
J Comput Virol Hack Tech (2018) 14:213–223
https://doi.org/10.1007/s11416-017-0307-5

ORIGINAL PAPER

Intelligent OS X malware threat detection with code inspection

Hamed Haddad Pajouh1 · Ali Dehghantanha2 · Raouf Khayami1 ·
Kim-Kwang Raymond Choo3,4

Received: 31 July 2017 / Accepted: 27 September 2017 / Published online: 20 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract With the increasing market share of Mac OS X
operating system, there is a corresponding increase in the
number ofmalicious programs (malware) designed to exploit
vulnerabilities on Mac OS X platforms. However, existing
manual and heuristic OS X malware detection techniques
are not capable of coping with such a high rate of malware.
While machine learning techniques offer promising results
in automated detection of Windows and Android malware,
there have been limited efforts in extending them to OS X
malware detection. In this paper, we propose a supervised
machine learningmodel. Themodel applies kernel base Sup-
port VectorMachine and a novel weightingmeasure based on
application library calls to detect OSXmalware. For training
and evaluating themodel, a datasetwith a combination of 152
malware and 450 benignwere created. Using common super-
vised Machine Learning algorithm on the dataset, we obtain

B Ali Dehghantanha
A.Dehghantanha@salford.ac.uk

Hamed Haddad Pajouh
hp@sutech.ac.ir

Raouf Khayami
Khayami@sutech.ac.ir

Kim-Kwang Raymond Choo
raymond.choo@fulbrightmail.org

1 Department of Computer Engineering and Information,
Technology, Shiraz University of Technology, Shiraz, Iran

2 School of Computing, Science and Engineering, University of
Salford, Salford, UK

3 Department of Information Systems and Cyber Security, The
University of Texas at San Antonio, San Antonio, TX 78249,
USA

4 School of Information Technology and Mathematical
Sciences, University of South Australia, Adelaide, SA 5095,
Australia

over 91% detection accuracy with 3.9% false alarm rate.
We also utilize SyntheticMinority Over-sampling Technique
(SMOTE) to create three synthetic datasetswith different dis-
tributions based on the refined version of collected dataset to
investigate impact of different sample sizes on accuracy of
malware detection. Using SMOTE datasets we could achieve
over 96% detection accuracy and false alarm of less than 4%.
All malware classification experiments are tested using cross
validation technique. Our results reflect that increasing sam-
ple size in synthetic datasets has direct positive effect on
detection accuracy while increases false alarm rate in com-
pare to the original dataset.

Keywords OSXmalware detection ·RBF–SVM ·Mach-O ·
Supervised classification · Cyber threat intelligence

1 Introduction

Malicious softwares (malware) are a serious threat to the
security of computing systems [1,2]. Kaspersky and Labs
alone detected more than 121,262,075 unique malware in
2015 [3] while Panda Labs predicted that half of security
issues are directly related to malware infections [4], McAffe
reported a rise of 744% OS X malware over 2015 in 2016
[5]. The increasing Mac OS X market size (second after
Microsoft Windows [6] and its fast adoption rate motivate
cyber threat actors to shift their focus to developing OS X
malware. The “myth” that OS X is a more secure system
only further increases malware success rate. For example,
OS X Flashback Trojan successfully infected over 700,000
machines in 2012 [7].

Security researchers have developed a wide range of anti-
malware tools and malware detection techniques in their
battle against the ever increasing malware and potentially

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-017-0307-5&domain=pdf
http://orcid.org/0000-0002-9294-7554


214 H. H. Pajouh et al.

Fig. 1 Research methodology

malicious programs, including approaches based on super-
vised and unsupervised machine learning techniques for
malware detection [7]. In approaches using supervised tech-
niques, tagged datasets ofmalicious and benign programs are
required for training. Approaches using unsupervised tech-
niques generally do not require the separation of malware
and goodware, and programs are generally classified based
on observable similarities or differences [8].

While there have been promising results on the use of
machine learning in Windows and Android malware detec-
tion [9,10], there has been no prior work on using machine
learning for OS X malware detection. This could be, per-
haps, due to the lack of a suitable research dataset and the
difficulties in collecting OS X malware.

In this paper, we propose a machine learning model to
detect OS X malware based on the Radial Base Function
(RBF) in the SVM technique. This provides us a novel mea-
sure based on application’s library calling to detect malware
frombenign samples.We then propose a newweightingmea-
sure for classifying OS X goodware and malware based on
the frequency of library calling. This measure weights each
library based on its frequency of occurrence in malware and
benign applications.

