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Abstract
Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical
infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three
malware types capable of attacking smart grid networks in the ns3 simulation environment. First, an aggressive malware type,
named the pandemic malware, follows a topological-scan strategy to find and infect all devices on the network in the shortest
time possible, via a brute force approach. Next, the more intelligent endemic malware sacrifices speed for stealthiness and
operates with a less conspicuous hit-list and permutation-scan strategy. Finally, a highly stealthy malware type called the
contagion malware does not scan the network or initiate any connections but rather appends on legitimate communication
flows. We define several metrics to express the infection speed, scanning efficiency, stealthiness, and complexity of malware
and use those metrics to compare the three malware types. Our simulations provide details on the scanning and propagation
behavior of different malware classes. Furthermore, this work allows the assessment of the detectability of different malware
types.

Keywords Malware attacks · Smart grids · Communication networks · Anomaly detection · Network security

1 Introduction

Cyber attacks targeting critical infrastructures evolved to a
major threat and featured several occurrences in the news
media [8,11]. Consequently, utility companies have started
upgrading their control networks with enhanced security
measures because the power grid is increasingly fitted with
remote controllable devices that require protection.

Smart grid communication is often based on technolo-
gies known from the Internet and, therefore, well understood,
reasonably priced, and capable of providing affordable and
reliable control mechanisms to remote areas. However, they
also introduce vulnerabilities and an increased attack surface.
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Although power grid control equipment typically has physi-
cal tampering protection and utility companies protect their
assets against cyber threats, new vulnerabilities will emerge
in the future.

Cyber attacks often involve attackers directly invading
their target with the help of functional malware, as in
the Ukraine attack, cf. [8,11]. Development of malware
technology with increasing modularity opens novel oppor-
tunities and risks, in particular when such malware acts
autonomously in large scale smart grid implementations.
Therefore, this paper defines metrics that allows to quantify
various performance aspects of malware as prerequisite for
adequate countermeasures and defensive solutions against
malware. These methods can complement and support basic
protection measures of smart grid networks that, like most
industrial networks, should be isolated from the Internet
and protected by dedicated border gateways, firewalls, and
intrusion detection systems (IDS) that the utility company
operates. We simulate the initial stages of malware propa-
gation in such networks with the goal of commencing cyber
attacks against critical infrastructures.

The remainder of this paper is structured as follows. Sec-
tion 2 defines the system model representing the operational
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environment in which our malicious software (malware)
models are applied. We define the system borders, com-
munication technologies, network topology, node types, and
network traffic. Section 3 defines the attack model and its
capabilities, including details on all malware types. Sec-
tion 4 introducesmetrics bywhichwe categorize themalware
types. Section 5 discusses the simulation results and our find-
ings, whereas Section 6 proposes countermeasures. Section 7
concludes the paper and details on the findings.

The contributions of this paper include:

– Aset of genericmetrics to describe, quantify and compare
the scanning, propagation capabilities and efficiency of
malware from a communication network perspective.

– Three prototypical malware categories featuring:

– Different scanning behavior that allows us to extract
details for effective detection mechanisms.

– Different propagation behavior that allows us to
extract details for effective detection and protection
mechanisms.

– A mesh-network-based smart grid simulation environ-
ment with a backhaul network infrastructure that is
attacked using different malware categories. The results
allow inferenceof differentmalware behavior and anoma-
lies that help us define defensive solutions.

– A specific anomaly detection method based on flow
anomaly detection that is able to detect covert malicious
packets inside legitimate flows.

– Several countermeasures that support the defense against
these malware types.

2 Systemmodel and operational
environment

We use the ns3 simulation environment [28] to model three
malware classes and simulate attack propagation in urban
mesh-based smart grid networks.

2.1 Topology

The proposed network topology includes fourwirelessmesh-
based sub-networks that are interconnected via a wired back-
haul network infrastructure as shown in Figure 1. Each mesh
network contains a number of field nodes, each represent-
ing one city building and, therefore, one remote controllable
smart grid unit. This building unit includes sensors and other
local devices, such as switchable loads, smart meters [34]
and distributed generators. This results in 2352 apartments
simulated over 196 buildings, representing a small city dis-
trict. We introduced an extensive investigation on smart grid
network topologies in [9] which shows that such mesh-based

Fig. 1 Sub-network structure of the simulation environment

network topologies benefit from increased resilience against
node failure compared to star-topologies. Furthermore, we
discussed that smart grid networks must scale to huge num-
bers of nodes, likely to be implemented by the same utility
company in a monoculture of devices. Therefore, we simu-
late a subset of the large scale smart grid.

Figure 1 illustrates several field nodes and one center-
gateway node inside each one of four mesh sub-networks.
The mesh sub-networks are connected by the backhaul
network infrastructure via the gateway nodes. The figure
illustrates each mesh sub-network in a square layout of a
49 node grid. We assume that a square layout is reasonable
for a city district. The mesh networks are modeled using the
Open Link State Routing (OLSR) protocol as implemented
in ns3 version 3.26 [28].

The backhaul network infrastructure is modeled as optical
fiber links (point-to-point links in ns3) between each gate-
way/transformer. We limit our network size to 49 field nodes
because several sources [2,30,35] have discovered scaling
limitations with OLSR-based mesh networks larger than 70
nodes unless hybrid infrastructures are used, hence the back-
haul links. We assume that these limitations are taken into
accountwhen establishing urbanmesh structures.We assume
a distance between the field nodes of 100m because this
distance fits well within city districts between buildings.
Therefore, gateways are at least 700m apart, because they
are located in the center of each mesh network.

2.2 Communication

The proposed communication model consists of field nodes
(e.g., smart meters) and gateways (e.g., data concentrators).
Field nodes are allowed to initiate communication with the
gateway and send data to it. Additionally, field nodes are
not supposed to initiate IP-layer connections with other field
nodes directly. However, packets are typically processed by
intermediate field nodes when routing these packets through
the underlying OLSR network. This is why faulty configura-
tions, impersonation of gateways by malicious field nodes or
vulnerabilities in the OLSR implementationmay enable field
nodes to address and contact each other. Gateways can com-

123



Malware propagation in smart grid networks: metrics, simulation and comparison of three… 111

municate with each other and can establish connections with
field nodes in their managed subnet to, e.g., pull power grid
data, or send firmware updates. We do not simulate update
traffic because it does not occur in regular intervals. More-
over, some existing malware types (introduced in Section 3)
are capable of impersonating update servers, in our case the
gateways, to contact newvictims and infect them.This behav-
ior is illustrated in the malicious traffic in Figure 1. Since
field nodes do expect commands from the gateway, but not
from neighboring field nodes, they are susceptible to lateral
attack vectors. The network model assumes exclusively uni-
cast communication, excluding any broadcast or multicast
communication patterns.

