
Journal of Computer Virology and Hacking Techniques (2022) 18:333–346
https://doi.org/10.1007/s11416-022-00420-7

ORIG INAL PAPER

MinerAlert: an hybrid approach for webmining detection

Franco Tommasi1 · Christian Catalano1 · Umberto Corvaglia1 · Ivan Taurino1

Received: 25 September 2021 / Accepted: 10 February 2022 / Published online: 12 March 2022
© The Author(s) 2022

Abstract
The introduction of new memory-based crypto-mining techniques and the rise of new web technologies like WebAssembly,
made the use of browsers for crypto-currencies mining more and more convenient and popular. That, in turn, originated a new
form of computer piracy, called cryptojacking, which is rapidly gaining ground on the web. A cryptojacking site exploits its
visitors’ hardware resources to secretlymine crypto-currencies. This paper analyzes currentweb-based cryptojackingdetection
methods in order to propose a novel hybrid strategy. Current detection methods are found to require either considerable
computer administration skills or execution privileges usually not available to common users. In this view, a method, named
MinerAlert, has been designed and proposed, aiming at detecting in real-time sites performing cryptojacking. To address the
limitations of current methods, the method implementation has been achieved through a browser extension. The present paper
describes the method’s details and its implementation. It also reports the experimental results of its utilization, showing its
positive performances in terms of ease of use, successful detections and speed.

Keywords Malware · Cryptojacking · Web mining detection · Crypto-mining

1 Introduction

This paper aims at contributing to the current methods for
detecting the unauthorized use of crypto-currencies min-
ing techniques on a user’s machine. Specific attention will
be devoted to hidden web-based crypto-mining through a
user’s browser [1,2]. As in cryptojacking, this sort of crypto-
mining makes use or the victim’s CPU cache memory to
execute the PoW algorithm [3–5]. This type of algorithms
is largely used in most recent varieties of Altcoint [6–8]
(Ethereum, Litecoin, Zcash,Monero, etc.) crypto-currencies.
The improvements the present approach introduces are not
only related to the ways to detect the mining but are also
designed to make easy for a generic, inexperienced user
to take advantage of them. For this purpose, no particu-

B Christian Catalano
christian.catalano@unisalento.it

Franco Tommasi
franco.tommasi@unisalento.it

Umberto Corvaglia
umberto.corvaglia@unisalento.it

Ivan Taurino
ivan.taurino@unisalento.it

1 Dipartimento di Ingegneria dell’Innovazione, University of
Salento, Via per Monteroni, 73100 Lecce, Italy

lar administrative permission and no special configuration
are required. All is needed is the installation of a browser
extension. The described technique is based on performance
measures and behavioural features. Indeed, through their
analysis it is possible to accurately discriminate between
the presence or the absence of mining code executed on the
machine. Such analysis is performed in real-time, during the
normal user’s navigation. Behaviours are evaluated for each
visualized page (e.g. through the detection ofWebSocket and
Web Worker). By contrast, performance features are evalu-
ated by a benchmark, specifically through the results of a
customized version of the “Schönauer Triad Benchmark”.
All the measures and the observation are combined and rated
through the Support Vector Machine (SVM) algorithm [9] to
discriminate cryptojacking sites.

The paper is organized as follows. Section 2 proposes
a short description of software solutions for browser-based
mining detection already available on the market and in aca-
demic literature. Section 3 introduces the concept of “Mining
Services”. Developers or attackers could profit from such
services to pursue their crypto-mining activities at clients’
expenses. The services are typically based on sites offering
easy API for crypto-mining. Section 4 presents a new hybrid
approach for web mining detection, named MinerAlert. The
proposed technique is based on the analysis of two differ-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-022-00420-7&domain=pdf
http://orcid.org/0000-0003-4038-2317

334 F. Tommasi et al.

ent aspects: the performances of the machine’s hardware
resources and the behavior of the visited web page. Sec-
tion 5 details the implementation of the proposed solution,
describes the datasets used for the training and testing phase,
the workflow of the implemented software and the results
obtained. Section 6 discusses the benefits and strengths of the
proposed solution and highlights the differences between that
and other currently adopted solutions. Section 7 highlights
a few limitations of the proposed solution and lists possible
suggestions for future improvements. Section 8 summarizes
the research work done and emphasizes the importance of
improving cryptojacking detection techniques.

2 State of the art

A fair choice of software solutions for browser-based min-
ing detection are already available on themarket as browser’s
extensions. However, it must be noted that many, if not most,
of them use static (and, therefore, not ofmuch help) detection
techniques. On the other hand, most of the software solution
proposed in literature are intrinsically complex and of little
use for an average user. Among most known market solu-
tions, NoCoin [10] andMinerBlock [11] may be mentioned.
The static detection techniques used by these tools are basi-
cally of two types:

• The search for particular keywords inside the page
JavaScript code The technique aims at identifying spe-
cific “Mining Services” [6,12,13] that is libraries imple-
menting methods and functions needed for mining(PoW
operations, information exchange with the mining pool,
etc.)

• Detection through blacklists The technique takes for
granted the existence of a list ofmalicious domains and IP
addresses. Obviously such list must be constantly main-
tained and frequently updated to be of any use. A list of
this type is maintained by “CoinBlockerLists” [14]

However both above techniques are ineffective as they can
be easily eluded, the first by obfuscating JavaScript code,
the second constantly changing domain and IP address [15–
17]. Researches in the field brought to the production of
software tools like MineGuard [18], CMTracker [19] and
MineSweeper [13]. When compared with the above men-
tioned commercial solutions, such tools are actually based
on more complex and effective procedures for mining detec-
tion. As an example MineGuard uses a low level approach,
based on the analysis of periodic variations of specific perfor-
mance indexes (Hardware Performance Counters). Another
mining detectionmechanism, proposed byKonoth et al. [13],
consists in a static analysis of theWasm code executed by the
page. Such analysis is performed at run-time through the scan

of the textual version of the Wasm code (.wat file) found in
the web page. Both techniques bring to the fore how the exe-
cution of memory-based algorithms implies a large number
of Load and Store operation on the cache.

