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Abstract
In the absence of transaction costs and the presence of independent returns, a buy-
and-hold strategy theoretically generates higher expected returns than a fixed-weight
strategy,where the portfolioweights are regularly readjusted/rebalanced to some initial
level. This higher expected return comes with higher volatility. The resulting trade-off
leads to different rankings of the Sharpe ratio depending on the statistical moments of
the assets. We also focus on Maximum Drawdown. We theoretically discuss causes
affecting the ranking of the Sharpe ratio, and we introduce an easy-to-implement
methodology to deal with proportional transaction costs. Under transaction costs, the
buy-and-hold strategy as the cheaper approach should be the winner. In various sim-
ulation experiments, we investigate the relevance of transaction costs on rebalancing
strategies. Eventually, we consider several realistic portfolios with a risk-free asset,
bonds, stock indices, commodities and real estate that allow us to demonstrate that in
practice rebalancing has value.

Keywords Portfolio rebalancing · Fixed-weight · Portfolio allocation ·
Buy-and-hold · Transaction costs

JEL Classification G11 · G15 · C61 · C63

1 Introduction

Investment portfolios contain risky assets whose value fluctuates over time. Therefore,
the proportions of these assets also change over time and can substantially deviate
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from the initial allocation. A common practice to counter these changes is called
portfolio rebalancing, also known as a fixed-weight strategy (FW). It is a contrarian
strategy consisting of selling successful assets and buying losers, thereby restoring
a predetermined set of portfolio weights. The main objective of rebalancing is to
maintain a given (strategic) asset allocation and therefore maintain the risk profile of
the portfolio in line with the risk tolerance of the investor. However, since rebalancing
strategies involve selling a fraction of the best-performing assets and investing in the
worst, if certain asset categories have momentum, it is difficult a priori to determine
whether rebalancing generates an outperformance compared to buy and hold (BH),
where a given initial portfolio is just held over time. Furthermore, this is particularly
true in the presence of transaction costs.

A large and important stream of literature has focused on the comparison between
FW and BH, but the conclusions substantially differ depending on, inter alia, the
horizon and universe of investment as well as the transaction costs.

Early empirical studies demonstrate that with transaction costs, the rebalancing
strategy leads to lower volatilities and, thus, better risk-adjusted returns. For example,
an early paper by Perold and Sharpe (1988) shows that rebalancing strategies per-
form best in volatile markets. Arnott and Lovell (1993) demonstrate that nine of ten
rebalancing strategies have a higher Treynor ratio than the BH strategy. The histor-
ical simulations conducted by Dichtl et al. (2012) show that a rebalancing strategy
outperforms in terms of Sharpe ratios, Sortino ratios, and Omega measures in all the
markets investigated. Zilbering et al. (2015) examined the value added by rebalancing
strategies over the longest period ever tested (from 1926 to 2015) and found that the
reduction in volatilities is approximately 3.5%. The outperformance is often linked
to some characteristic: Plaxco and Arnott (2002) find that rebalancing strategies con-
sistently outperform drifting mix strategies when the major asset classes have similar
levels of return. Tokat and Wicas (2007) conclude that the risk is minimized in both
mean-reversion markets and random walks, and Hilliard and Hilliard (2018) report
that the risk is minimized when the momentum factor is low. In contrast Dayanandan
and Lam (2015) advise for US stocks against active portfolio management.

Many studies focused on the comparison of different rebalancing strategies such
as the calendar-based and constant-mix method. However, it is very difficult to draw
a clear and precise conclusion. For example, Plaxco and Arnott (2002) recommend
a monthly rebalancing strategy to investors with a long investment horizon, while
Buetow et al. (2002) recommend a daily monitoring frequency together with a 5%
inaction region within which asset prices may drift. Sun et al. (2006) developed a
unique strategy of rebalancing that minimizes cost using stochastic programming.

For the empirical investigation of allocations we rely on selected benchmark port-
folios as might be held by institutional investors. Such a choice has also been made by
Leland (2000). Using benchmark portfolios instead of explicit portfolio optimization
eschews the issue of estimating expected returns, which is a known difficulty. In prac-
tice small pension funds must by law choose long-term portfolio allocations where the
weights allocated to different asset categories are given. Similarly for the amount of
foreign currency exposure. Large pension fundsmaydecide onbroader asset categories
and will still give themselves strategic allocations determined by ‘experts’ instead of
relying on quantitative models. Deviations from those strategic allocations yield tac-

123



Rebalancing with transaction costs: theory, simulations, and actual data 123

tical allocations, typically allowed to fluctuate within certain boundaries around the
strategic allocation.

The goal of this paper is to provide pension fundmanagers with a tool to understand
the consequences of rebalancing their portfolio while dealing with transactions costs,
predictability of assets and regions of inaction. Obviously, there exists a large body
of sophisticated models dealing with all those aspects. Noticeable contributions are
Constantinides (1976b), Constantinides (1976a), Magill and Constantinides (1976),
Davis and Norman (1990), Dumas and Luciano (1991), Cvitanić and Karatzas (1992),
Edirisinghe et al. (1993), Gennotte and Jung (1994), Shreve and Soner (1994), Kim and
Omberg (1996), Leland (2000), Longstaff (2001), Bouchard (2002), Liu and Loewen-
stein (2002), Jang et al. (2007), Obizhaeva andWang (2013), Ekren et al. (2018), Buss
and Dumas (2019).

In this paper, we determine under which condition the Sharpe ratio of an FW
strategy is higher than theBH strategywhen transaction costs are incorporated.We also
emphasize the consequence of rebalancing onMaximumDrawdown (MDD). Our first
contribution is to introduce a methodology to deal with proportional transaction costs.
Thismethodology is easy to implement and can be extended to portfolioswithmultiple
assets. Obviously, we are not the first to consider transaction costs. An early study by
Davis and Norman (1990) demonstrates that transaction costs imply a no-trade region
of asset prices, where it is not optimal to trade. An important body of literature studies
how to choose this inaction band. Dumas and Luciano (1991) determined the exact
solution of the optimization problem in the form of two control barriers. In general,
with only variable costs, any trading is to the boundary of the nontrading region, while
fixed cost induces trading to the interior; see alsoDybvig and Pezzo (2019). In this type
of literature, the portfolio allocation should be as close to a given strategic allocation.
The weighting of allocation discrepancies is done with a variance-covariance matrix,
which is something we wish to avoid since it involves some form of optimization.
Optimal rebalancing with no-trade bands can provide both higher returns and lower
risk than other common rebalancing strategies (see Donohue and Yip (2003)). It is
shown in Gârleanu and Pedersen (2013) how to introduce predictability of assets in
addition to transactions costs.

Our second contribution is to present a numerical methodology to generate univari-
ate or multivariate autocorrelated series so that the geometric mean of returns has a
given expected value and a given standard deviation. This contribution allows us to
account for the autocorrelation terms among returns that play a role in realistic port-
folio allocations involving simple returns. As shown by Qian (2019), neglecting this
aspect may lead to an erroneous classification of FW and BH allocations. The results
of our algorithm reveal that the consequences are of first order and not of second order.

A third methodological contribution is that we develop a simple methodology,
in the context of predictable asset returns, to construct a window of inaction that
evolves dynamically as a function of the return-predictor. This method allows, for
instance, enlarging the window in the case of low price-dividend ratios since low
price-dividend ratios tend to be followed by price increases (assuming that returns can
be predicted). Even though we present the window-of-inaction methodology in the
context of predictability, it may be applied to other contexts. Again, we are not the
first to deal with windows of inaction. They emerged already in Davis and Norman
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(1990). Other contributions in this setting are by Martin and Schöneborn (2011),
contributions that consider momentum are Balduzzi and Lynch (1999), Lynch and
Balduzzi (2000), Lynch and Tan (2011), Martin (2014), Lynch and Tan (2010), In the
context of option hedging one finds: Whalley andWilmott (1997), De Lataillade et al.
(2012), Kallsen and Muhle-Karbe (2015).

Having all those ingredients, we investigate in various simulation experiments the
relevance of asset characteristics, window of inaction, and transaction costs. In a two-
asset setting, we show that the BH strategy dominates the rebalancing strategy except
for situations where the autocorrelation of assets is strong and negative and when the
correlation between assets is also negative. Those simulations, therefore, corroborate
in a quantitative manner the theoretical results.

Subsequently, we apply our method to several portfolios representative of what a
Swiss pension fund may manage. The portfolio consists of a risk-free asset, bonds,
and several equity indices, commodities, real estate over a period from January 1st,
1999, to June 30th, 2021. The manager reallocates the portfolio every month. We
demonstrate that for this practical exercise rebalancing matters economically even
though it is not statistically different from a buy and hold allocation.

In Sect. 2, we develop a methodology for taking into account transaction costs
in a rebalancing strategy, and then, in a second step, we build on Qian (2019) and
present theoretical results that guide our later simulation exercises. Section 3 presents
the different simulation experiments. The choice of simulations is based on the the-
oretical aspects discussed in Sect. 2, which provides us with some guidance on how
to choose parameters. We test several portfolios, namely portfolios with and with-
out risk-free assets and multi-asset portfolios, and we investigate the consequence of
transaction costs within portfolio insurance. Finally, Sect. 4 discusses the results of
actual allocations as one may find in a representative Swiss pension fund.

