6: detect_comms

Algorithm 6 expects a function dataset D as input, recovers
the community hierarchy of D’s FCG and, finally, computes
and returns a list of community datasets (one element per
level of the community hierarchy). detect_comms begins
by initializingCD (i.e. community datasets) to the empty list
(line 2). CD is a list of sets, with the i-th element holding
the community dataset at level i of the program’s community
hierarchy. Procedures compute_vertex_ranks (line 4)
and compute_edge_ranks (line 5) are, then, called to
assign vertex and edge ranks respectively to the FCG. The
input dataset D, which holds the program FCG, is then con-
verted to a new dataset (line 6) where FCG vertices are
ordered by sorting function rrank , which in turn sorts graph

2 The dynamic graph in question, in time t , corresponds to the FCG of
the first version, while, in time t + 1, to the FCG of the second version.
This idea is based on the fact that the first FCG can be transformed into
the second via a series of vertex and/or edge additions and/or deletions.
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Algorithm 6 Community detection
1: procedure detect_comms(D)
2: CD ← ∅

3: G0 ← G(D)

4: compute_vertex_ranks(G0)

5: compute_edge_ranks(G0)

6: CD0 ← 〈
G0, V (G0), rrank , f (D)

〉

7: C0 ← ∅

8: for all i ← 1 to ... do
9: Ci ← detect_ini tial_comms(CDi−1)

10: Ci ← improve_comms(CDi−1,Ci )

11: Gi−1 ← G(CDi−1)

12: Gi ← compute_induced_graph(Gi−1,Ci )

13: CDi ← 〈
Gi , V (Gi ), rrank , fcom

〉

14: if ‖Ci‖ == ‖Ci−1‖ then
15: break
16: end if
17: CD ← CD ∪ {CDi }
18: end for
19: return CD
20: end procedure

vertices according to the ranks assigned previously. The con-
cept and rationale behind vertex ranking is further analyzed
in Sect. 5.3. In this context, vertex ranking effectively results
in functions, that process datasets that use rrank , accessing
vertices of the dataset’s graph in order of increasing rank (e.g.
in succ(v), pred(v) or neigh(v) for a v ∈ V (G)).

Community hierarchy recovery is an iterative process
(lines 8–17) which is repeated as long as the number of
detected communities changes between levels. In each iter-
ation, the modified NSA algorithm (detect_initial_
comms, line 9) is applied on the current dataset CDi−1

(with D0 being a function dataset holding the FCG, sorted
using rrank). The result is a set of communities, which
is given as input to the directed Louvain algorithm [16]
(improve_comms, line 10). The latter’s task is to improve
the quality of the partitioning, using local modularity opti-
mization heuristics. Next, the induced graph of communities
is computed (line 12). In this graph, vertices correspond
to Gi−1’s communities and edges connect communities of
neighboring vertices. More specifically, given Gi−1 and its
decomposition into communitiesCi ,compute_induced_
graph constructs a new graph Gi with the following char-
acteristics;

1. V (Gi ) is the set of communities of Gi−1; V (Gi ) =
{C0, C1, ... CNC }

2. Ci .rank = ∑
v∈Ci

v.rank where v ∈ V (Gi−1), that is,
vertex ranks of Gi are computed by summing the ranks
of vertices in the corresponding community.

3. Edge ranks in the new graph are computed as the sum
of the ranks of the original graph’s edges as follows:
(Ci ,C j ).rank = ∑

u∈Ci , v∈C j , (u,v)∈E(Gi−1)
(u, v).rank.

Last but not least, in each iteration, a new community
dataset is created, to hold the results of the current partition-
ing (line 13) and is appended in the list of community datasets
(line 17).

5.3 Vertex and edge ranking

The results produced by many agglomerative community
detection algorithms, including [9], as well as [3], depend on
the order that graph vertices are traversed. More specifically,
in [3] the authors claim that preliminary results on several
test cases seem to indicate that the ordering of the vertices
does not have a significant influence on the modularity that is
obtained. However, traversal order may impact performance,
and more importantly, the structure of the communities pro-
duced as output. In [9] the authors traverse graph vertices
in order of decreasing degree. Ties are broken by choos-
ing an arbitrary vertex from a set of vertices with the same
degree. Consequently, applying the algorithm twice, even on
the same graph, might produce two different results.

For graph comparison purposes, the communities of the
compared graphs, detected by whatever algorithm is used for
that purpose, should be as similar as possible. Unlike other
scientific domains, where detected communities are more
valuable when community vertices are semantically related,
for graph isomorphism related problems, communities do
not have to make sense, as long as the community struc-
tures, recovered from the binaries under comparison, are as
identical as possible. In an attempt to minimize the effect
of randomness in community detection algorithms, a high
quality ordering of graph vertices should be adopted.

