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Abstract
We build a stochastic Asset Liability Management (ALM) model for a life insurance
company. Therefore, we deal with both an asset portfolio, made up of bonds, equity
and cash, and a liability portfolio, comprising with-profit life insurance policies. We
define a mortality model and a surrender model, as well as a new production model.
First, with the purpose of ensuring the solvency of the company and the achievement
of a competitive return, in the interest of both shareholders and policyholders, the
insurer’s portfolio is periodically rebalanced according to the solution of a nonlinearly
constrained optimization problem that aims to match asset and liability durations,
subject to the attainment of a target return. In addition, several real-world constraints
are imposed.When computing the company balance sheet projections, we consider not
only future maturity and death payments, but also future surrender payments and all
the cash flows due to new production, in order to obtain estimates that are as reliable as
possible. The estimation of the timing and of the numbers of future surrenders and of
future new policyholders requires the approximation of conditional expectations: To
this end, we employ the least squaresMonte Carlo technique. Secondly, for each bonds
asset class and for equity asset class we propose a sectorial optimization problem with
the aim of maximizing the expected value of a chosen utility function, subject to the
results obtained from the first stage of portfolio rebalancing. Finally, we analyze a
case study.
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1 Introduction

Many financial decision problems involve the forecasting of future liability cash flows.
For insurance products, the planning horizon extends beyond a decade: for example,
pension funds have a planning horizon of more than 30 years. So, for an insurance
company operating in life business, it is essential to build a model to forecast the
evolution of cash inflows and outflows over time. All the techniques and the models
used by a company to address financial risk due to themismatching between assets and
liabilities portfolios are part of theAsset LiabilityManagement (ALM). The traditional
ALM programs focus on interest rate risk and liquidity risk, but, depending on the
business model of the company, the specific definition of the underlying models for
the assets and liabilities may vary.

Historically, the first ALM methods were developed starting from the milestone
works byMacaulay (1938), Samuelson (1945), Redington (1952) and Fisher andWeil
(2017), ordered according to the publication year. In these earlier models, the bond
immunization, i.e., the matching between bond portfolio interest rate sensitivity and
liability streams interest rate sensitivity, was the unique subject. These models are sin-
gle stage models and do not take into account the stochastic evolution of interest rate
since they use only the duration, or at most also the convexity, as risk measure. Nowa-
days, these techniques are unsuitable for an insurance company due to the complexity
of both the asset portfolio and the liability portfolio. An insurance asset portfolio
is not composed only of plain vanilla bonds and liquidity, but also of subordinated
bonds which have embedded options (typically call options), structured bonds, no
fixed income products, such as stocks, hedge funds, private equity and real asset prod-
ucts (see Zenios 1995). However, when dealing with ALMmodels, the real challenge
lies in the liability side. Due to the presence of surrender options, death benefits and
other random features, an ALM model has to capture the stochastic dynamics and
the uncertain characteristics inherent with insurance policies. The presence of these
options with early exercise and asymmetric distribution makes essential the develop-
ment of a suitable valuation functionality, not only to evaluate the company’s balance
sheet at current date, but also to simulate the firm’s position at future dates.

So, a company needs to develop an ALM tool able to forecast its balance sheet
evolution over time predicting future cash inflows and outflows, in order to ensure the
solvency of the company, i.e., its capability to meet all its financial obligations. A cor-
rect forecasting of the evolution of the balance sheet, including cash flow generation,
and the calculation of duration and convexity mismatching allow to manage the risk
of future unexpected cash flows that could compromise the business of the firm.

But the aim of an ALM tool does not end here, because the purpose of ALM is to
satisfy the interests of shareholders, policyholders and regulators in a common frame-
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work. Therefore, an ALM tool includes the allocation of assets to increase the profit of
the company. The insurer invests in a portfolio the return of which is consistent with
the offering of competitive products, in the shareholders’ and policyholders’ interest,
while satisfying the regulators. In this sense, ALM stands between risk management
and strategic asset allocation, having the purpose ofmaximizing the investment returns,
while minimizing the reinvestment risks. A complete guide on ALM models can be
found in Zenios and Ziemba (2006) and Zenios and Ziemba (2007) and in the refer-
ences therein.

It is clear that these models have a particular relevance in life insurance industry,
evenmore after the introduction of the Solvency Capital Requirement computed under
Solvency II Directive (see Sandström 2016; Wüthrich and Merz 2013), based on the
computation of the 99.5% Value-at-Risk over one year of company’s own funds, so
that a proper joint estimation of both assets and liabilities values becomes essential.

The literature of ALM models for life insurance companies is very wide. We refer
to Ballotta et al. (2006), Bauer et al. (2006), Gerstner et al. (2008) and Møller and
Steffensen (2007) and the references therein. In the life insurance sector, the presence
of embedded options in policies makes very difficult to correctly forecast the cash
outflows [the problem of the pricing of embedded options has been widely treated in
literature, see, for example, Bacinello (2003a, b, 2005), Grosen and Jørgensen (2000)
and Milevsky and Salisbury (2006)]. The need of a more accurate approximation of
the portfolio evolution over time, especially on liabilities side, jointly with the increase
in computational power, makes feasible and suitable for an insurance firm the devel-
opment of a stochastic scenario-based ALMmodel. In fact, significant resources have
been invested into the development of such models, specially in insurance companies.
Naturally, a trade off between complexity and practicality is always involved.

Starting from the seminal works by Bradley and Crane (1972) and by Lane and
Hutchinson (1980), dynamic stochastic programming techniques have been applied
to ALM models. In particular, Bradley and Crane were the first to use a dynamic
recourse programming in a portfolio problem restricted to fixed interest securities.
Stochastic programming in the form of a multistage recourse problem is a general
formulation of a multistage ALM model in which the objective function is typically
characterized in terms of the expected value of a linear or nonlinear utility function of
wealth at the horizon (see Dempster 1980). This approach has become very popular
in finance both among academics and practitioners. The literature on the application
of stochastic programming with recourse to ALM models is very wide. An interested
reader could find some of these applications in Cariño et al. (1994), Consigli and
Dempster (1998), Dantzig and Infanger (1993), Dempster and Ireland (1991), Grebeck
and Rachev (2005) and Zenios (1995). Recently, Fernández et al in Fernández et al.
(2018) have presented an ALM model for a life insurance company together with its
numerical simulations performed in a new high-performance computing architectures
provided by GPUs technology. They consider a portfolio comprising with-profit life
insurance policies with some innovations with respect to literature in the modeling
of the surrenders of the policyholders. However, in the estimate of future supposed
liabilities cash flows, they take into account neither possible future surrenders nor the
so-called newproduction, i.e., the cash flows due to newpolicyholderswhich subscribe
to the policy at future times.
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In this paper, we build a two-stage stochastic ALM model for a life insurance
company’s portfolio. First, we propose a multistep reinvestment strategy using a
scenario-based approach in which the assets and the liabilities are jointly simulated
using appropriated stochastic models. On the asset side, we consider a portfolio com-
posed of bonds, divided in buckets of duration, stocks and cash. On the liability side,
we consider a portfolio comprising with-profit life insurance policies, such that pol-
icyholders’ saving account earns a rate given by the maximum between a minimum
guaranteed rate of return and a percentage, called participation rate, of the asset portfo-
lio return. In order to keep track of the evolution of the liability portfolio, we take into
account, in addition to the policyholders’ saving account model, the biometric model
and the surrender model. Also, we consider cash flows due to new production. The
question of the issue of new policies has been investigated in previous works (see, for
example, Eckert et al. 2020; Hieber et al. 2019; Orozco-Garcia and Schmeiser 2019),
but we propose, as far as we know, an innovative approach to this feature with respect
to existing literature. At each time step k, we jointly simulate all the random variables
of the model and, then, we compute asset duration and liability duration, estimating
the projections of all future cash flows, made up of death, maturity and surrender pay-
ments, also related to new production. To the best of our knowledge, the fact that we
consider also cash flows due to future surrenders and new production when comput-
ing balance sheet projections constitutes an innovation with respect to literature and
allows to better forecast the evolution of the balance sheet of an insurance company,
therefore to compute more reliable estimates of actuarial reserves and of probabilities
of default. From the technical point of view, it leads to the need to estimate conditional
expectations with respect to the information available at time step k, so that we employ
a Least Squares Monte Carlo technique. At each time step k, after having computed
the duration of asset portfolio and of liability portfolio, we perform a rebalancing of
the asset portfolio by solving a nonlinearly constrained optimization problem in which
we minimize the distance between the asset duration and the liability duration, subject
to the achievement of a target return and other constraints that are typical for an asset
allocation problem. Indeed, we consider real world constraints, such as the so-called
budget constraint, constraints that do not allow short sales, constraints on the upper
and on the lower bounds for the size of a single asset class weight or of a combination
of asset classes weights, constraints on single (on one asset class) and on portfolio
turnover. This dynamic portfolio rebalancing strategy allows to simultaneously satisfy
the interest of shareholders and policyholders. Indeed, the minimization of the dis-
tance between asset duration and liability duration permits to guarantee the solvency
of the company, whereas the achievement of a target return allows to build a compet-
itive portfolio. Since the decision rules previously described do not build an optimal
dynamic reinvestment strategy, we propose a second stage of portfolio optimization
in order to maximize the expected value of a chosen utility function, using the results
obtained from the previous rebalancing strategy as investment constraints. However,
we focus our analysis on the first stage of portfolio rebalancing strategy and we do not
perform any tests on the second stage of the portfolio optimization that requires stan-
dard stochastic programming techniques (see, for example, Dempster 1980), leaving
the choice of a specific utility function and of the final wealth to the investment officer
of the firm.
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Table 1 Simplified life
insurance company’s balance
sheet