2 Theory

2.1 Rebalancing under transaction costs

We denote the price of asset i = 1, . . . , M at time t by Si,t . One of those assets may
be the risk-free asset (cash), denoted by Bt . Let θi,t be the number of units of asset i at
time t in a trading strategy or portfolio. The portfolio is set up at time t = 0 and may
be rebalanced at times 1,2,· · · . The value of a portfolio at time t is denoted by Vt .
We let τi for i = 1, . . . , M be the transaction costs that we assume to be proportional
to the value of shares traded. The investor will rebalance the portfolio at dates t . An
instant before rebalancing, which we denote by t−, the prices are all assumed known,
and the modification of the portfolio will take place instantaneously and without price
impact so that just after rebalancing, for example, at time t , the weights are adjusted
and the value of the portfolio has evolved according to

Vt = Vt− − transaction costs.

The value of the portfolio before rebalancing is
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Vt− =
M∑

i=1

θi,t−1 Si,t .

The transaction cost for asset i is given by |θi,t − θi,t−1|Si,tτi . Hence,

Vt = Vt− −
M∑

i=1

|θi,t − θi,t−1|Si,tτi .

After rebalancing, asset i should have a portfolio weight denoted by ai,t that is given
exogenously. This allocation ai,t can be a fixed weight or can vary over time, which
would be the case, for instance, in an optional duplicating strategy. The question is as
follows: how must θi,t be modified for i = 1, . . . , M so that the proportion ai,t will
be achieved after the transaction cost has been paid?

By definition

ai,t = θi,t Si,t
Vt

.

Hence,

θi,t Si,t = ai,t Vt = ai,t

[
Vt− −

M∑

i=1

|θi,t − θi,t−1|Si,tτi .
]

, for i = 1, . . . , M .

(1)

In the absence of the absolute value, this set of equations would yield a system of
M equations of M unknowns and would be trivial to solve. In the two-asset case,
the discussion of the signs of the weight changes is trivial; in the general case, the
discussion is more evolved. Since

|x | =
{

x if x > 0,
−x else,

one can rewrite the absolute value of x after introduction of some auxiliary variable
denoted by e as |x | = e x , where e = 1 if x > 0 and e = −1 if x ≤ 0. We therefore
introduce at each period of time, when the portfolio should be rebalanced, a set of M
variables ei ∈ {+1,−1}. We solve the system for such a set of ei , resulting in a set
of θi,t . The resulting weight changes θi,t − θi,t−1 will then have either a positive or
a negative sign. If the ei cover the full range of possible permutations, one obtains a
set of potential allocations. One needs then to retain the solution that is compatible
with the given ei , for all i . In other words, for all the assets, the signs of the weight
changes should be of the same sign as the ei . Before presenting the general solution,
let us discuss the pedagogical case with 2 assets that will illustrate the workings of
our method. Equation (1) can then be written as

θ1,t S1,t = a1,t
[
Vt− − |θ1,t − θ1,t−|S1,tτ1 − |θ2,t − θ2,t−|S2,tτ2

]
,
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θ2,t S2,t = a2,t
[
Vt− − |θ1,t − θ1,t−|S1,tτ1 − |θ2,t − θ2,t−|S2,tτ2

]
.

There are 4 cases given by the 2 possible signs of θi,t − θi,t−, and this is true for both
assets. Introduce e1 and e2, and assume that all assets are included in the portfolio,
ai,t �= 0, yielding the system

θ1,t S1,t/a1,t = Vt− − (θ1,t − θ1,t−)S1,tτ1e1 − (θ2,t − θ2,t−)S2,tτ2e2,

θ2,t S2,t/a2,t = Vt− − (θ1,t − θ1,t−)S1,tτ1e1 − (θ2,t − θ2,t−)S2,tτ2e2.

This system can be rewritten with matrices

(
S1,t/a1,t + S1,tτ1e1 S2,tτ2e2

S1,tτ1e1 S2,t/a2,t + S2,tτ2e2.

)(
θ1,t
θ2,t

)

= (Vt− − θ1,t−S1,tτ1e1 − θ2,t−S2,tτ2e2)

(
1
1

)
.

This system has generically a solution in θ1,t and θ2,t if the determinant of the LHS
matrix is different from 0. This determinant is given by

det

∣∣∣∣
S1,t/a1,t + S1,t τ1e1 S2,t τ2e2

S1,t τ1e1 S2,t/a2,t + S2,t τ2e2

∣∣∣∣ = S1,t S2,t

(
1

a1,t
+ τ1e1

)(
1

a2,t
+ τ2e2

)

−S1,t S2,t τ1τ2e1e2.

Since wemay assume that the prices of the assets are different from 0, this determinant
is different from 0 if

(
1

a1,t
+ τ1e1

)(
1

a2,t
+ τ2e2

)
− τ1τ2e1e2 �= 0.

However, this will be the case if 1 + a1,tτ1e1 + a2,tτ2e2 �= 0. This condition can be
easily checked for given e1 and e2. Once a solution has been found for the system
yielding θ1,t and θ2,t , it is possible to determine the signs of θ1,t − θ1,t− and of
θ2,t − θ2,t−. If the signs coincide with the values of e1 and e2, the solution may be
kept. Formally, introduce the sign function defined by

sign(x) =
⎧
⎨

⎩

1 if x > 0,
0 if x = 0,

−1 if x < 0.

Thus, if

|sign(θ1,t − θ1,t−) − e1| + |sign(θ2,t − θ2,t−) − e2| = 0,

then the solution can be accepted. Indeed, it is easy to verify that only if sign(θ1,t −
θ1,t−) = e1 and sign(θ2,t − θ2,t−) = e2 does the above sum equal 0.
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To obtain all possible choices of signs in e, one may notice that the rows of the
following matrix represent all possible choices of signs

E =

⎡

⎢⎢⎣

1 1
1 −1

−1 1
−1 −1

⎤

⎥⎥⎦ .

Such a matrix is, however, easy to construct from a matrix:

E ′ =

⎡

⎢⎢⎣

0 0
0 1
1 0
1 1

⎤

⎥⎥⎦ .

simply by mapping all 1 values of E ′ into -1 and all 0 values of E ′ into 1.
In turn, we recognize in E ′, row-wise, the binary representation of the numbers

0, 1, 2, 3 = 2M−1. Thus, by transforming the integers 0, 1, 2, and 3 into their binary
representation, by associating the various bits with the elements in a row in E ′ and by
performing the above describedmapping, one generates thematrix E instantaneously.1

In the general case, the matrix will be depicted as follows, where the last column
represents the number required for the binary representation and the map

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0
1 1 1 −1 1
1 1 −1 1 2
1 1 −1 −1 3
1 −1 1 1 4

etc.
−1 −1 −1 −1 2M−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can presently extend the resolution technique to the general case with M > 2
assets. Denote by e a given row of E .Let e = (e1, e2, · · · eM ).Equation (1) generalizes
into

ai,t = θi,t Si,t
Vt

.

Hence,

θi,t Si,t/ai,t = Vt− −
M∑

j=1

(θ j,t − θ j,t−)S j,tτ j e j , for i = 1, . . . , M,

1 Obviously, the matrix E ′ grows with M . In our empirical section, we find that monthly allocations over
270 months with 13 assets are nearly instantaneous.
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yielding the system:

θi,t Si,t/ai,t +
M∑

j=1

θ j,t S j,tτ j e j = Vt− +
M∑

j=1

θ j,t−S j,tτ j e j ,

where we notice that the RHS does not depend on i and is therefore a constant. This
system can be rewritten with matrices as

[
diag(S1,t/a1,t , S2,t/a2,t , · · · SM,t/aM,t ) + (S1,t τ1e1, S2,t τ2e2, . . . , SM,t τMeM ) ⊗ IM

]
θt

=
⎛

⎝Vt− +
M∑

j=1

θ j,t−S j,t τ j e j

⎞

⎠⊗ IM ), (2)

where diag(x) is a diagonal matrix with the elements of a vector x on the diagonal and
0 elsewhere. ⊗ denotes the Kronecker symbol. Additionally, IM represents an M × 1
vector of 1.

For each element of E , one computes the vector θt by solving themultivariate system
(2). Eventually, for the rebalancing at time t , one retains the couple of allocations θt ,
and vector of signs e satisfying

M∑

j=1

|sign(θ j,t − θ j,t−) − e j | = 0.

It turns out that for all the simulations considered, there is always only one unique
solution in θt satisfying this condition. We therefore conjecture that it ought to be
a general property, even though we have not been able to demonstrate this point
explicitly.

2.2 Optimization under transactions costs

In this section, we wish to show how the traditionalMarkowitz portfolio allocation can
be extended to incorporate transactions costs. The traditional Markowitz optimization
is given by

maxa E[r p(a)]
s.t. Risk(r p(a)) ≤ d,

M∑
i=1

ai = 1,

where a is the vector of portfolio allocations, given as percentages, to be allocated to
the various assetswhose returns are given by a vector r p . The second equation specifies
that risk should be limited and the third equation states that the weights on the assets
should sum to one. Inspection of this program shows that the generic measure called
‘Risk’ can be a variance or another measure of risk. As long as the constraints can be
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written as functions an optimizer will be able to handle this problem even though the
solution may no longer be expressed as linear functions.

We would like to emphasize that the methodology developed earlier is perfectly
compatible with an optimization logic. The methodology generates a number, the
transactions cost TC(a) per unit of time given an initial wealth W0, and this for a
given vector of portfolio weights a. The ratio TC(a)/W0 represents the performance
reduction in percent of a portfolio and if one considers the extended Markowitz opti-
mization

maxa E[r p(a)] − TC(a)/W0
s.t. Risk(r p(a)) ≤ d,

M∑
i=1

ai = 1,

then one can perform an optimization using variance or any other risk measure such
as VaR, CVaR and Mean Absolute Deviation (MAD).

In our empirical work we wish to remain agnostic concerning the expected returns
and we will take popular allocations. We introduce nonetheless as a measure of risk
MaximumDrawdown (MDD) defined for instance in Chekhlov et al. (2005). For some
stochastic process Xt , obtained by cumulating returns, the MDD at time T is defined
as

MDD(T ) = max
τ∈(0,T )

[
max
t∈(0,τ )

Xt − Xτ

]
.