In order to transmit data from field nodes to the gateway
each field node establishes a Transmission Control Protocol
(TCP) connection to the gateway. Data is sent repeatedly
in 60s intervals. If the gateway is not in radio range of the
field node, data is routed through the mesh network (OLSR
routing) to reach the gateway. After successful establishment
of the connection between field node and gateway, the field
node begins sending without any further request. The native
data traffic between field nodes and gateways is modeled at
100 kbyte every 60s [1].

Gateways from different mesh networks are connected via
the point to point backhaul network infrastructure. The gate-
way in the first mesh sub-network initiates communication
to the other gateways. They exchange aggregated data and
negotiate switching optimizations. This backhaul traffic is
modeled at 100 kbyte every second [1].

We assume that the backhaul network infrastructure is
not immune to the attack, meaning that gateways can be
infected by the malware, too. This assumption is challeng-
ing but nonetheless realistic. Utility companies have major
incentives to deploy devices that have been manufactured
by the same vendor. These reasons include interoperabil-
ity on one hand. On the other hand, utility companies can
decrease their maintenance cost when deploying monocul-
tures in terms of devices, decreasing effort for firmware
update, device replacement, personnel training, etc. Ven-
dors, however, have substantial incentives to reuse hardware
and software to lower their development and manufacturing
costs for devices. As recent publications [23,25] have shown,
monocultures in terms of common vulnerabilities may derive
from as little as using a common processor family. Putting
all of these arguments together there is a realistic likelihood
that a malware can exploit vulnerabilities both in field nodes
and in gateways and full infection (lateral movement to other
sub-networks) is possible. We assume a dedicated network
with no other services than smart grid control traffic, hence
no external traffic or office utilization.

Gateways are assumed to be located in the master-
transformer station in the center of each mesh network.
Gateways are responsible for data collection, remote switch-

Table 1 Collection of all settings and assumptions in the systemmodel

Field nodes Gateways

Number of nodes 49 per subnet 1 per subnet

Total number of nodes 192 4

Sending cycle [s] 60 1

Distance [m] 100 > 700

Connection to Local gateways Neighbor gateways

Legitimate data [kbyte] 100 100

ing, and local energy optimizations. In reality there exist
several local slave transformers that are located inside the
buildings. We consider them inside the field nodes and omit
them from the simulation. The reason for omitting them is
that the master transformer control unit, the gateway, is the
only switching unit capable of disabling large areas, over-
ruling slave transformer settings. The slave transformers are
remotely controlled by it. Although these transformers can-
not be ignored when simulating the electricity grid, they can
be omitted in communication networks, because an infected
gateway is capable of switching off entire sections, rendering
the slave transformers irrelevant. Therefore, we assume that
the gateway unit is capable of disabling the electricity supply
for all subjacent nodes in the sub-network.

We use the standard OLSR model available in ns3 [28]
and increase the interval of periodic OLSR control message
exchanges [29] because we use a rigidly static network with
no topological changes. Since these changes have no effect
on the network structure they can be omitted from overall
network traffic. Furthermore, Trullols et al. [38] state that
OLSR generally does not converge within one control mes-
sage iteration. Therefore, we allow the initial control traffic
to settle until all nodes have all location information about
the network before starting the actual malware simulation.

Table 1 summarizes all settings and assumptions made in
the system model.

3 Attackmodel

In our attack model the attacker tries to infect as many nodes
as possiblewith an automated self-propagatingmalware. The
reason for using self-propagating malware is that, although
direct infection of few major control nodes may be feasi-
ble, manual infection does not scale as well in terms of
large scale smart grids. We simulate a subset of a city wide
scale smart grid network, the infection goal being launch-
ing different attack types against either a utility company or
selected field nodes, depending on what types of nodes can
be infected. Attack examples include for instance, discon-
necting parts of the electricity grid (if this functionality is
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implemented in the field nodes), modifying sensor readings
to influence, e.g., invoices, statistics, and grid control deci-
sions, and using compromised devices for other malicious
activities, e.g., establishing a botnet, as was introduced in
[10]. In the case of few infected field nodes the attacker can-
not do much damage, except disconnect some field nodes
or modify their readings. However, when the first gateway
is infected, the attacker gains control over an entire sub-
network, enabling a shutdown. Furthermore, the attacker can
infiltrate aggregated data collected at the gateway, or prop-
agate to all subjacent field nodes. Using the gateway, the
malware can gain access to the backhaul network propagat-
ing across other parts of the network.

After infecting the last gateway the attacker can control all
power switching equipment in the entire network, including
their aggregated data that concern all sub-networks regard-
less if all field nodes are infected. However, if all field nodes
are infected, additional attack vectors emerge that include,
e.g., selective deactivation of targets, selective espionage on
targets, building a botnet across a great number of nodes,
and unpermitted distributed computing on a large number of
infected nodes.

We define the attackmodels’ starting point at one compro-
mised field node as patient zero, i.e., the first infected node, in
the lowest level of the hierarchy. Patient zero represents, e.g.,
an infected smart meter, which can initially be compromised
via an unpatched vulnerability, e.g., zero day exploit, or gain-
ing physical access to the device. From there, the malware
spreads via different propagation vectors, discussed in Sec-
tions. 3.1 through 3.3, and introduced in [10]. Additionally,
we assume that an exploitable zero day vulnerability exists in
the entire population of hosts, as can occur in monocultures
of devices, cf. [23,25], or alternatively a group of vulnera-
bilities that have in sum the same effect on different types
of devices. The vulnerabilities allow remote code execution
and administrator rights upon infection throughout the entire
population of network devices. Since utility companies have
strongfinancial incentives to implement devicemonocultures
in terms of single-vendor deployments as detailed earlier in
Section 2.2, the same or similar vulnerabilities across the
network hierarchy can be expected in such a setup.