These datasets are then evaluated using four main clas-
sification techniques, namely: Nave Bayes, Bayesian Net,
Multi Layer Perceptron (MLP), Decision Tree-J48, and
Weighted Radial Basis Function Kernels-Based Support
Vector Machine (Weighted-RBFSVM). The following per-
formance indicators are used for evaluating the performance
of our machine learning classifiers:
True Positive (TP): shows the ratio of goodware classified
as benign;
True Negative (TN): shows the ratio of malware correctly
detected as malware;
False Positive (FP): shows that the ratio of malware files
identified as benign; and
False Negative (FN): shows the ratio of goodware classified
as malware.
Accuracy (ACC): measures the ratio that a classifier cor-
rectly detectedmalware and benign samples (goodware), and
is computed using following formula:

ACC = TP + TN

FN + TP + FP + TN
(1)

The False Alarm Rate (FAR) is the rate that a classifier
wrongly detected a goodware as malware and computed as:

FAR = FP

FP + TN
(2)

Our research methodology is presented in Fig. 1.
The organization of this paper is as follows. Section 2

discusses related research, and Sect. 3 describes our dataset
development. Sections 4 and 5 presents our malware classi-
fication and a discussion of this work, respectively. Finally,
we conclude in the last section.

2 Literature review

Machine learning techniques have been used for malware
detection. Nauman et al. [11] used game-theoretic rough sets
(GTRS) and information-theoretic rough sets (ITRS) to show
that a three-way decision-making approach (acceptance,
rejection and deferment) outperforms two-way (accept,
reject) decision-making techniques in network flow analysis
for Windows malware detection. Fattori et al. [12] devel-
oped an unsupervised system-centric behavioral Windows
malware detection model with reportedly 90% in accuracy.
Their approach monitors interactions between applications
and underlying Windows operating system for classifica-
tion of malicious applications. Mohaisen et al. [13] proposed
an unsupervised behavioral based (dynamic) Windows mal-
ware classification technique by monitoring file system and
memory interactions and achieved more than 98% preci-
sion. Huda et al. [14] proposed a hybrid framework for
malware detection based on programs interactions withWin-
dows Application Program Interface (API) using Support
Vector Machines (SVM) wrappers and statistical measures
and obtained over 96% detection accuracy.

Nissim et al. [15] proposed an SVM-based Active Learn-
ing framework to detect novel Windows malware using
supervised learning with an average accuracy of 97%.
Damodaran et al. [16] utilized Hidden Markov Models
(HMMs) to trace APIs and Opcodes of Windows malware
sequences and developed a fully dynamic approach for mal-
ware detection based on API calls with over 90% accuracy.
Mangialardo and Duarte [17] proposed a hybrid supervised

123



Intelligent OS X malware threat detection with code inspection 215

machine learning model using C5.0 and Random Forests
(RF) algorithms with an accuracy of 93.00% for detecting
Linux malware.

Due to the increasing use of smart devices such asAndroid
and iOS devices, there has been a corresponding increase in
the number of Android and iOS malware [18–20]. Suarez-
Tangil et al. [21], for example, proposed anAndroidmalware
detection model. Yerima et al. [22] utilized ensemble learn-
ing techniques for Androidmalware detection and reportedly
had an accuracy rate between 97.33 and 99%, with a rela-
tively low false alarm rate (less than 3%). Saracino et al. [23]
designed a system called MADAM which is a host-based
Android malware detection. The MADAM was evaluated
using real world apps.

OS X malware has also been on the increase [24], but
there is limited published research in OS Xmalware analysis
and detection. For example, a small number of researchers
have developed OS X malware and Rootkit detection tech-
niques, andmalware detectors by tracing suspicious activities
in memory (like unwanted access, read, write and execute)
[25–27]. However, applying machine learning to detect OS
X malware is limited to the Walkup approach [28], which
utilized Information Gain (IG) to select effective features for
supervised classification of OS X malware. Hence, devel-
opment of machine learning techniques for OS X malware
detection is the gap that this paper seeks to contribute to.

3 Dataset development

As part of this research, we collected 152 malware samples
from [29–31]. These samples were collected between Jan
2012 and June 2016 thus OS version which can run them
are in following order: OS X 10.8 (Mountain Lion), 10.9
(Mavericks), 10.10(Yosemite) and 10.11(El Clapton). Dupli-
cated samples were detected by performing a SHA-256 hash
comparison and removed from the datasets. Known OS X
malware such as WireLurker, MacVX, LaoShu, and Kitmos
are among the malware in our dataset. Similar to previous
datasets such as those of Masud et al. [32], in order to build
a non-biased dataset for detecting malware as anomalous
samples, we need at least 456 goodware (three times the
number of malware, compared to the number of malware) in
our datasets.