The contribution by Chekhlov et al. (2005) shows how linear programming tools can
be used to optimize a portfolio with respect to MDD. Their approach does not allow
optimization under transactions costs however.

2.3 Theoretical aspects concerning fixed-weight and buy-and-hold strategies

In the previous section, we presented a method to rebalance a portfolio by incorporat-
ing transaction costs. In this section, we investigate the consequences of incorporating
transaction costs into various trading strategies. The considered cases are the rebal-
ancing of a portfolio as well as optional trading strategies.

2.3.1 Portfolio rebalancing without transaction costs

It is well-known that in a buy-and-hold (BH) strategy, certain assets see their value drift
over time. This has as a consequence of modifying the riskiness of a portfolio. Before
describing a simulation framework within which one can investigate the consequences
of rebalancing, that is, reallocating a portfolio to some given weights, it is useful to
understand why rebalancing may lead to better performance than a BH strategy. Much
of our development directly follows the remarkable work by Qian (2019).

Let ri,t denote the simple return of an asset i between time t −1 and t . Typically, in
the context of portfolio allocation, ri,t = Si,t/Si,t−1−1. In Fig. 1, we consider 2 assets
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Fig. 1 This picture illustrates the difference between a buy-and-hold strategy, presented in the upper part
of the figure, and a fixed-weight strategy, also called a rebalancing strategy. In a buy-and-hold strategy,
the initial wealth is attributed to the two assets that evolve in value over time driven by their returns. In a
rebalancing strategy, the value of the portfolio is reallocated at each period of time. The final wealth for the
fixed-weight strategy is given by W0[a1(1 + r1,1) + a2(1 + r2,1)][a1(1 + r1,2) + a2(1 + r2,2)]

at 2 different times. In the first case, the investor follows a buy-and-hold strategy, and in
the second, she follows a fixed-weight (FW) strategy. Denote by a1, a2 the allocations,
that is, the weight, for assets 1 and 2. Obviously, a1 + a2 = 1.

Hence, for the BH strategy, the terminal wealth is

WBH
2 = W0

[
a1(1 + r1,1)(1 + r1,2) + a2(1 + r2,1)(1 + r2,2)

]
.

Similarly, for the fixed-weight strategy, after one period, the portfolio value is W1 =
W0
[
a1(1 + r1,1) + a2(1 + r2,1)

]
and after the second period if becomes

WFW
2 = W1

[
a1(1 + r1,2) + a2(1 + r2,2)

]

= W0
[
a1(1 + r1,1) + a2(1 + r2,1)

] [
a1(1 + r1,2) + a2(1 + r2,2)

]
.

The expressions forWBH
2 andWFW

2 can be easily generalized to any number of assets
and any number of time periods.

In the case of M assets, let a = (a1, a2, . . . , aM ) be the vector of allocations. In
addition, let r1 = (r1,1, r2,1, , . . . , rM,1) and r2 = (r1,2, r2,2, , . . . , rM,2) be the cross-
sectional return vectors for time 1 and time 2, respectively. Denote by � the element
by element multiplication.2

We obtain that

WBH
2 = W0[a′(1 + r1) � (1 + r2)],

WFW
2 = W0[a′(1 + r1) · a′(1 + r2)].

After developing, one obtains that

WFW
2 − WBH

2 = −W0[a′(r1 � r2) − (a′ r1)(a′ r2)].
2 That is, for two row vectors, we have (a1, a2) � (x1, x2) = (a1x1, a2x2).
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We recognize an expression similar to a covariance where the weights a act as prob-
abilities of the return realizations.3 The buy-and-hold strategy will generate higher
wealth than the fixed-weight strategy if the cross-sectional covariance of the assets is
positive. According to Qian (2019), we obtain after development of the various terms
that

D = WFW
2 − WBH

2 = −a1 a2 W0 (r11 − r21) (r12 − r22). (3)

This theoretical formula demonstrates that, in the case where both assets are long,
the FW strategy outperforms the BH one when the spread differentials, that is, the
difference in the cross section between two assets, have a negative product. The dif-
ference between the two allocations is known as rebalancing alpha. To get an idea of
the order of magnitude of this difference, assume an equally weighted portfolio, and
let W0 = 100. Assume asset one is a stock with a return in one month of 3% and
of -3% in the next month. Assume that the second asset is a bond with a return of 0.
Then D = 0.25 ∗ 0.032 = 0.000225. If this game goes on for an entire year, the final
difference is of the magnitude of 1.35bp, a very small difference in practice.

There are various properties of the FW and BH strategies that can be discussed with
Equation (3).

Proposition 1 The differential W FW
2 −WBH

2 is largest for the equally weighted port-
folio, i.e., when a1 = a2 = 1/2.

Proof a2 = 1 − a1. Hence, a1a2 = a1 − a21 . Maximization yields a1 = 1/2. 	

Proposition 2 Suppose that the first asset is the risk-free asset, that is, an asset with 0
volatility, and define r1 = r f . Let the second asset be some risky asset. It is convenient
to changenotation anddenote byr the randomreturn of the risky assetwith realizations
for times 1 and 2 of r1, r2. If the autocorrelation of r is zero, then the BH strategy has
a higher expected value than the FW strategy. Denote by μ = E[r ], and σ 2 = V [r ]
the expected return and its variance. Denote by ρ1,2 the autocorrelation of the risky
asset; then,

E[D] = −a1a2{ρ1,2σ 2 + (μ − r f )
2}. (4)

Proof Let D = (WFW
2 − WBH

2 )/W0 = −a1a2(r1 − r f )(r2 − r f ). Then,

E[D] = −a1a2E[(r1 − r f )(r2 − r f )]
= −a1a2{E[r1r2] − r f E[r1 + r2] + r2f }
= −a1a2{ρ1,2σ 2 + (μ − r f )

2}.

	

It follows that if ρ1,2 = 0, then E[D] < 0, and E[WFW

2 ] < E[WBH
2 ].

3 Even if the elements of a are not all positive, the interpretation remains.
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In practice, stock returns exhibit short-term price reversals over weeks or a few
months leading to negative autocorrelation, and in the long run, over several months,
they exhibit momentumwhere past winners continue to outperform.4 This observation
suggests that, in the longer run, a buy-and-hold strategy should yield higher wealth
than the rebalancing strategy. The intuition for this result is that if price increases
are followed by further price increases, rebalancing prevents successful assets from
taking full advantage of the subsequent price increase. Symmetrically, after a price
drop, rebalancing increases the part of the risky asset in the portfolio that will lead to
a subsequent drop in value if the price continues to drop. A portfolio that would have
been left alone would have performed better.

Corollary 1 As long as ρ1,2 > −(SR)2, meaning that the autocorrelation is larger
than minus the square of the Sharpe ratio, then E[WFW

2 ] < E[WBH
2 ].

Proof It follows immediately from the formula of the previous property. 	

Proposition 3 The price of risk (PR) of the wealth-return differential D does not
depend on the portfolio weights.

Proof Take the expectation and variance of D to immediately obtain the result. 	

The implication of this is that to change the characteristics of the portfolio, a change

in the weights is not enough. The asset manager should consider different assets than
the ones currently used.

There does not appear to exist a simplification of the ratio E[D]/Std[D] in the
case where the first asset equals the risk-free rate and the second asset equals the risky
asset.

The expression for the expected wealth differential is given in (4). The variance is
given by

V [D] = Cov(r21 , r22 ) + E[r21 ]E[r22 ] − 2r f E[r21r2] + r2f E[r21 ] − 2r f E[r1r22 ]
+4r2f [Cov(r1, r2) + μ2] − 2μr3f + r2f E[r22 ] − E[D]2.

This expression can be implemented numerically and be readily used.

2.3.2 Two random assets

In this section, we wish to discuss the possible ranking between the buy-and-hold
strategy and the fixed-weight one if one has two random assets. We follow again Qian
(2019), in this general discussion, where both assets are random.

Proposition 4 Suppose that the return differentials r1,t −r2,t ∼ N (μ, σ 2) for t = 1, 2
and are autocorrelated with magnitude ρ1,2. Then,

E[WFW
2 ] < E[WBH

2 ] as long as ρ1,2 > −(μ/σ)2.

4 At a daily frequency, as pointed out by Lo and MacKinlay (1988), one may also find a small positive
autocorrelation, attributed to information percolation.
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The proof may be found in Qian (2019) but is repeated here for convenience.
Proof

E[(WFW
2 − WBH

2 )/W0]
= −a1a2E[(r1,1 − r2,1)(r1,2 − r2,2)]
= −a1a2

[
Cov[r1,1 − r2,1, r1,2 − r2,2] + E[r1,1 − r2,1]E[r1,2 − r2,2]

]

= −a1a2[ρ1,2σ 2 + μ2].
Hence, E[WFW

2 ] < E[WBH
2 ] if ρ1,2 > −μ2/σ 2. 	


We conclude that as long as the reversal of spreads is not too negative (that is,
the autocorrelation is more negative than the squared price of the risk of the return
differentials), the BH strategy yields higher expected value than the FW strategy.

At this stage, it would seem that there is a strong case to adhere to a BH strategy.
If one adheres to a BH strategy, as mentioned, the risk of the portfolio may, however,
significantly increase over time. Assets that had good performance will dominate the
portfolio, leading to a concentration of assets, that is, less diversification. Moreover,
since the weights of the portfolio are random in a BH strategy, there is added risk.
To consider the expected return alone is not sufficient. One needs to consider the
return-risk reward defined as the expected value of terminal wealth to its standard
deviation. We will recall the results of Qian (2019) in the next section. The conclusion
of that section will be that, given that no closed form for the return-risk reward exists,
simulation experiments are required to understand the consequences of changes in the
parameters of the assets.