Assets Liabilities and shareholder’s equity

Capital invested in assets Present value of life insurance policies

Equity capital

In order to test our ALMmodel, we firstly present our portfolio rebalancing strategy
under certain market hypotheses and initial scenario assumptions. Moreover, we focus
on the evolution over time of the number of alive policies that is affected by the
mortality model as well as by the surrender and new production models. Finally,
an analysis of the participation rate sensitivity is conducted by keeping track of the
evolution over time of actuarial reserves, that is to say, the discounted value of all
future cash flows on the liability side, and of own funds, and by investigating default
probability.

The paper is organized as follows. In Sect. 2, we define our asset portfolio and
liability portfolio, and we introduce the general features of our ALMmodel. In Sect. 3,
we focus on the liabilitymodel andon the computation of liability duration that requires
the estimation of future firm’s cash flows, consisting of maturity, death and surrender
payments, also related to new production, and entails the definition of a mortality
model as well as a surrender and new production model. Moreover, we introduce the
interest rate model associated with the term structure of interest rates. In Sect. 4, we
deal with the asset model, thus presenting bonds, equity and cash models. Then, in
Sect. 5, we introduce the nonlinearly constrained rebalancing rules to solve in order to
dynamically restructure the asset portfolio.We consider several real world constraints.
In Sect. 6, we give an overview of the second stage of the portfolio optimization. In
Sect. 7, we describemarket data, and in Sect. 8 we present and analyze some numerical
results. Finally, in Sect. 9, we point out the main conclusions.

2 Themodel

We build a stochastic ALMmodel with dynamic reinvestment strategy for a life insur-
ance company’s portfolio. Therefore, we deal with both a liability portfolio and an
asset portfolio, that is regularly rebalanced in order to not only obtain a certain portfo-
lio return, but also to be able to meet future financial obligations. In order to properly
rebalance the company’s portfolio, we need to forecast the balance sheet evolution
over time, computing the joint projections of the future cash flows of both liabilities
and assets portfolios.

A simplified balance sheet for a life insurance company is summarized in Table 1.
The last item, equity capital, consists of the surplus which is kept by the company’s
shareholders and is defined by:

Equity capital = Assets − Present value of life insurance policies. (1)

On the asset side, we consider a portfolio composed of bonds, divided in buckets
of duration, equity and cash. Bonds, equity and cash are simulated together over
time according to stochastic models. The need of an insurance company to have a

123



66 M. Di Francesco, R. Simonella

conservative investment strategy, as required by regulators (Braun et al. 2017), is
reinforced in our model from the fact that in the case of with-profit life policies a
more aggressive investment strategy would represent an advantage for policyholders,
but an excessive risk of shareholders. In fact, policyholders would benefit from high
returns and would not be hit by negative returns, since a minimum rate of return is
guaranteed, while shareholders would be hit by negative returns and would barely
benefit from positive returns, since only a small percentage of returns is kept by
the company’s shareholders. Therefore, the company refrains from following a more
aggressive investment strategy. For these reasons, we hold larger positions in fixed-
income assets, and we allocate a smaller percentage of the total in stocks. Moreover,
we consider some real investment policy constraints on portfolio asset classes weights
and on particular combinations of them.

On the liabilities side, we consider a portfolio only comprising the so-called with-
profit life policies, a type of products that is very popular in life insurance business. In
these contracts, on the one hand, the policyholder pays a premium that can be either
single, paid at the beginning of the contract, or periodic, paid with a certain frequency
during the policy life. On the other hand, the insurer receives the premiums and invests
this capital in the financial market. Moreover, the insurer pays both a periodic variable
rate in a policyholder saving account and a benefit that is disbursed at policy maturity
date, if the policyholder is still alive, or before policy maturity date, if the contract
ends before policy expiration, because the policyholder dies or decides to exercise
the surrender option, if the contract entitles to abandon the policy before maturity.
Our ALM model includes the surrender option. Also, we consider the possibility that
policyholders do not enter into the policy all together, say at time 0, but there is the
chance that a policyholder signs the contract in the following years, thus creating the
so-called new production. In summary, we consider the most important features of a
with-profit life policy:

• policyholders’ saving account grows at a rate given by the maximum between a
minimum guaranteed rate of return and a fraction of the asset portfolio return;

• a mortality model is taken into account to keep track of death occurrences;
• policyholders are entitled to surrender the contract at any time before the maturity
date;

• cash flows due to the so-called new production are included.

In our model, the insurance company has to refund the beneficiaries of policies
of policyholders that die before the maturity date, the policyholders that abandon the
contract before policy expiration, as well as policyholders that are still alive when their
policies expire. Except from the timing of payments due to thematurity of the policies,
the timing of all the other payments is uncertain and depends on the market evolution
and on the stochastic behavior of policyholders’ biometry.More precisely, the decision
to abandon the contract before policy expiration and new production strongly depend
on stochastic economic variables. Indeed, we infer the probability that a policyholder
cancels the contract before maturity or that a new policyholder subscribes to the policy
comparing the earnings offered by the policy with the earnings offered by competing
products in the market, represented by the return of a suitable benchmark index chosen
from the market. This issue is fully addressed in Sect. 3.1. In contrast with surrender
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Table 2 ALM model Asset model Liability model

Bond with duration n1 model Policyholder account model

Bond with duration n2 model Surrender model

… New production model

Equity model Biometric model

Cash model

events and new production, death occurrences are actuarial events, that are usually
assumed independent of economic variables. Therefore, in order to infer the number
of policyholders that die before policy expiration, we follow a biometric model, based
on a life table in which the survival probability of a policyholder is only dependent on
age and gender. More details about the mortality model are given in Sect. 3.2.

Our ALM model is summarized in Table 2.
Since the set of contracts could be very copious and, also, each insurance contract

could offer a different guaranteed rate of return, could be signed by policyholders
of different ages and could expire at different dates, computing the joint projections
of the future cash flows of both assets and liabilities portfolios for each contract can
lead to a highly time-consuming task. In order to manage this issue, as in Fernández
et al. (2018), we group policies with similar characteristics in buckets, called model
points, thus reducing the computational cost of the calculus. More details on how to
build the model points can be found in Jansen (2008), for instance. Thus, our liability
portfolio is given by the set of model points, I = {mi/mi is a model point}, with
cardinality NM := |I |, so that we will work on a representative set of contracts. More
precisely, in order to handle the heterogeneity of the plethora of different contracts in
the liabilities portfolio, we gather together policies with similar minimum guaranteed
rate of return, similar age of the policyholder and same maturity date. For example,
in Sect. 8, where some numerical results are shown, we suppose that all the policies
in our liabilities portfolio expire in 10 years, and that some of these contracts offer
a minimum guaranteed rate of return of 0%, others of 1% and still others of 2%.
Moreover, contracts are signed by policyholders aged from 38 to 67. We split the
contracts in model points as shown in Table 3.

