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Abstract
We implement an allocation strategy through a regime-switching model using recur-
sive utility preferences in an out-of-sample exercise accounting for transaction costs.
We study portfolios turnover and leverage, proposing two procedures to constrain the
allocation strategies: a low-turnover control (LoT) and a maximum leverage control
(MaxLev). LoT sets a dynamic threshold to trimminor rebalancing, reducing portfolio
turnover, mitigating costs. MaxLev calculates dynamic adjustments to the risk aver-
sion parameter to constrain the portfolio leverage. The MaxLev adjustments depend
on the risk aversion and permitted portfolio leverage, which enables optimal strate-
gies considering the leverage constraints. The study uses US equity portfolios, and
shows that, first, models with LoT result in superior return-to-risk measures than those
without it when transaction costs increase. Second, considering transaction costs, the
return-to-risk measures of the models using MaxLev closely match or exceed those
from the corresponding unconstrained regime-switching benchmarks. Third, MaxLev
returns have lower volatility and higher return-to-risk than conventional numerically
constrained benchmarks. Fourth, the certainty equivalent returns indicate that mod-
els using MaxLev and LoT outperform both single-state models and unconstrained
regime-switching models with statistical significance.
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1 Introduction

According to Munk (2013), recursive utility functions, as discussed by Epstein and
Zin (1989), became popular among practitioners due to a superior accuracy in charac-
terizing the investor’s preferences. Given that lifetime utility at time t can be captured
by a utility index referred to in the literature as felicity, previous dynamic functions
like the power utility and the exponential utility considered that investor’s felicity was
time-additive, meaning that it would be merely incremental. Unlike them, recursive
functions consider that tomorrow’s felicity also depends on today’s felicity, enabling
investors to time the uncertainty resolution, which is reflected through the disentangle-
ment of the attitudes toward atemporal risks (relative risk aversion) from the attitudes
toward shifts in consumption over time (elasticity of intertemporal substitution). One
function that captures such recursive preferences in continuous time is the stochastic
differential utility introduced by Duffie and Epstein (1992).

To the best of our knowledge, the asset allocation model presented by Campani,
Garcia, and Lewin (2021), herein denoted the CGL model, is the only model to apply
the stochastic differential recursive utility function in a regime-switching framework.
It consists of an approximate analytical method, which the authors demonstrate to be
sufficiently accurate to solve the allocation problem. Before this model, the literature
solved dynamic allocation under multiple regimes with the power utility function, via
numeric methods such as the Monte Carlo simulation—Sass and Haussmann (2004),
Guidolin and Timmermann (2007), and Liu (2011).

Lewin and Campani (2020a, b) test the CGL model in different settings, sharing
the same finding: the CGL returns consistently outperform reference portfolios. So
far, the CGL returns have been presented in the scope of unconstrained strategies and
without accounting for transaction costs, which is not unusual in the literature. For
example, Ang and Bekaert (2002) and Graflund and Nilsson (2003) present optimal
solutions without accounting for costs.

Our study assesses the impacts of costs and the strategy’s weights in the CGLmodel
implementation. We endorse the literature that strategies might become unpractical
if aspects such as portfolio leverage and rebalancing were not constrained. Thus, our
objective is to propose filters to constrain the CGL portfolio’s maximum leverage and
to lower its turnover.

We propose a maximum leverage control, referred to as the MaxLev filter. Analo-
gously to the drawdown control by Nystrup et al. (2019), MaxLev dynamically adjusts
the risk aversion parameter (γ ) to constrain themaximum leverage. First, it collects the
optimal portfolio leverage for a theoretical 100% probability for each regime. Then, it
calculates the adjustments over γ to confine the optimal leverage inside the maximum
leverage permitted for each regime,weighting themby the out-of-sample probabilities.
Although the adjustments originate from the leverage limits, they remain dependent
on γ . Thus, MaxLev presents a constraining method constantly proportional to γ . It
distinguishes from other numerical methods that just trim excessive weights, in which
the constrained leverage might become flattened at the level of the limits if the base
case is often excessively leveraged. With MaxLev, leverage is constantly proportional
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Constrained portfolio strategies… 29

to the regimes’ probabilities, as expected from an unconstrained allocation. There-
fore, the risk exposure is balanced by the regimes’ expectations, enabling an optimal
strategy that remains inside the leverage limits at each point in time.

We also propose a low-turnover control (LoT) to rebalance the portfolio if the
turnover from t to t + 1 is above a threshold. The rebalancing policy is dynamically
recalculated, updating the threshold by the historic turnover during significant proba-
bility changes.

The study compares the CGLmodel with and withoutMaxLev and LoT in different
levels of transaction costs using single-state and regime-switching benchmarks in an
out-of-sample exercise. The empirical results show that MaxLev matches or improves
the return-to-risk measures relative to the benchmarks, while LoT produces economic
value when cost levels are higher. The certainty equivalent returns indicate that the
CGL model using MaxLev and LoT outperform most benchmarks with statistical
significance.

2 Literature review

Ang and Timmermann (2012) have reviewed the literature since the seminal paper by
Hamilton (1989). The authors indicate the increasing importance of regime-switching
models in asset allocation strategies, where the power utility functions have been
widely used. For example, Ang and Bekaert (2002) and Guidolin and Timmermann
(2007, 2008) numerically solved the problem using the constant relative risk aversion
utility (CRRA). Later, Guidolin and Hyde (2012) applied the same procedure while
Çanakoǧlu andÖzekici (2012) found the explicit solution formaximizing the expected
utility of terminal wealth with a hyperbolic absolute risk aversion function (HARA),
but suggest that further studies should involve other utility functions. In turn, Ang
and Bekaert (2002) state that the recursive utility functions improve regime-switching
effects in allocation problems.

Using the recursive utility, Kraft et al. (2017) and Xing (2017) solved the
consumption-investment optimization with Epstein and Zin’s (1989) function, but
neither performed it observing regimes. For such a case, Campani, Garcia, and Lewin
(2021) presented a regime-switching allocation strategy (CGL model) in continuous
time based on Duffie and Epstein’s (1992) stochastic differential recursive utility func-
tion. They offered an approximate analytical solution based on Campani and Garcia
(2019), given a system of partial differential equations. Campani, Garcia, and Lewin
(2021) and Lewin and Campani (2020a, b) present optimal allocations based on the
CGLmodel.We advance the research based on such amodel accounting for transaction
costs and leverage and turnover constraints—a gap left open.