To start with how the dataset collected, we first presented
an overall definition of each MacOS X application in Fig. 2.
As it can be seen if you extract each OS X application bundle
you would usually encounter a directory, named Contents.
This directory also consists files and some component as
follows [33]:

Contents: This directory is main part of each application
bundle and contains several directory and files which is intro-
duce as follows:

Fig. 2 MacOS application bundle structure

info.plist: This fill consist the configuration information for
the application. The Mac Operating System relies on the
presence of info.plist to realize related information about the
application and other relevant files.
MacOS: Consists the applications executable code file
(Mach-O). Usually, this directory comes with only a binary
file with the applications main entry point and constantly
linked code.
Resources: Consists all resource files of the application i.e.
picture, Audio, Video and etc.
Framework: Consists all private shared library of the appli-
cation and the framework which used by executable code.
PlugIns: Consists all loadable files and libraries which
extend application features and capabilities.
SharedSupport: Consists all non-critical resources which
not extend the application capabilities.

123



216 H. H. Pajouh et al.

Fig. 3 The process of dataset
development

Therefore, we randomly downloaded a total of 460 apps
of top 100 apps listed in Utilities, Social Network, Weather,
Video and Audio, Productivity, Health and Fitness and Net-
work categories of the Apple App Store [34] as of Jun
2016. Dominance of benign samples in the collected dataset
was due to obtain desirable results in False Alarm rate
by training the classifier with more goodware and detect
anomalies from them just like real world benchmark dataset
on anomaly detection which provided in [35–37]. We then
extracted the Mach-O binaries of all malware and bening-
ware samples in the respective datasets manually. Mach-O
binaries are the executable portion of an OS X applica-
tion [38] and consist of three sections as follows (see also
Fig. 3):

1. Header contains common information about the binary
such as byte order (magic number), CPU type, and num-
ber of load commands. Load Commands section contains
information about the logical structure of an executable
file and data stored in the virtual memory such as symbol
table and dynamic symbol table.

2. Load Commands contains information about logical
structure of an executable file and data stored in the vir-
tualmemory such as symbol table, dynamic symbol table,
etc.

3. Segments is the biggest part of each Mach-O files which
contains application code and data.

We wrote a Python script [39] to extract features from
Mach-O files (Table 1). Our script parsed each Mach-O
binary and created three separate output files as follows:
Mach-O HD: This file contains all Mach-O Header infor-
mation such as CPU type, number of commands, and size of
commands.
Mach-O LC: This file includes all information about library
import/export, symbol table and string functions.
Mach-OSG: This file provides the raw data of threeMach-O
file sections (i.e. Data, Text and Segment) (Table 1).

3.1 Data preprocessing

Similar to many other malware machine learning datasets,
our datasets include several features with missing values;
thus, we utilized K-Nearest Neighbor (KNN) imputation
technique [40] for estimation of missing values. The impu-
tation technique is performed in two steps, as follows:

• Utilizing Euclidean distance for computing distance
between eachmissing value (i.e. xi ) and all other samples
without a missing value to detect the K nearest samples.

• Impute the missing value of xi by computing the average
value of the K nearest samples.

Since extracted features values are in different ranges, a
normalization technique is used to increase the SVM perfor-
mance. As all extracted features are Integer values (except
Library Name), Eq.3 can be used to convert them to [0 − 1]
interval.

Xn = xi − min{featured}
ranged

,

ranged = max{featured} − min{featured} (3)

In Eq. 3, xN and xi denote the respective normalized value
and raw extracted value of the feature in dth dimension. Fig-
ure 4 shows the overlap of the collected datasets between
two features vectors which belong to malicious and benign
class before and after preprocessing. It is clear that there are
minimal overlaps and the class borders are more distinct.

3.1.1 Feature selection

Feature selection techniques are used to find the most rel-
evant attributes for tion. At this stage, the three common
feature selection technique (Information Gain, Chi-Square
and Principal Component analysis) for malware detection
based on code inspection Shabtai et al. [41,42] were applied.
Information Gain (IG) [43] is a technique used to evalu-
ate attributes to find an optimum separation in classification,

123



Intelligent OS X malware threat detection with code inspection 217

Table 1 OS X dataset features

Feature name Descriptiona Value type File

1. ncmds Number of commands of each sample Integer Mach-O HD

2. sizeofcmds Size of commands of each sample Integer Mach-O HD

3. noloadcmd Number of commands which sample will loaded during execution Integer Mach-O LC

4. rebase_size Define size of the rebase information Integer Mach-O LC

5. bind_size Define size of the information which will be bind during execution Integer Mach-O LC

6. lazy_bind_size Define size of the information which will be bind during execution Integer Mach-O LC

7. export_size Define the size of the lazy binding information Integer Mach-O LC

8. nsyms Define the number of symbol table entries Integer Mach-O LC

9. strsize Define string table size in bytes Integer Mach-O LC

10. LoadDYLIB Define number of DYLIB which called and load for executing of malware Integer Mach-O LC

11. DYLIBnames Define names of loaded DYLIB Nominal Mach-O LC

12. Segments Number of total segments which consist in each sample Integer Mach-O SG

13. SectionsTEXT Number text segments which consist in each sample Integer Mach-O SG

14. SectionsData Number data segments which consist in each sample Integer Mach-O SG

a Feature descriptions are adopted from apple developer guidelines (Mach-O programming topics) [38]

Fig. 4 a Probability density function (PDF) of sizeOfcmds and bind-
Size features before pre-processingbprobability density function (PDF)
of sizeOfcmds and bindSize features after pre-processing

based on mutual dependencies of labels and attributes. Chi-
square measures the lack of independence between attributes
[44]. Principal Component Analysis (PCA) can be used to
perform feature selection and extraction. We also used PCA
as a feature selection mechanism to select the most infor-
mative features for classification. After the feature selection
methods were used to calculate the relevant scores, features
with the highest scores will be considered.