Ideally the corresponding sorting function should be strict,
but this is not easy in practice.Given twoprograms P1 and P2,
one needs to find a sorting function r , defined over F1 ∪ F2,
such that r(F1) = r(F2), with F1 ∈ P1 and F2 ∈ P2, when-
ever F1 and F2 are the same function. This however has
many problems in practice. First and foremost, it might be
the case that F1 and F2 are byte-by-byte equal but are not the
same function (e.g. this is quite common in binary code that
makes extensive use of C++ templates). Furthermore, finding
such an r requires that all mappings F1 → F2 are known in
advance, which is impossible, as this is the problem we are
asked to solve in the first place. Consequently, only approx-
imations can be made, that is we need a sorting function r
that produces r(F1) = r(F2) with a high probability if F1
and F2 are equal.

5.3.1 Algorithms 7–9: compute_vertex_ranks and
associated algorithms

Our sorting function r is based on the notion of vertex
ranks. Vertex ranks are integer values, and more specifically
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prime numbers, assigned to vertices of the program FCG by
compute_vertex_ranks, shown in Algorithm 7.

Algorithm 7 Compute initial vertex ranks
1: procedure compute_vertex_ranks(D)
2: G ← G(D)

3: for all v ∈ V (G) do
4: v.rank ← ⌈

rin f (v)
⌉
P

5: end for
6: for all i ← 1 to 16 do
7: for all v ∈ V (G) do
8: w ← v.rank
9: for all u ∈ neigh(v) do
10: w ← w ∗ u.rank
11: end for
12: v.rank′ ← w

13: end for
14: for all v ∈ V (G) do
15: v.rank = ⌈

v.rank′⌉
P

16: del v.rank′
17: end for
18: end for
19: end procedure

Given a function dataset, Algorithm 7 computes initial
rank values for each function in the dataset’s FCG (lines
3–5) and then executes 16 Weisfeiler–Lehman [41] rounds
(lines 6–18) to obtain a high quality coloring based on these
ranks (16 was chosen empirically, so that each vertex’ color
is affected by that of neighbors at most 16 “steps” away).
Ranks are, in fact, stored as vertex attributes and their ini-
tial value is set to the quantity returned by rin f (defined later
on) rounded up to the next prime number. Each Weisfeiler–
Lehman round (lines 7–13) computes the new rank of each
vertex based on the ranks of its neighbors, using plain inte-
ger product, which is guaranteed to be unique for vertices
that have similarly ranked neighbors. The new rank value
is stored in attribute rank′ and eventually replaces attribute
rank (lines 14–17) after being rounded up to the next prime
number. Once all 16 iterations have completed, Algorithm 7
returns and rank attributes hold a high quality coloring of
the FCG vertices. An interesting observation is that the f or
loops at lines 3–5, 7–13 and 14–17 traverse the set of graph
vertices in order of increasing address. Indeed, dataset D
passed to compute_vertex_ranks in Algorithm 6 uses
raddress as a sorting function. Even though this fact alone
is not pivotal for the results produced by Algorithm 7, it is
essential for understanding the notion of datasets and sorting
functions.

Initial vertex ranks in Algorithm 7 are computed by
rounding the return value of rin f to the next prime integer.
Algorithm 8 shows how rin f is actually implemented. The
input toAlgorithm 8 is a vertex of either a FCGorCG. The i f
condition, at lines 3–13, distinguishes between the two afore-
mentioned cases; if v is a function (i.e. a vertex in a FCG),

Algorithm 8 Ordering function based on Shannon informa-
tion
1: procedure rin f (v)
2: r ← 0
3: if v is function then
4: for all basic_block ∈ v do
5: for all instruction ∈ basic_block do
6: r ← r − log pinstruction
7: end for
8: end for
9: else
10: for all F ∈ v do
11: r ← r + rin f (F)

12: end for
13: end if
14: return r
15: end procedure

the return value is computed by summing log pinstruction for
each instruction in the function’s body (lines 4–8). Quantity
log pinstruction is, in fact, the Shannon information content of
an instruction computed on the random variable X = P1∪P2
i.e. the logarithm of the probability of occurrence of each
instruction in the union of instructions of the programs under
comparison which, practically, highlights functions that are
composed of “rare” instructions. Returning back to the i f
clause, if v is a community of functions (or a community
of communities), rin f is called recursively for each element
(lines 10–13). Finally, the computed value r is returned at
line 14.