The literature presents several approaches to constrain portfolio leverage, indicating
there is no consensus. One is to shrink the covariance matrix toward an identity matrix.
Ledoit and Wolf (2004) and Fiecas, Franke, Von Sachs, and Tadjuidje (2017) apply it
to constrain mean–variance portfolios. In another approach considering the quadratic
utility, Clarke, De Silva, and Thorley (2002) and DeMiguel et al. (2009b) use a factor
to shrink the weight vector. Later, Dal Pra, Guidolin, Pedio, and Vasile (2018) simply
prevent the weights exceeding leverage limits using power utility preferences. These
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30 M. Lewin, CH. Campani

approaches, however, have significant limitations. In the first approaches, the problem
of modifying high dimensional covariance matrices becomes more pronounced for
regime-switching models (Nystrup et al. 2019). In the latter, if leverage is often exces-
sive, the constrain flattens it at the boundaries level, unbalancing the risk exposure to
the regimes’ expectations.

Inspired by Nystrup et al. (2019) drawdown control, we overcome such limitations
constraining leverage around the premise of a dynamically adjusted γ , the risk aversion
parameter. The authors increase γ in the domain of losses, as a reaction mechanism.
However, in case of successive losses, it traps the investor in elevated risk settings.

Although we also calculate dynamic adjustments for γ , the investor’s risk prefer-
ences do not disconnect from the base case (γ ) in our method. Thus, γ remains an
unobservable behavioral parameter. Based on the maximum leverage permitted, we
only infer adjustments to γ , assuming the leverage limits might be conditioned on the
regimes’ expectations. We emphasize that we do not set γ according to the regimes;
hence we do not shape the utility function—in a behavioral sense—as regime depen-
dent. Instead,we consider that the leverage limits impact the utility function. Therefore,
the method allows an optimal portfolio strategy that respects the leverage constraints
at each point in time.

In addition, the literature mitigates transaction costs by imposing rebalancing poli-
cies that constrain portfolio turnover. For example, Lunde and Timmermann (2004)
and Guidolin and Timmermann (2008) timed the regimes’ duration to separate long
and short-run movements. Instead, we follow Clarke, De Silva, and Thorley (2002),
defining a rebalancing policy upon a minimum turnover threshold (limit). However,
while they consider a static threshold, we dynamically compute it based on regimes’
probabilities. Thus, we maintain an updated rebalancing policy.

3 Method

3.1 The regime-switching economy

We apply the strategy developed by Campani, Garcia, and Lewin (2021) with a
continuous-time regime-switchingmodel in which investorsmaximize their stochastic
differential recursive utility functions through optimal portfolio strategies.

3.1.1 State variable

We assume a regime-switching economy governed by the unobservable state variable
Yt representing an independent right-continuous-timeMarkov chain process admitting
only values in R � {1, 2, . . . ,m}, where R is a finite set of m possible regimes.
Following Hamilton (1989), the state variable behavior is modeled using transition
probabilities that rule if the economy will remain at the same regime or jump to a new
one after an exponentially distributed length of time. If i is the current regime and λi j
is the density of transition probabilities between regimes i and j , the probability to
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jump to another regime j at time �t is:

Pi j,�t � λi j
∑

k ��i λik

(

1 − e
− ∑

k ��i
λik�t

)

,with j �� i ∈ R > 0, λi j > 0, (1)

where λi i � −∑
k ��i λik ≤ 0 such that Pi j,�t � λi j

−λi i

(
1 − eλi i�t

)
. Hence, the prob-

ability of staying at the same regime i over the next �t is given by Pii,�t � eλi i�t ,
with λi j assumed constant.

3.1.2 Assets dynamics

As Lewin and Campani (2020a,b), we estimated the model for excess returns (̂r ) over
the riskless asset (r f ). We consider that the risk-premia from the n risky assets are
defined through the following multidimensional stochastic process:

(2)

⎡
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⎢
⎣
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⎦ ,

where μs,t is a n × 1 vector of the instantaneous expected risk-premia (drifts), σ s,t
is an n × n lower triangular volatility matrix, and dZt is a column vector with n
increments of independent standard Wiener processes. Note that both μs,t and σ s,t
are time-varying and conditioned by the state variable Yt . In turn, with Yt � i, i ∈ R,
we find:

μs,t � μs,i �

⎡

⎢
⎢
⎣

μ1,i

μ2,i

. . .

μn,i

⎤

⎥
⎥
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⎢
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0
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. . .

. . .

. . .

. . .

0
0
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⎤

⎥
⎥
⎦, (3)

in which, μ j,i coefficients and σ s,i matrices are constant for each j � {1, 2, . . . , n}.
We underline that σ s,i elements are defined as partial volatilities, e.g., σ21,i denotes
partial volatility of asset 2 in relation to the first Wiener process (dZ1,t ) in regime
i , and also that σ s,iσ

T
s,i represent the regime-dependent variance–covariance matrix.

Still, as the drifts are regime-dependent and simultaneously time-dependent, it means
that they can vary in time even if the regime remains unchanged. Such drifts are stored
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in an n × m drift matrix:

Ds,t �

⎡

⎢
⎢
⎣

μ1,1

μ2,1

. . .

μn,1

μ1,2

μ2,2

. . .

μn,2

. . .

. . .

. . .

. . .

μ1,m

μ2,m

. . .

μn,m

⎤

⎥
⎥
⎦. (4)

Provided such assets and state variable processes, we obtain the regime-parameters
through the maximum likelihood (ML) estimation methodology. These parameters
are: the drift matrix Ds,t , the volatility matrix σ s,i and the transition probabilities
Pi j,�t (where j �� i ∈ R). In fact, the number of parameters to be estimated is
[mn + mn(n + 1) ÷ 2 + m(m − 1)]. Given the unobservable nature of the regimes, we
assume that investors can infer the regimes’ occurrences through filtered probabilities
observing the assets’ past returns. We detail the probabilities estimation according to
Hamilton’s (1989) procedure in the supplementary file.

3.2 The portfolio strategy

After configuring the regime-switching economy, we address the portfolio strategy.
First, considering Wt as the wealth in t and α t as the 1 × n vector of portfolio shares
of the risky assets, and (1−α t1) as the riskless asset share, wealth dynamics can be
expressed as:

dWt � (1 − α t1)Wtr f dt +Wtα t
dSt
St

� Wtr f dt +Wtα t
[
Ds,tπ tdt + (Vπ t)dZt

]
,

(5)

where 1 is a column vector of n ones, dSt
St

is the column vector with n infinitesimal
risky asset returns, π t is a column vector with the m filtered probabilities in t and V
is an 1 × m row vector containing the regime-dependent covariance matrices (σ s,i ).