2.3.3 Many assets andmany time periods

Here, we wish to consider the case of many assets denoted by i = 1, . . . , M and many
time periods denoted by t = 1, . . . , T . The generalization of the value of the terminal
wealth for the BH and FW strategies follows directly from Fig. 1. Let a1, a2, . . . , aM
be the allocations associated with the different assets. The terminal wealth for the FW
portfolio and the BH portfolio is given by

WFW
T = W0

T∏

t=1

(
1 +

M∑

i=1

airi,t

)
,

WBH
T = W0

M∑

i=1

ai

[
T∏

t=1

(1 + ri,t )

]
.

To obtain further results, it is useful to assume independence across time of the return
vectors. If the vectors of expected returns are the same for each period, then

E[WFW
T ] = W0

T∏

t=1

(
1 + a′μ

) = W0(1 + a′μ)T ,

E[WBH
T ] = W0a

′(1 + μ)T .
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Using Jensen’s inequality, it follows that E[WFW
T ] ≤ E[WBH

T ], with equality if the
individual expected returns are not only the same over time but also identical among
themselves, μi = μ, for all i .

Qian (2019) shows that when pairwise correlations are positive, which is the case
in practice, if one considers assets among a similar asset class and if one considers a
long-only portfolio, then V [WFW

T ] ≤ V [WBH
T ]. The risk of the fixed-weight strategy

is lower than the one of the buy-and-hold strategy, confirming our earlier intuition. This
implies, however, that the ranking of the prices of risk PR[WT ] = E[WT ]/√V [WT ]
for the two strategies is ambiguous and similarly for the Sharpe ratio.

We may conclude this section by noticing that in the simplifying case of pairwise
positive correlations and long-only portfolios, the relative performance of the BH and
FW strategies is ambiguous. This ambiguity becomes worse in the case where the
simplifying assumptions are relaxed. Such is the case when the pairwise correlation
of assets is not positive, which could be the case in practice if one considers different
asset classes or structured products and, similarly, if assets are time dependent and
even more so if one has to deal with transaction costs. This observation hints at
some sort of uncertainty principle, somehow analogous to Heisenberg’s principle from
physics, meaning that there is no general rule on which to base a recommendation.
This observation could explain the abundant literature discussing the relative benefits
of the BH versus the FW strategy for various assets classes under various scenarios of
rebalancing already mentioned in an earlier section.

In the next section, we will discuss various simulations to investigate the conse-
quences of relaxing one assumption or the other.

3 Simulation experiments

Aswe started implementing our simulations it occurred to us thatmuch of the literature
dealswith log-returns. If r1 and r2 are log-returns, computed fromanassetwith price St ,
say r1 = ln S1/S0, r2 = ln S2/S1, then clearly ln S2/S0 = r1 + r2 showing that long-
term log-returns can be conveniently obtained as the sum of short-term log-returns.
In the actual practice of portfolio allocation, given the relevance of rebalancing alpha,
which is a relatively small number of the order of basis points (bps), one needs to be as
precise and realistic as possible and use simple returns. In our simulation experiments,
with autocorrelated returns, we came to realize that because of the autocovariances of
various orders, the passage of average log-returns to geometricmeans of simple returns
is not a trivial step. To see this, let r (n)

1 , r (n)
2 , r (n)

3 be dependent simulated returns for
three consecutive months. The (n) exponent indicates the number of the simulation,
with n = 1, . . . , N . It is easy to show that due to the Law of Large Numbers, if one
estimates average quarterly geometric returns assuming identical distributed returns
that:

1

N

N∑

i=1

(1+r (n)
1 )(1+r (n)

2 )(1 + r (n)
3 ) −−−→

n→∞ 1+3E[r j ] + 3E[r j r j+1] + E[r j r j+1r j+2],
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where j is some dummy index for a given month. For an asset with autocorrelation
γ (1) ≡ Cov(r j , r j+1)/Var [r j ] we obtain that:

E[r jr j+1] = Var [r j ]γ (1) + E[r j ]E[r j+1].

To get an idea of the magnitude of this number assume an annual volatility of 25%
and an average return of 5%. Assume a first order autocorrelation term of 0.1. In an
empirical section below, we show that the Swiss stock index has an autocorrelation
of 0.14 and a commodity like sugar has an autocorrelation of 0.11. Then our estimate
becomes for monthly frequency:

E[r j r j+1] = (0.25)2

12
× 0.1 +

(
0.05

12

)2
= 5 · 10−4 + 0.17 · 10−4.

The first term involving the autocorrelation contributes for about 5bps dominating the
return product of 0.17bp! For a small market index such as for the Swiss market, this
autocorrelation term therefore matters and is not only a matter of second order. So far,
we dealt with quarterly returns where the interaction term E[r jr j+1] appears 3 times.
For annual returns, this termwould appear 12 times. One can therefore expect a contri-
bution to the annual return of about 12× E[r jr j+1] that is about 60bps. If one counts
additional co-moments of higher order, say E[r jr j+1r j+2] this nonlinear contribu-
tion could become even larger. We conclude that in the presence of autocorrelation in
returns there will be a significant difference between the long-term return computed
as a sum of short-term returns and a long-term return obtained as a geometric return.

3.1 Simulations frommonthly data with correct annual moments

In several simulations below, we deal with autocorrelated returns. Because of the
insights of the previous section, we understood that in order to correctly capture the
rebalancing alpha, it is necessary to compute geometric returns to obtain the correct
annual returns. As a solution to this problem, we propose a new algorithm whereby
the parameters are empirically adjusted in such a way that the simulated returns have
exactly the true moments. We propose to call this technique the TAR calibration since
it yields True Aggregate Returns.

3.1.1 The TAR calibration

Let rt be a monthly return. We assume that the unconditional distribution of rt is
Gaussian with annual parametersμ and variance σ 2. This asset may be autocorrelated
with autoregressive parameter ρ1,2. We simulate the risky asset as an AR(1):

rt+1 = m + ρ1,2rt + s εt+1, with εt+1 ∼ N (0, 1). (5)

An initial wealth V0 at time t = 0 would have evolved 12 months later into V12.

V12 = V0(1 + r1)(1 + r2) · · · (1 + r12). (6)
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The difficulty in obtaining the parameters m and s, for given ρ1,2 so that the annual
returns match desired values, that is the given annual values μ = E[V12/V0] − 1 and
σ 2 = Var [V12/V0], comes from all the interaction terms in the development of the
products in (6). These interaction terms start with the combination r1r2 and end with
the joint product r1r2 · · · r12.

We seek an approximation of the true parameters m and s. For an AR(1) process, it
is known that the steady-state distribution has expectation E[rt ] = m/(1 − ρ1,2) and
varianceV [rt ] = s2/(1−ρ2

1,2).By settingm = (1−ρ1,2)μ� and s2 = σ 2(1−ρ2
1,2)�,

with � = 1/12, we obtain an approximation of the parameters for monthly returns.
As mentioned above, the geometric product (6) will in general not have the desired
true annual moments μ and σ 2. For this reason, we perform simulations and adjust
the level and scale of the rt until the annual moments match.

Therefore, we simulate a large number of εt values and store them in memory.5 We
consider a draw of some initial return r0 in the approximate steady-state distribution
N (m, s2). We then use a minimization algorithm to minimize a distance function
obtained as follows:

1. Using the εt and candidate parameters (m′, s′), generate a long series, a multiple
of 12, of monthly returns rt .

2. Compute the geometric average return over one year, i.e., that by using 12 returns
(1 + r1) · · · (1 + r12) − 1.

3. Compute the mean, namely μ̂, and the standard deviation, namely σ̂ , of the annual
returns.

4. Present to the minimizer: d(m′, s′) = (μ̂(m′, s′) − μ)2 + (σ̂ (m′, s′) − σ)2.

In practice, for all the cases we considered, using the MATLAB minimizer fmincon,
we obtained convergence in less than 10 steps. Notice that the last series produced
in the optimization can be used immediately for a portfolio evaluation. In the case,
a very long time series is required, then the method outlined above can be iterated.
A generalization to many assets is trivial. Generate multivariate correlated ε. Store
them, and after constructing AR(1) processes as above, iterate on each of them till the
required moments are obtained.