Algorithm 9 Ordering function based on vertex ranks
1: procedure rrank (v)
2: return v.rank
3: end procedure

Finally, rrank , the sorting function used in Algorithm 6,
can be seen in Algorithm 9. Since vertex ranks, assigned by
compute_vertex_ranks, are stored as vertex attributes,
rrank returns that attribute value. This, effectively, means
that, functions that process datasets, whose sorting func-
tion is set to rrank , traverse graph vertices in increas-
ing vertex ranks. This is especially true for functions
detect_initial_comms and improve_comms used
by Algorithm 6.

5.3.2 Algorithm 10: compute_edge_ranks

Oncevertex ranks havebeendetermined,compute_edge_
ranks of Algorithm 10 is used to compute edge ranks. First,
the PageRank [36] algorithm is used, at line 3, to compute
initial rank values. We assume these values are stored in an
attribute named pagerank of each edge ofG. Then, at line 6,
the rank of each edge (u, v) is set to a linear combination of
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Algorithm 10 Compute initial edge ranks
1: procedure compute_edge_ranks(D)
2: G ← G(D)

3: pagerank(G)

4: for all e ∈ E(G) do
5: u, v ← e
6: (u, v).rank ← �u.rank ∗ u.pagerank + v.rank ∗ v.pagerank�P
7: end for
8: end procedure

the ranks of u and v, with the coefficients being the pagerank
values of u and v respectively.

5.4 Algorithm 11: detect_initial_comms

Algorithm11 shows thepseudocode for detect_initial_
comms, our modified NSA community detection procedure.
Recall that NSA is used to detect initial communities in each
iteration of Algorithm 6.

Algorithm 11 NSA-based community detection
1: procedure detect_ini tial_comms(D)
2: G ← G(D)

3: cnt ← 0
4: for all v ∈ V (G) do
5: if v.comm is set then
6: continue
7: end if
8: if succ(v) = ∅ and pred(v) = ∅ then
9: v.comm ← 0
10: continue
11: end if
12: u ← max_similari t y_neighbor(v)

13: if u.comm is set then
14: v.comm ← u.comm
15: else
16: cnt ← cnt + 1
17: v.comm ← cnt
18: u.comm ← cnt
19: end if
20: end for
21: end procedure

For each vertex (function or community of functions) in
the dataset’s graph (FCG or CG respectively) (line 4), it is
first checked whether the vertex in question already belongs
to a community (line 5). In this case, processing continues
with the next vertex in the graph G(D). It is crucial to men-
tion that vertices of G(D) are iterated based on the dataset’s
ordering function, which, in this case, happens to be rrank
(see how detect_initial_comms is invoked in Algo-
rithm 6). Orphan vertices (i.e. vertices with no successors
and predecessors) are always added in the same community,
namely community 0 (lines 8–11), as this greatly simpli-
fies the overall recovered community structure. The process

continues by considering the next vertex according to rrank .
For each v, the vertex most similar to v (as reported by
max_similarity_neighbor, Algorithm 12, presented
below) is returned in u (line 12) and the two are added in the
same community (lines 13–14). However if u.comm is not
set (i.e. u does not belong to a community), a new community
is created and v and u are both assigned to that community
(lines 16–18).

Algorithm 12 Pick most similar neighbor of a vertex
1: procedure max_similari t y_neighbor (G, v)
2: S ← argmaxu∈neigh(v)(

‖neigh(v)∩neigh(u)‖
‖neigh(v)∪neigh(u)‖ )

3: if ‖S‖ > 1 then
4: S ← argminu∈S(‖neigh(u)‖)
5: if ‖S‖ > 1 then
6: S ← argminu∈S(|address(v) − address(u)|)
7: end if
8: end if
9: return u ∈ S
10: end procedure

Assigning vertices to communities is performed based on
vertex similarity. The procedure that actually computes the
similarity score between two vertices is given in Algorithm
12. For a vertex v, max_similarity_neighbor works
as follows:

1. The ratio of common neighbors, between v and each of
its neighbors u, over the union of their neighbors is com-
puted (line 2). The neighbors of v with the highest ratio
are added in set S and, if ‖S‖ = 1, the single element u
of S is returned (line 9).

2. If ‖S‖ > 1, S is reduced to the set of those vertices with
the smallest degree. If there are no ties (i.e. ‖S‖ = 1), u
from S is returned (line 9).

3. If still ‖S‖ > 1, the vertex u ∈ Swhose address is nearest
to v is picked. There can be no ties in this case. In case D
represents a community dataset, address() can be made
to return an arbitrary community characteristic (e.g. the
lowest address member of the community).