Suppose we have m class labels (for binary classification
m = 2), c class and t be the number of attribute dimension
to be evaluated, the IG scores can be obtained using Eq. (4)
as follows:

G(t) = −
m∑

i=1

Pr(ci ) logPr(ci ) + Pr(t)

=
m∑

i=1

Pr(ci |t) logPr(ci |t) + Pr(t̄)

=
m∑

i=1

Pr(ci |t̄) logPr(ci |t̄) + IG

= G(t) − G(ti )

(4)

Chi-Squaremethod calculates theχ2
avg (t) (seeEq. 5) score

function for attributes as per equation, where N is the sample
size, A is the frequency of co-occurrence of t and c together,
B is the frequency of occurrence of t without c, C is the
times c happens without t , and D is the frequency without
the occurrence of t or c.

χ2(t, c) = N × (AD − CB)2

((A + C) × (B + D) × (A + B) × (C + D))

(5)

χ2
avg(t) = Pr(ci )χ

2(t, ci ) (6)

These feature selection methods provided us a sequence
of effective features after applying them on the collected
datasets based on their parameters (see Tables 2 and 3).

123



218 H. H. Pajouh et al.

Table 2 Selected features from the three different techniques

Method Selected features

Info-gain 4, 3, 1, 5, 2, 10, 6, 7, 9, 13, 8, 12, 11

χ2 4, 5, 3, 1, 2, 10, 6, 9, 7, 8, 13, 12, 11

PCA 4, 5, 3, 1, 2, 10, 6, 9, 7, 8, 13, 12, 11

Table 3 Features obtained values from ranker search method to select
appropriate feature

Features PCA InfoGain χ2

1. ncmds 0.648 0.2197 178.62

2. sizeofcmds 0.4757 0.1852 151.86

3. noloadcmd 0.379 0.2256 183.25

4. rebase_size 0.3049 0.2794 216.90

5. bind_size 0.2336 0.2368 176.77

6. lazy_bind_size 0.1738 0.1721 132.58

7. export_size 0.1281 0.1062 94.45

8. nsyms 0.0854 0.1026 70.09

9. strsize 0.0553 0.1226 94.30

10. LoadDYLIB 0.0331 0.1841 138.63

11. Segments 0.0 0.0329 33.67

12. SectionsTEXT 0.0 0.0475 39.00

13. SectionsData 0.012 0.1024 87.91

3.2 Library weighting

One of the extracted features is system libraries, which are
called by an application. In this phase, the probability of call-
ing each and every system libraries is calculated. For each
system library, two indicators are calculated. First, the overall
occurrence probability of the library in the dataset. Second,
the occurrence probability of the library in each of the mal-
ware or goodware classes. Then, the sample weight (SW) of
each library is calculated for both malign and benign classes
as per Eqs. (7) and (8).

SWi |m =
∑n

[ j=1] freq(lib j |m)i∑n
[v=1] libv|m (7)

Table 4 Applied collected and synthetic datasets distribution

Dataset Benign Malicious Total record

Original dataset 460 152 612

2x_SMOTE 920 304 1224

3x_SMOTE 1380 456 1836

5x_SMOTE 2300 760 3060

SWi |b =
∑n

[ j=1] freq(lib j |b)i∑n
[v=1] libv|b (8)

In the above equations, SWi |m,b represents ith sample weight
for each class (malign or benign) and freq(lib j |m)i shows
that the occurrence number of j th library (lib) called by i th
application in malign (m) or benign (b) class (i.e. libv|m
means j th library in malign class). After these two mea-
sures are calculated, we use them as the new features for
classification.

3.3 SMOTE dataset development

SyntheticMinorityOver-samplingTechnique (SMOTE) [45]
is a supervised re-sampling technique to balance minority
classes. SMOTE is using K-Nearest Neighbors (KNN) algo-
rithm to find the best location in each dimension to generate
synthetic samples (see Fig. 5). We used SMOTE to create
three datasets of double size, triple size and quintuple size
of original dataset all in the same proportion with the orig-
inal dataset (see Table 4). We believe our collected datasets
pave the way for future research in application of machine
learning in OS X malware detection.