To investigate the relevance of this algorithm, we decided to perform a simulation
exercise involving onemillion annual drawings each involving 12monthly returns and
apply the algorithm. The results are reported inTable 1.We consider annual returns that
are distributed as a N (m, σ 2).Wesetm to 5%andvolatilityσ to 25%.This corresponds
to parameters of a typical stock. We allow for various autocorrelations ρ1,2 ranging
from 0 to 0.3 with an increment of 0.05. The columns m and s represent the monthly
estimates of mean and standard deviation drawn from the steady-state distribution.
We then generate mest and sest by applying the algorithm described above. We briefly
verify that the method generates correct measures for the average and the standard
deviation of annual geometric returns presented in columnsmgeom and sgeom. We also
compare with the usual mean and standard deviation. The results are in columnsmarith

and sarith. As one can observe, our algorithm produces perfectly sized returns that

5 We assume that the sample is sufficiently large so that the law of large numbers holds and the empirical
moments are close to their true moments. In simulation experiments as we have here involving one million
draws of 12 months returns, this condition is satisfied for generic parameters.
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Table 1 We perform 1 million simulations of 12 months

ρ1,2 m s mest sest mgeom sgeom marith sarith

0.00 0.004 0.072 0.004 0.068 0.05 0.25 0.049 0.236

0.05 0.004 0.072 0.004 0.065 0.05 0.25 0.046 0.225

0.10 0.004 0.072 0.003 0.062 0.05 0.25 0.044 0.215

0.15 0.004 0.071 0.003 0.059 0.05 0.25 0.042 0.206

0.20 0.003 0.071 0.003 0.056 0.05 0.25 0.040 0.196

0.25 0.003 0.070 0.002 0.052 0.05 0.25 0.039 0.187

0.30 0.003 0.069 0.002 0.049 0.05 0.25 0.037 0.179

The desired annual mean return is 0.05 and its desired standard deviation is 0.25. Column ρ1,2 indicates the
value of the monthly autocorrelation in returns. m and s are the monthly parameters of the AR(1) process
if one assumes arithmetic sums of returns. mest and sest are the parameters resulting from the algorithm
described in the text.mgeom and sgeom is the annual average return and its standard deviation if one uses the
algorithm of the text. Those values should be equal to 0.05 and 0.25 as control. The last two columns report
the mean of arithmetic annual returns, marith, and standard deviation thereof, sarith, thus if one neglects the
interaction terms due to correlation

yield annual moments correct up to 2 decimals. Obviously using geometric returns is
important since the differences between the theoretical means and standard deviations
with usual average returns and standard deviations are quite striking. For a correlation
coefficient of 0.1 the mean is smaller by 50 bps and the standard deviation moves from
0.236 to 0.211. This figure matches the theory of the earlier section where we found
a similar order of magnitude (actually 60bps). In the case of strong autocorrelations
of 0.3 the standard deviation could even drop to 0.179 if one neglects the interaction
terms between months. Such a high correlation is luckily unrealistic for stocks.

3.2 Various simulation exercises

The theoretical Sect. 2.3 provides us with guidance regarding what kind of simulation
may be of interest. We noticed the relevance of autocorrelation for an asset as well as
pairwise correlation among assets. Little seems to be known about the introduction of
a transaction cost, whichmatters fundamentally in practice. As a consequence, the FW
strategy that requires rebalancing and therefore generates a cost will be particularly
affected by the introduction of a transaction cost.

For these reasons, we presently wish to conduct various simulation experiments to
understand the relevance of those features. Table 2 summarizes the various simulation
experiments that we wish to perform with their focus. In the following sections, we
will discuss the results of our simulations for those specifications.

3.2.1 Basic investigations

Our simulation considers the following data-generating process (DGP): Asset 1 is a
risk-free asset with annual return r f , and asset 2 is a risky asset with monthly return
rt .
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Table 2 In this table, we summarize our various simulation scenarios

No. Assets Focus

1 1 risk-free, 1 stock Risk-free rate is constant, and stock may be autocorrelated.
Investigate the role of transaction costs and of regions with no
intervention

2 2 stocks Investigate various patterns of temporal and pairwise dependency

3 1 risk-free, 1 stock Assume asset returns are partially predicted by dividend-price ratio.
Introduce occasional instead of systematic rebalancing

For ρ1,2 = 0,we can investigate the impact of varying basic parameters such as the
allocation or transaction cost. In the case where ρ1,2 < 0, our asset is mean-reverting.
For an extensive discussion of reversals, see Bali et al. (2017). This is a short-term
phenomenon. In the case where ρ1,2 > 0, our risky asset will display momentum,
which is a long-term phenomenon and has been described in Jegadeesh and Titman
(1993). Once we obtain returns for both the risk-free and the risky asset, we cumulate
over time to generate asset prices and bond prices as in:

ST = S0(1 + r1)(1 + r2) · · · (1 + rT ), BT = B0(1 + r f )
T .

Table 3 presents the results of the benchmark simulations. The parameters of our
simulation are as follows. We run all the simulations 50,000 times, and this also the
approach in the subsequent experiments unless otherwise specified. In all cases, our
time horizon is one year. The initial amount invested is 100 and S0 = B0 = 100.
In fact, any amounts may be used here; however, by using an initial amount of 100
and inspecting the value of the end of the year, the return is straightforward to obtain.
We assume an annual interest rate of 2% and obtain the monthly rate using r f =
1.021/12 − 1. For the risky asset, we assume μ = 5%. Table 3 describes the choice
of additional parameters in the left part, and in the right part, it presents Sharpe ratios
computed as

SR =
1
N

∑N
i=1 Ri − r f√

1
N−1

∑N
i=1(Ri − R̄)2

,

where Ri denotes an annual return and R̄ is the average annual return.
Wealso consider theMaximumDrawdown (MDD)defined for instance inChekhlov

et al. (2005). For some stochastic process Xt , obtained by cumulating returns, theMDD
at time T is defined as

MDD(T ) = max
τ∈(0,T )

[
max
t∈(0,τ )

Xt − Xτ

]
.

The contribution by Chekhlov et al. (2005) shows how linear programming tools
can be used to optimize a portfolio with respect to MDD. The traditional Markowitz
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optimization is given by

maxa E[r p(a)]
s.t. Risk(r p(a)) ≤ d,

M∑
i=1

ai = 1,

where a is the vector of portfolio allocations, given as percentages, to be allocated
to the various assets whose returns are given by a vector r p. The second equation
specifies that risk should be limited and the third equation states that the weights
on the assets should sum to one. Inspection of this program shows that the generic
measure called ‘Risk’ can be a variance or a MDD. As long as the constraints can be
written as functions an optimizer will be able to handle this problem even though the
solution may no longer be expressed as linear functions.

We would like to emphasize that the methodology developed earlier is perfectly
compatible with an optimization logic. The methodology generates a number, the
transactions cost TC(a) per unit of time given an initial wealth W0, and this for a
given vector of portfolio weights a. The ratio TC(a)/W0 will reduce the performance
of a portfolio and if one considers the extended Markowitz optimization

maxa E[r p(a)] − TC(a)/W0
s.t. Risk(r p(a)) ≤ d,

M∑
i=1

ai = 1,

then one can perform an optimization using variance, MDD or any other risk measure
such as VaR, CVaR and Mean Absolute Deviation (MAD).

In the first exercise, we change the allocation in the risky asset from 0.2 to 0.9. As
expected, as more money is put in the asset with higher returns, the BH strategy also
generates higher returns. For the FW allocation, we assume a transaction cost of 2%.
The FW allocation generates average returns that increase similar to the BH strategy.
Since we have calibrated the parameters to given annual returns, by construction, it
must be that the SR for the BH strategy does not change as the portfolio changes. We
notice that the FW allocation has a SR that increases, such that it joins the SR of the
BH strategy. This is expected, since in the extreme case when all the wealth is invested
in a single asset, namely the risky one, BH and FW are identical.

The last columns indicate the evolution of the transaction costs, TC. We notice that
the TC follows an inverted U-shape pattern. The maximal transaction cost is reached
for an equallyweighted portfolio.We know fromProposition 1 that the terminalwealth
between a BH and an FW strategy is the most different for this case, meaning that the
transaction costs must also be largest.

In our second exercise, we assume that the transaction cost increases to 3%, 4%,
and 5%. As expected, the SR and MDD fall in this case. If one considers the 60/40
portfolio, the MDD more than doubles as the costs increase from 2% to 5%.

In our next simulation we allow for deviations from the given (strategic) allocation.
Sometimes those non-intervention intervals are also called tactical allocations. This
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captures the practical feature that portfolio allocations are not necessarily rebalanced
each month; the manager may allow for a deviation of the desired strategic allocation
by some amount, whichwe denote by δ.Wewill also allow for this choice by assuming
that the manager will only rebalance the portfolio if the deviation of the actual weight,
a′, from the desired weight a is larger than an amount δ. The larger the δ is, the more
lenient the manager is about deviation from the desired weight, and the strategy will
approach a buy-and-hold strategy. From the point of view MDD, fewer rebalancing
decrease transactions costs and therefore improve the MDD for the FW allocation. In
comparison with the 60/40 benchmark allocation, MDD is halved as one moves to the
3% inaction region.

Our next simulation assumes that the volatility of the risky asset evolves from 10%
to 40%. We observe that increasing volatility changes the Sharpe ratios of the BH and
FW strategies but the difference between the SR values remains constant. For high
volatility of the risky asset, as onewould expect, this asset requires larger amounts to be
reallocated, leading to higher transaction costs. In agitated years, the total transaction
cost may climb as high as 2.6%. Also, as expected, an increase in volatility increases
MDD, in particular so for the FW allocation.

In the last exercise, we consider autocorrelated assets. By construction, the mean
and volatility of the BH strategy are set to be the same for all autocorrelation patterns
which can be achieved with the TAR algorithm.

We observe, as indicated by Corollary 1, that for strong mean reversion of assets
(acorr negative), the FW strategy dominates the BH one. While theory can provide
guidance of the direction of matters, simulations or actual data are required for the
assessment of the actual magnitude of the consequences. As the simulations demon-
strate, this result holds even with relatively large transaction costs of 2%. The columns
labeled MDD represent an annualized MDD. Inspection of those columns shows that
if assets strongly revert to their mean, then it means for instance that a loser will sub-
sequently catch up. If one readjusts the position of the loser, as it is the case in the
FW strategy, then this reduces MDD. For strong negative correlation, this effect can
be so strong that the difference of MDD between BH and FW becomes positive. Such
a strong autocorrelation is, however, unrealistic in practice for stocks or bonds.

3.2.2 Two risky assets

As the theoretical part has shown, autocorrelation and cross-sectional correlation may
affect the ranking between the BH and FW strategies. This is what we wish to study
in the second experiment of Table 2. The DGP for the system of assets is given by:

r1,t+1 = m1 + ρ1 r1,t + s1 ε1,t+1, ε1,t+1 ∼ N (0, 1),

r2,t+1 = m2 + ρ2 r2,t + s2 ε2,t+1, ε2,t+1 ∼ N (0, 1).