3.2.1 Utility function

In the CGLmodel, the investor’s preferences are characterized as continuous-time and
modeled by the stochastic utility function from Duffie and Epstein (1992):

Jt � Et

⎡

⎣

T∫

u�t

f (Cu, Ju)du +
W 1−γ

T

1 − γ

⎤

⎦, (6)

where Et is the expected value in the current moment (t); T is the investment horizon;
f is the recursive aggregator of the utility function Jt in function of consumption
rate Cu (in moment u) and Ju , the continued utility in u. In turn, WT is the investor’s
terminal wealth while γ is the risk aversion coefficient. The following function details
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the utility function aggregator:

f (C, J ) � β

1 − 1
ψ

(1 − γ )J

⎧
⎪⎨

⎪⎩

⎡

⎣ C
[
(1 − γ )J

] 1
1−γ

⎤

⎦

1− 1
ψ

− 1

⎫
⎪⎬

⎪⎭
, (7)

where β is the time preference rate of the investor’s utility (felicity) and ψ is the
elasticity of intertemporal substitution, i.e., consumption choices over time. Thus, we
must set ψ, β and γ to configure the strategy using recursive utility.

Campani and Garcia (2019) analyze the sensitivity of consumption and portfolio
choices over the value of both preference parameters γ and ψ for a problem similar to
Campani, Garcia, and Lewin (2021) but in a single-state model. They indicate that the
value of ψ affects consumption preferences but barely affects the allocation strategy.
Later, Campani, Garcia, and Lewin (2021), considering regime-switching models,
conclude that the impact of consumption-to-wealth ratio variations is minimal in the
allocation strategy. Thus, we simplify the current application disregarding interme-
diary consumption. Considering that ψ > 1 is this case where substitution effects
dominate and the investor is willing to postpone consumption, we define ψ � ∞
to represent the investor that waits for the terminal horizon to consume their wealth.
Then, given a problem without intermediary consumption, the value of β does not
significantly affect the allocation strategy. Campani, Garcia, and Lewin (2021) and
Guidolin and Timmermann (2007) also show that the investment horizon has a neg-
ligible impact on the allocation strategy considering frequent rebalancing, like in our
application. Following them, we consider γ � 5 our base case.

Campani, Garcia, and Lewin (2021) demonstrate that the general solution quanti-
fying the investor total optimal utility in t (Vt � supJt ) admits the wealth-separable
solution:

V (Wt ,π t , τ ) � H(π t , τ )
W 1−γ

t

1 − γ
, (8)

where τ � T − t is the time until the final horizon and H(π t , τ ) is a function in
terms of the time to horizon and the regimes’ probabilities vector. But, as an exact
analytical expression for H(π t , τ ) is not yet available in the literature, Campani,
Garcia, andLewin (2021), basedon theBellman equation solve the problembyoffering
the following approximate analytical expression:

H(π t , τ ) � exp

⎡

⎣A0(τ ) +
m∑

i�1

Ai (τ )πi,t +
m∑

i�1

Bi (τ )π2
i,t +

∑

j<i

Ci j (τ )πi,tπ j,t

⎤

⎦,

(9)

where πi,t is regime i probability at time t . Meanwhile, A0, Ai ,Bi , and Ci j are time-
varying coefficients obtained from the solution of the Bellman equation under a system
of partial differential equations (PDE). The supplementary file provides details for
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solving the Bellman equation, while Campani, Garcia, and Lewin (2021) demonstrate
the PDE.

3.2.2 Portfolio weights

Given the approximate solution for V (Wt ,π t , τ ) and the coefficients A0, Ai , Bi , and
Ci j from function H(π t , τ ), the CGL model presents the optimal weights for the
regime-switching allocation using the recursive utility function given by the following
form:

α t � 1

γ

(
Ds,tπ t

)T
[
(Vπ t)(Vπ t)

T
]−1

+
1

γ

m∑

i�1

⎡

⎣Ai (τ ) + 2Bi (τ )πi,t +
∑

j ��i

Ci j (τ )π j,t

⎤

⎦σ i,π (Vπ t)
−1

, (10)

where αt � [
α1,t . . . αn,t

]
, σ i,π � [

σi1, π σi2, π . . . σin, π

]
, i ∈ R and j �

{1, 2, . . . , n}.

3.2.3 Maximum leverage control (MaxLev)

After determining the unconstrained optimal weights, wemust ensure that the strategy
is confined within the maximum leverage permitted. To constrain it by the maximum
leverage levels, we propose dynamically adjusting the risk parameter γ .We emphasize
that γ is not set according to the regimes (as the parameter is unobservable). We limit
leverage by calculating adjustments to the base case γ , obtaining an optimal portfolio
strategy that preserves such a maximum leverage policy.

It contrasts to conventional numerically constrained (NC) methods that prevent the
weights from exceeding leverage limits by trimming excessive weights. For example,
NC procedures might flatten the portfolio leverage at the policy limits if the base
case frequently leads to excessive leverage. Instead, using MaxLev, leverage is con-
stantly proportional to the regimes’ probabilities and the risk exposure, balanced to
the regimes’ expectations.

We firstly collect the unconstrained weights at 100% probability for each regime
through Eq. (10) with π̂ i � i th column of an m-order identity matrix. We then
compute leverage as the sum of positive weights that exceeds 100% of the portfolio
shares, storing in a 1 × m vector the unconstrained leverages conditioned by each
regime (UncLev), whose elements are:

UncLevi �
[
n+1∑

k�1

max
(
α̂π̂ i ,k, 0

)
]

− 1,with i ∈ R � {1, 2, . . . ,m}, (11)

where α̂π̂ i ,k is the kth element of the row vector α̂π̂ i � [
απ̂ i

(
1 − απ̂ i 1

) ]
formed

by the risky asset weight vector along with the riskless asset weight, all conditioned
by π̂ i . So, to build the leverage policies, we assume that investors’ risk appetite
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adapts according to the economic states, e.g., in a shift from crash to rally states,
pessimistic investors may become more optimistic and prone to set leverage at a
different level. Therefore, we define maximum leverage values (Lb,i ) conditioned by
regime i ∈ R, where we also consider the possibility to build z leverage policies, with
z as a positive integer representing the number of policies investigated at the research
and b � {1, 2, . . . , z}. The policies are then collected in a z × m matrix as follows:

MaxLev �
⎡

⎢
⎣

L11 · · · L1m
...

. . .
...