3 Mining services

The growth of web-mining led to the rise of several “Min-
ing Services”. Developers could profit from such services to
pursue their crypto-mining activities at victims’ expenses.
The services are typically based on sites offering easy API
for crypto-mining and charging around 20-30% of the mined
crypto-currencies. In 2017, Coinhive was the first to revisit
the basic crypto-mining concept through a site [20] which
has now been put offline. The site used to offer services for
mining theMonero crypto-currency, making sure the victims
were kept unaware of their CPUs’ exploitation. To be able to
profit from such site a simple registration is needed. The user
will be provided with an ID key by which the Mining Ser-
vice identifies the work done by the CPUs of the developers’
sites visitors and distributes the profits to those entitled. A
few lines of JavaScript code in the served web pages are all
is needed for a site owner to be able to exploit the visitors’
resources for web-based mining:

Listing 1 CryptoLoot Mining Services JavaScript code (threads:4
throttle:0.5)
<script src=“ //statdynamic . com / lib / crypta . js”>
</script>
<script>
var miner = new CRLT . Anonymous (‘USER-KEY’ , {
threads : 4 , throttle : 0.5 , coin : “xmr” ,
});
miner . start ();
</script>

Lately such services provide also the chance to include
a Wasm module or asm.js, exploiting such technologies to
improve the mining performances. Moreover, the services
allow a certain amount of customization, in terms of CPU
exploitation percentage and amount of idle time.

4 MinerAlert

As above hinted, the proposed technique is based on the
analysis of two different aspects: the performances of the
machine’s hardware resources and the behavior of the visited
web page. The performances analysis is carried out indirectly
through the execution of the “Schönauer Triad Benchmark”.
Based on its results, some features are then extrapolated. One
more performance feature is obtained through the browser’s
APIs. Likewise, the behavioral features are selected and
measured taking into account a number of typical effects gen-
erated by the visit to cryptojacking sites and keeping a log of

123

MinerAlert: an hybrid approach for web mining detection 335

them. Again, based on such “logging”, some more features
are pinpointed. All those features combination constitutes
the sample used by the SVM algorithm for classification pur-
poses.

4.1 Performance based

It is well known that, during mining operations, clients
are prone to an excessive use of the CPU cache memory
[4,13,18]. In particular, an high number of Load and Store
operations may be observed, mainly in L1 and L3 caches.

Based on such information, the “Schönauer triad bench-
mark” [21–24] was selected. The benchmark comprises a
nested loop, the inner level executing a multiply-add opera-
tion on the elements of three vectors and storing the result in a
fourth. The purpose of this benchmark is to measure the per-
formance of data transfers between memory and arithmetic
units of a processor [25]. The main computation performed

A[i] = B[i] + C[i] · D[i] (1)

per i iterations, 2 double precision flops, 3 reads of a double,
1 write of a double. Such simple operation is repeated for i
going from 1 to N (internal loop) and the related FLOPS are
computed. Everything is repeated increasing the variable N
(external loop) from which the size of vectors (A, B, C and
D) used by the computation (and consequently the Problem
Size, for which the FLOPS are computed) depends. The test
is able to represent the MFLOPS (i.e. millions of floating
point executed by the CPU in one second) as a function of
the “problem Size” (for this benchmark, the problem size is
linearly dependent on the number of loops).

The algorithm resultsmay be interpreted in differentways.
What it indirectly emphasizes is how the speedof cachemem-
ory access varies with the problem size. As a consequence
it comes in useful to detect algorithms making large use of
the cache memory. In fact, the steep fall of the performance
in MFLOPS as a function of the problem size, shown in the
graphs (Fig. 1a), is a clear indication of the filling of the
L1 cache for a given problem size (around 1000 benchmark
loops in our tests).

Indeed, as clearly shown by Fig. 1, the results are rather
different when the benchmark is run during normal use of
the machine (Fig. 1a), during an online gaming session (Fig.
1b) or during the visit to a cryptojacking site (that is when
the mining algorithm is in execution, Fig. 1c).

As can be seen in the Fig. 1c, when the benchmark is
executed during web-mining, the result shows a substantial
performance decay, which is especially evident in cache L1,
essentially because the repetitive nature of the mining oper-
ations takes L1 space away from the benchmark.

For this reason and since the normal benchmark execu-
tion (by its nature) affects the machine performances, the

benchmark was adapted to be executed inside the browser.
Such adaptation required a reduction of the problem size and
porting the software from C to the Wasm language.

The resulting mini-benchmark was executed inside the
browser while navigating a number of cryptojacking sites.
In particular, Fig. 2 compares the results obtained executing
the mini-benchmark during normal web navigation (Fig. 2a)
with two execution run while web mining was performed
(Fig. 2b e c). Both executions use 4 threads but they differ in
throttle values (“throttle” being the percentage of inactivity
of the mining algorithm).

Clearly, whenweb-mining is present, themini-benchmark
returnsmuch lowerMFLOPvalues.Another typical behaviour
can be noted: when mining is above 50%, resulting MFLOP
values vary in time (and do not settle on a particular value).

4.1.1 Performance features

Themini-benchmark results have been used to compute three
metrics. They are meant to emphasize different aspects of the
results: the first and the second metrics are aimed at making
sense of the chart’s shape, the third metrics is aimed at dis-
criminating them in terms of performances (MFLOPs).