4 OS X malware classification

Five main supervised classification techniques, Nave Bayes,
Bayesian Net, Multi Layer Perceptron (MLP), Decision
Tree-J48, and Weighted Radial Basis Function Kernels-
Based Support Vector Machine (Weighted- RBFSVM), are

Fig. 5 SMOTE technique uses
KNN to generate synthetic
sample

123



Intelligent OS X malware threat detection with code inspection 219

Fig. 6 Support vectors and maximizing margin

then evaluated using our datasets. The main classification
task of the proposed methodology is developed using
SVM.

Themachine learning algorithm in [46] separates data into
N-dimensions with different categories in each hyperplane.
Then, the dimension with the largest margin will be used
for classification. The given training data samples are paired
and labeled as (X,Y), where X is the dataset feature vector
(which contains features as x1, x2, x3, xn) and Y that repre-
sents labels (malicious or benign) for X features.

BothX andY are fed as inputs to the SVMclassifier. SVM
is the used to maximize the margin between given classes
and obtain best classification result. The boundary of margin

Fig. 8 Accuracy and false alarm rates among original dataset and syn-
thetic dataset

function is defined by support vectors data samples. This
margin is calculated from candidate support vectors which
are those nearest to the optimized margin (the largest margin
that separated two types of data) see Fig. 6.

The problem ofmaximizingmargin in SVMcan be solved
using Quadratic Programming (QP) as shown in Eq. (9).

Minimize : W (α)=−
l∑

k=1

αk+ 1

2

l∑

k=1

l∑

p=1

γkγpαkαpk(χk, χp)

subject to: ∀k : 0 ≤ αk ≤ C and
l∑

k=1

αkγk = 0 (9)

Fig. 7 Added
library-weighting features and
corresponding support vectors

Table 5 Supervised
classification results by
cross-validation

Classifier Dataset Accuracy False alarm

Nave bayes Original_row 51 36.3

Bayesian net Original_row 82.35 19.78

MLP Original_row 81.37 7.8

Decision tree-48 Original_row 88.07 8

Weighted-linear Original_row 89 4.1

Weighted-sigmoid Original_row 85.95 3.9

Weighted-polynomial Original_row 87.95 3.0

Weighted-RBF Original_normalized 91 3.9

123



220 H. H. Pajouh et al.

Table 6 Supervised classification results by cross-validation

Classifier Dataset Accuracy False alarm

Nave Bayes SMOTE_2X 54.33 43.15

Nave Bayes SMOTE_3X 55.35 44.72

Nave Bayes SMOTE_5X 54.71 4.87

Bayesian net SMOTE_2X 87.55 13.84

Bayesian net SMOTE_3X 86.88 14.89

Bayesian net SMOTE_5X 84.72 18.84

MLP SMOTE_2X 85.62 7.3

MLP SMOTE_3X 88.15 6.68

MLP SMOTE_5X 89.02 5.1

Decision tree-J48 SMOTE_2X 92.82 7.1

Decision tree-J48 SMOTE_3X 95.75 4.28

Decision tree-J48 SMOTE_5X 96.62 4

Weighted-RBFSVM Original 91 3.9

In the above equation, l denotes the number of training
objects, αk the vector of l variables in which segment αk

belongs to the training sample of xk , and C is the mar-
gin parameter which controls effects of noise and outliers
within the training set. Samples in training set with αks
of greater than zero are the support vector objects. Others
with αk value of zero are considered non-support vector
objects; thus, they are not consider in calculation of margin
function.

For better separation, data points in the SVM kernel func-
tion are used as k(xk, xp) in the QP equation (see Eq. 9).
Kernel functions map training data into higher dimensions
to find a separating hyper plane with a maximum margin
[47].

There are some common kernel functions such as Linear,
Polynomial andRBF and SigmoidKernel for SVMclassifier.
In this research, due to the proximity of data (see Fig. 4), RBF
kernel function [48] is utilized (see Eq. 10).

k(χk, χp) = exp(−γ ||χk − χp||2) (10)

Although SVM is a promising supervised classifier, it has
its own drawbacks. SVM technique performance and accu-
racy rely heavily on the training data complexity, structure
and size [49]. In our research, the size of training dataset is
suitable for SVM classification and there are not too many
features. Moreover, our dataset is normalized which reduces
the complexity of the training set.

5 Findings and discussion

Using the library-weighting measure, we created two new
features, namely: lib-w-b (library-weight-benign) and lib-
w-m (library-weight-malware), to increase the accuracy of
classification (see Fig. 7). Table 5 presents the evaluation
results of Nave Bayes, Bayesian Net, MLP, Decision Tree-
J48, and Weighted- RBFSVM on the original dataset with
tenfold Cross Validation (CV) technique. Due to data nor-
malization and well-separated features (shown in Fig. 7),
it is clear that the weighted-RBFSVM offers the high-
est accuracy (91%) and lowest false alarm rate (3.9%)
(Table 6).