Lz1 · · · Lzm

⎤

⎥
⎦. (12a)

The method enables investors to assign regime-conditioned leverage policies to
meet their market expectations, although we do not explore this idea. The z leverage
policies (limits) adopted in the research are as follows (this range of values is justified
in Sect. 3.4):

MaxLev �

⎡

⎢
⎢
⎣

300%
200%
100%
0%

300%
200%
100%
0%

300%
200%
100%
0%

300%
200%
100%
0%

⎤

⎥
⎥
⎦. (12b)

We advance by calculating adjustments for γ to confine UncLevi within limits
stated in MaxLev, with which we infer the base case risk parameter (γ � 5) con-
ditionally to the limits and regimes. The procedure emerges on a new z × m matrix
whose elements are:

γb,i � γ × max[(1 +UncLevi ) ÷ (1 + Lb,i ), 1], (13)

where the maximum operator preserves the original value of γ when the element
UncLevi is already below the limit imposed by Lb,i . Multiplying the new matrix bth
row (expressed by γ b � [

γb,1 . . . γb,m
]
) by the column vector of regimes proba-

bilities at time t (π t ), we obtain a dynamic value as our risk parameter, which is an
average of γ b (dynamically) weighted by π t . Plugging it on Eq. (10), we then find the
weights constrained by policy b at time t :

αb,t � 1
(
γ bπ t

)
(
Ds,tπ t

)T
[
(Vπ t)(Vπ t)

T
]−1

+
1

γ

m∑

i�1

⎡

⎣Ai (τ ) + 2Bi (τ )πi,t +
∑

j ��i

Ci j (τ )π j,t

⎤

⎦σ i,π (Vπ t)
−1

. (14)
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3.3 The application of the CGLmodel

Regime-switching models may offer more hedged positions than single-state models,
given the regimes’ expectations. Still, such protection might lead to peaks of excessive
leverage in particular conditions, such as high correlations in less uncertain states.
Thus, we study a single class portfolio to increase the chances of observing this effect
for controlling it.

3.3.1 Data set

We allocate n � 3 risky assets along with the risk-free asset. The risky assets are the
first, third, and fifth quintiles from the value-weighted daily returns of the portfolios
formed on size by Kenneth French. We will denote them as small, mid, and large
caps, respectively. Along with such a US equity portfolio, the risk-free asset is the
3-month Treasury bill secondary market rate extracted from the Board of Governors
of the Federal Reserve System.We converted the data series to weekly observations as
Lewin and Campani (2020a, b), given that a daily frequency could defy the application
feasibility, and a monthly frequency would limit the amplitude of the out-of-sample
exercise. Thus, the data set encompasses 3552weekly observations, starting on January
8th, 1954, and ending on November 30th, 2021.

3.3.2 The out-of-sample exercise

Weorganized theweekly observations in 174 rollingwindows (threewidows per year).
Following DeMiguel et al. (2009a) and Bulla et al. (2011), we set them with approx-
imately ten years of data. Then, the regime parameters were (re)estimated via ML
with observations prior to the first window date and held during the four subsequent
months. Meanwhile, at every new week, we define the strategy from the filtered prob-
abilities estimated in t for t + 1. Hence, replicating only the available information at
the investment decision moment, this procedure delivers out-of-sample returns. Thus,
the exercise extends from January 3rd, 1964, to November 30th, 2021.

3.3.3 Number of regimes

To define the number of regimes (m), we consider m � 1 as the single regime model
presented in the results section.Meanwhile,m � 4 is the highest number of states often
observed in the literature. For example, Guidolin and Timmermann (2008) identify
four regimes in a study with US equity indices. In addition, Guidolin and Ono (2006)
indicate a saturation ratio between the number of estimated parameters and the data
series length. They work with ratio values of around 30. Given the rolling window
length, in our application, only models with m ≤ 4 present ratios above 30. Hence,
we tested models with m � 2, 3, 4. Table 1 shows their information criteria (IC), in
which we present 3 out of the 174 (re)estimations obtained using rolling windows: 1,
87, and 174. The differences between the models’ IC are relatively stable during the
(re)estimations. Therefore, as Table 1 indicates, m � 4 dominates the other models;
thus, we set the application with four regimes.
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Table 1 Information criteria

m AIC BIC H-Q

Oldest rolling window

2 − 10.373 − 10.359 − 10.396

3 − 10.416 − 10.393 − 10.453

4 − 10.457 − 10.424 − 10.512

Intermediate rolling window

2 − 9.631 − 9.617 − 9.654

3 − 9.694 − 9.671 − 9.732

4 − 9.757 − 9.723 − 9.811

Most recent rolling window

2 − 9.000 − 8.986 − 9.023

3 − 9.027 − 9.004 − 9.065

4 − 9.043 − 9.010 − 9.098

The table indicates the information criteria for the models with n � 3 risky assets under 2, 3, and 4
regimes. The columns present Akaike (AIC), Bayes-Schwartz (BIC), and Hannan-Quinn (H-Q) for three
rolling windows from the out-of-sample exercise: the oldest (May/1954–Dec/1963), the intermediary
(May/1983–Dec/1992), and the most recent (Jan/2012–Aug/2021). The full out-of-sample exercise was
performed with 174 rolling windows

3.3.4 Low-turnover control (LoT)

We define turnover as the percentage of the total portfolio value to be exchanged for
new positions. Guidolin and Timmermann (2008) affirm that weights of single regime
strategies differ from multi-regimes as the latter capture the short-run market timing
effects, while slower long-run movements drive the former. Hence, rapid state shifts
are expected to create higher turnover than single regimes strategies, underlining the
urgency of restricting turnover to manage costs. Our rebalancing policy consists of
two parts. First, we filter out total portfolio turnovers below a given threshold. We
then eliminate portfolio changes that occur due to minor updates of the probabilities.
Second, we assure that the weights remain close to themost updated strategy imposing
a minimum of one monthly rebalancing.

The LoT filter informs whether the best decision is to rebalance at every moment
in which the investor needs to decide on the optimal allocation strategy (i.e., weekly).
LoT recommends rebalance if the optimal strategy generated by the model at the
decision-making moment is significantly different from the current position (other-
wise, it recommends holding the current position). We are not computing the turnover
between optimal weights from the previous and the current weeks, but the previous
week’s optimal weights impacted by the market movements (from the current week)
and the current week optimal weights.