1. StandardDeviation.StandardDeviation (orσ), is the stan-
dard formula used to evaluate the dispersion of values
around the average:

σ =
√∑N

i=1(xi − x̄)2

N − 1
(2)

2. Average MFLOPs distance. After the previous observa-
tion about the irregular variations of the performances
when mining is in progress, this metrics was selected to
quantify the graph’s irregularities. Its values are always
positive as the average quantity is the modulus of the vari-
ations between two successive values.

Average MFLOPs distance = 1

N

N−1∑
i=0

| F(i) − F(i + 1) | (3)

As Fig. 2a shows, the diagram obtained during the normal
use of the client machine, it does not present substan-
tial irregularities, displaying almost constant values of
MFLOPs. As a consequence, the value of “Average
MFLOPs distance” is very low in that case. On the
contrary, the recognizable irregularities which can be
observed when mining is in progress, would return high
values of the metrics.

3. Average MFLOPs 10% min values. This metrics aims
at representing the deterioration of the machine perfor-
mances by computing the average of the smallest values

123

336 F. Tommasi et al.

Fig. 1 Benchmark executions in
different contexts

resulting from the benchmark execution. Namely, the
worst 10% of the benchmark results is selected (i.e. if
the benchmark returns 1000 MFLOPS values, the worst
100 are selected). The choice to use the smallest samples
to the extent of 10% of the total number is prompted by
an experimental concern.

4. CPU Usage The last metrics is simply the CPU usage
percentage (as returned by the Chrome API).

In order to validate reliability and effectiveness of the
approach so far introduced, the benchmark has been exe-
cutedwhile navigating indifferent types ofweb sites: generic,
video streaming, gaming, mining (with different throttle val-
ues).

The web-mining sites used in the tests have been selected
mainly through special search engines [26,27] (Search
Engine for Source Code) allowing the search to be executed
inside the code contained in web pages. More web-mining
sites have been implemented on purpose through theAPI pro-
vided by Browsermine [28] and CoinIMP [29] (both popular
“Mining Service” allowing to embed in a web page some
JavaScript code implementing the PoW operations mining
requires). It must here be noted how difficult is to select a
list of actual web-mining sites, since they crop up and die

with considerable dynamism [30]. It is not possible to dis-
criminate with sufficient precision the web-mining nature of
a site, based only on the three performance metrics above
described. In particular, the analysis shows as measures for
some of the mini-benchmark runs for web-mining sites over-
lap those obtained for web gaming sites.

4.2 Behavior based

On the base of the typical behaviour of some classical Min-
ing Service such as CryptoLoot [31], the decision to use
some particular elements to mark the presence of mining
code in execution within a web page was taken. A number
of “web-based” implementation ofMining Services (similar
to CryptoLoot) are available and, while they differ in some
detail, some common elements like the presence of Web-
Socket [32,33], Web Worker [34] and WebAssembly [35,36]
can be recognized. Generally, the malware is served to the
client through a single JavaScript file included in the web
page together with some lines of JavaScript code used to
configure and start the extraction process. When it starts,
the “miner” creates the desired number of instances of Web-
Workers and a WebSocket connection with the mining pool
(getting there the key used by the Mining Services to iden-

123

MinerAlert: an hybrid approach for web mining detection 337

Fig. 2 Mini-Benchmark
executions in different cases
(normal navigation and mining
threads:4)

tify the user accessing the service). The miner receives then
a work block to process. Once the client and the mining-pool
[37] are able to communicate, they will go on exchanging
messages along the whole session (i.e. the time the client
stays on the cryptojacking page). It must be noted that some
Mining Service (CryptoLoot among them) try to enhance the
complexity of the communication between the miner and the
mining pool splitting it among more communication chan-
nels (e.g. receiving through a WebSocket and forwarding
through the TLS protocol). As a matter of fact, in order to
perform its duty, a miner cannot avoid communicating peri-
odically the results of its work. It is therefore reasonable to
read the presence of such communication as a further clue
useful to discriminating web-mining exploits.

4.2.1 Behavioral features

The following behavior features were selected to help detect-
ing unwanted web-mining:

• Web Worker duplicate.As already hinted, it is a common
practice for hidden web-mining to start a number of Web
Workers (usually one per core) in order to fully exploit
the computational power of the client machine. As all the
Web Workers must execute the same type of operations,
they are generated by the same JavaScript code (they
are in fact duplicate Web Workers). This metrics takes
then into account the maximum number of WebWorkers
running in theweb page, that are generated from the same
JavaScript file/code.

123

338 F. Tommasi et al.

• WebSocket. The metrics takes into account the presence
of an active WebSocket in the web page (it is therefore a
Boolean feature).

• WebSocket loop messages. This metrics deals with Web-
Sockets once again (they are in fact the main way the
browser uses to commuicate with the external world).
This time theminute rate ofmessages exchanged through
WebSockets is taken into account.

• WasmModule.AnotherBooleanmetrics: it represents the
presence of a Wasm module loaded into the web page.

• iframe Number. This metrics represents the number of
iframes contained in the web page.

• LongestStringLength. This metrics was devised to iden-
tify the presence of an obfuscated JavaScript module
inside the web page. The reason for this choice is that
many obfuscation techniques rely on the encoding of
malicious JavaScript code into very long strings.

• Ratio of string definitions and string uses. This metrics
represents the number of invocations of JavaScript func-
tions used to define new strings (such as substring or
fromCharCode), and the number of uses of the strings
(with operations like write and call toeval). Themet-
rics was introduced by [38] as it represents an indicator of
the presence of obfuscated JavaScript code. As a matter
of fact, [38] showed an high def-to-use ratio for the string
variables is often a clue for the use of common deobfus-
cation techniques, in turn an indication of the presence
of malicious code.

Combining performance and behaviour featureswill obvi-
ously increase the problem dimensionality (so that it cannot
be represented graphically anymore) and its complexity.
Nevertheless such increase is needed as it allows a better
discrimination of the presence of mining activities.