The communication model in Section 2.2 states that field
nodes can initiate communication to the gateway and vice
versa. Infected field nodes can therefore disguise themselves
as gateways toward other field nodes, as the existing infection
vector of flame [20] demonstrates, to infect victims laterally.
Generally the malware tries to infect all available nodes, the
goal being full infection. Since all malware types introduced
in this model use different scanning techniques, we cannot
make general assumptions except that losses on the com-
munications link can lead to missed scanning opportunities.
Figure 2 shows an illustration of all possible states on the
communication links and nodes. Figure 2a shows malicious

Fig. 2 Communications link and packet losses

scanning of a non existent node. This only occurs when mal-
ware scans an address space of a sub-network regardless if
real hosts exist. Figure 2b shows scanning of an existing
node with packet loss, which may occur when the network
link is saturated. Both cases result in a timeout. Figure 2c
shows successful scanning, infection, and confirmation of
the newly infected node. Figure 2d shows legitimate data
transfer between a field node and a gateway.

The three investigated malware types range from simple
brute force types to advanced stealthy types, as introduced
in [10]. Aligning their naming with the notation used by the
Centers for Disease Control and Prevention (CDC) [5] we
term the three malware types pandemic malware, endemic
malware, and contagion malware.

This difference in intelligence is reflected by the mal-
ware’s communication patterns, as well as by the size of
the payload that it must transfer over the network. This
assumption is in line with the extensive review of malware
evolution that has been published in [4] and bases on the
observation that less complicated malware embodies fewer
features requiring fewer lines of code, and needs lower devel-
opment effort, which is why it can be developed by less
equipped attackers. In addition, a comparison ofmalware that
implements few features [6,27,31,33] vs. complex malware
that implements advanced stealthiness and modular exten-
sions, cf. [12,17,22,26,36] illustrates the correlation between
feature set and payload size. We conducted an extensive
investigation on malware capabilities in [10] that confirms
these assumptions, albeit not all advanced malware have a
large payload. We do, however, see a trend toward increased
modularity, which brings additional capabilities to advanced
malware often at the cost of a larger payload. Details can be
found in Sections. 3.1 through 3.3, and in [10]. We only sim-
ulate the network side of malware propagation and scanning.
Therefore, we omit those parts of network traffic used for
remote control, i.e., Command & Control (C&C), to remove
direct human interaction from the propagation process, mak-
ing our simulated malware types less dependent. We assume
that our malware types are self-propagating, thus, represent
the initial propagation stages until all nodes are infected.
However, remote control could be added at a later stage to
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start the attack phase or to extend themalware’s functionality
with novel or updated features.

Furthermore, we do not simulate host mechanisms, e.g.,
infection or exploit. However, we do consider them and other
host based factors in a random delay between 0 and 0.5 s
during host infection representing differences in operating
systems, exploit qualities, and other random factors.

3.1 Pandemic malware

This aggressive malware type summarizes features of, e.g.,
Code Red 1 and 2 [6,27,31,33], Nimda [6,33], Slammer
[24,31], and Conficker [7,13,32], with the goal of rapid
infection of all nodes on the network. We use the naming
convention of the CDC [5] to characterize this aggressive,
fast, and wide reaching malware type. Pandemic malware, as
introduced in [10], scans aggressively without hiding from
detection mechanisms, propagates quickly to new victims,
and uses a simplemonomorphic self-carried payloadwithout
any detection-evasion or obfuscation mechanisms. Further-
more, malicious data transfer and scanning is done without
regard to native traffic leading to saturated communication
links. Therefore, timeouts, retransmissions, and postponed
legitimate traffic produce many anomalies in the process.
This malware type opens unsolicited TCP connections (dis-
guised as a fake gateway) to other field nodes that should be
detected easily if the network is monitored. Unsolicited TCP
connections between field nodes should not occur and do not
match the behavior of legitimate applications. Our pandemic
malware model is capable of restricting its scanning strategy
to the sub-network by collecting easily available network
information from the host. Therefore, it does not scan the
entire Internet Protocol version 4 (IPv4) address space, but
instead checks the subnet mask to extract information about
its sub-networks size, a topological scan strategy. Pandemic
malware is meant to be simple, which is why it is inept at
advanced espionage and commonly does not feature neither
modular extensions nor large payload.

The most relevant features for the pandemic malware
model can be summarized as follows:

– Aggressive topological scanning: Every infected node
scans the entire sub-network cf. [24,31] with 100 scans
per second.

– Automatically initiates unsolicited TCP connections:
Infected nodes connect to potential new victims and
transfer a self-carried payload, regardless of native net-
work traffic.

– Small payload size: A simple monomorphic payload
of 500 bytes represents that this malware type has no
advanced on-board features and no obfuscation capabil-
ity.

3.2 Endemic malware

Endemic malware describes the second malware model,
behaving more stealthily than pandemic malware, as was
introduced in [10]. The persistent presence that this malware
exhibits in a groupof hosts recommends drawing abehavioral
analogy to diseases and using the CDC naming convention of
endemic malware [5]. Its behaviour is loosely modeled after
the behavior of, e.g., Regin [17,36], Duqu [3,19,22,37], and
Flame [3,20,22].Worthmentioning is that Stuxnet [12,22,26]
shares many features with the endemic category but does not
use hit lists,which iswhy it has been omitted in the exemplary
malware list.

All endemic malware variants have in common increased
intelligence for a number of obfuscation, espionage, and
attack features inmodular extensions. Summarizing the high-
level description, endemicmalware poses a greater challenge
for defenders, although detectable in strictly controlled net-
works.

Their scanning strategy uses an optimized permutation-
hit-list as described in [10,24,31,33]. Already scanned nodes
are taken off the hit-list, not scanned again, and the list is
passed on to child-malware. The child-malware begins a new
random scan within a reduced search space. This strategy
minimizes multiple scans of the same nodes and decreases
suspicious and detectable network traffic. Additionally, this
malware type can extract more information from an infected
host, i.e., sub-network size and a list of existing hosts via
OLSR information.We assume that endemicmalware is sub-
ject to high development skills and carries advanced on-board
features in its payload, including encryption among other
obfuscation features, espionage features, and different attack
features.We assume that it is capable of using a polymorphic
payload for propagation that is more difficult to detect by
signature-based defense mechanisms. However, we do not
simulate a second-channel payload that represents increased
modularity, instead use a self-carried payload that transfers
the entire malware in one package.

Themost relevant features for the endemicmalwaremodel
can be summarized as follows:

– Permutation-hit-list scanning:Every infected node scans
part of the sub-network randomly according to the hit-
list with 1 scan per second cf. [24,31,33]. The hit-list is
optimized by local information extracted from infected
hosts.

– Automatically initiates unsolicited TCP connections:
Infected nodes connect to discovered victims and transfer
a self-carried payload.