The rebalancing decision ismade given a threshold that defines aminimum turnover
limit. Clarke, De Silva, and Thorley (2002) applied a process with a threshold, but they
consider it static. In its turn, LoT dynamically adapts it—thus constantly updating the
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Fig. 1 Most likely regime changes dynamically adapting the threshold. We show the most likely regime
changes and their effects over the turnover threshold, illustrated byCGLMaxLev0%.Themost likely regime
is given by the highest filtered probability at each moment (hence, it is independent from the allocation
strategy). We accrue the changes when the most likely regime alters from t − 1 to t . The percentage of
most likely regime changes (c) is the historic number of changes relative to the number of observations.
We started these observations in 1959 to present the data of the out-of-sample exercise, from January 3rd,
1964 to November 30th, 2021, discarding the first five years to avoid initial noise

rebalancing policy. The process is as follows.At each rebalancing decision,we observe
the percentage of most likely regime changes (c) as given by the filtered probabilities,
and the optimal total portfolio turnovers considering past historical data. We assume
that c is a proxy for the number of probabilities updates that shall be considered.
We now define u � (1 − c) and calculate the uth percentile at the historical dataset
of optimal portfolio turnovers: this will be the minimum accepted turnover to define
whether there will be rebalancing. As such, the threshold will recommend rebalancing
only upon significant turnovers and, on average, at the same rate as the historically
most likely regime changes. Figure 1 illustrates the effects of LoT filtering.

Figure 1 shows the most likely regime changes (c) representing the dynamic rebal-
ancing policy, and indicates that significant probabilities updates occur 24–31% of
the time. In 1979–2004 and 2009–2021, there are plateaus of c at approximately 26
and 24%, respectively. In 2004–2009, c reduces given a long period under only one
regime, as the results section will show.We exemplify these effects over CGLMaxLev
0%. In 1979–2004 and 2009–2021, its turnover threshold spans from 42 to 54% and
37–41%, respectively. Meanwhile, it extends from 27 to 96% in the full sample. Thus,
it dynamically adapts as time passes.

3.3.5 Transaction costs

We assume the investor accounts for transaction costs. We studied Bulla et al. (2011),
Gârleanu and Pedersen (2013), and Nystrup et al. (2019), who fixed transaction costs
at 10 basis points (0.10%) for dynamic asset allocation for daily trading. The last
authors additionally propose to account for holding costs, charged at the risk-free rate
over the short sales. In our application, holding costs are underlying the model, as we
assume that the investor borrows at the risk-free rate for short selling. Nevertheless,
to be conservative and account for potential inefficiencies, like illiquidity costs, we
present the returns for higher costs. Therefore, wewill present the exercise considering
the following levels of transaction costs: 0.10, 0.20, and 0.40%.
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3.4 Benchmarks

The out-of-sample exercise presents the net returns from the proposed model (CGL
MaxLev) to constrain leverage at zero, 100, 200, and 300% levels. At these leverage
levels, the CGL MaxLev volatilities are (approximately) restricted by the volatility of
the investigated assets, as indicated in Sect. 4.3. CGL MaxLev is compared to four
models as follows. First, twomodels without regimes: the equal-weights and the single
regimemodel. Then, two regime-switchingmodels: the unconstrainedCGLmodel and
the numerically constrained CGL model. The regime-switching models are presented
with and without the LoT filter. Every case considers the four levels of transaction
costs to compare different cost perspectives.

3.4.1 Equal-weights portfolio (1/n)

DeMiguel et al. (2009a) demonstrate that a 1/n portfolio, despite being a naïve strategy,
outperforms a number of dynamic models based on optimal rules. Thus, it represents
a common benchmark.

3.4.2 Single regimemodel (SR)

The SRmodel corresponds to the recursive utility preferences of an investor who does
not account for a multiple regime economy. We use it to assess the impact of the
regime-switching on the overall performance.

3.4.3 Unconstrained CGLmodel (UNC)

We compute the unconstrained CGL model as in the original CGL model from Cam-
pani, Garcia, and Lewin (2021), without any adjustments on γ (i.e., fixed preferences).
Later, we empirically observe that the maximum leverage under such a setup is not
distant from 100, 200, and 300% when γ is 75, 100, and 200, respectively. This com-
parison reveals the impacts from the proposed filtering process (MaxLev) versus the
original application, in which we solve the problem without constraints.

3.4.4 Numerically constrained CGLmodel (NC)

An alternative constraining approach is simply preventing the weights from exceeding
leverage limits recalculating them proportionally to the constraint when the optimal
leverage exceeds the maximum permitted. We apply the NC procedure at the leverage
levels: zero, 100, 200, and 300%. This model benchmarks CGL MaxLev relative to a
constrained portfolio using fixed preferences.

3.4.5 Other benchmarks

We calculated the exercise for the power utility, as Guidolin and Hyde (2012). It is a
particular case from our codes, obtainedwhenψ � 1/γ . However, the results from the
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power utility are very close to those of the recursive utility, givenψ � ∞, as expected.
It occurs because the value of ψ impacts consumption, but it minimally impacts the
allocation strategy (Campani and Garcia, 2019). In addition, Campani, Garcia, and
Lewin (2021) show that the impact of consumption-to-wealth ratio variations is also
minimal in the allocation model. Thus, both results converge as the investor postpones
consumption to the final horizon by setting ψ � ∞. The power utility results are
indicated in the supplementary file.

3.5 Results tests

Following Fugazza et al. (2015) and Campani, Garcia, and Lewin (2021), we use the
annualized certainty equivalent returns (CER) to compare and rank different strate-
gies. The authors provide the derivation of the following expression used to compute
CER:

CERi (γ , t) ≡ F

T

{
1

Wt

[
1

K − T

K−T∑

τ�1

[
Wτ+T

(
ω̂i,t (γ , T )

)] 1
1−γ

]

− 1

}

, (15)

where F is the data frequency (52 weeks per year), T is the horizon (520 weeks), K
is the number of out-of-sample returns, ω̂i,t are the proportions of the wealth invested
in asset i , and Wt is the initial wealth (set to 1).

The next section presents the CER differences to compare two portfolios. Below
such figures, it will also report the 95% bootstrap confidence intervals drawn from
1,000,000 samples with replacement, using the bias-corrected and accelerated per-
centile method due to non-normalities in the out-of-sample returns.

4 Results

4.1 The four-regimemodel

We analyze the estimated parameters in Table 2. Panel A indicates the single-state
parameters as a reference of estimates that do not account for regime-switching. Panels
B.1 and B.2 show the regimes’ parameters with the characteristics of four economic
states: crash, bearmarket, bullmarket, and rally. The regimes are interpreted as follows.