5.5 Algorithm improve_comms

Algorithm 6 invokes improve_comms to fine-tune the par-
titioning returned by detect_initial_comms, using
LMO heuristics. As it has already been mentioned, the for-
mer uses the directed Louvain algorithm. We will presently
explain in detail the operation of this algorithm, but let us
remark that it is the algorithm presented in [16], with a
single modification: graph vertices are traversed in a deter-
ministic way, based on the ordinals of rrank , as opposed
to random traversal proposed in the literature (refer to
improve_comms, invoked in Algorithm 6).
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For brevity purposes, we present our directed Louvain
variant in verbal rather than pseudocode form. The algorithm
can be summarized as follows:

1. Assign each vertex v of graph G in its own singleton
community.

2. For each node v in G:

(a) Compute the potential increase in modularity by
moving a neighbor u of v in the same community
as v.

(b) Only move the vertex u that produces the maximum
increase in modularity, if any.

3. Build induced graph of updated communities.
4. Repeat until modularity does not increase above a certain

threshold.

The order, by which vertices in G are traversed in step
2, is arbitrary and might, as well, be random. This order,
however, greatly affects the community structure recovered,
and, so, for more deterministic results, a way of ordering
nodes should be agreed upon before using Louvain to group
functions in programs P1 and P2. Sorting functions rrank aim
to partially tackle this problem, by assigning ranks to graph
vertices and edges. Ranks are ordinals, which are used for
sorting graph vertices and edges. As already mentioned, our
Louvain variant traverses the graph vertices in that order, at
step 2, as opposed to any other arbitrary order. This way,
the more P1 and P2 “look alike“, the more their community
structure, as recovered by our Louvain variant, does too.

6 LSH

6.1 Introductory remarks

Algorithm 5 delegates actual dataset matching to the follow-
ing algorithms; singleton_matcher, structural_
matcher and monotonic_matcher. The aforemen-
tioned procedures implement matching strategies and their
semantics are discussed in [28]. In this work, we extend
these semantics, by appending an additional parameter in
their argument lists; a boolean value, named is_inexact ,
which signifies whether exact or inexact matching is to be
performed.

In earlier versions of our work, to detect exact matches, a
greedy O(nm) algorithm was used, where n was the size of
the primary dataset and m that of the secondary. The algo-
rithm iterated through both datasets and matched singleton
elements (elements appearing only once in their respective
datasets) with numerically identical feature vectors. This
algorithmwas, in turn, used to implement the three aforemen-
tioned matching strategies (singleton matching, structural

matching and monotonic matching). Greedy exact match-
ing, which has been the standard practice in binary diffing
tools, gives good results but performance drops dramatically
as n and m increase. When inexact matching is also consid-
ered, O(nm) becomes prohibitively expensive, as distance
computations between feature vectors cannot be assumed to
take O(1) time (as assumed in the exact matching case).

Locality SensitiveHashing (LSH) is a data clustering tech-
nique, which can remedy the greedy algorithm problems in
the following ways:

1. Dimensionality reduction—LSH schemes can be used to
approximate the Jaccard similarity of compared elements
directly, by only considering the elements’ hash values.
These hash values can be seen as the new set of the ele-
ments’ reduced dimensions.

2. Bucketing—LSH can aid in clustering data in smaller
buckets, which can, then, be processed by divide and
conquer algorithms to amortize the cost of O(nm).

REveal exploits the advantages offered by hashing as
explained below:

1. In the inexact matching case, REveal implements a form
of minhashing, based on universal hash functions [5]
instead of permutations. Minhashing is used to split
input datasets into smaller datasets consisting of ele-
ments that “look alike” according to their numerical
features. Matching of elements between datasets is per-
formed using theO(mn) greedy algorithmon the reduced
datasets.

2. In the exact matching case, LSH does not offer any ben-
efits. Instead plain hashing is used to split input datasets
in smaller datasets consisting of elements with equal fea-
tures. The new, smaller datasets are then processed by the
O(mn) greedy algorithm.

6.2 Algorithm 13: match_datasets

The entry point of dataset matching logic is given in Algo-
rithm 13.

Algorithm 13 Dataset matching entry point
1: procedure match_datasets(D1, D2, M, is_inexact)
2: if is_inexact = f alse then
3: n ← match_datasets_exact(D1, D2, M)

4: else
5: n ← match_datasets_inexact(D1, D2, M)

6: end if
7: return n
8: end procedure
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At line 2, the value of is_inexact is checked. This boolean
determines whether datasets will be matched exactly (line 3)
or approximately (line 5).