In conclusion of the general description of our ALM model, we introduce the pos-
sibility of default of the insurance company. Indeed, if a policyholder dies, abandons
the contract or is still alive at policy maturity date, the company has to pay a refund
based on the value of the policyholder’s saving account that, as said before, earns an
interest rate given by the maximum between a minimum guaranteed rate of return
and a percentage of the return on the insurer’s investment portfolio. Therefore, the
company needs to use the capital that comes from new production if portfolio return
is not sufficient to meet its liabilities, and, if there are not enough new policyholders,
the company employs its own funds. If own funds become negative, the company is
declared defaulted.
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Table 3 Example of
representative contracts (model
points) for different
policyholders’ ages and different
minimum guaranteed rates of
return

Minimum guaranteed rate of return

0% 1% 2%

Age

[40, 44] (40, 0%) (40, 1%) (40, 2%)

[45, 49] (45, 0%) (45, 1%) (45, 2%)

[50, 54] (50, 0%) (50, 1%) (50, 2%)

[55, 59] (55, 0%) (55, 1%) (55, 2%)

[60, 64] (60, 0%) (60, 1%) (60, 2%)

[65, 69] (65, 0%) (65, 1%) (65, 2%)

All contracts have the same time-to-maturity, so that a model point
is a couple ( Ā, g), where Ā and g are the representative age and the
minimum guaranteed rate of return, respectively

3 Liability model

In this section, we describe how we model the cash flows connected to policyholders’
benefits and premiums. Whereas some cash flows are scheduled, such as cash flows
related to maturity payments, the timing of other cash flows is not known a priori and
can depend either on the market situation, in the case of payments due to surrender
option and in the case of cash inflows due to new production, or on actuarial events,
in the case of payments due to death occurrences.

We consider a time discretization given by a mesh of equispaced time instants, 0 =
t0 < t1 < . . . < tN = T , andwe define the period k as [tk, tk+1], for k = 0, . . . , T −1.
In each period, we assume that premiums are paid at the beginning while benefits are
disbursed at the end. Administrative costs are included in the premium.

At each period, we need to keep track not only of the number of alive policyholders,
but also of the number of policyholders that die or exercise the surrender option, of
the number of policies that expire, as well as of the number of new policyholder that
subscribe to a contract. Therefore, we introduce the following notations:

• snk,i is the number of policyholders in the model point mi ∈ I that entered into
the contract at time s and are still alive at the end of period k;

• nk,i is the total number of alive policyholders in model point mi ∈ I at the end of
period k, independently from their starting times, so that

nk,i =
T−1∑

s=0

snk,i ;

• snD
k,i , sn

S
k,i , sn

M
k,i are the numbers of policyholders in model point mi ∈ I that

started the contract at time s and die, surrender or reach maturity at period k,
respectively;

• nD
k,i , n

S
k,i and nM

k,i are the vectors defined as:

nX
k,i = (0n

X
k,i , 1n

X
k,i , . . . , k−1n

X
k,i ), X = {D, S, M}; (2)
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• nP
k,i is the number of new policyholder in the i th model point that enters into the

contract at period k.

In the biometric model used to determine the policyholders’ death rate, the distinction
betweenmen andwomen is taken into account. So, when the previous symbols present
the superscript “M” or “F ,” they are referred only to the corresponding portion of
male or female policyholders, respectively.

We denote by sl Dk,i , sl
S
k,i and slMk,i the death, surrender andmaturity benefits at period

k for a policyholder in model point mi that signed the contract at time s. They are the
guaranteed payments in case of death of the policyholder, cancellation of the contract
or policy expiration, respectively, and their sizes depend on policyholders’ saving
account. The saving account of policyholders in model pointmi at period k grows at a
rate given by max(gk,i , βk,i RP

k ), where gk,i and βk,i are the minimum guaranteed rate
of return and the participation rate at period k for the model point mi , respectively,
and RP

k is the asset portfolio return at period k. Therefore, we assume death, surrender
and maturity benefits at period k for a policyholder in model pointmi that entered into
the contract at time s grow according to the recursive formula:

⎧
⎨

⎩
sl Xs,i = l Ps,i ,

sl Xk,i = sl Xk−1,i max(gk,i , βk,i RP
k ) + l�k,i , k > s,

(3)

where l Ps,i is the payment made by the policyholder when entering into the contract at

period s, and l�k,i denotes the premium payment made by the policyholder at period k.
In formula (3) X can be either D, S or M .

Note that we have made the assumption that the benefits in case of death, survival
at maturity or surrender evolve over time according to the same recursive formula,
but, in general, they may have different structures. For example, there can be some
penalties in case of surrender and the minimum guaranteed rate and the participation
rate can depend on X .

Finally, we denote by lDk,i , l
S
k,i and lMk,i the vectors given by:

l Xk,i = (0l
X
k,i , 1l

X
k,i , . . . , k−1l

X
k,i ), X = {D, S, M}. (4)

After having introduced the previous notations, we are able to list in the following
the quantities we need to take into account to determine the cash flows at period k.

• Premium payments, �k . These are the payments made by policyholders at the
beginning of period k, if still alive. At period k, premium payments related to
model point mi are given by:

�k,i = nk−1,i l
�
k,i . (5)

Clearly, at period k the total amount of premium payments can be computed as
follows:
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�k =
NM∑

i=1

�k,i . (6)

• New production, Pk . It consists of payments made by new policyholders at the
beginning of period k. New production at period k for themodel pointmi is defined
as:

Pk,i = nP
k,i l

P
k,i , (7)

and the total amount of new production at period k is given by:

Pk =
NM∑

i=1

Pk,i . (8)

• Death payments, Dk . These are the rewards that the company has to give to the
beneficiaries of policies of policyholders that die beforematurity at period k. Death
payments related to model point mi are given by:

Dk,i = nD
k,i · lDk,i . (9)

Evidently, the total amount of death payments at period k is obtained as:

Dk =
NM∑

i=1

Dk,i . (10)

• Surrender payments, �k . They are made up of the refunds that the company has
to give to policyholders that abandon the policy before its contractual expiration
date at period k. For model point mi , we have:

�k,i = nS
k,i · l Sk,i . (11)

The total amount of surrender payments at period k is given by:

�k =
NM∑

i=1

�k,i . (12)

• Maturity payments, Mk . These are the payments that the company has to make
due to policies in model pointmi that reach maturity at time k. Maturity payments
at period k for model point mi are defined as:

Mk,i = nM
k,i · lMk,i , (13)
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and the total amount of maturity payments at period k is obviously computed as:

Mk =
NM∑

i=1

Mk,i . (14)

Liability value On the basis of previous definitions, we can write a formula to
describe the evolution over time of the liability value. The value of liabilities related
to model point mi at time 0 is given by L0,i = �0,i , and, for k = 1, . . . , Ti − 1, it
evolves according to:

Lk,i = Lk−1,i (1 + max(gk,i , βk,i R
P
k )) + �k,i + Pk,i − Dk,i − �k,i . (15)

Since Ti denotes the maturity date of policies in model point mi , Lk,i = 0 for k ≥ Ti .
Cash flows We can write the total amount of cash flows at period k as:

c fk =
NM∑

i=1

c fk,i . (16)

In the previous formula, c fk,i denotes the size of cash flows at period k for model point
mi , given by:

c fk,i =
⎧
⎨

⎩

�k,i + Dk,i if tk < Ti ,
Mk,i + Dk,i if tk = Ti ,
0 otherwise,

(17)

where Ti denotes the maturity date of policies in the i th model point.
Liability duration In the literature of ALM models, the most commonly used

risk measure is duration. In order to compute the duration of our liabilities, using the
Macaulay duration formula, we have to estimate the so-called actuarial reserves that
are the present value of the amount that the insurer needs at future periods to meet
obligations associated with the policies. We denote by vk the actuarial reserves at
period k, and we have that:

vk =
NM∑

i=1

vk,i , (18)

where vk,i denotes the reserves at period k connected to the i th model point and is
given by the sum of the discounted supposed cash flows at future periods j > k, that
is to say:

vk,i =
∑

j>k

d j |kc f j,i |k . (19)

123



72 M. Di Francesco, R. Simonella

In the previous formula, we have denoted by d j |k and c f j,i |k the discount factor at
period j and the size of cash flows at period j for the model point mi estimated at
period k, respectively. More precisely, the discount factor d j |k is the price at time k
of a zero-coupon bond with tenor j and is computed after having defined a model for
the term structure of interest rates. Our choice for the interest rate model is described
in Sect. 3.4.