Table 6 shows results of evaluating Nave Bayes, Bayesian
Net, MLP, Decision Tree-J48, and Weighted- RBFSVM
against our three SMOTE datasets using tenfold Cross Val-
idation (CV) technique. While accuracy is increased in all
cases and we have received much higher accuracy (i.e.
96.62%detection rate ofDecisionTree-J48 onSMOTE_5X);
the false alarm rate is not reduced and more training time is
required due to the bigger size of datasets [50]. In Addition,
the complexity of classification technique had reduction due
to two new added features(lib-w-b, lib-w-m). For instance
J48 classification complexity before adding the two new fea-
tures was 65 nodes and 35 leaves but after providing the new
features reduced to 55 nodes and 33 leaves receptively.

Figure 9 depicts the frequency of occurrence of every
library calls in the original dataset.

Figure 8 depicts accuracy and false alarm rate for orig-
inal and SMOTE datasets. While SMOTE datasets are

Fig. 9 Percentage of library
intersection in the collated
dataset

123



Intelligent OS X malware threat detection with code inspection 221

Fig. 10 KS density function for segments

Fig. 11 KS density function for SectionsData

significantly bigger in compare with the original dataset,
the proposed model obtained lower false alarm in the
original dataset with almost same accuracy of SMOTE
datasets.

A comparison of low ranked features (i.e. Segments,
SectionsTEXT, SectionsData) using Kernel Smooth (KS)
density estimation shows a significant overlap between low
ranked features of malware and benign applications (see
Fig. 10); hence, these features are not suitable for classi-
fication. The experiments on KS density estimation also
suggested that data and text sections had the most over-
laps in comparison to other extracted features—see Figs. 11
and 12. According to Fig. 13, the KS density estimation
library-weighting provides a distinction between malware
and benign samples, since these two curves (malware and
benign) are almost orthonormal as the peak of one curve is
the opposite trend of the other. Therefore, it can be said that
this feature is highly appropriate for classification.

As shown in Fig. 14 CoreGraphics, CoreLocation, Ore-
services and Webkit libraries were called a lot more in
benign applications while libc and libsqlite3 were called
significantly more by malware. Statistical analysis of the
library calls revealed that applications that call audio and
video related libraries (AudioToolbox andCoreGraphics) are

Fig. 12 KS density function for SectionsTEXT

Fig. 13 KS density function for lib-weighting

Fig. 14 Application call library statistics for malign and benign appli-
cations

mostly benign while most malicious apps more frequently
call system libraries (i.e. libSystem) and Sqlite libraries.

6 Conclusion and future work

In this paper, we developed four OS X malware datasets and
a novelmeasure based on library calls for classification ofOS
X malware and benign application. We have obtained accu-
racy of 91% and the false alarm rate of 3.9% using weighted
RBF–SVMalgorithm against our original dataset.Moreover,

123



222 H. H. Pajouh et al.

usingDecisionTree- J48we obtained 96.62%accuracy using
SMOTE_5X dataset with slightly higher false alarm (4%).
Moreover the synthetic datasets are generated using SMOTE
technique and assessed them by same supervised algorithm.
This experiment is conducted to show effect of number of
sample size on detection accuracy. Our results indicate that
increasing sample size may increase detection accuracy but
adversely affect the false alarm rate. OS X malware detec-
tion and analysis utilising dynamic analysis techniques is
a potential future work of this research. Extending classifi-
cation using other techniques such as Fuzzy classification,
applying deep learning for OS X malware detectionm and
using a combination of our suggested features for OSX mal-
ware detection are interesting future works of this study.

Acknowledgements We thank VirusTotal for providing us a private
API key to access their data for constructing our dataset. This work
is partially supported by the European Council International Incoming
Fellowship (FP7-PEOPLE-2013-IIF) grant.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Daryabar, F., Dehghantanha, A., Udzir, N.I.: Investigation of
bypassing malware defences and malware detections. In: 2011 7th
International Conference on Information Assurance and Security
(IAS), p. 1738 (2011)

2. Bisio, F., Gastaldo, P., Meda, C, Nasta, S., Zunino, R.: Machine
learning-based system for detecting unseen malicious software. In:
Gloria A.D. (eds) Applications in Electronics Pervading Industry,
Environment and Society [Internet], p. 915. Springer International
Publishing (2016) [cited 2016 Nov 28]. (Lecture Notes in Electri-
cal Engineering). http://link.springer.com/chapter/10.1007/978-3-
319-20227-3_2

3. Kaspersky Lab: Overall statistics for 2015 [Internet]. Kasper-
skyLab,Russia (2016). https://securelist.com/files/2015/12/KSB_
2015_Statistics_FINAL_EN.pdf