– Large payload size: A complex large payload (5000
bytes) represents more capable on-board features that
are transferred in a polymorphic payload. These features
include hiding the malware from detection mechanisms.
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3.3 Contagionmalware

The third malware class we simulate is called contagion mal-
ware, as introduced by Staniford et al. [33], and discussed in
detail in [10].

Contagion malware follows a passive scanning strategy
and refrains from any active scanning. Legitimate TCP con-
nections between non-infected remote hosts (applications)
and infected hosts serve as both, an indication of the exis-
tence of a new victim (as a replacement of active scanning)
and as communication channel for infecting the new victim,
cf. [10,24,31,33]. Right before the remote application closes
its TCP connection, the contagion malware sends its payload
on the established communication channel and infects the
victim.

So contagion malware reuses existing legitimate TCP
flows of infected hosts and application-layer vulnerabil-
ities in the target to embed and transfer its payload.
Main drawback of this method is the malware’s depen-
dence on vulnerable applications to exist on host sys-
tems and target systems that actively establish TCP flows.
Contagion malware must wait for host systems to com-
municate with each other before it can infect neighbor-
ing nodes, which can result in huge propagation delays
but offers the benefit of largely reduced anomaly out-
put.

Contagion malware propagation is highly challenging to
trace by network-detection mechanisms or intrusion detec-
tion systems as this propagation method is not visible as
separate TCP flows and hides within legitimate traffic. These
methods include highly obfuscated network channels, e.g.,
appended onto legitimate traffic or, although not simulated,
passive propagation via removable drives. There are few real
world examples available. Therefore, we include malware
types that utilize highly evolved obfuscation features and
are notoriously difficult to detect. Examples include Gauss
[3,21,22], Equation [18,22], and AdWind [15,16,22]. We
assume that the malware uses a metamorphic payload, i.e.,
highly obfuscated, encrypted, and periodically reiterated on
the host systemmaking host-based detection evenmore chal-
lenging.

The most relevant features for the contagion malware
model can be summarized as follows:

– Passive scanning: This method leaves no traceable scan-
ning anomalies in the network.

– No unsolicited TCP connections: This malware type
exploits application-layer vulnerabilities of the target to
transfer its payload using legitimate TCP connections
between host and target before connection close.

– Large payload size: A complex large payload (5000
bytes) represents more capable on-board features that
are transferred in a metamorphic payload. These features

Table 2 Collection of all factors discussed in the attack model

Pandemic Endemic Contagion

Scanning Topological Hit-list Passive

Behavior Scan Scan Scan

Scan-rate [1/s] 100 1 N.A.

Propagation Self-carried Self-carried Embedded

Payload [Byte] 500 5000 5000

Payload Mono- Poly- Meta-

morphism morphic morphic morphic

include hiding the malware from detection mechanisms
and obfuscating it amongst native network traffic.

Table 2 summarizes the characteristics and parameters of
our malware variants.

4 Metrics

This section describes the metrics by which we evaluate and
compare the three malware models introduced in Section 3.

4.1 Node infection ratio

We define the infection ratio (Rin f ), i.e., the percentage of
all nodes that are infected during the simulation, as follows:

Notation:
s = Number of sub-networks
nin f (i) = Number of infected nodes in sub-network (i)
nhost (i) = Existing number of nodes in sub-network (i)

Rin f =
∑s

i=1 nin f (i)∑s
i=1 nhost (i)

(1)

Consequently, the ratio of clean nodes (Rclean), i.e., the
percentage of nodes that have not been infected, is defined
as follows:

Rclean =
∑s

i=1 nhost (i) − nin f (i)
∑s

i=1 nhost (i)
(2)

Generally, field nodes have one network interface. How-
ever, the gateway nodes being the connecting nodes between
different networks, can have several network interfaces.
Therefore, nhost and nin f take those extra interfaces into
account making it usable in other metrics that consider con-
nections between IP addresses via those interfaces.
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Fig. 3 Infection graph with
significant infection times, an
arbitrary example to illustrate
the metrics

4.2 Infection times

We define five points in our simulation that characterize
the instant in time when significant events occur at specific
positions of the network topology. We start the infection
time with patient zero, which is infected manually at the
lowest level. The next significant point in time is when
the first gateway is infected (T f irst .GW ). This is when an
attacker gains the capability to either spy on the aggre-
gated data of the gateway or disable communications and
electricity supply to the entire sub-network and subjacent
field nodes, regardless if all the field nodes of this par-
ticular subnetwork are infected. The second point denotes
infection of the last gateway (Tlast .GW ), this is also the last
instance at which trustworthy sensor readings and reports
can be expected from the nodes on the network. At this
point in time the attacker can spy on all aggregated data or
disable communications and electricity supply to all gate-
ways including their subjacent field nodes, regardless if all
field nodes are infected. Such an attack—even if not fully
automated—can destabilize the power grid, as witnessed in
the Ukraine incident [8,11]. We then define the point when
75% of all nodes are infected (T75%.nodes). At 75% infec-
tion ratio the attacker already has a significant amount of
nodes under control. Also the chance that a specific target
of interest is among the infected nodes is high. This opens
additional attack vectors such as selective deactivation of
field nodes, selective espionage, building a botnet, or unper-
mitted distributed computing on a large number of infected
nodes.

Next, we introduce the point that marks the time when the
last node has been infected (Tlast .node), i.e. nomore nodes can
be infected and the malware does not propagate any further.
Full infection can not be achieved in all cases, potential rea-
sons include packet loss or that some nodes are not scanned
by the malware algorithm, e.g., if errors exist in the hit-list.
This is why we define Tlast .node as the (always measurable)
point in time when the last node is effectively infected and
(Tall.nodes) as the (potentially hypothetical) instant when all
nodes are infected. Whenever the malware fails to infect all
nodes, Tall.nodes will be set to infinite. With respect to the
assigned value, Tlast .node thatmarks the end of the simulation
run will be always less or equal to Tall.nodes , equality being
recorded if and only if the malware succeeded in infecting
all existing nodes.

Summarizing our simulation is characterized by the fol-
lowing time instances:

T f irst .GW = Time until first gateway is infected
Tlast .GW = Time until last gateway is infected
T75%.nodes = Time until 75% of all nodes are infected
Tlast .node = Time until the last field node is infected.
Tlast .node ≤ Tall.nodes
Tall.nodes = Time until all nodes on the network are
infected. May be ∞

In Figure 3 we show an arbitrary example infection graph
with the infection ratio Rin f as function of the infection time,
illustrating the time instances. Colored areas in the graph
illustrate that countermeasures must react within a short time
window, e.g., until the first gateway is infected, in order to
prevent the malware to propagate into other sub-networks.
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Fig. 4 Scan ratio of pandemic malware

4.3 Scanning stealthiness

We characterize the scanning stealthiness of a malware by its
scanning behavior, i.e., how much “noise” a malware gener-
ates when scanning the network. We define two indicators to
show the amount of scanning traffic needed for the infection
process. First, the scan ratio (Rscn) represents the ratio of
(successfully and unsuccessfully) scanned addresses to all
theoretically possible scans.