6.2.1 Algorithm 14: match_datasets_inexact

Given two datasets D1 and D2, Algorithm 14 begins by
iterating through the vertices of graph G(D1), the primary
dataset’s graph, and hashing the feature vector of each vertex
using all hash functions hi in H (lines 3–8). All hi are simple
universal hash functions of the following form:

hi (x) = (ai x + bi ) mod p

Where p is a prime integer. Note that G(D1) can be either
be a FCG or a CG, depending on the diffing phase, while
H is assumed to be a set of randomly chosen universal hash
functions. Next, for each k-shingle (k can be 1) w of the set
of hashes S, a mappingw → v is created in the hash table T1
(line 6) and, consequently, vertex v might be stored in several
buckets of T1. The aforementioned process is then repeated
for the graph of the secondary dataset G(D2) (lines 10–15).
This time, hashed elements are added in hash table T2.

Algorithm 14 LSH-based inexact matching
1: procedure match_datasets_inexact(D1, D2, M)
2: T1 ← ∅

3: for all v ∈ G(D1) do
4: S ← {hi ( f (v)) | hi ∈ H}
5: for all w ∈ shingles(S) do
6: insert(T1, w → v)

7: end for
8: end for
9: T2 ← ∅

10: for all v ∈ G(D2) do
11: S ← {hi ( f (v)) | hi ∈ H}
12: for all w ∈ shingles(S) do
13: insert(T2, w → v)

14: end for
15: end for
16: n ← 0
17: for all w ∈ keys(T1) ∩ keys(T2) do
18: D′

1 ← 〈
G(D1), values(T1, w), r(D1), f (D1)

〉

19: D′
2 ← 〈

G(D2), values(T2, w), r(D2), f (D2)
〉

20: n ← n + greedy(D′
1, D′

2, M)

21: end for
22: return n
23: end procedure

In the following loop (lines 17–21), only the set of keys
that both T1 and T2 have in common are considered. For
each such key w, a temporary dataset D′

1, consisting of D1’s
vertices in T1[w] (line 18), and a temporary dataset D′

2, con-
sisting of D2’s vertices in T2[w] (line 19), are constructed and
a greedy matching algorithm (function greedy) is invoked
to solve the resulting reduced problem.We assume that given

two datasets, greedy produces a matching of vertices with
a low (but not necessarily the lowest) cost, adds matched
pairs in M , removes matched vertices from their respective
datasets and returns the number of matches n.

6.2.2 Algorithm 15: match_datasets_exact

For exact matching purposes, match_datasets_exact
uses an arbitrary hash function h. This can be either a cryp-
tographic hash function, or even a CRC code computed over
f (v), the feature vector of a vertex v. This is done for
all v in datasets D1 (lines 3–6) and D2 (lines 8–11) with
hashed elements ending up in hash tables T1 and T2 respec-
tively. The loop at lines 13–17 is similar to that of Algorithm
14. We again assume that greedy populates M with the
newly matched pairs, removes vertices from their datasets
and returns the number n of matched pairs.

Algorithm 15 Hashing-based exact matching
1: procedure match_datasets_exact(D1, D2, M)
2: T1 ← ∅

3: for all v ∈ G(D1) do
4: w ← h( f (v))

5: insert(T1, w → v)

6: end for
7: T2 ← ∅

8: for all v ∈ G(D2) do
9: w ← h( f (v))

10: insert(T2, w → v)

11: end for
12: n ← 0
13: for all w ∈ keys(T1) ∩ keys(T2) do
14: D′

1 ← 〈
G(D1), values(T1, w), r(D1), f (D1)

〉

15: D′
2 ← 〈

G(D2), values(T2, w), r(D2), f (D2)
〉

16: n ← n + greedy(D′
1, D′

2, M)

17: end for
18: return n
19: end procedure

7 Experimental results

7.1 Baseline

In this section we compare REveal, our binary diffing frame-
work, against two popular tools of the same domain, namely,
Diaphora and YaDiff. All three run on IDA Pro; the first two
as IDA Python plug-ins, while the latter as a native plug-in.
Furthermore, for evaluating the efficiencyofCDandLSH,we
also compare the current version of REveal against its older
version that lacks inexact matching capabilities and the algo-
rithm implementations presented in the previous sections.

REveal is the name of our binary diffing software, first
introduced in [27]. It implements all algorithms presented
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in [27,28], as well as the ones of the present paper. As our
research progresses, we extend it with new algorithms and
features, constantly improving its matching efficiency and
speed. Even though REveal is not yet in the public domain,
we plan to release it once its code base matures and becomes
stable. For the time being, access, for non-commercial use
and for preview purposes, can be granted, on request, to inter-
ested researchers and reverse engineers.