4. Panda Lab: Pandalabs annual report 2015 [Internet], p. 30. (2016)
[cited 2016 Nov 30]. Report No.: 4. http://www.pandasecurity.
com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-
EN.pdf

5. Beek, C., Frosst, D., Greve, P., Gund, Y., Moreno, F., Peterson,
E., Schmugar, C., Simon, R., Sommer, D., Sun, B., Tiwari, R.,
Weafer, V.: McAfee Labs Threats Report [Internet], p. 49. McAfee
Lab (April 2017). https://www.mcafee.com/us/resources/reports/
rp-quarterly-threats-mar-2017.pdf

6. Stack Overflow Developer Survey 2016 Results [Internet]. Stack
Overflow. [cited 2016 Nov 28]. http://stackoverflow.com/research/
developer-survey-2016

7. Aquilino, B.I.: FLASHBACK OS X MALWARE. In: Pro-
ceedings of Virus Bulletin Conference [Internet], p. 102114.
(2012) [cited 2017 Apr 7]. https://pdfs.semanticscholar.org/6b7b/
d026676c5e30b42b40f50ed8076b81eb2764.pdf

8. Gardiner, J., Nagaraja, S.: On the security of machine learning in
malwareC&Cdetection: a survey.ACMComput. Surv.49(3), 1–39
(2016)

9. Sun, M., Li, X., Lui, J.C.S., Ma, R.T.B., Liang, Z.: Monet: a
user-oriented behavior-based malware variants detection system
for android. IEEETrans. Inf. Forensics Secur. 12(5), 110312 (2017)

10. Nissim, N., Cohen, A., Elovici, Y.: ALDOCX: detection of
unknown malicious microsoft office documents using designated
active learning methods based on new structural feature extrac-
tion methodology. IEEE Trans. Inf. Forensics Secur. 12(3), 63146
(2017)

11. Nauman, M., Azam, N., Yao, J.: A three-way decision making
approach to malware analysis using probabilistic rough sets. Inf.
Sci. 20(374), 193209 (2016)

12. Fattori, A., Lanzi, A., Balzarotti, D., Kirda, E.: Hypervisor-based
malware protection with accessminer. Comput. Secur. 52, 3350
(2015)

13. Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity,
behavior-based automated malware analysis and classification.
Comput. Secur. 52, 25166 (2015)

14. Huda, S., Abawajy, J., Alazab, M., Abdollalihian, M., Islam, R.,
Yearwood, J.: Hybrids of support vectormachinewrapper and filter
based framework for malware detection. Future Gener. Comput.
Syst. 55, 37690 (2016)

15. Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active
learning methods for enhanced PC malware detection in windows
OS. Expert Syst. Appl. 41(13), 584357 (2014)

16. Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp,
M.A.: Comparison of static, dynamic, and hybrid analysis for mal-
ware detection. J. Comput. Virol. Hacking Tech. [Internet]. 29
December 2015 [cited 2016 Oct 4]. http://link.springer.com/10.
1007/s11416-015-0261-z

17. Mangialardo, R.J., Duarte, J.C.: Integrating static and dynamic
malware analysis using machine learning. IEEE Lat. Am. Trans.
13(9), 30807 (2015)

18. Shaerpour, K., Dehghantanha, A., Mahmod, R.: Trends in android
malware detection. J. Digit. Forensics Secur. Law. 8(3), 2140
(2013)

19. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur,M.S., Conti,
M., et al.:Android security: a surveyof issues,malware penetration,
and defenses. IEEECommun. Surv. Tutor. 17(2), 998–1022 (2015)

20. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review
on feature selection in mobile malware detection. Digit. Investig.
13, 2237 (2015)

21. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.:
ALTERDROID: differential fault analysis of obfuscated smart-
phone malware. IEEE Trans. Mob. Comput. 15(4), 789802 (2016)

22. Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy android mal-
ware detection using ensemble learning. IET Inf. Secur. 9(6), 31320
(2015)

23. Saracino,A., Sgandurra, D., Dini, G.,Martinelli, F.:Madam: Effec-
tive and efficient behavior-based android malware detection and
prevention. IEEE Trans. Dependable Secure Comput. (2016)

24. Brien, D.O.: The apple threat landscape [Internet], p. 31. Symantec
2016 Feb. (SECURITY RESPONSE). Report No.: 1.02. https://
www.symantec.com/content/dam/symantec/docs/security-center/
white-papers/apple-threat-landscape-16-en.pdf

25. Europe key target for cybercrime. Comput Fraud Secur. 2011(1),
3, 20 (2011)

26. Richard III, G.G., Case, A.: In lieu of swap: analyzing compressed
RAM in Mac OS X and Linux. Digit. Investig. 11(2), S3–S12
(2014)