5 Implementation

The proposed solution was implemented as a browser exten-
sion the tests were performed by installing the extension on
a desktop machine with the following specifications:

• Hardware

– Model Name: iMac
– Processor Name: Intel Core i5
– Processor Speed: 3,2 GHz
– Number of Processors: 1
– Total Number of Cores: 4
– Memory: 16 GB

• Operative System

– System Version: macOS 10.13.6 (17G14033)
– Kernel Version: Darwin 17.7.0

• Software

– Browser: Chromium 64-bit
– Version: 76.0.3809.0

The choice arose from the desire to provide the tech-
nique advantages even to inexperienced users, by avoiding
the need of specific technical skills (e.g. managing superuser
privileges or fiddling with the browser code). The use of a
browser extension makes also easier to deceive a few mech-
anisms implemented by some cryptojacking sites aimed at
contrasting ongoing automatic detection campaigns on the
client side (such as waiting for actual user events for starting
mining [30]). The prototype was built using JavaScript for
the most part, with the addition of a Wasm module for the
mini-benchmark execution.

One of themost important task of the prototype is the sam-
ple generation. A sample is the totality of the above described
metrics for a given site. A set of samples may be used
to train the classification algorithm (SVM, Support-Vector
Machines). For this kind of use, each sample is labelled
according to the class it belongs (mining/not mining). After
that, obviously a sample may be fed into the previously
trained algorithm to get, as an output, a class estimate. The
choice of a Wasm module to execute the mini-benchmark
is determined by the performance features such language
offers. For the classification algorithm, a JavaScript trans-
lation of the libsvm library [39] (originally written in C++
by Chih-Chung Chang and Chih-Jen Lin [40]) was used.
The SVM algorithm has been chosen because of its effective
behaviour with multidimentional spaces.

5.1 Dataset generation

The dataset used to train the SVM was generated within the
same extension, taking advantage of the Chrome API which
allows to store a sample in JSON format. In particular, a list
of 604 sites (130 cryptojacking sites and 474 legitimate sites)
was fed to the extension, which navigated to each of those
sites, extracted the samples, and used them for the training,
based on the a-priori knowledge. For each visited site two
phases are carried out:

1. A behavioural data gathering phase (about a minute for
each site)

2. A performance evaluation phase (after the benchmark
execution)

Once the two phases are carried out, the sample is generated
and stored, being included the dataset. During the samples

123

MinerAlert: an hybrid approach for web mining detection 339

collection, sites of different categories and contexts havebeen
visited:

1. Streaming sites. This category is particularly meaningful
because such sites typically use Web Workers for video
streaming. Therefore they are needed to represent a legit-
imate use of such web functionality in the dataset.

2. Widely used sites.A number of very popular sites, such as
facebook.com, youtube.com, etc. have been added to the
dataset. As an example to justify their relevance, it was
possible to observe that Facebook makes an extensive use
of WebSocket communications, exchanging hundreds of
messages per minute.

3. Cryptojacking sites. The selection of cryptojacking sites,
of course, was the key of the whole enterprise, and
required a special research work (also helped by search
engines dedicated to the source code of sites). Beyond
actual cryptojacking sites, a number of pages containing
Mining Services was created on purpose and added to the
dataset. Those web pages require the machine to generate
amany different numbers of threads (corresponding to the
number of generated Web Workers) and different throttle
levels (the percentage of time the script is kept inactive).

While it takes about a minute to generate a sample in the
current testbed, thus limiting the dataset size, an optimization
of the generation process is already under way to allow the
generation of a larger dataset.

5.2 SVM training and result

For the training phase of the classification algorithm (SVM),
a few kernels were considered. The ones selected for the
training and the test are:

1. Radial (RBF) [41]: generally considered a reasonable first
choice [9]

2. Linear [42]: such kernel features a lesser number of hyper-
parameters, while keeping a low model complexity.

In order to maximize the technique accuracy levels, different
combinations of features have been tried. For each of such
combinations, different training and test phases have been
executed, using the two above mentioned types of kernel. In
particular, it was possible to perform a scaling of the dataset
parameters, as detailed in the third column of the Table 1
which shows all the results.

5.3 Use case example/prototype work-flow

Let us now see what happens when the training is com-
pleted, the extension is active and a site is visited. When
an user accesses a web page, the browser executes the

extension module named Content Script, which, in turn,
notifies the Background module with the need to reset the
variables where the site features are to be stored. At this
point the Content Script executes a JavaScript code in the
web page context, overwriting the window.Worker and
window.WebSocket functions with a simple addition of
some code executing logging tasks. Then a short logging
phase follows, by which all the uses of JavaScript files by
the web page are logged and additional information needed
to compute the behavioral metrics is gathered.

When the cryptojacking web page is executed, it will
generate several Web Worker and it will open a WebSocket
connection through which it will communicate with the min-
ing pool.

During the generation of a new sample, the Wasm mod-
ule containing the mini-benchmark is executed. Based on
the execution result, 3 out of 4 performance features will
be computed (that is, all but the estimate of the CPU load
made through the browser’s API). It must be noted that the
behavioral features values are logged at run-time (during the
navigation) and that their values are saved during the sample
generation. Once the sample is generated, it can be submitted
to the SVM algorithmwhich will issue the verdict on the web
page.

The browser normally renders theweb page and the exten-
sion execution is completely transparent for the end user. The
time needed to gather the additional information required to
compute all the behavioural metrics is variable and strictly
related to the complexity of the Javascript code embedded in
the analysed page. The benchmark impact on the total time
spent for the site verification is negligible (6–7s on average).
All the actions are logged by the extension which will gen-
erate a sample to be classified, after about a minute, by our
estimate.