Furthermore, we assume that the two residuals ε1,t+1 and ε2,t+1 are correlated
with parameter ρ. From given annual parameters of expected returns (μ1, μ2) and
volatilities (σ1, σ2), we infer the parameters m1,m2, s1, s2 required for the monthly
simulations, proceeding in an analogous manner to the previous simulation by using
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the TAR calibration. The only addition is that one simulates correlated innovations
ε1,t and ε2,t .

For both assets, we assume identical μ of 5% and identical σ of 25%.
Both assets face a transaction cost of 2%. Autocorrelations are also equal ranging

over a grid of values. Next, we assume an equally weighted allocation a1 = a2 = 0.5.
In Table 4, we present the results of this simulation. The first column presents the cor-
relation between the two assets. This column will dictate if prices increase or decrease
simultaneously. If both assets move in the same direction, little rebalancing will be
required. When assets move in different directions, in contrast, this will modify more
strongly the allocations, leading to more rebalancing and higher transaction costs. The
second column, AC, dictates if assets are reverting or if they have positive momen-
tum. We know already that for reverting assets, the FW strategy is most beneficial.
The actual amount of benefit is, however, an empirical issue.

The BH strategy always has the same mean return. We notice that the FW strategy
has the larger SR only when assets move strongly in opposite directions and are mean-
reverting. Those findings are exactly in line with the propositions in the theoretical
section. What this simulation allows to show is that the parameter values need to be
rather extreme for the FW strategy to have higher SR than the BH strategy.

Concerning MDD, we observe that in general the difference between MDD for BH
and FW remains negative, as in the previous table. As autocorrelation increases, the
difference in MDD becomes more negative. Exactly, for the same reason for which
the SR is better for the FW than the BH strategy the MDD will be smaller.

If we inspect the columns of the transaction costs (TC) on the right of the table,
we notice that when assets are negatively correlated and tend to move in opposite
directions, the TC are then the highest. It is also for this case that the BH strategy
is much better than the FW strategy. The difference in performance can be quite
substantial, as indicated by the various numbers in this table.

3.3 Predictability of stock returns

There is a large stream of literature that demonstrates that asset returns may be pre-
dicted; see Barberis (2000), Campbell and Thompson (2007), and Cochrane (2007),
and even if this issue is controversial, see a discussion in Bali et al. (2017), it is inter-
esting to empirically investigate if some advantage could be made out of this in the
presence of transaction costs. This is the focus of the last experiment of Table 2.

3.3.1 Modeling the inaction region

If asset returns are partially predictable, e.g., by the dividend-price ratio, dp, then
if a manager believes the next period’s returns to be positive, the manager has two
possibilities to deal with this issue under the assumption that the portfolio is already
at its predetermined threshold a. The manager may decide to let the allocation of the
risky asset float. Therefore, instead of maintaining the allocation at a, she may decide
to rebalance only at a + δ. This suggests modeling the δ as a function of the dp.
As an alternative, the manager may assume a strategic allocation of a, but if the dp
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varies, then may modify the allocation. This implies that after an increase in the dp,
the allocation is set at a higher level. It may initially seem that modifying the δ that
is the threshold at which the portfolio is rebalanced and changing the allocation is the
same, but it is not. In the first case, the assets may drift and will not be rebalanced
unless the threshold has been hit. In the second case, the allocation is changed to some
new threshold and a transaction cost will be paid as soon as a new deviation of this
new allocation occurs.

At this stage, the manager is alerted to the possible need to modify the intervention
threshold δ or the allocation (or both). To investigate the quantitative importance of
this we render the boundary δ dependent on the previous month’s dp. We assume for
this purpose, that δ ranges between δmin and δmax. A possible specification is:

δt = δmin + (δmax − δmin)
exp(a dpt + b)

1 + exp(a dpt + b)
.

In an appendix, we explain how to calibrate a and b.
To investigate the consequence of changing allocation as dp varies, we follow a

similar approach, and we assume that the allocation amay evolve between some lower
bound amin and amax. The functional specification of the relation between at and dp
is assumed to be given by:

at = amin + (amax − amin)
exp(a dpt + b)

1 + exp(a dpt + b)
.

The methodology to determine a and b is identical to the case above. We will assume
for the benchmark case that the allocation is 60% in equity. For the allocation where
the allocation changes over the business cycle, we assume that amin and amax are 80%
of a and 120% of a, respectively.

3.3.2 The DGP

We assume that the allocation is between a risk-free asset and a predictable stock
return. Setting � = 1/12 for a monthly time increment we have:

rB,t = (1 + r f )
� − 1,

rS,t = μS,t� + σS
√

�εS,t ,

μS,t = α + βdpt , where dpt ≡ Dt/St ,

dpt = γ + φ dpt−1 + σdp εdp,t

Here, Dt is the amount of dividends generated in month t −1 and paid at time t . There
is a strong negative correlation ρD,S between εdp,t and εS,t . We assume here that this
correlation is constant.6

6 As the Global Financial Crisis and the explosion of the Dot Com bubble have shown, correlation is time
variable.
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For the calibration, we follow Barberis (2000) who uses monthly data covering
January 1927 to December 1995, and set:

μS,t = −0.0056 + 0.2580 dpt ,

dpt+1 = 0.0008 + 0.9774 dpt + √
3.0E − 6 εdp,t ,

ρD,S = −0.9351.

The implementation of this DGP is very simple.7 We turn now to the discussion of the
implementation of the empirical simulation.

3.3.3 Discussion

In Table 5, we present the results from our simulations. We still simulate 50,000
experiments, and the time horizon of our allocation is a year. We still assume a 2%
annual risk-free return. The risky asset has a 25% annual volatility. In the first line,
we present the benchmark case with the dynamic of the asset mean given as above. In
the subsequent lines, we find the parameters of the ceteris-paribus exercise, changing
each time one parameter. The first of the various columns contains the SR for the buy-
and-hold strategy, and the SR of the FW where the manager-econometrician ignores
the predictability of the stockmarket.We denote with an index 1 the statistics obtained
when the manager ignores predictability. In a second set of columns, indexed by 2, the
reader finds the SR for the FW strategy where the inaction threshold δt is changed over
the business cycle, and the comparison with the SR of the initial and the associated
transaction cost. In the last set of columns, indexed by 3, the manager adjusts the
portfolio allocation weight a over the business cycle as predicted by the dividend-
price ratio.

The columnwith SR−FW1 demonstrates that for the benchmark allocation, the SR
of the rebalancing strategy is 5%. If the transaction cost increases from 2 to 4%, the SR
decreases.Additionally, if volatility increases, then in comparisonwith the benchmark,
the SR decreases because the TC is also higher. Rendering α more negative means
that expected returns of the risky asset decrease. Since volatility remains the same,
this yields a negative SR. Increasing β means that stocks become more predictable.
Moreover, since the assets have positive ϕ, meaning persistence, this means that asset
returns become more persistent.

In the next case, we decrease the persistence parameter ϕ from 0.98 to 0.78. This
implies that the asset returns are more random. In this case, rebalancing comes at a
cost with respect to the benchmark.

We also increase σdp from 0.0017 to 0.0021. This means that we render the system
more uncertain. Indeed, the FW strategy leads to a slight decrease in the benchmark.
As asset return correlation becomes less negative, which means that the dp is less
related to the returns.

In the next group of statistics, we find SR − FW2 corresponding to the situation in
which themanager changes the intervention threshold δ as a function of dp.Thismeans

7 Again, one may use the TAR calibration to determine the values of μS,t and of σS so that the annual
returns built up with monthly rS yield exactly the theoretical moments.

123



Rebalancing with transaction costs: theory, simulations, and actual data 147

Ta
bl
e
5

T
he

ri
sk
y
as
se
ti
s
pr
ed
ic
ta
bl
e

A
ct
io
n

S
R

S
R

T
C

S
R

SR
T
C
2

S
R

SR
T
C
3

B
H
1

FW
1

M
ea
n

FW
2

FW
2
-F
W

1
M
ea
n

FW
3

FW
3
-F
W

1
m
ea
n

B
en
ch
m
ar
k
pa
ra
m
et
er
s

0.
09

0.
05

0.
67

0.
09

0.
04

0.
06

0.
03

−0
.0
2

1.
19

In
cr
ea
se

τ
B

=
τ
S
to

0.
04

0.
09

0.
01

1.
33

0.
08

0.
07

0.
11

−0
.0
5

−0
.0
5

2.
36

In
cr
ea
se

σ
fr
om

0.
25

to
0.
4

0.
05

0.
01

1.
07

0.
04

0.
03

0.
24

0.
00

−0
.0
1

1.
57

M
ov
e

α
fr
om

−0
.0
06

to
−0

.0
07

0.
03

−0
.0
1

0.
67

0.
02

0.
04

0.
06

−0
.0
3

−0
.0
2

1.
18

In
cr
ea
se

β
fr
om

0.
26

to
0.
31

0.
17

0.
14

0.
67

0.
17

0.
03

0.
06

0.
12

−0
.0
2

1.
19

D
ec
re
as
e

ϕ
fr
om

0.
98

to
0.
78

−0
.3
3

−0
.3
7

0.
65

−0
.3
3

0.
04

0.
07

−0
.4
6

−0
.1
0

2.
24

In
cr
ea
se

σ
d
p
fr
om

0.
00

17
to

0.
00

21
0.
08

0.
04

0.
67

0.
08

0.
04

0.
05

0.
03

−0
.0
2

1.
18

D
ec
re
as
e

ρ
d
p
fr
om

−0
.9
4
to

−0
.6
.