In the crash state, expected returns are highly negative and volatile, thus uncertainty
is exceedingly high. However, after a crash regime, the transition probabilities reveal
similar chances of shifting to any of the three less uncertain states, indicating that
recovery does not necessarily follow it. On average, the crash and the bear market’s
duration are 10 weeks, while the bull market lasts 28 weeks. Therefore, volatilities in
the bull market converge with those from the single-state, although the bull market’s
returns are slightly higher than the single-state. In turn, the rally state presents the
highest returns and the lowest volatilities and correlations.

The crash state, bear, and bull markets show high correlations, from 78 to 95%,
close to the single-state. The only regime with relatively lower correlations is the rally,
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Table 2 Estimated parameters (%)

Panel A: Single State Model Small caps Mid-caps Large caps

Expected returns

9.57 9.67 7.45

Volatility and correlation matrix

Small caps 18.40

Mid-caps 92.57 17.91

Large caps 76.10 88.30 15.45

Panel B.1: Four State Model Small caps Mid-caps Large caps

Expected returns

Regime 1 − 11.71 − 11.16 − 8.58

Regime 2 − 12.52 − 5.04 0.58

Regime 3 12.15 13.94 11.99

Regime 4 80.54 56.19 31.06

Volatility and correlation matrix

Regime 1 Small caps 32.12

Mid− caps 93.02 31.66

Large caps 78.78 90.09 26.86

Regime 2 Small caps 8.61

Mid− caps 92.29 10.87

Large caps 78.39 89.18 11.68

Regime 3 Small caps 17.27

Mid− caps 94.36 15.11

Large caps 82.55 90.42 10.92

Regime 4 Small caps 7.41

Mid− caps 83.32 8.22

Large caps 54.92 75.41 9.81

Panel B.2: Four State Model Regime 1 Regime 2 Regime 3 Regime 4

Transition probabilities

Regime 1 89.73 3.71 3.41 3.15

Regime 2 3.53 89.54 0.12 6.80

Regime 3 2.32 0.21 96.43 1.04

Regime 4 0.29 12.32 1.95 85.44

Steady state

Ergodic Prob 18.11 31.46 29.69 20.74

Duration (weeks) 10 10 28 7

This table was computed with excess returns over the risk-free rate. Correlation matrices present the
volatilities in their diagonals. Weekly returns and volatilities are annualized for presentation. The indi-
cated parameters were estimated considering the complete data set
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Fig. 2 Out-of-sample probabilities. The out-of-sample probabilities are the filtered probabilities from t + 1
in t , estimated considering the rolling windows described in Sect. 3.3

but the ergodic probabilities reveal its chances are only 21%.At the same time, Eq. (10)
shows that the CGL model inverts the var-cov matrix to compute the weights. Then,
high correlations lead to extremely low numbers, more sensitive to return variations.
Thus, more pronounced under less uncertain (volatile) states, high correlations might
oversize portfolio hedges relative to the investor’s risk aversion. Therefore, we propose
to control leverage to contain it.

Figure 2 presents the out-of-sample probabilities, filtered from t +1 in t . For exam-
ple, they show that crash state probabilities hit the highest level since 1964 during the
COVID-19 pandemic, differently from the previous economic crisis. In addition, the
probabilities reveal that before the subprime crisis, between 2004 and 2009, it was an
unusually long bull market. Again, it contrasts with the other periods, where regimes
frequently shift. The regime-switching models generate value by quantitatively track-
ing such shifts between economic cycles (states).

4.2 The regime-switching benchmarks

4.2.1 The unconstrained CGLmodel

It is the original configuration from Campani, Garcia, and Lewin (2021), i.e., it is
the CGL model using fixed values of γ . Figure 3 shows that increasing γ conserves
the significant distance between the leverage peaks and their median levels, despite
mitigating the overall portfolio leverage. For example: to hold the maximum leverage
below 100% in such a sample, the unconstrained CGL model requires γ > 250.
Consequently, the median leverage drops below 10%, and the correlation between
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Fig. 3 The unconstrained CGL model. The unconstrained CGL model is the original model presented by
Campani, Garcia, and Lewin (2021). The figure indicates the maximum and median portfolio leverage from
the portfolios obtained considering such a model, and the correlation between the portfolios’ returns and
the risk-free returns, calculated in the out-of-sample exercise

the portfolio and the risk-free returns rises above 29%. The correlations in Fig. 3
indicate an increasing overweight of the risk-free asset when γ increases. In contrast,
the literature usually represents the investor’s risk preferences with γ closer to 5,
conducting the portfolio returns toward much lower correlations with the risk-free
returns. For example, models with γ ≤ 25 show correlations not greater than 10%,
regardless of the leverage peaks greater than tenfold the investor capital—which pose
limitations either due to implementation or compliance rules.

To assess the tradeoff between the leverage levels and the risky assets allocation, at
the out-of-sample exercise, we pair the unconstrained CGL with γ � 75, 100, 200 to
the constrained portfolios at 100, 200, and 300%, respectively. However, Fig. 3 reveals
that it is inviable to obtain an unleveraged portfolio (leverage � 0%) only increasing
the fixed value of γ , without achieving almost 100%correlation to the risk-free returns.
Consequently, the comparison of this particular case will not carry an unconstrained
regime-switching benchmark.

4.2.2 The numerically constrained CGLmodel

As presented in Sect. 3, our base case is γ � 5; and as Fig. 3 indicates, the median
leverage of the unconstrained CGL of the base case is 653%. The left panel from Fig. 4
additionally shows that such a portfolio leverages 25th and 75th percentiles are 306
and 1327%, respectively. This wide range results from the states dynamically shifting
and resetting leverage according to the states’ expectations. Figure 4 (left panel) also
reveals that the leverage obtained by the numerically constrained CGL is flat at the
boundary level, except for outliers. In other words, up to the leverage limit of 300%,
the leverage from the numerically constrained CGL model virtually does not detach
from the limit.

The right panel of Fig. 4 also indicates that numerical constraints level the leverage
of portfolios. Nevertheless, in cutting off such dynamics, they overlook the opportunity
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Fig. 4 Portfolio leverage. The left panel shows the leverage distribution (scale limited to 3000%), while the
right panel presents the 52-week moving average from the portfolios leverage calculated in in the out-of-
sample exercise. Both panels present the unconstrained CGL model (UNC), the numerically leverage CGL
model (NC), and CGL MaxLev. The color key at the bottom fits both panels. All models were computed
with γ � 5

tomitigate risks by calibrating leverage according to regimes. In contrast, Fig. 4, in both
panels, shows that the CGLMaxLev model maintains the dynamic adjustments of the
portfolio leverage while constraining the maximum leverage. Thus, the numerically
constrained CGL model is expected to offer higher but more volatile returns than the
CGL MaxLev.