Notation:
nhost (i) = Existing number of nodes in sub-network (i)
naddr (i) = Number of theoretically available addresses
per sub-network (i)
nscn(i) = Number of all scans for sub-network (i)

Rscn =
∑s

i=1 nscn(i)∑s
i=1 nhost (i) ∗ (naddr (i) − 1)

(3)

The denominator in formula 3 defines the scanning space,
i.e. the number of theoretically possible scans, when each
host scans other hosts at most once but not itself:

s∑

i=1

nhost (i) ∗ (naddr (i) − 1) (4)

Therefore, each address may be scanned multiple times
by different nodes if a malware is not sophisticated to coor-
dinate the scanning behavior. Different scanning strategies
discussed in Sections. 3.1 through 3.3 dictate whether a
source node scans the entire address space, just a reduced
address space, or does not scan at all.

Figure 4 shows an example scanning space for one subnet.
Red dotsmean a scan has been performed from a specific host
(y-axis) to an address of the address space (x-axis). Green
dots mean the host did not scan the particular address. Worth
noting is the diagonal line of green dots that identifies nodes
never scanning themselves. For our model we also assume
that one node scans one address only once and we do not
have any retransmissions (re-scanning by the same node if a
scan packet gets lost). So one hosts scans each address of the
address space at most once.

Using the scanning space defined in Formula 4 the scan
ratio in formula 3 is defined as the number of scans that
were actually performed by the malware divided by the the-
oretically possible scans (scanning space). A higher value
represents more scanning “noise”, i.e., more traffic that may
be detected and therefore a lower scanning stealthiness. The
ratio ofunscannedaddresses (Ruscn) from the scanning space
is illustrated by the green dots in Figure 4 and defined as fol-
lows:

Ruscn = 1 − Rscn (5)

We represent scanning “noise” with the indicators Rscn

and Ruscn rather than illustrations. Therefore, Figure 4 is
just shown as an example and will not be repeated for all
malware simulations.

4.4 Scanning efficiency

Furthermore, we define the efficiency of scanning (Escn) that
represents how efficient a malware type is discovering new
targets among available addresses. A higher value represents
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a less “noisy” scanning strategy. Escn defines the infection
ratio of all infected nodes in the network to the number of
scans. It is defined as follows:

Escn =
(∑s

i=1 nin f (i)
) − 1

∑s
i=1 nscn(i)

(6)

where
(

s∑

i=1

nin f (i)

)

− 1 (7)

represents all nodes that are infected across all sub-networks
excluding patient-zero which is infected manually. Because
patient zero is never scanned from the network side we sub-
stract it from the overall number of infected hosts. Therefore,
the maximum efficiency is 100% when each scan results in
one infection.

Escn expresses a very strict definition of efficiency. A
100% efficiency can only be achieved in two cases:

– One source node per sub-network scans all existing nodes
and every scan is a success. No packet loss occurs and
none of the other hosts participate in scanning. In this case
all the scanning effort needs to be taken over by one node,
decreasing the scanning speed. In addition, the scanning
source is easily detected if the network is observed.

– The scanning is highly coordinated. One possibility is
to use sequential scanning where each node only scans
and infects one node, then stops, and the following node
continues. Sequential scanning is slow and fails if a scan-
ning packet gets lost. An alternative is to use some control
traffic (C&C) to coordinate the scanning. But such con-
trol traffic requires additional effort and also reduces the
stealthiness.

In the optimal case the number of scans is equal to
the number of existing nodes excluding patient zero, i.e.,
Escn = 100%.However, ifmore than one node scans the sub-
network or nodes scan unassigned addresses, the efficiency
drops considerably. In reality, attackers aim to optimize the
scanning strategy depending on the sophistication level of
their malware. Decreasing scanning output to reach 100%
efficiency would require perfect coordination, thus shifting
this effort to control traffic. Sincewe assume self-propagating
malware in this work, we do not simulate malware with
sophisticated control structures.

4.5 Propagation stealthiness

In addition to scanning, the malware also need to propa-
gate itself, i.e. sending the actual payload to the new victims.
This is another activity that can be detected in the network

and reduces stealthiness.We define the propagation behavior
of malware that utilizes unsolicited traffic (Utr ) as another
measure for its stealthiness. Utr describes what percentage
of traffic (in bytes) in a certain time frame have suspicious
origin, thus are not invoked by legitimate smart grid applica-
tions. It is defined as follows:

Notation:
Tactive = Time of malware activity, used to normalize
infectious traffic with overall traffic such that: Bmal = 0
for all t > Tactive

Bmal(Tactive, i) = Bytes associated with unsolicited traf-
fic in sub-network i during interval (0, Tactive)
Btotal(Tactive, i) = Bytes of total traffic in sub-network i
during interval (0,Tactive)

Utr =
∑s

i=1 Bmal(Tactive, i)
∑s

i=1 Btotal(Tactive, i)
(8)

The time of malware activity (Tactive) needs to be defined,
because the activity time differs for the different malware
types. In order to get comparable results we always compare
the unsolicited traffic during the activity time interval with
the total traffic in the activity time interval. Additionally, we
define another metric representing the stealthiness of mal-
ware based on the expected origin and target of TCP flows,
thus ignoring all other protocols.We name it unsolicited TCP
flow (UTCP ). It is defined by the number of unsolicited TCP
flows in comparison to all TCP flows within the time interval
(0, Tactive). Although themetric does not convey information
about the amount of data transported, it does represent the
amount of connections established.

Notation:
Fmal(Tactive, i) = Number of TCP flows with un-
solicited traffic in sub-network i during interval (0,
Tactive)
Ftotal(Tactive, i) = Number of TCP flows in effective
overall traffic in sub-network i during interval (0,Tactive)

UTCP =
∑s

i=1 Fmal(Tactive, i)
∑s

i=1 Ftotal(Tactive, i)
(9)

Both propagation detection metrics assume that the net-
work operator has goodmonitoring and knowledge about the
expected network traffic patterns.