Diaphora is a free and open-source binary diffing tool,
which is probably the most widespread of its kind in the
reverse engineering community. It was first released during
SyScan 2015 and is still activelymaintained. Diaphoraworks
by exporting function information, from IDA Pro databases
under comparison, into portable SQLite files. This per-
function information includes the number of basic blocks, the
number of connected components, a signature synthesized by
the function’s instructions and many more. Diaphora is also
capable of utilizing the power offered by the IDAdecompiler.
If the latter is detected, Diaphora uses it to create a filtered
version of each function’s decompiled C code and and stores
the result as yet another function feature. Diaphora com-
pares the exported databases using a set of predetermined
SQL queries, which compare various combinations of func-
tion features. These queries are able to detect both exact, as
well as inexact matches. In the latter case, a similarity score
is also returned. It is worth noting that Diaphora also comes
with a graphical user interface that allows reverse engineers
to explore the diffing results interactively.

YaDiff is a binary diffing tool, part ofYaCo, a collaborative
reverse engineering plug-in for IDA Pro. YaDiff was devel-
oped for the purpose of porting information between two IDA
Pro databases. That is, given two IDBs, it applies a binary
diffing algorithm for the purpose of merging information,
from the former to the latter, and writes the result in a new
database, so as not to trash the original inputs. Merged infor-
mation includes, symbol names, comments, bookmarks and
all sorts of annotations usually found in an IDA Pro database.
That said, YaDiff is not a generic, interactive binary diffing
tool (like Diaphora which allows users to examine the list of
symbols that were matched between the two databases), it
merely performs the information merging process in a fully
automated manner, giving no insights on the actual matching
results. However, since YaDiff is open source and function
matching is an integral part of its binary diffing engine,
we were able to modify it and make it expose the required
information. With the said modifications in place, YaDiff’s
matching power is now measurable.

7.2 Evaluation

All experiments were performed on IDA Pro 7, running IDA
Python based on Python 2.7. For this purpose, the version
of Diaphora used is the latest from the diaphora-1.2 branch,

with a series of patches manually backported from the mas-
ter branch, to fix minor bugs in the former. Unfortunately,
running the latest version of Diaphora, requires a new IDA
Pro license, as both have recently moved to using Python 3
instead. When it comes to YaDiff, the latest commits in its
master branch appear to be about 3 years old. For the purpose
of running our experiments, the latest version of YaDiff was
modified, as already mentioned in the previous paragraph,
and was manually compiled using the IDA Pro SDK. Last
but not least, it should be noted that all experiment instances
were carried out on a Mac laptop equipped with a Core i7
2.4Ghz and 8Gb of RAM. We plan to perform comparisons
against the latest Diaphora version (as well as against addi-
tional binary diffing tools) in the near future and report them
in another publication.

In the following, all binary diffing tools were used to find
both exact and inexact function matches in the compared
subjects. Debugging information, present in the experiment
corpus, is used as a ground truth for verifying the correctness
of the results and classifying them as either valid matches
or mismatches. For the sake of fairness, function names in
IDAProdatabaseswere scrambled (using simple IDAPython
scripts) before executing the diffing engines. Note that the
time it takes for the compared tools to export information is
not measured; only the diffing process is timed and displayed
in the following tables.

To demonstrate the efficiency of our new, divide-and-
conquer approach in binary diffing, as well as the improve-
ments in REveal’s diffing engine for that matter, we reused
the same dataset as in [28]. The dataset consists of binary
executables for ncmc, nmap, ffmpeg-android and the Linux
kernel. The aforementioned programs are of increasing com-
plexity, with ncmc executables having the least number of
functions (≈ 1000) and vmlinux binaries themost (≈ 40000).
The dataset contains two versions of each of the aforemen-
tioned programs, for example, Linux kernel 4.4.1 and 4.4.40,
which are diffed with one another. Furthermore, for each pair
of versions of each program, executables for all four com-
puter architectures, namely i386, amd64, arm and aarch64
are compared. The above combinations result in a total of 16
experiment instances summarized in Fig. 2. For each exper-
iment, we measure the time it takes for the diffing process
to complete (ignoring latencies introduced during informa-
tion exporting), the number of successful function matches,
as well as the number of mismatches, that is, functions that
were matched, but according to ground truth, they are not the
same.