4.3 The out-of-sample performance

This section presents the results from the out-of-sample exercise performed from
1964 to 2021. As an additional robustness check, the supplementary file presents
the results from its most recent subset, 2000 to 2021. Despite natural differences
among the samples, the conclusions drawn from comparing the model’s results are
not significantly different.

Table 3 indicates that an investment in the risky assets admits volatilities up to 19%
p-a. We will refer to it as an admissible market volatility. The risk of extreme events
in these returns is indicated the by maximum drawdowns between 53 and 71%.

The risky assets results are an intuitive benchmark, particularly for strategies with-
out transaction costs. Additionally, we set the leverage constraints from the exercise
to align the proposed strategies (volatility) with the market volatility. Therefore, we
present constrained portfolios up to 300% leverage, as CGL MaxLev 300% volatility
approximates to such a level.

Table 4 shows the out-of-sample results of the 1/n portfolio, SR model, and
CGLmodels. The CGLmodels are presented unconstrained (UNC), numerically con-
strained (NC), and MaxLev. Below Table 4, we discuss the models indicated on its
panels.
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Table 3 Risky assets and the risk-free rate

Assets (%) Small caps Mid-caps Large-caps Risk-free

Returns (p-a) 11.9 12.2 10.3 4.4

Volatility (p-a) 18.8 18.4 15.8 0.4

Sharpe ratio 40.2 42.8 37.5 –

Skewness − 0.7 − 0.5 − 0.4 0.6

Kurtosis 6.8 6.1 5.4 0.5

Maximum drawdown 71.3 53.6 53.0 0.0

This table presents the annualized results obtained from weekly observations from January 3rd, 1964 to
November 30th, 2021

4.3.1 Reference models (panel A)

The 1/n portfolio is an unleveraged portfolio with the lowest turnover. It presents a
Sharpe ratio of 36%, in line with the risky assets. Compared to them, the 1/n allocation
lowers the maximum drawdown to approximately 46%, establishing an important
benchmark. In turn, The SR model presents maximum leverage of 305%, while its
turnover’s 75th percentile is below 3%. Such a low turnover makes the costs in SR
returns not as critical as in regime-switching models. Compared to the 1/n portfolio,
the SR model has a slightly higher Sharpe ratio, but its maximum drawdown is almost
two-fold. Despite the severe drawdown, highly leveraged portfolios eventually recover
in long samples, as the case of the unconstrained CGL model with γ � 5 described
below.

The unconstrained CGL model with γ � 5 is our base case, as it is in Campani,
Garcia, and Lewin (2021). Notwithstanding its extreme leverage (analyzed in previous
sections), the base case exposes the favorable impact of the LoT filter. The median
turnover of 32% from the base case without LoT (optimal model) falls to 0% with
LoT. The returns-to-risk measure (Sharpe ratio) reveals that LoT has a positive impact
in this model when transaction costs are 0.40%. Moreover, the base case dominates
1/n portfolio and SR model in terms of return-to-risk, indicating the relevance of
the regime-switching in allocation models considering the stochastic recursive utility
function. However, due to the regime shifting process, the base case returns are more
leptokurtic (thus, riskier) than the single-state benchmarks.

4.3.2 Unconstrainedmodels (panel B)

If, on the one hand, the CGL model with γ � 10, 25, 50 mitigates the leverage levels
relative to the base case (γ � 5), on the other, these unconstrained configurations still
lead to almost impractical leverage peaks: 2825, 1067, and 490%, respectively. The
supplementary file presents the unconstrained CGL for more risk aversion settings.
Still, one could also argue the outcome of applying MaxLev with γ > 5. We answer
it by pointing out that the return-to-risk measures from the base case dominate those
from the unconstrained models with γ > 5. As we learned from Fig. 3, increasing
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γ amplifies the overweight in the risk-free asset. Thus, the dominating return-to-risk
measures reveal that the CGL strategy has more chances of successful performance
than failure, and those chances are unchanged using MaxLev. Hence, the following
panels apply NC and MaxLev with γ � 5.

Moreover, panel B shows that LoT eliminates the turnover up to the 50th percentile.
The return-to-risk measures from three models reveal that LoT is favorable in any case
of transaction costs. Contrasting to the base case, it indicates that under less extreme
leverage levels, LoT generates value. For example, take the unconstrained CGLmodel
with γ � 25. The Sharpe ratios for transaction costs of 0.20% are 134 and 146% for
the cases without and with LoT filter, respectively. Naturally, these ratios decrease
while increasing costs. Nevertheless, for transaction costs of 0.40%, the Sharpe ratio
without LoT is 70%, while with LoT it is 92%. This pattern repeats over the other
models, evidencing that LoT creates value when allocating for transaction costs, most
notably when costs increase.

4.3.3 Maximum leverage at 300% (panel C)

The maximum leverage of the unconstrained CGL model with γ � 75 is 327%, yet
we use it to benchmark the cases where leverage is limited to 300%. The leverage
from the unconstrained CGL model with γ � 100 is 245%. Although a fine-tuning
between 75 < γ < 100 would result in maximum leverage closer to 300%, it is
not critical to the current comparison. On the other hand, it is relevant to emphasize
that these leverage levels correspond to the entire sample (1964–2021). The supple-
mentary file shows the subset 2000–2021, where the maximum leverage for the same
risk preference is significantly different. The difference between the maximum lever-
age magnitudes results from estimating more (or less) uncertain economic states in
the samples. Hence, only increasing γ is insufficient to effectively control (extreme)
leverage at discretionary levels.

Sill, given an unconstrained case, γ � 75 benchmarks the return-to-risk measures
relative to the limit of 300% leverage. Panel C shows that those measures from CGL
MaxLev 300% are aligned with the unconstrained case. Meanwhile, we cannot lose
sight that these unconstrained returns are more exposed to the risk-free rate (Fig. 3).
Thus, matching Sharpe ratios reflect that MaxLev manages risks more effectively than
the unconstrained model.