27. Case, A., Richard, G.G.: Advancing Mac OS X rootkit detection.
Digit. Investig. 14, S25–S33 (2015)

28. Walkup E.: Mac malware detection via static file struc-
ture analysis. Standford [Internet] (2014) [cited 2017 Mar

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://link.springer.com/chapter/10.1007/978-3-319-20227-3_2
http://link.springer.com/chapter/10.1007/978-3-319-20227-3_2
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
https://pdfs.semanticscholar.org/6b7b/d026676c5e30b42b40f50ed8076b81eb2764.pdf
https://pdfs.semanticscholar.org/6b7b/d026676c5e30b42b40f50ed8076b81eb2764.pdf
http://link.springer.com/10.1007/s11416-015-0261-z
http://link.springer.com/10.1007/s11416-015-0261-z
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf


Intelligent OS X malware threat detection with code inspection 223

28]. http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%
20MacMalware.pdf

29. VirusTotal-Free online virus, malware and URL scanner [Internet].
[cited 2016 Nov 28]. https://www.virustotal.com/

30. Objective-see [Internet]: Objective-See. [cited 2016 Nov 28].
https://objective-see.com

31. Contagio Malware Dump: Mila. http://contagiodump.blogspot.
com/. Accessed 28 Jun 2016

32. Masud, M.M., Khan, L., Thuraisingham, B.: A hybrid model to
detect malicious executables. In: 2007 IEEE International Confer-
ence on Communications, 14438 (2007)

33. [Internet]. [cited 2017 Sep 13]. https://developer.apple.com/
library/content/documentation/CoreFoundation/Conceptual/
CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/
10000123i-CH101-SW1

34. Mac App Store Downloads on iTunes [Internet]. [cited 2016 Nov
28]. https://itunes.apple.com/us/genre/mac/id39?mt=12

35. KDD Cup 1999 Data: 2000 [Online]. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html. Accessed 17 Sept 2017

36. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical com-
parison of botnet detection methods. Comput. Secur. 45, 100–123
(2014)

37. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.:
Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation. In: Proceedings of the FirstWorkshop
on Building Analysis Datasets and Gathering Experience Returns
for Security (2011)

38. Executing Mach-O Files [Internet]. [cited 2017 May 13].
https://developer.apple.com/library/content/documentation/
DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_
files.html#apple_ref/doc/uid/TP40001829-SW1

39. HNSX/OSXMalware [Internet]. GitHub. [cited 2017 Apr 25].
https://github.com/HNSX/OSXMalware

40. Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., Bot-
stein, D.: Imputing Missing Data for Gene Expression Arrays.
Stanford University Statistics Department Technical Report (1999)

41. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.:
Andromaly: a behavioralmalware detection framework for android
devices. J. Intell. Inf. Syst. 38(1), 16190 (2012)

42. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis
for classifying android applications using machine learning. In:
Computational Intelligence and Security (CIS), 2010 International
Conference on IEEE, pp. 329-333 (2010)

43. Joachims, T.: Text categorization with support vector machines:
learning with many relevant features. In: European Conference on
Machine Learning, pp. 137–142 (1998)

44. Zhu, Z., Ong, Y.-S., Dash,M.:Wrapperfilter feature selection algo-
rithm using amemetic framework. IEEETrans. Syst.Man. Cybern.
Part B Cybern. 37(1), 706 (2007)

45. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
SMOTE: synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321357 (2002)

46. The Nature of Statistical Learning Theory | Vladimir Vapnik |
Springer [Internet]. [cited 2016Dec 17]. http://www.springer.com/
gp/book/9780387987804

47. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge (2001)

48. Shashua, A.: Introduction to machine learning: class notes 67577.
ArXiv Preprint arXiv:0904.3664 [Internet]. 2009 [cited 2016 Dec
17]. arXiv:0904.3664

49. Burges, C.J.: A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov. 2(2), 121167 (1998)

50. Kavzoglu, T., Colkesen, I.: The effects of training set size for
performance of support vectormachines and decision trees. In: Pro-
ceeding of the 10th International Symposium on Spatial Accuracy
Assessment in Natural Resources and Environmental Sciences, p.
1013 (July 2012)

123

http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf
http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf
https://www.virustotal.com/
https://objective-see.com
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://itunes.apple.com/us/genre/mac/id39?mt=12
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://github.com/HNSX/OSXMalware
http://www.springer.com/gp/book/9780387987804
http://www.springer.com/gp/book/9780387987804
http://arxiv.org/abs/0904.3664
http://arxiv.org/abs/0904.3664

	Intelligent OS X malware threat detection with code inspection
	Abstract
	1 Introduction
	2 Literature review
	3 Dataset development
	3.1 Data preprocessing
	3.1.1 Feature selection

	3.2 Library weighting
	3.3 SMOTE dataset development

	4 OS X malware classification
	5 Findings and discussion
	6 Conclusion and future work
	Acknowledgements
	References