Once we have estimated the supposed liabilities cash flows, the liability duration
at period k, LD

k , according to the Macaulay formula, is given by:

LD
k =

∑

j>k

jd j |kc f j |k

∑

j>k

d j |kc f j |k
. (20)

3.1 The surrender and new productionmodel

In order to determine the timing and the size of surrender payments, as well as new
production cash flows, we need to build a model for the probability of surrender and
for the probability of new production that is the probability that a contract is signed
by a new client.

It makes sense that the exercise of surrender option is strongly dependent on market
condition, since we can suppose that a policyholder abandons the policy if he finds in
themarket an analogous product which offers a higher rate of return with respect to the
return rate offered by his policy at the samemoment. Thus, following (Fernández et al.
2018), the surrender probability is parametrized on the basis of the spread between
the earnings offered by the insurance company, depending on the insurer’s portfolio
return, and the return offered by an analogous product in the market, represented by a
benchmark index return. In this way, we can model the fact that if competing products
return is greater than the rate of return offered by the policy, a policyholder is more
motivated to surrender his investment.

In particular, for each period k and for each model point mi ∈ I , we introduce the
quantity δr Sk,i as:

δr Sk,i = (RI
k − max(gk,i , βk,i R

P
k ))+, (21)

where RI
k is the benchmark index rate of return at period k. For the sake of brevity,

we have used the notation x+ = max(x, 0). Note that δr Sk,i does not depend on
policyholder’s gender or age, but only on the minimum guaranteed rate of return
offered by the contract.

In order to size δr Sk,i , we introduce the threshold intervals I q , for q = 1, . . . , Q.

For example, in our numerical tests we choose Q = 3 and define I 1 = [0, 0.01], I 2 =
(0.01, 0.03], and I 3 = (0.03,+∞). We infer the surrender probability at period k for
the model pointmi , pSk,i , from Table 4, where surrender probabilities, depending only

on the threshold interval I q and on the period k, are denoted by pSqk , for q = 1, 2, 3
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Table 4 Surrender and new production probabilities

Period

0 1 2 … T − 1

Intervals

I 1 pS10, p
P
10 pS11, p

P
11 pS12, p

P
12 … pS1T−1, p

P
1T−1

I 2 pS20, p
P
20 pS21, p

P
21 pS22, p

P
22 … pS2T−1, p

P
2T−1

.

.

.
.
.
.

.

.

.
.
.
. …

.

.

.

I Q pSQ0, p
P
Q0 pSQ1, p

P
Q1 pSQ2, p

P
Q2 … pSQT−1, p

P
QT−1

and k = 0, . . . , T − 1. In particular, if δr Sk,i falls in the interval I
q , then pSqk gives the

surrender probability at period k for policies in model point mi , i.e., pSk,i = pSqk .
After having inferred the probability of surrender at each period and for each model

point, we model the number of policyholders that entered into the contract at period s
and cancel it at period k by a Binomial distribution:

sn
S
k,i ∼ Bin(snk−1,i , p

S
k,i ). (22)

Moreover, new production probability at period k for the model point mi , denoted
by pPk,i , is deduced in a similar way as the surrender probability, using Table 4, where

new production probabilities, pPqk , for q = 1, 2, 3 and k = 0, . . . , T − 1, depend only
on the threshold interval I q and on the period k. More precisely, we introduce the
quantity

δr Pk,i = (max(gk,i , βk,i R
P
k ) − RI

k )
+ (23)

and assume that if δr Pk,i lies in the interval I
q , then new production probability at time

k in the i th model point is given by pPqk , i.e., p
P
k,i = pPqk .

Note that pSqk and pPqk in Table 4 are chosen taking into account that surrender

probability and new production probability increase with δSk,i and δPk,i , respectively.
Once we have deduced the probability of new production from Table 4 at each time

for each model point, we can model the number of policyholders in the i th model
point that start the contract at time k, for k > 0, by a Binomial distribution:

nP
k,i ∼ Bin(nk−1,i , p

P
k,i ). (24)

We point out that the use of δr Sk,i for surrender probability and δr Pk,i for new pro-
duction probability is due to the fact that it is reasonable to assume that only if
competing products in the market, represented by the benchmark return RI , offer
a rate of return greater than the rate of return offered by the insurance company, that
is, max(gk,i , βk,i RP

k ), a private investor may be motivated to abandon the policy, so
there may be surrenders, but there are not new policyholders signing the contract, vice
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Table 5 2019 period life table M F

Age

[40, 44] 0.00573992 0.00347710

[45, 49] 0.00893476 0.00551156

[50, 54] 0.01424265 0.00834881

[55, 59] 0.02298384 0.01345166

[60, 64] 0.03724532 0.02128333

[65, 69] 0.06078708 0.03298144

Source: Istat (Italian National Institute of Statistics)

versa, if max(gk,i , βk,i RP
k ) is greater than RI

k , new clients may be motivated to put
his savings in the policy, but there are not policyholders that exercise the surrender
option.

3.2 Themortality model

Since the payments due to deaths of policyholders beforematurity are not dependent on
market condition, we use a biometric model in which the death probability is provided
by a specific life table (Table 5) depending on policyholders’ age and gender. More
precisely, since in numerical examples considered in Sect. 8 we choose a time step of
1 year, that is to say, the distance between time k and time k+1 is 1 year, in Table 5 we
report the probabilities that individuals that have just had a birthday will not celebrate
the next birthday.

We denote by pD,M
i and pD,F

i the death probabilities for the model point mi for
male and female policyholders, respectively. In particular, we model the number of
male and female policyholders in model pointmi that entered into the contract at time
s and die at period k, sn

D,M
k,i and sn

D,F
k,i , by a Binomial distribution, so that:

sn
D,X
k,i ∼ Bin(sn

X
k−1,i , p

D,X
i ), X = {M,F}. (25)

Obviously, the total number of deaths at period k for the model point mi , denoted
by nD

k,i , is computed as:

nD
k,i =

k−1∑

s=0

(sn
D,M
k,i + sn

D,F
k,i ). (26)

3.3 Approximation of future cash flows

In this section, we deal with the estimation at period k of the projections of future cash
flows, given by (16) and (17), at each period j > k, needed to compute the liability
duration, according to (20). More precisely, we have to estimate the timing and the
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size of future death, surrender and maturity payments, taking into account that new
policyholders can subscribe to a policy at future periods.

Future value of death, surrender and maturity benefits The size of payments
that the company has to make due to death of policyholders, abandons of the contract
and policy contractual expiration depends on death, surrender and maturity benefits,
that grow according to (3). Therefore, in order to measure the expected size of future
payments at period k, we need to estimate:

E[max(g j,i , β j,i R
P
j )|Fk], for j > k, (27)

where E[·|Fk] denotes the expectation with respect to the information available at
period k, denoted by Fk .

In order to estimate (27), we employ the Least Squares Monte Carlo Method
(Longstaff and Schwartz 2001). More precisely, we can write the conditional expec-
tation in (27) as linear combination of W basis functions {ψw}w=1,...,W as follows:

E[max(g j,i , β j,i R
P
j )|Fk] �

W∑

w=1

b̄w
k, j,iψ

w(RP
k ) = b̄Tk, j,iψ(RP

k ). (28)

For example, we can choose the Laguerre polynomials as basis functions, being
simple to implement, because they can be defined recursively:

⎧
⎪⎨

⎪⎩

L0(x) = 1,

L1(x) = 1 − x,

Lk(x) = 1
k ((2(k − 1) + 1 − x)Lk−1(x) − (k − 1)Lk−2(x)), k ≥ 2.