4.6 Summary of all notations

Table 3 summarizes all notations introduced in the metrics
of this section.
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Table 3 Summary of all Notations in order of appearance

Notation Explanation

s Number of sub-networks

nin f (i) Number of infected nodes in sub-network (i)

nhost (i) Existing number of nodes in sub-network (i)

T f irst .GW Time until first gateway is infected

Tlast .GW Time until last gateway is infected

T75%.nodes Time until 75% of all nodes are infected

Tlast .node Time until the last field node is infected.
Tlast .node ≤ Tall.nodes

Tall.nodes Time until all nodes on the network are
infected. May be ∞

nhost (i) Existing number of nodes per sub-network (i)

naddr (i) Number of theoretically available address per
sub-network (i)

nscn(i) Number of all scans per sub-networks (i), cf.
Figure 4

Tactive Time of malware activity, to normalize
infectious traffic to overall traffic

Bmal (Tactive, i) Bytes associated with unsolicited (malicious)
traffic in subnet i during interval (0, Tactive)

Btotal (Tactive, i) Bytes of effective overall traffic (legitimate
and malicious) in subnet i during (0, Tactive)

Fmal (Tactive, i) Number of TCP flows associated with
unsolicited traffic in subnet i during interval
(0, Tactive)

Ftotal (Tactive, i) Number of TCP flows in effective overall
traffic in subnet i during interval (0, Tactive)

5 Results

In this section we discuss the simulation results for all mal-
ware types. The subsections include infection graphs and
pcap-generated illustrations of the network traffic. In the
interest of conserving space we only show the pcap patterns
of the first sub-network representative for the entire network.
Therefore, points in the pcap illustrations, i.e., from one net-
work, do not correspond to all points in the infection graphs,
i.e., from all networks.

5.1 Pandemic malware

This subsection discusses the simulation results for pandemic
malware. Figure 5 illustrates an infection graph including
patient-zero, the gateway nodes, the most significant points
in time, and the field nodes. Furthermore, we mark nodes
from the first sub-network that are infected by patient-zero
different from the remaining field nodes. This allows an esti-
mate of the time it takes to fully infect one sub-network. From
the infection graph we can see that the malware capabilities,
as discussed in Section 3.1, result in very fast infection of
most field nodes, incurring a long-tail for the infection of

Fig. 5 Pandemic malware infection graph

the last few nodes. Although full infection takes longer than
60s, 75% of all nodes are infected within the first 8 s. Addi-
tionally, all gateways are infected within less than 4s, giving
the attacker full control over the network. However, this mal-
ware type produces a large number of anomalies that could be
easily detected, making it an unlikely candidate for stealthy
targeted attacks.

Figure 6 illustrates a pcap recording that shows the high
amount of scanning traffic compared to legitimate traffic.
The payload transfer (propagation) of this malware produces
little traffic because the payload has a small size. However,
the malwares’ only goal is fast infection and this is achieved
with outstanding performance.

Results of the pandemic malware simulation can be sum-
marized as follows:

– Aggressive scanning: High scanning ratio (Rscn =
94.42%) leads to detectable anomalies, thus few nodes
are not scanned (Ruscn = 5.58%). The scanning effi-
ciency (Escn = 1.66%) is very low because every
infected node scans the entire sub-network. Figure 6
shows that scanning traffic is dominant over any other
network traffic, consuming the bandwidth and leading
to postponed legitimate connections and highly visible
anomalies.

– Unsolicited connections: Pandemic malware opens out-
bound TCP connections regardless of native network
traffic, i.e., the percentage of malicious bytes inside over-
all traffic, Utr = 2.54%. However, the percentage of
maliciously established TCP connections compared to
overall TCP is UTCP = 60.46% for the timeframe
0 − Tactive. Unsolicited connections that do not match
patterns expected from legitimate applications are an
indication that illegitimate services are using the data
link.

– Rin f = 100%; All nodes in this network have been
infected.
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Fig. 6 Pandemic malware pcap
sample of the home-network

Fig. 7 Endemic malware infection graph

– Rclean = 0%; No nodes have slipped through the infec-
tion process.

– Infection Times:

– T f irst .GW = 1.97 s; Entire first sub-network can be
controlled.

– Tlast .GW = 3.12 s; All sub-networks can be con-
trolled.

– T75%.nodes = 7.69 sec; 75% of all field nodes can be
controlled selectively.

– Tlast .node = Tall.nodes
– Tall.nodes = 63.03 s; 100% of all field nodes can be
controlled selectively.

5.2 Endemic malware

This subsection discusses the simulation results for endemic
malware. Figure 7 presents the infection graph, which

illustrates that endemicmalware is generally slower than pan-
demic malware. However, it is still fast enough to attack all
gateways within the first 20 s and 75% of all nodes within
30s, making it a highly capable threat for network opera-
tors. Full infection is not achieved in this case. The reason
is that packet loss in the scanning cycle still occurs as indi-
cated in Figures 2 and 4. However, endemic malware follows
a much less aggressive scanning strategy by passing a hit-list
of scanned nodes to its children. Therefore, it is possible
that nodes are overlooked and not scanned. Furthermore,
the increased on-board intelligence allows the malware to
reduce the search space significantly by only scanning nodes
the infected victim has knowledge of. However, the hit-list is
not reduced optimally and quick enough in the early stages
of infection, leading to several rescans of existing nodes.
However, Escn = 10.91% is significantly higher than with
pandemic malware.

Figure 8 illustrates a pcap recording that shows little scan-
ning traffic compared to the payload traffic. The increased
payload size leads to higher traffic producing enough anoma-
lies for detection if the network is properly monitored. These
anomalies can be detected as unsolicited connections. Fur-
thermore, the scanning traffic, although inconspicuous, is
not invisible and could also be detected. It does however
obfuscate much better within native traffic compared to the
aggressive scanning strategy of pandemic malware.

Results of the endemic malware simulation can be sum-
marized as follows:

– Permutation-hit-list scanning: Endemic malware oper-
ates on an inconspicuous scanning strategy. This low
scanningoutput Rscn = 16.51% leads to fewer detectable
anomalies. Ruscn = 83.49%. Additionally the hit-list is
optimized, but still, rescanning occurs leading to a scan
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Fig. 8 Endemic malware pcap
sample of the home-network

efficiency of Escn = 10.91%which is much higher com-
pared to pandemicmalware. Figure 8 shows that scanning
traffic is very low compared to payload and legitimate
traffic.