5.4 API and Implementation

The implemented extension follows the classic architec-
ture of a browser extension as documented in [43]. Among
its main components are a page whose execution is per-
formed in background (as usually, called background.js) and
another one executed in the context of the open page (con-
tentScript.js). Content scripts can communicate with their
parent extension by exchanging messages and storing values
using the storage API (Fig. 3).

Following the main API used and a few details about the
metrics implementation (Table 2) are reported.

6 Solution’s strengths

It is important to note that the examination of the first three
behavioral metrics (Web Worker Duplicate, WebSocket,

123

340 F. Tommasi et al.

Table 1 Accuracy level and ROC curves vs kernel type and Features set

Selected features Linear Kernel Radial Kernel Radial Kernel (with
parameters scaling)

ROC curves

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message

Best parameter: C=8
CV Accuracy: 97.73%

Best parameter: C=512,
gamma=3.0517578125e-
05 CV Accuracy:
95.45%

Best parameter: C=8,
gamma=0.5 CV
Accuracy: 98.14%

Fig. 4a

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule

Best parameter: C=8
CV Accuracy: 98.55%

Best parameter: C=128,
gamma=3.0517578125e-
05 CV Accuracy:
97.30%

Best parameter: C=2,
gamma=0.5 CV
Accuracy: 99.59%

Fig. 4b

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule
defToUseRatio

Best parameter: C=2
CV Accuracy: 98.55%

Best parameter: C=128,
gamma=3.0517578125e-
05 CV Accuracy:
97.30%

Best parameter: C=2,
gamma=0.5 CV
Accuracy: 99.59%

Fig. 4c

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule
defToUseRatio
LongestStringLength

Best parameter: C=32
CV Accuracy: 97.10%

Best parameter: C=2,
gamma=3.0517578125e-
05 CV Accuracy:
88.21%

Best parameter: C=2,
gamma=0.5 CV
Accuracy: 99.59%

Fig. 4d

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule
defToUseRatio
LongestStringLength
iframeNumber

Best parameter: C=2
CV Accuracy: 97.10%

Best parameter: C=2,
gamma=3.0517578125e-
05 CV Accuracy:
88.21%

Best parameter: C=2,
gamma=0.5 CV
Accuracy: 99.59%

Fig. 4e

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule
LongestStringLength

Best parameter: C=0.5
CV Accuracy: 85.93%

Best parameter: C=8,
gamma=3.0517578125e-
05 CV Accuracy:
95.45%

Best parameter: C=2,
gamma=0.5 CV
Accuracy: 99.59%

Fig. 4f

Standard deviation average mflops
dist mean min values duplicates
worker web socket web socket
message cpuUsage WasmModule
LongestStringLength
iframeNumber

Best parameter: C=1
CV Accuracy: 91.72%

Best parameter: C=8,
gamma=3.0517578125e-
05 CV Accuracy:
95.45%

Best parameter: C=32,
gamma=0.125 CV
Accuracy: 99.59%

Fig. 4g

Fig. 3 Browser extension architecture overview

WebSocket loop messages), while significant for the detec-
tion of web mining frauds, might turn out ineffective if not
considered together with other features. The identification
of a malicious site through such metrics may be easily cir-
cumvented by the use of the iframe element, which allows
to include a web page inside the main web page. In par-
ticular, a few cryptojacking sites use an iframe including a
web page which in turn includes the malicious JavaScript file
in charge of the mining operations (starting with WebWork-
ers andWebSockets). Obviously, unless iframes are properly

123

MinerAlert: an hybrid approach for web mining detection 341
Ta
bl
e
2

A
PI

an
d
im

pl
em

en
ta
tio

n
de
ta
ils

fo
r
fe
at
ur
es

Fe
at
ur
es

M
ai
n
us
ed

A
PI
s

N
ot
e

St
an
da
rd
_d
ev
ia
tio

n
–

M
et
ri
cs

ar
e
co
m
pu
te
d
on

th
e
ba
se

of
th
e
be
nc
hm

ar
k

re
su
lts

M
ea
n_
m
in
_v
al
ue
s

–

A
ve
ra
ge
_m

flo
ps
_d
is
t

–

cp
uU

sa
ge

C
hr
om

e.
sy
st
em

.c
pu
.g
et
In
fo

–

D
up
lic
at
es
_w

or
ke
r

C
hr
om

e.
ex
te
ns
io
n.
se
nd
M
es
sa
ge

C
hr
om

e.
ru
nt
im

e.
on
M
es
sa
ge

W
he
n
an

ev
en
to

cc
ur
s
a
m
es
sa
ge

fr
om

’c
on

te
nt
Sc

ri
pt
.js
’
is
se
nt
,m

es
sa
ge

in
te
rc
ep
te
d
by

’b
ac
kg
ro
un
g.
js
’
to

ke
ep

tr
ac
k
of

an
ev
en
t(
bo
th

ja
va
sc
ri
pt

fil
es

ar
e
pa
rt
of

a
cl
as
si
c
ch
ro
m
e

ex
te
ns
io
n
ar
ch
ite

ct
ur
e)

W
eb
_s
oc
ke
t

C
hr
om

e.
ex
te
ns
io
n.
se
nd
M
es
sa
ge

C
hr
om

e.
ru
nt
im

e.
on
M
es
sa
ge

W
eb
_s
oc
ke
t_
m
es
sa
ge

C
hr
om

e.
ex
te
ns
io
n.
se
nd
M
es
sa
ge

C
hr
om

e.
ru
nt
im

e.
on
M
es
sa
ge

A
SM

M
od
ul
e

C
hr
om

e.
de
bu
gg
er
.s
en
dC

om
m
an
d

C
om

m
an
d:

“D
eb
ug
ge
r.g

et
Sc
ri
pt
So

ur
ce
”

− C
hr
om

e.
ta
bs
.q
ue
ry

D
if
fe
re
nt

re
ge
x
ar
e
us
ed
:

−T
o
de
te
ct
th
e
pr
es
en
ce

of
gi
ve
n
ke
yw

or
ds

in
th
e
sc
ri
pt
s’
so
ur
ce
s

(A
m
on
g
w
hi
ch

th
e
Ja
va
Sc
ri
pt

pa
ge
s)

/
(?