0.
08

0.
04

0.
67

0.
08

0.
04

0.
06

0.
03

−0
.0
1

1.
09

T
he

ec
on

om
et
ri
ci
an

ca
n
ei
th
er
ig
no

re
th
is
ph

en
om

en
on

in
he
ra
llo

ca
tio

ns
yi
el
di
ng

th
e
SR

of
a
B
H
an
d
an

FW
st
ra
te
gy
,a
s
in
co
lu
m
ns

2
an
d
3
w
ith

th
e
co
rr
es
po
nd

in
g
tr
an
sa
ct
io
n

co
st
s
in

co
lu
m
n
4,

or
m
ov
e
th
e
th
re
sh
ol
d
of

in
ac
tio

n
δ
ov
er

th
e
bu
si
ne
ss

cy
cl
e.
If
th
e
m
ar
ke
t
is
ex
pe
ct
ed

to
ra
is
e,
th
e
in
ac
tio

n
th
re
sh
ol
d
is
in
cr
ea
se
d.

T
hi
s
yi
el
ds

th
e
SR

of
FW

2
(c
ol
um

n
5)
,w

hi
ch

is
co
m
pa
re
d
w
ith

th
e
SR

of
FW

1
(c
ol
um

n
6)

an
d
th
e
co
rr
es
po

nd
in
g
tr
an
sa
ct
io
n
co
st
(c
ol
um

n
7)
.T

he
m
an
ag
er

ca
n
al
so

m
od

if
y
th
e
w
ei
gh

ta
llo

ca
te
d

to
th
e
ri
sk
y
as
se
t
ov
er

th
e
bu
si
ne
ss

cy
cl
e.
T
hi
s
yi
el
ds

th
e
SR

of
FW

3
(c
ol
um

n
8)
,t
he

co
m
pa
ri
so
n
w
ith

th
e
be
nc
hm

ar
k
fix

ed
-w

ei
gh
t
st
ra
te
gy

(c
ol
um

n
9)

an
d
ev
en
tu
al
ly

th
e

co
rr
es
po

nd
in
g
tr
an
sa
ct
io
n
co
st
(c
ol
um

n
10

)

123



148 R. El Bernoussi, M. Rockinger

that if the weight of the risky asset moves in a segment [a − δ, a + δ], the portfolio is
not rebalanced. The comparison between SR-FW2 and SR-FW1, which can be found
in column 6, demonstrates that allowing a window of inaction is beneficial. For all the
parameters of the comparative static exercise, the SR increases by 4 to 7 percent. As
TC2 demonstrates, because there is less portfolio allocation, the transaction costs also
decrease, which is beneficial.

In the last 3 columns, we investigate the consequences of willfully changing the
allocations if one believes in the return predictability. The SR of the FW strategy is
found in column 8, and the comparison with the benchmark in SR FW3 − FW1. We
notice that all the signs are negative and the numbers vary between 1 and 10 percent
in absolute value. This demonstrates that forcing a different allocation can come at a
costly price. After all, the predictability is weak, and forcing a reallocation because
of a believed change in the expected returns reveals dangerous consequences. As the
columnwith the transaction costs demonstrates (TC3), the deterioration is particularly
strong in the case when ϕ decreases from 0.98 to 0.78. In this case, the expected returns
are not so well predicted. As a result, the portfolio will be managed in a more erratic
way, resulting in a large transaction cost.

4 Actual allocation

In this section, we discuss the results of an actual allocation representative of some
Swiss pension funds. The pension fundmanager has a relatively large set of instruments
in which she can invest. Those instruments are a set of well-known stock indices that
could be cheaply duplicated by ETFs. Then there are commodities and real estate as
alternative assets. On the fixed income side, the manager may invest in short-term
interest rates or in 10-year Swiss and 10-year German Government bonds.

In Table 6, we present the assets and their descriptive statistics.8 It should be noticed
that all prices have been converted, if necessary, into CHF. Returns are simple returns.
We converted the 10-year yields of the bonds into prices by assuming constant coupon
bonds with terminal repayment. The bonds have constant maturity and coupons are
set to have a constant duration of 8 years.9 One may notice the relatively low volatil-
ity of the Swiss stock market and of its 10-year Government bond. The Swiss real
estate index distinguishes itself by relatively high historical returns and a volatility
comparable to the one of the 10-year German Government bond. The 10-year Ger-
man Government bond is riskier and less performing than the Swiss Government
bond because of exchange rate fluctuations and the steady appreciation of the CHF in
comparison to the EUR over the past years.

In Table 7, the reader may find the matrix of correlations. Autocorrelations are
inserted in the diagonal of the matrix. We notice that interest rates and monthly stock
returns are correlated among themselves. Interest rates and assets tend to be nega-
tively correlated. When we inspect the diagonal of this matrix, one notices the high
persistence of interest rates. Assets are slightly positively autocorrelated. The highest

8 The data have been extracted from Bloomberg.
9 Results are virtually unchanged if one changes the duration.
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Table 6 This table presents annualized statistics for various assets

Series Mean Volat min max MDD sk ku

SMI 3.13 13.18 −13.09 11.19 8.05 −0.55 3.68

SP 4.93 16.83 −14.07 13.21 11.58 −0.56 3.49

CAC 2.20 19.90 −19.17 21.94 10.57 −0.32 4.30

DAX 5.80 22.63 −26.29 24.65 12.94 −0.39 4.79

FTSE −0.50 16.43 −16.90 14.60 10.50 −0.50 4.12

NIK 3.10 18.62 −15.42 14.77 14.31 −0.16 3.39

WTI 4.93 16.83 −14.07 13.21 11.58 −0.56 3.49

GOLD 7.35 15.14 −14.01 18.13 5.06 0.39 4.65

SUGAR 7.61 33.17 −32.49 30.02 12.01 0.20 3.85

RealEst 5.64 6.92 −6.88 6.06 1.90 −0.36 4.31

SWION 0.38 0.33 −0.13 0.32 0.65 0.89 3.13

SWI3M 0.56 0.36 −0.07 0.29 0.57 0.84 2.63

CH10Y 0.97 4.00 −3.78 4.19 1.51 0.04 3.29

BUND10Y −0.19 6.84 −12.08 9.11 3.06 −0.65 10.22

All series are expressed in CHF. Bond yields have been converted into holding period returns assuming
a 10-year constant coupon bond with fixed maturity. SMI, SP, CAC, DAX, FTSE, NIK are well-known
stock market indices. For commodity prices we have WTI, the Western Texas crude oil futures traded on
the NYMEX. This contract is the world’s most liquid asset for crude oil trading. The GOLD spot price
is inferred from one month futures prices with the highest liquidity traded in international commodity
exchanges. SUGAR No. 11 prices the physical delivery of raw cane sugar, free-on-board the receiver’s
vessel to a port within the country of origin of the sugar. RealEst is the SXI Real Estate funds broad index
comprising all funds with a listing on the Swiss Stock Exchange and at least 75% of their funds invested in
Switzerland. SWION is the Swiss overnight return. SWI3M is the 3 months Swiss LIBOR rate. CH10Y is
the holding period return for a 10-year Swiss Government bond. BUND10Y holding period return for the
10-year Bund bond. All exchange rates used come from the international 24h forex market. The data span
the period between January 1, 1999, and June 30, 2021, and are sampled monthly. In the column mean, we
find the monthly average times 12; in the column volat, we find the monthly standard deviation times

√
12.

The next two columns represent the worst and best monthly returns over the sample period. Column MDD
contains the annualized Maximum Drawdowns. The last two columns represent skewness and kurtosis

is the Swiss market with 0.12, which can be explained by the fact that in comparison
with the other large indices, this market is a rather small and illiquid. A priori, with
such a rich pattern of correlations and autocorrelations, the prediction of whether a
buy-and-hold or a fixed-weight strategy dominates appears delicate.

In Table 8, the reader may find the actual results of a conservative allocation where
the weights in the various assets are as follows: 5% in short-term risk-free, 5% in
3-month Swiss interest rates, 20% in 10-y German Bonds, 30% in 10-y Swiss Bonds,
10% in the French CAC, 5% in the German DAX, 10% in the Swiss SMI, 5% in the
British FTSE, and finally 10% in the S&P 500.

It turns out that for actual assets, in the long run, the dynamic is sufficiently complex
that the givenBHstrategy is dominated by afixed-weight strategy as long as transaction
costs are relatively small. We perform various estimations of the final wealth with a
rebalancing strategy under various assumptions for the transaction cost. In the initial
setting, there are no transaction costs. Starting with 100 CHF on January 1, 1999, an
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investor would have achieved awealth by June 30, 2021 of 128.40with a buy-and-hold
strategy. With a fixed-weight strategy, the investor would have obtained 135.90. We
then run the allocation with increasing transaction costs of 50 bps, 1%, and 2%. We
notice that it is only with a relatively high transaction cost of 2% for each asset that the
fixed-weight strategy no longer dominates the buy-and-hold strategy. In practice, the
level of transaction cost is in the range of 0.5%, and therefore, a fixed-weight strategy
is interesting.