– Unsolicited connections: The malware opens outbound
TCP connections to transfer the payload. The payload
being large (5000 bytes) compared to pandemic malware
(500 bytes) produces higher peaks that could be detected,
i.e.,Utr = 6.49%.The percentage ofmalicious TCP con-
nections compared to overall TCP isUTCP = 64.70%for
the timeframe 0 - Tactive. These unsolicited connections
do notmatch expected patterns from legitimate smart grid
applications, thus are a sign that illegitimate services are
using the data link.

– Rin f = 89.11% of all nodes have been infected.
– Rclean = 10.89% of all nodes have been missed by the

infection process.
– Infection Times:

– T f irst .GW = 11.25 s; Entire first sub-network can be
controlled.

– Tlast .GW = 15.99 s; All sub-networks can be con-
trolled.

– T75%.nodes = 28.00 s; 75% of all field nodes can be
controlled selectively.

– Tlast .node = 55.54 s; 89% of all field nodes can be
controlled selectively.

– Tall.nodes = ∞

5.3 Contagionmalware

This subsection discusses the simulation results for the con-
tagion malware. Figure 9 illustrates the infection graph that
shows significantly slower propagation through the network.

Since this malware type does not actively scan the network,
Escn is not evaluated at 100% but instead “not applicable”
(n.a.). However, the scanning output (Rscn) is still counted
as 0%, thus Ruscn = 100%. Furthermore, it is strange to
find long delays between the infection of, e.g., patient-zero
and the first target node. The reason for such delays can be
explained by the propagation strategy that constitutes hiding
the payload in legitimate native connections. Since legiti-
mate connections are only established from field nodes to
and between gateway nodes, the first victim is always the
home gateway. The malware waits until the field node estab-
lishes the connection to the gateway and then piggybacks
payload onto the existing TCP connection after legitimate
data transfer has finished.

From there, the malware spreads quickly to other gate-
ways and field nodes. Furthermore, the propagation strategy
requires that the malicious payload is appended at the end
of legitimate connections, giving priority to legitimate data,
completely removing any anomaly output that is related
to their postponement. Data is not injected via the net-
work side but on the application layer, thus the TCP packet
sequences donot showanyanomalies. This propagation strat-
egy favors native traffic, dropping malicious payloads that
produce delays on the link. Therefore, some infections do
not finish the infection cycle and the link is closed to avoid
anomaly output. Parent-malware generally do not attempt
to infect the same node again in favor of reduced anomaly
output. Figure 9 shows that the gateway nodes are infected
successively within a very short time, some even overlapping
in the illustration, leaving little reaction time for automated
defenses.

Figure 10 shows the malicious payload next to legitimate
data. However, the payload is actually embedded in the legit-
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Fig. 9 Contagion malware infection graph

imate traffic. Furthermore, there is no scanning output and
no dedicated TCP flow available for detection purposes.

Results of the contagion malware simulation can be sum-
marized as follows:

– Passive scanning: This malware type does not scan the
network, thus the scanning output Rscn = 0%, not
scanned nodes Ruscn = 100%, and Escn = not appli-
cable. No anomalies can be detected from scanning.

– No unsolicited connections: This malware type appends
on legitimate connections and no unsolicited connections
can be detected. Therefore, Utr and UTCP are both 0%.

– Rin f = 89.60% of all nodes have been infected.
– Rclean = 10.40% of all nodes have not been infected.
– Infection Times:

– T f irst .GW = 126.83 s; Entire first sub-network can
be controlled.

– Tlast .GW = 148.52 s; All sub-networks can be con-
trolled.

– T75%.nodes = 201.50 s; 75% of all nodes can be con-
trolled selectively.

– Tlast .node = 316.97 s; 89% of all field nodes can be
controlled selectively.

– Tall.nodes = ∞
– Waiting periods: The infection graph, cf. Figure 9, shows
long waiting periods between infections. They originate
from the propagation strategy that appends the payload
at the end of legitimate TCP connections to decrease
anomaly output. Therefore, all legitimate data must be
transferred first by the smart grid application to avoid
postponed legitimate traffic, then the malware hijacks
the TCP flow from the local smart grid application and
appends its payload before the connection is closed. This
may lead to delays caused by the regular reporting cycle
of field nodes, cf. Table 1.

6 Countermeasures

This section discusses several effective countermeasures
according to the capabilities of each malware type.

6.1 Pandemic malware countermeasures

Pandemic malware should be easily defeated by basic secu-
rity measures such as:

– Restricted Virtual Local Area Networks (VLAN).
– Perimeter firewalls between network segments.

Fig. 10 Contagion malware
pcap sample of the
home-network
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– Data origin authentication using asymmetric cryptogra-
phy (digital signatures).

Although the BSI protection profile [14] does not allowmesh
networks, it can provide useful insight into proper authenti-
cation and segmentation mechanisms. Furthermore, slowing
and blocking unsolicited connections should also suffice to
effectively halt malware propagation. While alarm messages
to the gateways or increased awareness on the expected com-
munication patterns should provide an early warning, such
measures should be highly effective against pandemic mal-
ware.

6.2 Endemic malware countermeasures

Endemic malware should be discovered by properly con-
figured detection methods. Since infected nodes open unso-
licited TCP connections feasible methods include:

– All defensive measures mentioned for pandemic mal-
ware.

– Intrusion detection systems that can detect unsolicited
traffic and scanning behavior.

Because less scanning anomalies are available, detection
must be tuned for the specific propagation patterns. Further-
more, the active services available on such critical networks
should be tightly controlled in terms of expected traffic pat-
terns. Otherwise malicious traffic may easily be missed.

6.3 Contagionmalware countermeasures

Contagion malware does not produce any anomalies found
in the other models that could be detected. Instead it hides in
legitimate connections. Those connections could be slowed
or blocked losing legitimate data in the process. Effective
countermeasures include:

– All defensive measures mentioned above.
– Firewalls or intrusion detection systems checking every
connection for its legitimate expected behavior.

We urge utility companies to implement extensive defense
measures in all perimeter points of their segmented networks.
Furthermore, services should be kept up-to-date and all net-
works should only provide those services required for its
operation. Networks of different function should not be con-
nected unless absolutely necessary.