:W
eb
A
ss
em

bl
y)

(?
:(?

:\
.in

st
an
tia

te
)?

(?
:S

tr
ea
m
in
g)
?)
?(
?
:\

.T
ab
le

)?
(?

:\
.M

em
or
y)
?/

−i
ns
id
e
th
e
U
R
L
of

th
e
X
M
L
H
ttp

R
eq
ue
st
(X

H
R
)
ob
je
ct

/
[.]
[w

W
][a

A
][s

S][
m
M
]/

if
ra
m
eN

um
be
r

C
hr
om

e.
ta
bs
.q
ue
ry

–

de
fT
oU

se
R
at
io

C
hr
om

e.
de
bu
gg
er
.o
nE

ve
nt

M
et
ho
d:

“D
eb
ug
ge
r.p

au
se
d”

T
hr
ou
gh

th
e
A
PI

w
e
se
ts
om

e
br
ea
kp
oi
nt
s
at
a
fe
w

fu
nc
tio

ns
of

in
te
re
st
.D

ur
in
g
th
e
pa
ge

ex
ec
ut
io
n
w
e

co
un
tt
he

nu
m
be
r
of

fu
nc
tio

ns
ca
lls

(e
qu
iv
al
en
tt
o

th
e
nu
m
be
r
of

tim
es

th
e
pa
ge

cr
os
se
s
th
e

br
ea
kp
oi
nt
).

aw
ai
tc
hr
om

e.
de
bu
gg
er
.s
en
dC

om
m
an
d(

{ta
bI
d:

cu
rr
en
tT
ab
.id

},
“D

eb
ug
ge
r.s
et
B
re
ak
po
in
t”

,
{

lo
ca
tio

n:
lo
ca
tio

n
}, fu
nc
tio

n(
re
sp
on
se
){

..
..

..
.. })

M
os
tL
on
gS

tr
in
gL

en
gt
h

C
hr
om

e.
de
bu
gg
er
.s
en
dC

om
m
an
d

C
om

m
an
d:

“D
eb
ug
ge
r.g

et
Sc
ri
pt
So

ur
ce
”

T
he

so
ur
ce
s
of

ea
ch

sc
ri
pt

ex
ec
ut
ed

(a
m
on
g
w
hi
ch

th
os
e
of

th
e
.js

pa
ge
s)
is
pa
rs
ed

th
ro
ug
h
th
e

fo
llo

w
in
g
re
ge
x
in

or
de
r
to

de
te
ct
an

en
co
de
d/
ob

fu
sc
at
ed

st
ri
ng

us
ed

in
th
e
pa
ge
./
[;

()
[\
]{
}”
””
=
]/

To
sa
ve

an
d
lo
ad

ea
ch

ge
ne
ra
te
d
sa
m
pl
e

C
hr
om

e.
st
or
ag
e.
lo
ca
l

G
et
an
d
se
tm

et
ho
ds

123

342 F. Tommasi et al.

Table 3 A comparison between
a few solutions available in
literature and MinerAlert

Requires root privileges Easyness of integration Maximum accuracy

MinerAlert NO YES 99.59%

MineSweeper YES YES N/A

Outguard NO NO 97.9% TPR and 1.1% FPR

MineGuard YES NO 99.5%

taken care of, the metrics evaluations would be hindered. At
any rate, the use of other metrics makes the technique more
robust, by allowing to correctly identify malicious sites even
when a variety of obfuscation methods are used. As a matter
of fact, as highlighted byBijmans et al. [44], there are numer-
ous obfuscation techniques used by cryptojacking sites in
order to hide the code dedicated to the PoW. However none
of those is able to circumvent the solution here proposed.

Since the method here proposed is not based on the mere
analysis of the JavaScript code text and it relies crucially
on behavioral metrics, it turns out to be quite unaffected by
obfuscation techniques.

As already mentioned in Sect. 2, the solutions so far avail-
able in literature, while effective, do require fairly good
technical skills or, in alternative, administration privileges
on the machine.

On the contrary, the method here proposed is quite effec-
tive and accurate in the identification of cryptojacking sites
and, at the same time, it does not require special skills or
privileges. See Table 3 for a summary of a few method fea-
tures.

7 Points of improvement

MinerAlert’s actually implemented prototype analyzes and
monitors the single tab used during navigation. It is obviously
possible (and advisable) to extend the operations to all the
tabs open in the browser. Another point worth considering is
the possible increase of the number of both behavioral and
performance features used to discriminate malicious sites.
Also, in order to improve the effectiveness of those already
considered, the values of the“Average MFLOPs distance”
feature could be normalized, so decreasing the effects of pos-
sible outliers in the dataset. A further improvement might be
the integration of a static analysis aimed at identifying the
presence of a particular hashing algorithm hidden inside a
Wasm module, as suggested by Konoth [13].

Beside the above suggestions, perhaps the area most wor-
thy of attention is the training phase of the algorithm. Indeed
it is scarcely portable (performance data are strictly linked
to the machine running the mini-bechmark) and somewhat
lengthy. The training algorithm could be revisited with the
aim of separating the evaluation of the behavioral features
from that of the other features. In this way the (static) behav-
ioral features metrics for the training could be computed
beforehand and provided ready to the algorithmwhich should
only concentrate on (dynamic) performance features, thus
saving considerable time. The extension implemented and
here proposed could therefore be still further improved by
adding the automatic recognition of the type of surfed sites.