Next, we wish to investigate whether the dominance of the fixed-weight strategy is
a permanent feature of the data or whether it changes over time. To do so, we reallocate
our portfolio at the beginning of each year and then investigate at each end of the year
which strategy performs best. Since realistic transaction costs are in the neighborhood
of 0.5%, we compare the BH strategy with a FW strategy assuming 0.5% transaction
costs. To ease the reading, we insert in Table 8 a star * in columns 2 and 5 to indicate
the annual winner. In 3 years, the data are tied. In 15 years, when market performance
was particularly good or particularly bad, we find that BH is best, as indicated by
theory. In the remaining 6 years, the rebalancing strategy performs better. The finding
that the rebalancing strategy is outperforming the buy-and-hold strategy in the long
run, thus, results from exceptional results in certain years which are not undone in the
losing years.We also tested from a formal statistical point if the Sharpe Ratios between
the BH and FW allocations are equal. Jobson and Korkie (1981) derived the statistical
properties of a single Sharpe Ratio under iidness. Lo (2002) extended those properties
to a GMM setting allowing for autocorrelated returns. More recently, Ledoit andWolf
(2008) derive tests of equality between Sharpe Ratios allowing for dependency of
returns and potentially non-Gaussian returns by introducing bootstrapped standard
errors. It is this method that we apply to our setting.10 From a purely statistical point
of view, it turns out that the null hypothesis of the SR of BH being equal to the SR of
FW cannot be rejected in the long-run.

In Fig. 2, we find the trajectories over time for the BH and FW strategies. We
notice that the relative performance of the BH versus the FW one is not due to a
single outlier but rather due to a general force rendering it suboptimal. In this plot, we
consider various transactions costs. It is only for the highest transaction costs that the
FW allocation is dominated by the BH strategy. Even though the allocations are from
a statistical point of view not different, most pension fund managers when confronted
with this diagram would prefer a FW strategy.

We also tried to rationalize the success of the FW strategy by investigating the
relation between volatility and performance. Unreported results of this investigation
did not reveal a pattern such as that in volatile years one strategy outperforms the
other. It is the overall constellation of temporal and cross-sectional characteristics that
determines the success of the FW strategy even though based on our simulations,
the BH strategy appears to be the winner. It is this complexity that may explain the
plethora of papers written on the comparison between FW and BH strategies for all
sorts of asset classes.

10 We are grateful to Michael Wolf and Olivier Ledoit for making available codes to bootstrap standard
errors of Sharpe Ratios as described in Ledoit and Wolf (2008).
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Fig. 2 Trajectories of wealth depending on allocation strategy. The bold continuous curve in the center is
the buy-and-hold strategy. The other curves are fixed-weight strategies with various transaction costs. The
allocation is discussed in the text

To investigate further the stability of the outperformance of the FW allocation over
the BH one, we decided to consider a wider range of portfolio allocations. The results
of this experiment as well as the allocations can be found in Table 9. In the upper part
we represent the allocations in the various assets. In the second column of allocation
weights, one finds the allocations used in the previous investigation. In the lower
part, one finds the annualized average return, volatility Sharpe Ratios and for the FW
allocations the p-values of a test between the SR of the given FW allocation and the
one of the BH allocation. We consider for the FW allocation transactions costs of 0%,
0.05%, and 1%.

This table confirms that for all possible allocations, as long as the transaction cost
remains below 1%, the SR of the FW allocation is larger than the one for the BH
strategy. For instance, as can be seen from the first column, a BH allocation would
yield an annualized SR of 0.24, whereas a FWonewith no transaction cost would yield
0.27. The FW with a plausible transactions cost of 0.5% yields a SR of 0.25. As we
move from the left to the right in the table, the portfolio becomes eithermore diversified
in terms of assets or in terms of asset classes, since we introduce commodities and
real estate. Then, for a BH allocation the SR is 0.40 and for a FW allocation the SR is
0.47% for a realistic transaction cost of 0.5%. Statistically, the two SR are the same.
Again, if a portfolio manager had to choose between the two strategies, she is likely
to pick the one with rebalancing yielding fixed weights.
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Table 9 In the upper part of the
table we find for various assets
various allocations that pension
fund managers may follow

Variable Weights

SMI 40 10 10 10 10 10

CAC 0 10 10 10 0 0

DAX 0 5 10 10 0 0

FTSE 0 5 10 10 0 0

SP 0 10 10 10 10 30

NIK 0 0 10 10 0 0

Total stocks 40 40 60 60 20 40

CH10Y 60 30 20 10 20 10

BUND10Y 0 20 20 5 10 5

Total bonds 60 50 40 15 30 15

WTI 0 0 0 5 10 10

GOLD 0 0 0 5 10 10

SUGAR 0 0 0 5 10 10

SRE 0 0 0 5 10 10

Total alternative 0 0 0 20 40 40

SWI3M 0 5 0 5 10 5

SWION 0 5 0 0 0 0

Total liquidity 0 10 0 5 10 5

Mean BH 1.63 1.32 1.71 2.82 3.26 3.89

Std BH 5.23 6.42 9.59 10.00 7.22 9.26

SR(BH) 0.24 0.15 0.14 0.24 0.40 0.38

MDD(BH) 2.86 3.33 6.09 6.55 3.01 4.86

Transaction cost=0%

Mean FW 1.84 1.60 2.03 3.27 3.60 4.48

Std FW 5.38 6.72 9.80 10.80 6.50 9.25

SR(FW) 0.27 0.18 0.17 0.27 0.50 0.44

MDD(FW) 2.90 3.41 5.77 6.49 2.60 4.61

Transaction cost=0.5%

Mean FW 1.75 1.47 1.89 3.11 3.45 4.31

Std FW 5.38 6.72 9.80 10.80 6.50 9.26

SR(FW) 0.25 0.16 0.15 0.25 0.47 0.42

MDD(FW) 2.93 3.44 5.84 6.56 2.66 4.68

Transaction cost=1%

Mean FW 1.65 1.35 1.75 2.95 3.29 4.15

Std FW 5.39 6.73 9.81 10.81 6.50 9.26

SR(FW) 0.24 0.14 0.14 0.24 0.45 0.41

MDD(FW) 2.95 3.47 5.91 6.62 2.72 4.74

Theblocks in the lower part contain themeanand standarddeviations of
the BH strategy as well as the FW strategy for different levels of trans-
actions cost.MDD represents the annualizedmaximumdrawdown.We
also performed bootstrap tests attempting to reject SR(FW)=SR(BH)
but we were not successful
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In this tablewe also present theMDD for the various allocations. TheMDDdepends
both on the allocations and on the BH/FW choice. Except for the first two allocations,
a FW strategy generates smaller MDDs and this independently of the transactions
costs. Those findings suggest that the improvement of the SRs tends to go hand in
hand with improvements of MDDs.

5 Conclusion

This paper addresses questions of why and under which conditions a rebalancing strat-
egy dominates a buy-and-hold strategy when there are transaction costs. We introduce
a methodology to take into account transaction costs and perform various simulation
experiments to quantify the relevance of transaction costs, as well as to verify our
methodology. We also validate our methodology by applying it to actual data com-
prising a realistic portfolio.

Ourmethod is useful for actual portfolio allocations where various transaction costs
have to be taken into account and a portfolio needs to be optimized.

First, our paper demonstrates that a rebalancing strategy may be advocated for
risk-averse investors because it reduces volatility in situations often encountered. This
finding corroborates past studies. The main finding is the relevance of autocorrelation
for an asset as well as pairwise correlation among assets. We observe that for a strong
mean reversion of assets, the fixed-weight strategy dominates the buy-and-hold one.
Concerning pairwise correlation, we show that when assets are negatively correlated,
the transaction costs are the highest, and the buy-and-hold strategy is significantly
better (except when the market exhibits strong mean reversion).

Generally, if a portfolio manager managing a well-diversified portfolio faces trans-
action costs of less than 2% and if she anticipates a future market with mean reversion,
then she should rebalance her portfolio.

The predictability of asset returns can help in the choice of whether or not to
rebalance the portfolio. If the investor believes future returns to be positive, she may
decide not to rebalance immediately and let the weights deviate from their theoretical
allocation. Our results indicate that in this case, it can be useful to introduce an interval
of inaction and rebalance only if the weights deviate by some margin.

On the other hand, when we apply the portfolio allocation under transaction costs
to actual data, we find that a fixed-weight strategy is better, in terms of return and risk,
than a buy-and-hold strategy as long as the transaction costs remain reasonable. This
last result can be explained by autocorrelations and cross-correlation of the portfolio
during the chosen period of time that are sufficiently complex as to render an empirical
simulation necessary to uncover which is better: the buy-and-hold or rebalancing
strategy.

We also examine the performance of maximum drawdowns. We find that in general
strategies where the SR is larger are also strategies where the maximum drawdowns
is smaller.

Finally, even though this is not at the center of our research, we would like to
note that rebalancing strategies, because of their deterministic character, exclude any
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emotions and subjective influences on buying and selling decisions and thus tend to
limit behavioral biases.
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Appendix

The objective of this appendix is to provide a functional specification of the inaction
threshold as a function of some exogenous variable x . The objective is to cover the
range δt ∈ [δmin, δmax], as x describes the range [xmin, xmax].

We model the evolution of δ by introducing the logistic transform as follows:

δx = δmin + (δmax − δmin)
exp(ax + b)

1 + exp(ax + b)

An obvious issue is how to choose a and b. Since we operate in a simulated envi-
ronment, it is possible to generate many draws for x and to determine empirically
its support. Denote by xmin and xmax the kmin = 1% and kmax = 99% percentiles,
where the figures chosen are for illustrative purpose only. The value of each of those
boundaries is obtained via simulation and depends on the DGP.

Define

y = exp(ax + b)

1 + exp(ax + b)
.

Basic linear algebra yields

a x + b = ln
y

1 − y
.

Define

Ymin = ymin

1 − ymin
, Ymax = ymax

1 − ymax
.

We want to select a and b so that xmin and xmax also correspond to ymin = 1% and
ymax = 99% percentiles of the range of y. Since the total range of y is [0,1], it means
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that ymin = kmin = 0.01 and ymax = kmax = 0.99. With the choice made above, one
obtains Ymin = ln(kmin/kmax) and Ymax = ln(kmax/kmin).

Finally, one needs to set

a = Ymax − Ymin

xmax − xmin
, b = Ymin − axmin.
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