Additionally, we evaluate the abovementioned diffing
tools in a subset of the DeepBinDiff [13] dataset, which is
publicly available at the project’s GitHub repository. This
dataset contains several precompiled binary executables,
generated by compiling various versions of coreutils, dif-
futils and findutils, using optimization levels ranging from
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Fig. 2 Experimental results for our custom dataset. Rows correspond to programs (ncmc, nmap, ffmpeg-android, vmlinux) and columns correspond
to measurements (execution time, number of matches, number of mismatches). For the total number of functions in each case refer to Table 1

O0 to O3. More specifically, during our evaluation, we con-
sidered the following; coreutils version 8.1 against 8.30 (102
binaries), diffutils version 3.4 against 3.6 (4 binaries) and
findutils version 4.41 against 4.6 (3 binaries). Executables,
compiled with optimization levels fromO0 to O3, were used,
resulting in a total of 12 experiment instances summarized in
Fig. 3. For each experiment, we take the exact samemeasure-
ments as previously (execution time, number of matches and

mismatches). Due to lack of historical data, the performance
of REveal’s predecessor is not shown. Note that Fig. 3 shows
only the accumulated execution time, number ofmatches and
mismatches, not the individual diffing results of each diffed
binary executable pair.
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7.3 Results

7.3.1 Custom dataset

Experimental results are shown in Fig. 2 (see also Table 1 for
the total number of functions contained in each program and
architecture). We observe that REveal has the highest num-
ber of correctlymatched functions in all experiment instances
apart fromone (ffmpeg_android for i386). Startingwith ncmc
(Fig. 2, 1st row), Reveal successfully matches 691, 651, 798
and 685 functions, when comparing aarch64, amd64, arm
and i386 binary executables respectively. Diaphora comes
second with 609, 568, 650 and 500 matches. The matching
power of REveal, compared to this of its previous version,
presented in [28], has evidently risen, at the expense of
slightly increased running time. YaDiff comes third with
respect to number of matches, but has shorter running times
than its two competitors. REveal produces the most false
positives, with an average of about 132 mismatches in each
instance of this first round of experiments.

The second series of experiments (Fig. 2, 2nd row) con-
cerns nmap. The subject binaries, in this batch of exper-
iments, are larger, with the number of functions being
increased from a few hundreds, compared to ncmc, to a few
thousands. Once again we see a higher number of successful
matches detected by REveal, which beats YaDiff by 1522,
1637, 2063 and 1814 matches. Interestingly, in the first three

Table 1 Number of functions in our custom dataset

Program Arch. V. 1 V. 2

ncmc 0.1.7 0.1.8

aarch64 820 822

amd64 780 782

arm 931 933

i386 839 837

nmap 7.12 7.31

aarch64 10773 13344

amd64 10806 13374

arm 11526 13469

i386 10923 13504

ffmpeg-android 20180408 20180731

aarch64 16489 20870

amd64 20649 25028

arm 17226 21610

i386 19800 24174

vmlinux 4.4.1 4.4.40

aarch64 26383 26430

amd64 41598 41527

arm 21813 21852

i386 40111 40184

instances, the updated version ofREveal finds a few thousand
extra matches, compared to its previous version, about 10–
40s faster. As the size of the compared programs increases,
YaDiff’s execution time advantage becomes more marked,
with its running times being an order of magnitude shorter
that those of its competitors. It’s also obvious that, in this
series of experiment, YaDiff outperforms Diaphora in terms
of correctly matched functions. Last but not least, when it
comes tomismatches, REveal is again the loser, with an aver-
age of about 1844 mismatches per run.

The next four experiment instances (Fig. 2, 3rd row) con-
cern ffmpeg binaries for Android. The number of functions
have now doubled, compared to nmap. We begin by not-
ing that, for i386, YaDiff outperforms both Diaphora and
REveal, with a score of 18151 matches and a running time
of 86s. The new version of REveal is both faster and more
efficient, in terms of matches, than its predecessor and is the
winner in the remaining runs. When it comes to mismatches,
REveal is again the loser, but the percentages of erroneous
matches have fallen to more tolerable values, compared to
the total number of functions. YaDiff performs exception-
ally well, even outperforming Diaphora in some runs, with
impressive speed efficiency, making it ideal for quick binary
diffing tasks.

The vmlinux series of experiments (Fig. 2, 4th row) high-
light REveal’s power to match binary executables, when
these are very similar. First and foremost, we can see that
REveal is once again thewinnerwhen looking at the numbers
of correctlymatched functions.Additionally, even though the
number of mismatches, found by REveal, is evidently higher
than this of YaDiff, we can see that, generally, it’s Diaphora
that makes the most mistakes in this batch. In terms of exe-
cution time, YaDiff is followed by REveal, which in turn
wins Diaphora, while the obsolete version of REveal comes
last. Evidently REveal has greatly benefited by CD and LSH,
when it comes to execution speed compared to its predeces-
sor. The second and fourth experiment instances highlight
this, with the new version executing about 6 to 7 times faster.