8 Conclusions

The present study analyzed the illegal practice of cryp-
tojacking and the current methods available to detect it.
Cryptojacking is the exploitation of a victim’s computer
resources tomine cryptocurrencies while the victim is unwit-
tingly visiting a fraudulent web site. The existing methods
were critically considered from different points of view: cor-
rectness, ease of use, strength against obfuscation techniques.
The result of the analysis was the proposal of a benchmark
involving a number of different indicators and its prototypal
implementation in the formof a browser extension. In order to
tell apart cryptojacking sites the implemented code performs
a real-time analysis of a web site, extrapolating the indica-
tors and classifying them by an SVM algorithm to determine
the type of site (and its trustworthiness). While the prototype
was trained with a relatively small dataset, it turned out to be
able to perfectly discriminate the cryptojacking sites met in
the web navigation.

123

MinerAlert: an hybrid approach for web mining detection 343

Author Contributions Made substantial contributions to conception and
design of the study and performed data analysis and interpretation:
Christian Catalano, Umberto Corvaglia and Franco Tommasi;
Performed data acquisition, as well as provided administrative, techni-
cal, and material support: Ivan Taurino.

Funding This research received no external funding.

Declarations

Conflict of interest The authors declare no conflict of interest.

Institutional review board statement Not applicable.

Informed consent satement Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Appendix: Roc curves

See Figs. 4, 5.

Fig. 4 ROC curves vs kernel type and Features set (referred to Table 1) - 1

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

344 F. Tommasi et al.

Fig. 5 ROC curves vs kernel type and Features set (referred to Table 1) - 2

123

MinerAlert: an hybrid approach for web mining detection 345

References

1. Pastrana, S., Suarez-Tangil, G.: A first look at the crypto-mining
malware ecosystem: a decade of unrestrictedwealth. arXiv preprint
arXiv:1901.00846 (2019)

2. Eskandari, S., Leoutsarakos,A.,Mursch, T., Clark, J.: Afirst look at
browser-based cryptojacking. In: 2018 IEEEEuropeanSymposium
on Security and PrivacyWorkshops (EuroS PW), pp. 58–66 (2018).
https://doi.org/10.1109/EuroSPW.2018.00014

3. Li, J., Li, N., Peng, J., Cui, H., Wu, Z.: Energy consumption of
cryptocurrency mining: a study of electricity consumption in min-
ing cryptocurrencies. Energy 168, 160–168 (2019)

4. Han, R., Foutris, N., Kotselidis, C.: Demystifying crypto-mining:
Analysis and optimizations of memory-hard pow algorithms. In:
2019 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 22–33 (2019). https://doi.org/
10.1109/ISPASS.2019.00011

5. Chung, S.-J., Lee, E.: In-depth analysis of bitcoinmining algorithm
across different hardware

6. Rüth, J., Zimmermann, T., Wolsing, K., Hohlfeld, O.: Digging into
browser-based crypto mining. In: Proceedings of the Internet Mea-
surement Conference 2018, pp. 70–76 (2018). ACM

7. Huynh, S., Choo, K.T.W., Balan, R.K., Lee, Y.: Cryptocurrency
mining on mobile as an alternative monetization approach. In: Pro-
ceedings of the 20th InternationalWorkshop onMobile Computing
Systems and Applications, pp. 51–56 (2019). ACM

8. Aung, Y.N., Tantidham, T.: Review of ethereum: Smart home case
study. In: 2017 2nd International Conference on Information Tech-
nology (INCIT), pp. 1–4 (2017). IEEE

9. Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al.: A practical guide to
support vector classification (2003)

10. keraf: NoCoin. GitHub (2018)
11. Belkacim, I.: MinerBlock. GitHub (2017)
12. Rauchberger, J., Schrittwieser, S., Dam, T., Luh, R., Buhov, D.,

Pötzelsberger, G., Kim,H.: The other side of the coin: A framework
for detecting and analyzingweb-based cryptocurrencymining cam-
paigns. In: Proceedings of the 13th International Conference on
Availability, Reliability and Security, p. 18 (2018). ACM

13. Konoth, R.K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel,
C., Bos, H., Vigna, G.: Minesweeper: An in-depth look into drive-
by cryptocurrency mining and its defense. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS ’18, pp. 1714–1730. ACM, New York, NY,
USA (2018). https://doi.org/10.1145/3243734.3243858

14. Zerodot1: CoinBlockerLists. https://zerodot1.gitlab.io/
CoinBlockerListsWeb/ (2017)

15. Kim, B.-I., Im, C.-T., Jung, H.-C.: Suspicious malicious web site
detection with strength analysis of a javascript obfuscation. Int. J.
Adv. Sci. Technol. 26, 19–32 (2011)

16. Choi, Y., Kim, T., Choi, S., Lee, C.: Automatic detection for
javascript obfuscation attacks in web pages through string pattern
analysis. In: International Conference on Future Generation Infor-
mation Technology, pp. 160–172 (2009). Springer

17. Xu, W., Zhang, F., Zhu, S.: The power of obfuscation techniques
in malicious javascript code: A measurement study. In: 2012 7th
International Conference on Malicious and Unwanted Software,
pp. 9–16 (2012). IEEE

18. Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C., Zaffar, F.,
Caesar,M.,Borisov,N.:Miningon someone else’s dime:mitigating
covert mining operations in clouds and enterprises. In: Dacier, M.,
Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) Research in
Attacks, Intrusions, and Defenses, pp. 287–310. Springer, Cham
(2017)

19. Hong, G., Yang, Z., Yang, S., Zhang, L., Nan, Y., Zhang, Z., Yang,
M., Zhang, Y., Qian, Z., Duan, H.: How you get shot in the back: A

systematical study about cryptojacking in the real world. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’18, pp. 1701–1713. ACM, New
York, NY, USA (2018). https://doi.org/10.1145/3243734.3243840

20. Coinhive: Coinhive API. https://coinhive.com (2017)
21. Hager, G., Zeiser, T., Eitzinger, J., Wellein, G.: Optim. Perform.