6.4 Anomaly detection specific to contagion
malware

We were unable to detect any network anomalies in the
contagion malware simulations with the methods used for
pandemic and endemic malware. Therefore, we introduce a
specific detection method for contagion malware, namely
Anomalous Flow Detection (A f low) that detects patterns
diverging from the expected behavior in terms of network
traffic. Anomalous Flow Detection depends on the analysis
of both, flow direction and payload size within existing TCP
flows to detect the payload that contagion malware injects
at the end of an active legitimate communication flow. It is
worth noting that Anomalous Flow Detection is substantially
more demanding in terms of resources than detection mech-
anisms for pandemic and endemic malware. Whereas the
two latter malware types open unsolicited connections that
can be detected with low effort, Anomalous Flow Detection
depends on additional packet-level captures and analyses of
potentially end-to-end encrypted traffic. However, the con-
tagion malware uses metamorphic (encrypted) payload that
can not be detected using pattern matching or other deep
packet inspection methods, anyhow. This is why identical
algorithms are applicable for the detection of anomalies in
both, encrypted and non-encrypted traffic.

Figure 11 illustrates one exemplary TCP flow from a field
node to the gateway, which, for themost part, does not appear
suspicious. However, at the end a large payload is injected,
which is visible as an anomaly. The malicious payload is
colored in red. 15.7% of all connections in this simulation
exhibit such a specific anomaly. The detected peaks of mali-
cious packets at the end of legitimate data flows push data
to the victim node, in our case in reverse direction of the
flow. Figures 11, and 12 elaborate on the malicious traffic

Fig. 11 Single illustration of
covert malicious payload
anomaly
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Fig. 12 Illustration of anomaly
detection for contagion malware

vs. legitimate traffic, although these packets are obfuscated
inside legitimate TCP flows.

Notation:
Fcovert (Tactive, i) = Number of flows in sub-network i
containingmalicious data during time interval [0,Tactive]

A f low =
∑s

i=1 Fcovert (Tactive, i)∑s
i=1 Ftotal(Tactive, i)

(10)

Figure 12 illustrates all inbound and outbound gateway
traffic including the TCP overhead, legitimate inbound traffic
to the gateway, and malicious outbound traffic.

6.5 Results summary

This section summarizes the simulation results of allmalware
types in Table 4. We highlight that pandemic malware and
endemic malware could be detected with straight-forward
detection methods that identify scanning traffic or unso-
licited connections. However, contagion malware could not
be detected with these methods. Our proposed detection
method investigates the legitimacy of packets inside TCP
flows. Since contagion malware does not inject packets from
the network side but rather from the application layer, the
packet sequence does not give any indication of malicious
content. However, large packets are sent in reverse direction
through the same TCP flow. This can be detected and thus
provides an effective measure to discover contagionmalware
at the cost of additional computational effort.

Table 4 Results summary

Metric Pandemic Endemic Contagion

Rin f [%] 100.00 89.11 89.60

Rclean [%] 0.00 10.89 10.40

T f irst .GW [s] 1.97 11.25 126.83

Tlast .GW [s] 3.12 15.99 148.52

T75%.nodes [s] 7.69 28.00 201.50

Tlast .node [s] Tall.nodes 55.54 316.97

Tall.nodes [s] 63.03 ∞ ∞
Rscn [%] 94.42 16.51 0.00

Ruscn [%] 5.58 83.49 100.00

Escn [%] 1.66 10.91 N.A.

Utr [%] 2.54 6.49 0

UTCP [%] 60.46 64.70 0

A f low [%] N.A. N.A. 15.70

7 Conclusion

We introduced three malware types that attack a mesh-based
smart grid environment simulated in ns3. These malware
types include aggressive fast spreading malware that is eas-
ily detectable, more stealthy malware that sacrifices speed
for stealthiness, and highly obfuscated malware that is not
detectable by conventionalmeans.Weelaborate on the results
and the differences between the malware types.

First, pandemicmalware is very fast in infecting all nodes
in the network. With its aggressive scanning strategy pan-
demic malware is able to scan 94% of the available addresses
and enables infection times of under 8 s for 75% of all
hosts. However, the scanning efficiency is measured as low
as 1.66%, producing significant “noise” usable by network
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detectionmechanisms.This behavior delays legitimate traffic
which is also noticeable on the gateway. Although the small
payload is less easily detected, the propagation method does
require newTCP connections that appear as unsolicited flows
UTCP = 60.46% and transfer a low byte countUtr = 2.4%.
Properly configured detection mechanisms should be able to
discover such behavior. This malware type should be easily
defeated by basic security measures, cf. Section 6.

Endemic malware uses a permutation-hit-list in its scan-
ning strategy that requiresmore intelligence on themalwares’
side. Its scanning strategy is capable ofminimizing the search
space, gathering information from local hosts, and splitting
the hit-list between parent and child-malware. This leads to
a much less conspicuous scanning behavior, reduced scan-
ning Rscn = 16.51% and an increased scanning efficiency
of Escn = 10.91%. However, it is still detectable to well
configured defense mechanisms. Additionally, the propaga-
tion mechanism of endemic malware is more easily detected
(UTCP = 64.70% and Utr = 6.49%). A large payload,
representing higher intelligence and more sophisticated on-
board features, needs to be transmitted and is visible as
unsolicited connections among the overall network traffic.
Properly configured detection mechanisms should be able to
discover these connection attempts. Endemic malware is fast
enough to infect 75% of all nodes on a network in under 30 s.

Contagion malware generally poses a difficult challenge
and requires strong detection mechanisms around perime-
ter points. This malware type does not scan the network
actively but rather hijacks existing TCP connections on the
application layer of infected hosts. The payload is injected
into legitimate data flows and cannot be detected by anoma-
lies such as network scanning or unsolicited connections.
Additionally, the malware first targets the home-gateway of
patient-zero being the only legitimate communication part-
ner. Once the gateway is infected, propagation to other field
nodes and through the backhaul network is possible.

This malware type takes a long time infecting the net-
work (T75%.nodes = 209.79 s) yet moves highly stealthily.
This allows the attacker to prepare selective attacks against
field nodes and gateways. The only feasible detectionmethod
is to correlate TCP flows and check for reverse packets of
a suspicious size that mismatches expected traffic patterns.
Such anomalies could be detected within A f low = 15.7% of
all legitimate connections. Additionally, those connections
could be slowed or blocked losing legitimate data in the pro-
cess.

Summarizing, the set of generic metrics that we proposed
characterize the propagation, verbosity and efficiency ofmal-
ware types based on their network communication patterns.
Results of the mesh-network-based smart grid simulation
attacked by three malware types confirm the applicability
of the proposed metrics and provide detail on scanning and
propagation behavior of three malware types. The simula-

tion results emphasize that particular attention must be paid
to well-implemented security features on the gateways that
act as perimeter security points between networks. Strong
segmentation, a progressive update policy and fast reaction
time are some of the main components that support utilities
in defending against large-scale malware attacks.
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