7.3.2 DeepBinDiff dataset

As previously mentioned, the DeepBinDiff dataset consists
of several ELF binary executableswhich are, generally, small
in size (as opposed to our custom dataset that mainly con-
sists of a few large executables). One conclusion, that can be
quickly drawn by looking at Fig. 3 (and Table 2 that shows
the total number of functions for each program and opti-
mization level), is that, REveal is about 2 to 5 times slower
when compared to its competitors. CD and LSH both require
“setup” times, whose cost is amortized for larger executa-
bles, but becomes more evident when the compared subjects
are smaller. As it can be seen, in all experiment instances
(Fig. 3, 1st column) REveal takes 17 to 364s to complete,
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Fig. 3 Experimental results for the DeepBinDiff dataset. Rows correspond to programs (coreutils, diffutils, findutils) and columns correspond to
measurements (execution time, number of matches, number of mismatches). For the total number of functions in each case refer to Table 2

while both Diaphora and YaDiff are much faster, with run-
ning times ranging from 2 to 108s for the former and from
1 to 126s for the latter.

Focusing on the number of correctly matched functions
(Fig. 3, 2nd column), we can see how REveal wins the race,
with more noticeable leverage in the cases of coreutils and
diffutils (rows 1 and 2 respectively). Of course, this addi-
tional precision comes with the time penalty mentioned in
the previous paragraph. Diaphora and YaDiff also perform

well, but come second and third respectively, with the for-
mer winning the latter in 8 out of the 12 experiment instances
(more specifically YaDiff wins in diffutilsO1, O2 and O3, as
well as in findutils O0).

Finally,when it comes tomismatches (Fig. 3, 3rd column),
we again experience high numbers of false positives gen-
erated by REveal, especially in the coreutils and findutils
cases, with the O0 and O2 findutils experiments being the
most notable ones. In these two cases, REveal generates a
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Table 2 Number of functions in DeepBinDiff dataset (for reasons
unknown to us, findutilsO1 consists of a single binary, hence the incon-
sistency in the numbers)

Program Optimization level V. 1 V. 2

coreutils 8.1 8.30

O0 23503 28485

O1 20096 23534

O2 20178 23453

O3 19685 22853

diffutils 3.4 3.6

O0 1408 1408

O1 1171 1173

O2 1168 1170

O3 1129 1133

findutils 4.41 4.6

O0 1663 1685

O1 404 334

O2 1356 1412

O3 1250 1342

number of false positives almost equal to the number of true
positives. On the contrary, Diaphora and YaDiff are more
resilient and generate acceptable false positive percentages.
This time, YaDiff wins by generating the least mismatches
in 9 out of 12 runs, with Diaphora winning the O1 and O2
coreutils run, as well as the O2 findutils one.

7.4 On the number of false positives

From Figs. 2 and 3, and the analysis of the previous section,
it is clear that REveal has a high false positive rate. During its
inexactmatching rounds,REvealwill keepmatching asmany
functions as it can, even if the similarity score is very low
(i.e., distance is high), as long as unique scorematches can be
found and, consequently, this may lead to increased numbers
of false positives. Trying to avoid this by hardcoding distance
thresholds, below which matches are considered legitimate,
and dropping all matches above that threshold, is generally
not an acceptable solution.

However, the high false positive rate is not an acute
problem. Among others, binary diffing tools aid in manual
reverse engineering and REveal is not an exception. Since all
results are provided to the user, matches can be filtered using
application-specific and domain-specific knowledge at a later
time. Indeed, as a reverse engineer makes use of the results
produced by a diffing tool, he or she can decide whether a
match has been identified correctly or not. Based on man-
ual effort, user-identified matches can be specified and guide
the overall matching process. Furthermore, research onmore
reliable community detection and communitymatching algo-

rithms thatwill allow to, at least partially, tackle this problem,
is currently underway.

8 Conclusion

We have empirically proven that binary diffing can benefit
from divide-and-conquer approaches, using techniques like
CD and LSH, both in terms of speed efficiency as well as
matching precision. However, we believe this merits further
research. Dataset partitioning during binary diffing is still an
unpopular approach, so we hope to have inspired researchers
and reverse engineers to look into it. Several community
detection and, generally, graph partitioning algorithms can be
found in the public literature; their systematic testing and for-
mal evaluation in binary diffing applications will definitely
advance the current state of the art.
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