Modern HPC Syst. Learn. Simple Kernel Benchmarks 91, 273–
287 (2006). https://doi.org/10.1007/3-540-31768-6_23

22. Hofmann, J., Fey, D., Eitzinger, J., Hager, G., Wellein, G.: Anal-
ysis of intel’s haswell microarchitecture using the ecm model and
microbenchmarks. In: International Conference on Architecture of
Computing Systems, pp. 210–222 (2016). Springer

23. Hofmann, J., Eitzinger, J., Fey, D.: Execution-cache-memory
performance model: Introduction and validation. arXiv preprint
arXiv:1509.03118 (2015)

24. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring perfor-
mance and power properties of modern multi-core chips via simple
machine models. Concurr. Comput. Practice Exp. 28(2), 189–210
(2016)

25. Hager, G.,Wellein, G.: Introduction to High Performance Comput-
ing for Scientists and Engineers. CRC Press, Boca Raton (2010)

26. PublicWWW: PublicWWW, Source Code Search Engine. https://
publicwww.com/(2005-2020)

27. NerdyData: NerdyData, Search Engine. https://nerdydata.com/
28. Browsermine: Browsermine API. https://browsermine.com (2017)
29. CoinIMP: CoinIMP, Mining Service. https://www.coinimp.com/

(2017-2020)
30. Kharraz, A., Ma, Z., Murley, P., Lever, C., Mason, J., Miller, A.,

Borisov, N., Antonakakis, M., Bailey, M.: Outguard: Detecting in-
browser covert cryptocurrency mining in the wild. In: The World
WideWebConference.WWW’19, pp. 840–852. ACM,NewYork,
NY, USA (2019). https://doi.org/10.1145/3308558.3313665

31. CryptoLoot: Crypto-Loot,Mining Service. https://crypto-loot.org/
(2017-2018)

32. Pimentel,V.,Nickerson,B.G.:Communicating anddisplaying real-
time data with websocket. IEEE Int. Comput. 16(4), 45–53 (2012)

33. Erkkilä, J.-P.:Websocket security analysis.AaltoUniversitySchool
of Science, pp. 2–3 (2012)

34. Bederson, B.B., Quinn, A.J.: Web workers unite! addressing chal-
lenges of online laborers. In:CHI’11ExtendedAbstracts onHuman
Factors in Computing Systems, pp. 97–106 (2011). ACM

35. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M.,
Gohman, D., Wagner, L., Zakai, A., Bastien, J.: Bringing the web
up to speed with webassembly. In: ACM SIGPLAN Notices, vol.
52, pp. 185–200 (2017). ACM

36. Kim, H.-G.: The javascript and web assembly function analysis to
improve performance of web application. Int. J. Adv. Sci. Technol.
117(1), 1–10 (2018)

37. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive
compatibility of bitcoin mining pool reward functions. In: Interna-
tional Conference on Financial Cryptography and Data Security,
pp. 477–498 (2016). Springer

38. M. Cova, C.K., Vigna, G.: Detection and analysis of drive-by-
download attacks and malicious javascript code. In: 19th Inter-
national Conference on World Wide Web, pp. 281–290 (2010)

39. mljs: LIBSVM for the browser and nodejs. GitHub (2017)
40. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technol-
ogy 2, 27–12727 (2011). Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm

41. Keerthi, S.S., Lin, C.-J.: Asymptotic behaviors of support vector
machineswithGaussianKernel.NeuralComput.15(7), 1667–1689
(2003). https://doi.org/10.1162/089976603321891855

42. Suthaharan, S.: Support vector machine. In: Machine Learning
Models and Algorithms for Big Data Classification. Integrated
Series in Information Systems 36, 207–235 (2016)

123

http://arxiv.org/abs/1901.00846
https://doi.org/10.1109/EuroSPW.2018.00014
https://doi.org/10.1109/ISPASS.2019.00011
https://doi.org/10.1109/ISPASS.2019.00011
https://doi.org/10.1145/3243734.3243858
https://zerodot1.gitlab.io/CoinBlockerListsWeb/
https://zerodot1.gitlab.io/CoinBlockerListsWeb/
https://doi.org/10.1145/3243734.3243840
https://coinhive.com
https://doi.org/10.1007/3-540-31768-6_23
http://arxiv.org/abs/1509.03118
https://publicwww.com/
https://publicwww.com/
https://nerdydata.com/
https://browsermine.com
https://www.coinimp.com/
https://doi.org/10.1145/3308558.3313665
https://crypto-loot.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1162/089976603321891855

346 F. Tommasi et al.

43. Google: Google developers
44. Hugo L.J. Bijmans, T.M.B., Christian Doerr, D.U.o.T.: Inadver-

tently Making Cyber Criminals Rich: A Comprehensive Study of
Cryptojacking Campaigns at Internet Scale. https://www.usenix.
org/system/files/sec19-bijmans.pdf (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.usenix.org/system/files/sec19-bijmans.pdf
https://www.usenix.org/system/files/sec19-bijmans.pdf

	MinerAlert: an hybrid approach for web mining detection
	Abstract
	1 Introduction
	2 State of the art
	3 Mining services
	4 MinerAlert
	4.1 Performance based
	4.1.1 Performance features

	4.2 Behavior based
	4.2.1 Behavioral features

	5 Implementation
	5.1 Dataset generation
	5.2 SVM training and result
	5.3 Use case example/prototype work-flow
	5.4 API and Implementation

	6 Solution's strengths
	7 Points of improvement
	8 Conclusions
	A Appendix: Roc curves
	References