At the same time, considering transaction costs, the Sharpe ratios from CGL
MaxLev 300% dominate those from CGL NC 300%. It results from an overly lever-
aged base case, where the NC procedure flattens leverage at the limits (Fig. 4); and
while higher leverage levels increase returns, they also increase volatility. The out-
performance from CGL MaxLev 300% relative to NC 300% is even magnified when
considering higher transaction costs, underlining that it is valuable to dynamically
adjust the leverage levels upon uncertainty. So, at the level of 300% leverage, the
higher the costs, the more positive it is to constrain leverage using MaxLev.
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4.3.4 Maximum leverage at 200% (panel D)

The conclusions from comparing returns-to-risk are analogous to those from panel C.
First, the alignment between Sharpe ratios with CGL unconstrained model (γ � 100)
indicates that CGLMaxLev 200% offers superior risky assets management than such a
benchmark, given a lower risk-free allocation. Then, at the same cost level, MaxLev’s
return-to-risk dominating those from NC evidence that MaxLev is a more effective
constraining procedure at 200% leverage.

Another characteristic from MaxLev is that it skews the distribution slightly to
the right side relative to the NC model. It results from MaxLev mitigating leverage
proportionally between regimes. Then, when MaxLev adjusts leverage upon regime
expectations, itmitigates the risk of negative events. In contrast,when leveling leverage
by its limit, the NC procedure does not balance leverage between regimes. Thus,
compared to NC returns, MaxLev’s are consistently slightly more skewed to the right,
pointing to a greater number of positive returns.

4.3.5 Maximum leverage at 100% (panel E)

In contrast with panels C and D, panel E shows that CGL MaxLev 100% consider-
ing transaction costs outperforms its benchmarks’ Sharpe ratio more pronouncedly.
Therefore, it suggests that MaxLev generates even greater value for lower leverage
limits. In addition, as in previous panels,MaxLev significantly lowersmaximumdraw-
downs relative to NC, suggesting that it mitigates left-tail events in comparison with
NC procedures. These findings are extensible to the comparison with 1/n portfolio
and SR model.

4.3.6 Unleveraged cases (panel F)

Constraining the portfolios at a 0% leverage level represents the unleveraged condi-
tion. It is a special case, as some investors cannot hold any leveraged positions. Hence,
we suppress an unconstrained model from panel F, as it would require extremely high
values of γ for the unconstrained CGL to achieve the unleveraged condition. Further-
more, such a case would present negative risk premia considering transaction costs
(the supplementary file shows unconstrained models approximating to 0% leverage).
In contrast, the unleveraged condition is achieved by the 1/n portfolio along with
both models from panel F. Comparing them using the same costs, the return-to-risk
measures from the CGL MaxLev 0% dominate the benchmarks. At the same time, it
also presents the lowest maximum drawdown among them. Such results evidence that
MaxLev effectively generates unconstrained portfolios without eroding the return-to-
risk measures.

4.4 Robustness checks

Table 5 shows the annualized certainty equivalent returns differences (�CER)
between CGL MaxLev with LoT and the benchmarks. Below we analyze them by
the benchmarks.
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4.4.1 Single regime

Positive�CER and positive confidence intervals indicate that CGLMaxLevwith LoT
statistically outperforms the SRmodel, considering transaction costs up to 0.20%. Yet,
for the highest transaction cost (0.40%), although�CER is positive, confidence inter-
vals with different algebraic signals indicate that they are not statistically significant.

4.4.2 Equal weights

Positive �CER and positive confidence intervals indicate that CGL MaxLev with
LoT surpass 1/n portfolios at any cost level with statistical significance.

4.4.3 CGL MaxLev without LoT

Table 5 confirms a conclusion from Sect. 4.3: LoT generates value considering higher
transaction costs and low leverage limits. With 200 and 300% leverage constraints,
CGL MaxLev with LoT outperforms the correspondent model without LoT consider-
ing the cost of 0.40%with statistical significance. Yet, lowering themaximum leverage
limit, LoT also statistically outperforms the benchmark at the cost of 0.20%.

4.4.4 Unconstrainedmodels

Positive�CER and positive confidence intervals indicate that CGLMaxLevwith LoT
statistically outperforms the unconstrained CGL models at any level of transaction
costs. However, to unleverage the unconstrained CGL model, it would be necessary
to set γ at uncommonly high values, resulting in an overweighted risk-free alloca-
tion (Fig. 3). Thus, as Sect. 4.3, we suppress such a benchmark for the unleveraged
condition.

4.4.5 Numeric constrainedmodels

At the leveraged portfolios, CGL MaxLev with LoT statistically outperforms the NC
models, considering transaction costs of 0.20%. In the remaining pairs, the values
from �CER are not statistically different from zero, thus we cannot demonstrate
that one model outperforms the other. However, given we already demonstrated that
MaxLev outperforms the unconstrained model, the similarity to the NC models is
not uninteresting. It indicates that MaxLev’s lower volatility compensates NC models
high returns, in the certainty equivalence—suggesting that MaxLev is a competitive
constraining procedure.

5 Conclusion

We addressed the issue of constraining dynamic models for multiple regimes
economies for recursive utility preferences applying the CGL model to solve an allo-
cation strategy accounting for transaction costs—a gap left by Campani, Garcia, and
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Lewin (2021) and Lewin and Campani (2020a, b). We studied a single asset class
portfolio, given by equities, to observe the effects of highly correlated assets. In this
setting, we identified four unobservable regimes with the characteristics of crash, bear
market, bull market, and rally states.

There is a body of literature indicating that regime-switching portfolio strategies
are challenged by elevated leverage and turnover, but solutions by Bulla et al. (2011),
Fiecas, Franke, Von Sachs, and Tadjuidje (2017) or Dal Pra, Guidolin, Pedio, and
Vasile (2018) are ineffective for our application. Thus, we propose filters to control
the portfolio maximum leverage (MaxLev) and low-turnover (LoT), using the CGL
model.

We conducted an out-of-sample exercise that indicated that the CGL model with
MaxLev and LoT report competitive return-to-risk measures relative to both single-
state and regime switching benchmarks. For example, comparing models with and
without LoT, such a turnover control generates value considering transaction costs
(and most notably when costs increase), as expected. Meanwhile, the annualized cer-
tainty equivalent returns indicate that CGL MaxLev outperforms the unconstrained
CGL model (i.e., the original model from Campani, Garcia, and Lewin 2021) with
statistical significance. Furthermore, compared to a conventional numerically con-
straining procedure, MaxLev mitigates the returns’ volatility.

The scope of our study was to evaluate regime-switching portfolio strategies for
recursive preferences for constrained applications. Future studies shall find research
opportunities investigating the proposed filters for new settings such as portfolios
with different correlations in the assets menu, and a more complex cost structure, like
dynamically observed illiquidity costs, and/or additional types of filters as maximum
drawdown control and stop-loss triggers.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11408-022-00414-x.
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