(29)

We search for the regression coefficients b̄k, j,i that are solution of the following
problem:

b̄∗
k, j,i = argmin

b̄k, j,i

Ek

[(
ψ(RP

k )T b̄k, j,i − Ek[max(g j,i , β j,i R
P
j )]

)2]
,

where we have used the notation Ek[·] = E[·|Fk].
We vanish the derivative with respect to b̄k, j,i of the quantity to minimize, and we

get:

Ek

[
ψ(RP

k )ψ(RP
k )T

]
b̄∗
k, j,i = Ek

[
ψ(RP

k )max(g j,i , β j,i R
P
j )

]
.

In order to compute the regression coefficients, we use Monte Carlo techniques.
More precisely, we simulate NP paths of RP

k , for k = 1, . . . , T , and we denote by

RP,n
k the value at time k in the nth simulation. After having defined�k,i as theW ×W

matrix with coefficients:
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(�k,i )uv = 1

NP

NP∑

n=1

ψu(RP,n
k )ψv(RP,n

k ),

and dk, j,i as the W -array with the vth element given by:

(dk, j,i )v = 1

NP

NP∑

n=1

ψv(RP,n
k )max(g j,i , β j,i R

P,n
j ),

we reduce the problemof regression coefficients computation to the problemof solving
the system �k,i b̄k, j,i = dk, j,i .

Once we have obtained regression coefficients, we are able to compute
E[max(g j,i , β j,i RP

j )|Fk], for j > k, simply using (28). This means we need to sim-

ulate only the current value RP
k .

Future death payments Once we have estimated the value of the death benefit at
future periods and predicted the number of policyholders who will die at each future
period according to the biometric model described in Sect. 3.2, we can compute the
size of death payments according to (9) and (10).

Future surrender payments In order to forecast the size and the timing of future
surrender payments, we need to predict the number of policyholders that cancel the
contract at each future period j > k and, so, the probability of surrender at each period
j > k. To do that, we compute:

�RS
i ( j |k) = E[δr Sj,i |Fk], for j > k. (30)

Indeed, the computation of (30) allows us to forecast the probability of surrender at
future periods by using Table 4 and, then, the number of abandons at each future
periods according to (22). After having estimated the number of surrenders at future
periods, we can use the estimation of the surrender benefit to compute the amount the
company is expected to pay due to surrenders according to (11) and (12).

From the definition of δr Sj,i in (21), we get:

�RS
i ( j |k) = Ek[(RI

j − max(g j,i , β j,i R
P
j )+], for j > k. (31)

Due to the nonlinearity of δr Sj,i , we estimate the conditional expectations in (30) with
a Least Squares approach (Longstaff and Schwartz 2001); thus, following the same
procedure we have used to forecast future returns. Therefore, we write �RS

i ( j |k) as
linear combination of basis functions {ψw}w=1,...,W :

�RS
i ( j |k) �

W∑

w=1

¯̄bw
k, j,iψ

w(R̂P
k,i , R

I
k ) = ¯̄bTk, j,iψ(R̂P

k,i , R
I
k ), (32)

where we have used the notation R̂P
k,i = max(g j,i , β j,i RP

j ).
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This time, the basis functions are bidimensional functions. For example, we can
choose the bidimensional Laguerre polynomials, given by the product of couples of
unidimensional Laguerre polynomials, defined above.

We look for the regression coefficients ¯̄b∗
k, j,i such that:

¯̄b∗
k, j,i = argmin

¯̄bk, j,i
Ek

[(
ψ(R̂P

k,i , R
I
k )

T ¯̄bk, j,i − Ek[δr j,i ]
)2]

,

that leads to:

Ek

[
ψ(R̂P

k,i , R
I
k )ψ(R̂P

k,i , R
I
k )

T
] ¯̄b∗

k, j,i = Ek

[
ψ(R̂P

k,i , R
I
k )δr j,i

]
.

Again, we use Monte Carlo techniques to compute regression coefficients. More
precisely, we simulate NP paths of R̂P

k,i and R̂ I
k , for k = 1, . . . , T , and we denote by

R̂P,n
k,i , RI ,n

k their respective values at time k in the nth simulation. This time, we have

to solve the system�k,i
¯̄bk, j,i = dk, j,i , where theW ×W matrix�k,i and theW -array

dk, j,i are such that:

(�k,i )uv = 1

NP

NP∑

n=1

ψu(R̂P,n
k,i , RI ,n

k,i )ψv(R̂P,n
k,i , RI ,n

k,i ),

(dk, j,i )v = 1

NP

NP∑

n=1

ψv(R̂P,n
k,i , RI ,n

k )(RI ,n
j − R̂P,n

j,i )+.

After having computed regression coefficients, we obtain RS
i ( j |k), for j > k, from

(32), so that we need to simulate only the current values R̂P
k,i and R̂ I

k .

Future new production Following the same procedure used for�RS
i ( j |k) in (30),

we compute

�RP
i ( j |k) = E[δr Pj,i |Fk], for j > k, (33)

to predict the probability of new production at future periods by using Table 4 with the
aim to forecast the number of new policyholders signing a contract at the each future
periods according to (24). New production cash flows are computed by (7) and (8).

Futurematurity paymentsAs regard to maturity payments, they can be computed
by (13) and (14), taking into account the estimation of maturity benefit and that the
number of policyholders that are still alive at policy maturity date is given by the total
number of policyholders that entered into the contract, at any time, minus the number
of policyholders that died or surrendered the contract before policy expiration.

Benchmark index model In conclusion of the section, we point out that in order
to compute (30) we need to define both the dynamics of the benchmark return and the
dynamics of the asset classes in the portfolio, to deduce the portfolio return, also needed
to compute (27). To end the section, we describe the model for the benchmark return,
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whereas the dynamics of portfolio asset classes are described in Sect. 4. We assume
that the benchmark index price follows a geometric Brownian motion. Therefore, the
price of the benchmark index, It , is governed by:

d It = μI It dt + σ I It dW
I
t , (34)

where the constant parameters μI ∈ R and σ I > 0 are the drift and the volatility of
the process It , respectively, and W I

t is a Brownian motion. It is well known that the
solution of Eq. (34) at time t conditional to Fs , with s < t , is given by

It = Is exp

((
μI − (σ I )2

2

)
(t − s) + σ I (W I

t − W I
s )

)
. (35)

3.4 Interest rate model associated with the term structure of interest rates

In order to compute the liability duration by using the Macaulay formula (20), we
need to calculate the discount factors that are prices of zero-coupon bonds, so that we
need to evolve the term structure of interest rates. For this reason, we introduce a short
rate model. The convenience in the use of a short rate model is that the term structure
of interest rates is an affine term structure in the sense that, at time t , the zero rate
with maturity T is an affine function of the instantaneous short rate process at time
t . In particular, we choose the one factor Hull & White model in the version referred
in the literature as G1 + + model. For the equivalence between G1 + + model and
the original one factor Hull & White model see Brigo and Mercurio (2007) and Hull
and White (1990), for instance. The advantages in the use of the G1 + + model with
respect to its classical counterpart are well known. For example, the generation of
forward paths is numerically more stable and the analytical formula for bond prices
is more tractable.

In the G1++ model, the dynamics of the instantaneous short rate rt under the risk
neutral measure Q is given by

rt = xt + ft , (36)

with initial value r0. We assume that the process xt satisfies the following stochastic
differential equation:

{
x0 = 0,

xt = −ax xtdt + σ x (t)dWx
t ,

(37)

where ax is a positive constant, σ x (t) is a positive deterministic function and Wx
t is a

standard Brownian motion. The function f is deterministic and is given by an exact
fitting to the term structure of discount factors observed in the market. We choose to
employ a piecewise constant functional specification for the volatility of the process xt .
More precisely, the volatility σ x (t) is constant in the intervals [0, 1], (1, 3], (3,+∞),
so that:
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Table 6 Swaption prices
observed on September 30, 2020

Maturity Tenor Strike Price

1 1 − 0.00490 0.00074

2 2 − 0.00423 0.00313

3 3 − 0.00316 0.00792

5 4 − 0.00081 0.01741

5 5 − 0.00032 0.02221

7 7 0.00203 0.04046

10 10 0.00278 0.07113

Source: Bloomberg

σ x (t) =

⎧
⎪⎨

⎪⎩

σ 1, if t ∈ [0, 1],
σ 2, if t ∈ (1, 3],
σ 3, if t ∈ (3,+∞).

(38)

The parameters ax and σ 1, σ 2, σ 3 can be calibrated by using market swaption
prices. In fact, Di Francesco (2012) and Schrager and Pelsser (2006), for example,
present an approximated swaption pricing formula, effective in the setting of theG1+
+ model, in the case that the strike is at the money:

ES(0, T , tk, K , N ) = N
V OL√
2π

k∑

i=1

τi P(0, ti ) ≡ N
V OL√
2π

Ptk
t1 , (39)

where ES(0, T , tk, K , N ) is the price at time 0 of a European call swaption with
maturity T , strike K and nominal value N , which gives the holder the right to enter
at time T = t0 into a swap in which the holder pays the fixed rate K and receives the
Libor rate at dates t1, . . . , tk , with t0 < t1 < . . . < tk . In (39), τi denotes the year
fraction from ti−1 and ti , P(0, ti ) represents the price at time 0 of a zero-coupon bond
with maturity ti years, and

V OL =
√∫ T

0
(σ (u)x )2A2e2axudu,

with

A = e−ax T P(0, T )

ax Ptk
t1

− e−ax tk P(0, tk)

ax Ptk
t1

− K

ax

k∑

i=1

e−ax ti τi
P(0, ti )

Ptk
t1

.

We have calibrated the G1 + + model using the swaption prices observed on
September 30, 2020, and reported in Table 6, thus obtaining the following parameters
values: ax = 0.0048, and σ 1 = 0.0018, σ 2 = 0.0042, σ 3 = 0.0065.

After having calibrated the parameters of the process xt , in order to simulate the
process rt , we use its conditional distribution. More precisely, from (36) and (37), for
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s < t , we have that rt , conditional to Fs , is normally distributed with:

E[rt |Fs] =xse
−ax (t−s) + ft ,

Var[rt |Fs] =(σ x (t))2
1 − e−2ax (t−s)

2ax
,

where E and Var denote the mean and the variance under the measure Q, respectively.
In the framework of the G1 + + model, the price of a zero coupon bond at time t

with maturity at time T , P(t, T ), can be computed using the following formula:

P(t, T ) = A(t, T )e−B(t,T )xt , (40)

where

A(t, T ) = PM (0, T )

PM (0, t)
e
1
2 [V (t,T )−V (0,T )+V (0,t)], (41)

B(t, T ) = 1 − e−ax (T−t)

ax
, (42)

V (t, T ) = (σ x (t))2

(ax )2

(
T − t − 2

1 − e−ax (T−t)

ax
+ 1 − e−2ax (T−t)

2ax

)
. (43)

In (41) PM (0, t) denotes themarket price of a zero-coupon bondwithmaturity t years,
observed at time 0, i.e., the initial term structure.

4 Asset model

Our asset portfolio is composed of bonds, equity and cash.We split the bonds into four
classes with different maturities: a class for bonds with maturity less than 3 years; a
class including all the bonds with maturity between 3 and 5 years; a class comprising
bonds with maturity from 5 to 10 years; finally, a class consisting of bonds with
maturity greater than 10 years.

Since an insurance company has a conservative investment strategy, the largest part
of portfolio is composed of bonds. So, in our strategy, we consider a lower bound for
the portion of portfolio invested in bonds.We also consider an upper bound for the part
of portfolio invested in equity. The remaining part is invested in cash. Section 5 deals
with the question of constraints on portfolio weights with more details, whereas in the
following we describe the stochastic models used to simulate the returns of portfolio
asset classes.

Bonds and equitymodels In order to simulate bonds and equity returns, we assume
that the underlying indexes dynamics follow geometric Brownian motions. Therefore,
denoting by St the price of equity index at time t and by Bτ

t the price at time t of bond
index with duration τ , we have:

dSt =μS Stdt + σ S StdW
S
t , (44)
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dBτ
t =μBτ

Bτ
t dt + σ Bτ

Bτ
t dW

Bτ

t , (45)

where μS, μBτ ∈ R are the drifts of the processes St and Bτ
t , respectively, and σ S ,

σ Bτ
are strictly positive constant parameters representing their volatilities. Moreover,

WS
t andWBτ

t are correlated Brownianmotions and, obviously, they are both correlated
with the other sources of randomness in the model, i.e., W I

t , that appears in (35), and
Wx

t , that is involved in (37). It is well known that the solutions of Eqs. (44) and (45)
at time t conditional to Fs , with s < t , are, respectively, given by

St = Ss exp

((
μS − (σ S)2

2

)
(t − s) + σ S(WS

t − WS
s )

)
, (46)

Bτ
t = Bτ

s exp

((
μBτ − (σ Bτ

)2

2

)
(t − s) + σ Bτ

(WBτ

t − WBτ

s )

)
. (47)

We refer to the work by Doherty and Garven (1986) as an early paper where the
Geometric Brownian Motion has been used in modeling Asset and Liabilities. In the
paper, a discrete-time option pricing model is used to derive the “fair” rate of return
of an insurance firm.

Cashmodel The evolution of the dynamics of cash in the asset portfolio is deduced
from the short rate model described in Sect. 3, taking into account that (see Di
Francesco 2012, for instance):

e
∫ t
0 r(s)ds = e

∫ t
0 x(s)ds

e− ∫ t
0 f (s)ds

= e
∫ t
0 x(s)ds

PM (0, t)e− 1
2 V (0,t)

. (48)

Note that the dynamics of the process xt is given in (37), PM (0, t) denotes the market
price of a zero-coupon bond with maturity t , and the value of V (0, t) can be computed
by (43).

Wewould like to point out that all the processes in themodel are simulated according
to their dynamics in the real world measure, P , but cash is simulated from rt whose
dynamics is in the risk neutral measure, Q. Indeed, in the case of cash we can assume
that the dynamics in P coincides with the dynamics in Q, being the risk premium null.

Asset value After having described the dynamics of portfolio asset classes, we are
able to compute the asset portfolio return at each period k, RP

k , so that we can write a
formula for the evolution of the asset value over time:

Ak = Ak−1(1 + RP
k ) + �k + Pk − Dk − �k − Mk, k > 0, (49)

where A0 is given by premiums collected from policyholders at period 0 plus the initial
investment on the part of the company.
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Table 7 Constraints imposed in the optimization problem

Budget constraint
∑

i∈Iα αik = 1

No short selling constraint αik ≥ 0, ∀i ∈ Iα

Investment policy constraints
∑4

n=1 αBn
k ≥ mB

αE
k ≤ ME

Turnover constraints |αik − αik−1| ≤ T O, ∀i ∈ Iα
∑

i∈Iα |αik − αik−1| ≤ T Otot

5 First stage of portfolio rebalancing

In our stochastic ALM model, we consider a dynamic reinvestment strategy in which
the asset portfolio is restructured at each period k according to the evolution of the
liabilities portfolio. We use a scenario-based simulation approach. For each scenario
at each period k, the investment strategy decides which types of asset class must be
sold or bought in order to guarantee that there is enoughmoney to meet the obligations
with policyholders and company’s shareholders. In particular, for each simulation at
each period k, we compute the duration of liabilities, the duration of asset portfolio
and the asset portfolio return. Then, we rebalance our asset portfolio with the aim to
accomplish two goals:

i. matching between assets duration and liabilities duration. More precisely, we
aspire to minimize the positive part of the difference between assets duration
and liabilities duration, since liquidity problems can arise when the assets have a
longer duration than liabilities, but not vice versa;

ii. achievement of a certain target return. In particular, we ask that the portfolio return
is not too much distant from the benchmark return.

In order to rebalance our portfolio composition, for each simulation at each period
k, we solve a nonlinearly constrained optimization problem subject to several real
world constraints. In particular, we consider the so-called budget constraint and no
short selling constraint, and for each asset class we set upper and lower bounds and
we fix a maximum turnover. In addition, we set a maximum portfolio turnover, and we
impose other linear constraints given by the investment policy. All these constraints
are reasonable for an insurance company and we calibrate them on an EU-based
life insurance company’s portfolio. We summarize all these constraints in Table 7,
where we have denoted by αk = (αB1

k , αB2
k , αB3

k , αB4
k , αE

k , αC
k ) the array of asset

classes weights at period k. In particular, αBn
k , αE

k , αC
k are the weights in the portfolio

composition at period k of the nth class of bonds, equity and cash, respectively. We
denote by Iα = {B1, B2, B3, B4, E,C}. In Table 7, mB denotes the lower bound
for the sum of the bonds weights in portfolio composition, ME the upper bound for
weight of equity, and T O and T Otot are, respectively, the maximum turnover on each
asset class and the maximum portfolio turnover.
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At period k, the optimization problem consists of finding an optimal array of asset
classes weights αk such that:

minimize (AD(αk) − LD
k )+;

subject to

{
βL RI

k+1 ≤ RP
k+1 ≤ βU RI

k+1, with constant βL , βU ,

constraints in Table 7.

(50)

Note that assets duration, AD , is a combination of durations of bonds in the assets
portfolio.

In a general framework, we can include transaction costs, that arise when rebalanc-
ing the assets portfolio. In the case of no null transaction costs, the portfolio return at
period k is given by:

RP
k = αk · Rk − [cS · (αk−1 − αk)

+ + cB · (αk − αk−1)
+], (51)

where cS and cB are the vectors of asset classes selling and buying costs, respectively,
and Rk is the vector of asset classes returns at time k. In the numerical tests, we assume
null transaction costs, because the introduction of transaction costs different from zero
substantially increases the elapsed computational time, but does not affect results in
a significant way, in the sense that results with transaction costs are comparable to
results without them.

6 Second stage of portfolio optimization

In the previous section, we have chosen a portfolio rebalancing strategy that ensures
the company will be solvable, and shareholders and policyholders will benefit from
a competitive return. But the proposed strategy is not necessarily optimal. For this
reason, we now introduce a second stage of portfolio optimization with the aim of
maximizing the expected value of a chosen utility function, taking into account the
results obtained from the first stage of portfolio rebalancing. Indeed, in the first step
of portfolio rebalancing we consider only six asset classes, and in the second step
for each bonds asset class and for equity asset class, taking into account several sub-
sectors, we run a sectorial optimization problem that maximizes the expected utility
function of terminal wealth over specified horizon (see Consigli and Dempster 1998).
We suggest to solve sectorial optimization problems in the second stage to refrain from
managing an excessive number of asset classes. For instance, for each bond asset class
sub-sectors could be government core and government peripheral bonds, financial and
corporate bonds, financial investment grade and financial sub-investment grade bonds,
etc. For equity asset class sub-sectors could be energy, healthcare, utilities, information
technology, etc.

More precisely, chosen a utility function U , at each time step k we solve five
sectorial optimization problems, so that we search for the optimal weights vectors
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ωi
k = (ω

i,1
k , . . . , ω

i,Ni
k ), for i ∈ Iα \ {C}, such that:

maximize Ek

[
max
ω̄i
k+1

Ek+1

[
max
ω̄i
k+2

Ek+2

[
. . .max

ω̄i
T−1

ET−1

[
U (ωi

T−1 · Ri
T )

]
. . .

]]]
;

subject to
Ni∑

j=1

ω
i, j
k = αi

k,

(52)

where Ri
l and Ni are the vector of sub-sectors returns at period I and the number of

sub-sectors for asset class i , respectively. In this way, an optimal portfolio strategy is
proposed (see Mossin 1968).

However, in numerical results presented in Sect. 8 we focus on the first step of the
portfolio rebalancing strategy, because the second step can be performed by standard
techniques of stochastic programming (see, for example, Dempster 1980).

7 Market data

In our portfolio optimization problem, we assume the insurance company can invest
in six specific asset classes, summarized in Table 8. In order to simulate the dynamics
of bonds and equity log-returns, respectively, deduced from (44) and (45), we use
the historical estimations of annualized mean and standard deviation of representative
indexes daily log-returns, computed considering an annualization factor of 252.We do
the same for the dynamics of log-returns of the benchmark index, used in the surrender
and new production models. The dynamics of the benchmark return is inferred from
(34). Indexes and their log-returns statistics are listed in Table 8. We have considered
daily observations from September 30, 2010 to September 30, 2020, for a total of
2614 observations. Data have been obtained from Bloomberg. Also, in Table 8, for
each representative index of the asset classes of the investable portfolio we show the
index duration, given by the average duration of the index components, weighted on
the basis of their market prices. Finally, since cash log-returns are simulated by using
the short rate model, in Table 8, we report the representative index for the short rate,
used only as proxy to estimate correlation between the dynamics of cash and the
dynamics of all the other stochastic variables. Indeed, all the sources of randomness
in the model are correlated. When simulating, the historical correlation of indexes is
used as correlation between the Brownian motions in the model, i.e., W I , involved
in the dynamics of the benchmark index (34), Wx , included in the dynamics of the
short rate (37), WS , that is in the dynamics of equity (44), and WBτ

, contained in the
dynamics of bonds with duration τ (45).

In Table 9, we report the historical correlations.
Since the aim of an insurance company is not only to meet its financial obligations,

but also to obtain a profit, we are interested in the changes in own funds value. There-
fore, we keep track of the evolution over time of the difference between asset and
liability values, so that we need to make an assumption on the relation between them
at the initial time, say at time 0. In particular, we set the level of liabilities at the initial

123



A stochastic Asset Liability Management model for life… 85

Table 8 Asset classes representative indexes, short rate representative index and benchmark index

Asset class Index Duration Log-returns

Mean Std

B1 Bonds, maturity 1–3 EZ1X 1.883087 0.004453 0.006722

B2 Bonds, maturity 3–5 EZ2X 3.814414 0.015954 0.016217

B3 Bonds, maturity 5–10 EZ6X 6.859975 0.037001 0.033788

B4 Bonds, maturity >10 EZ9X 16.48279 0.075430 0.080750

E Equity MXEM 0 0.033442 0.183722

r Short rate Eur003m – – –

BI Benchmark NCV0 – 0.028616 0.039320

Duration, annualized mean and annualized standard deviation for daily log-returns are reported

Table 9 Correlation matrix

B1 B2 B3 B4 E r B I

B1 1 0.9308 0.7422 0.5675 0.2288 0.0048 0.4078

B2 0.9308 1 0.9145 0.7588 0.1947 −0.0013 0.6187

B3 0.7422 0.9145 1 0.9310 0.1118 −0.0017 0.8263

B4 0.5675 0.7588 0.9310 1 −0.0086 0.0005 0.9121

E 0.2288 0.1947 0.1118 −0.0086 1 −0.0180 −0.1818

r 0.0048 0.0016 −0.0075 −0.0154 −0.0180 1 −0.0124

BI 0.4078 0.6187 0.8263 0.9121 −0.1818 −0.0124 1

Table 10 Initial portfolio
composition

Asset class Weight (%)

B1 Bonds, maturity 1–3 21.09

B2 Bonds, maturity 3–5 22.91

B3 Bonds, maturity 5–10 35.79

B4 Bonds, maturity >10 15.38

E Equity 3.74

C Cash 1.09

time to 90% of the value of the assets at the same time, that is to say, the following
relation is satisfied:

L0 = 0.887A0. (53)

Another assumption we need to make concerns the initial portfolio composition,
described in Table 10. Portfolio is periodically rebalanced observing constraints on
asset classes weights, as fully discussed in Sect. 5. In particular, in Table 7 we choose
mB = 0.70, ME = 0.20, T O = 0.05 and T Otot = 30.
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Table 11 Initial number of
policyholders in each model
point

Age Minimum guarantee

0% 1% 2%

40 50 5 1

45 55 5 3

50 55 10 3

55 60 25 15

60 70 80 23

65 60 100 50

8 Numerical results

In this section, some numerical results are presented. In particular, we deduce how the
portfolio has to be rebalanced according to the strategy illustrated in Sect. 5. Also, we
focus on the values of actuarial reserves and own funds. Moreover, we are interested
in the study of the impact of mortality model and of surrender and new production
models on how the number of alive policies changes over time.

Wehaveused103 simulations for the phase of regression coefficients computation in
the Least Squares Monte Carlo method and we have generated 104 different scenarios
for the phase of portfolio composition optimization. All tests have been performed
by using MATLAB on an Intel(R) Core(TM) i7-8550U, 1.99 GHz, 16 GB (RAM),
x64-based processor.

In the following, we make the assumptions listed below:

• all contracts have the same value, say e10 000, in the moment they are signed;
• all policies expire at the same future date, say at time T = 10 years;
• the initial number of policyholders in each model point is reported in Table 11;
• at the initial time policies are equally distributed between male and female poli-
cyholders (gender equality);

• portfolio is rebalanced at each time step, that is one year;
• policyholders pay a single premium at the beginning of the contract;
• the participation rate β is the same for all model points and is set to 95%, constant
over time, unless otherwise stated.

In Fig. 1, we exhibit how the portfolio composition is rebalanced every year follow-
ing the strategy described in Sect. 5. In particular, we show the mean value of portfolio
composition weights over all the scenarios. We infer that the weight of bonds with
maturity less than 3 years has to increase significantly over time, while the weight of
equity rises slightly. Moreover, the weights of cash and bonds with maturity between
3 and 5 years remain nearly constant over time, whereas we have to invest less and
less in bonds with longer maturity. The portfolio composition evolution in Fig. 1 orig-
inates from the fact that all policies expire at time T = 10, so that liability duration
approaches to zero with the passing of time. As a result, in order to match asset dura-
tion and liability duration, we need to invest more and more in asset classes with short
duration, and less and less on asset classes with long duration.
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Fig. 1 Portfolio composition rebalancing

In Fig. 2, we illustrate how much the liability value of each model point weighs on
the total value of liabilities. We consider the interval [0, 9], because at maturity date,
i.e., T = 10, all policyholders have been refunded and the total liability value is zero.
We note that the weights of model points related to younger policyholders increase
over time, while the weights of model points associated with policyholders aged 60
or more decrease. In fact, young policyholders are less likely to die with respect to
older policyholders (see Table 5), so that death payments that the company has to
make at each time are due especially to deaths of older policyholders. This means
that the company has to refund before maturity more old policyholders than young
policyholders, thus lightening the weight on the total value of liabilities of model
points related to old policyholders.

As regard to the number of alive contracts, it decreases over time, as shown in
Fig. 3. Evidently, at each time step new production is not enough to counterbalance
deaths and surrenders. However, the evolution of the number of alive policies may
be different if other assumptions are made on the model or another set of parameters
is chosen. It is even possible that the number of alive contracts increases over time,
since the number of new investors may exceed the number of policyholders who die
or exercise the surrender option. The right plot in Fig. 3 considers separately male
and female policyholders, thus allowing us to evaluate the effect of mortality model
on the changes of the alive policies number. In fact, since the surrender and the new
production models do not depend on gender, the different rate of decrease for men and
women is only due to the fact that women mortality rate is lower than men mortality
rate (see Table 5).

In order to better analyze the issue of new production, in Fig. 4 we plot the mean
number over all the scenarios of alive policyholders considering separately policies
with different starting time. So, on the top we show the number of policies that started
at time 0, on the bottom the numbers of policies that started after time 0. As expected,
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Fig. 2 Model points weights on liabilities value

Fig. 3 Mean number of alive policies at each time. On the left the total number is plotted; on the right the
distinction between males and females is taken into account

the major decrease can be observed in the population that entered into the contract at
time 0, meaning that at each time it is more likely that a policyholder who started the
contract at time 0 dies or abandons the policy rather than a policyholder who started
the contract after time 0. In fact, the set of policyholders that entered at time 0 is more
numerous.

Participation rate sensitivity So far we have considered a fixed participation rate,
but it is interesting to study how different values for β influence actuarial reserves and
own funds, as well as the number of abandons and new production.

In Fig. 5,we plot actuarial reserves for different values ofβ. As expected, ifβ grows,
the payments that the company has to make due to policyholders who die, abandon
the contract or reach maturity, are more consistent. Therefore, actuarial reserves, dis-
counted expectation of future disbursements, increase. Note that we consider the time
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Fig. 4 Mean number of alive policies with different starting time. The plot on the top displays the evolution
of the number of alive contracts that started at time zero; lines in the plot on the bottom show the evolution
of the numbers of alive policies that started at time 1, 2, . . . , 9, respectively

Table 12 Probability of default
for different values of the
participation rate

β (%) Probability of default (%)

90.0 1.10

92.5 1.31

95.0 1.68

interval [0, 9], thus ignoring the maturity date, T = 10, when all policies have expired
and actuarial reserves are zero, because the company has no more future payments to
make.

In Fig. 6, we show the difference between asset value and liability value changing
the participation rate. Evidently, the difference examined in the plot decreases when
increasing the participation rate, in fact:

At − Lt = At−1(1 + RP
t ) −

NM∑

i=1

Lt−1,i (1 + max(gi , βRP
t )), (54)

where the liability term increases if β becomes greater. However, in any case own
funds rise over time.

In addition, Fig. 6 shows that at each time step the mean value of the difference
between asset value and liability value is positive. However, in some scenarios own
funds become negative and the company is declared defaulted. In Table 12, we report
the probability of default, defined as the ratio between the number of scenarios inwhich
the company defaults and the total number of scenarios (10000), for three different
values of the participation rate β. Obviously, probability of default rises by increasing
β.
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Fig. 5 Mean actuarial reserves for different values of the participation rate

Fig. 6 Mean difference between asset value and liability value for different values of the participation rate

Finally, we analyze how the value of the participation rate affects the changes in the
number of alive policies over time, as shown in Fig. 7. On the contrary of what happens
in the right plot in Fig. 3, where the impact of the mortality model is presented, in
Fig. 7 the effect of surrender and new production models can be observed. In fact, the
mortality model does not depend on the participation rate, while surrender and new
production models strongly depend on it (see Sect. 3.1). In particular, the earnings
offered by the insurance company rise when increasing β, so that less policyholders
are motivated to abandon the contract, and more investors subscribe to the policy. As a
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Fig. 7 Mean number of alive policies at each time for different values of the participation rate

result, the number of alive policies decreases more slowly in the case of larger values
of the participation rate.

9 Conclusions

In this paper, we have built a two-stage ALM model for a life insurance company,
including a policyholders’ saving account model, a mortality model and a surrender
model, as well as a new production model, an innovative feature with respect to
existing works in literature, as far as we know. In order to handle the large number
of contracts, we have split them into model points, by grouping policies with similar
age of the policyholder, same minimum guaranteed rate of return and same time-to-
maturity. Since an insurance company has the purpose of both ensuring its solvency
and obtaining a profit, firstly, we have built a strategy for the asset portfolio rebalancing
that aims to match asset duration and liability duration and to achieve a target return.
Also, we have considered several real world constraints on portfolio composition
weights. From the technical point of view, the portfolio rebalancing strategy is the
result of a nonlinearly constrained optimization problem that requires the computation
of future cash flows projections. According to our knowledge, we have proposed an
innovation with respect to literature: When computing balance sheets projections,
we have considered, in addition to future death and maturity payments, also future
surrender payments and future cash flows due to new production. Next, we have
proposed a second stage of portfolio rebalancing that includes sectorial optimization
problems with the aim to maximize the expected value of a chosen utility function. In
this way, we have built an optimal portfolio rebalancing strategy based on risk-averse
decisions.
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On the side of numerical tests, we have focused on the first stage of portfolio
rebalancing, and we have shown how the portfolio has to be dynamically rebalanced
and how the liability value associated with each model point weighs on the total value
of liabilities.Wehave pointed out the effect of themortalitymodel on the evolution over
time of the number of alive policies by considering separately male policyholders and
female policyholders.Wehaveproposed an analysis of the participation rate sensitivity,
taking account of the evolution of actuarial reserves and of own funds. As expected,
actuarial reserves increase and own funds decrease by increasing the participation rate.
Moreover, we have focused on the positive result that the mean value of own funds
raises over time for any considered value of the participation rate. However, there is
a small probability, depending on the participation rate, that in certain scenarios the
company defaults, because own funds become negative. Finally, we have analyzed
how the number of alive policies varies by changing the value of the participation rate,
thus showing how it depends on surrender and new production models. Indeed, the
participation rate does not affect policyholders’ mortality, so that the different rate of
decrease in the number of alive policies with different values of the participation rate
is due only to the different numbers of surrenders and of new policyholders.
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