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Abstract
A surge in banks’ liquidity needs increases settlement costs that could burden the 
functioning of the real economy through its impact on banks’ lending behavior. 
A liquidity saving mechanism (LSM) can help reduce banks’ liquidity needs, but 
it could also affect banks’ strategic behavior. To understand how an LSM affects 
banks’ behavior in a real-time gross settlement system, this study models settlements 
in a day as a timing game in which banks decide when to make payments, thereby 
trading off the cost of delaying payments against the cost of borrowing liquidity. 
An LSM provides a partial offsetting service, whose direct effect is to decrease the 
cost of liquidity associated with payments that are offset. The study’s stylized anal-
yses reveal that an LSM indirectly affects banks’ strategic behavior in a network 
context. Without an LSM, a positive strategic spillover effect can arise through the 
network of payments, which an LSM can dismiss by cutting off the underlying pay-
ment network. To demonstrate its welfare impact along with the network structures, 
this study theoretically analyzes a class of core-periphery networks. The density of 
the network is shown to have implications on the welfare consequence of adding an 
LSM. From a policy perspective, the implications on a policy mix between an LSM 
and the fee setting for intraday lending are discussed.
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1  Introduction

This study theoretically examines the effect of a liquidity saving mechanism (LSM) 
that operates in an interbank settlement system or a large-value payment system. 
Ongoing shift to real-time processing of settlements underlies the recent introduc-
tion of LSMs in several interbank settlement systems. There is also a debate in the 
effectiveness of LSMs in distributed ledger environments, which might be adopted 
in future interbank settlement systems.1 The stylized analyses in this work provide 
basic implications applicable to both the currently adopted centralized environments 
and distributed ledger environments.

LSMs have been equipped to mitigate undesirable consequences associated with 
real-time processing of settlements. Over the last 30 years, real-time processing of 
settlements called real-time gross settlement (RTGS) systems largely replaced the 
traditional designated-time net settlement (DTNS) systems.2 An RTGS system ena-
bles fund settlements on a gross basis while a DTNS system executes settlements 
typically at several designated times a day. A merit of an RTGS system is that it 
helps reduce banks’ credit risk associated with unsettled payments that could be 
voluminous in DTNS systems. However, banks’ liquidity needs for their settle-
ments tend to be much larger than those under DTNS systems. Under conventional 
arrangements, there are typically no interbank markets for intraday credit; instead, a 
central bank provides intraday lending against the banks’ liquidity needs. By provid-
ing intraday lending, a central bank would be prone to credit risk associated with its 
daylight overdraft; thus, intraday lending is typically provided with fee or collateral. 
A surge in banks’ liquidity needs for their settlements increases settlement costs 
overall, which could burden the functioning of the real economy through its effects 
on banks’ lending behavior. Thus, reducing banks’ liquidity needs is an important 
policy concern under an RTGS system.

An LSM is developed to equip an RTGS system with a function of offsetting pay-
ments. A typical functioning of LSM is to provide a central queue, to which banks 
can choose to send their payments instead of making payments to their creditors, 
and the payments within the queue are offset bilaterally or multilaterally when the 
corresponding payments are found within the queue.

Thus, LSMs are primarily expected to reduce banks’ liquidity needs, but they 
could affect banks’ behaviors in the relevant strategic context. In daily settlements, 
banks can decide when to make their payments considering the costs of financing 
liquidity and of delaying payments. Since using incoming payments made by other 
banks effectively means zero liquidity financing cost, each bank would choose to 
time its payments, thus avoiding such costs. The addition of an LSM might influence 
banks’ timing decisions and consequently affect realized costs. The welfare conse-
quence in terms of the costs of liquidity and delay is not necessarily apparent until 
the underlying strategic interactions are explicitly investigated.

1  European Central Bank and Bank of Japan (2017) assess the functionality of an LSM in a distributed 
ledger environment, focusing on safety issues such as the failure of validating nodes.
2  The World Bank (2013) documents that 116 of 139 surveyed countries had adopted RTGS systems up 
to 2010.
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This study provides theoretical analyses in this direction, based on the setting in 
Martin and McAndrews (2008, 2010) but departs from their works by revealing a 
different aspect of the effects of an LSM. Martin and McAndrews (2008, 2010) focus 
on the implications of an LSM’s queuing arrangements, by implicitly assuming the 
availability of offsetting even without an LSM. By contrast, this study focuses on 
the implications of an LSM’s offsetting by ruling out the possibility of offsetting for 
cases without an LSM.

The key observation in examining the effects of LSMs’ offsetting service is that 
an LSM, in reality, is able to offset at best only part of all outstanding payments 
in a day. This is understandable since offsetting mechanisms essentially reintroduce 
credit risk, and the risk becomes larger when an LSM holds a larger number of pay-
ments in a queue so that larger cycles of payments can be offset.

Based on this observation, this study investigates the implications of a partial off-
setting service provided by LSMs. In this respect, Hayakawa (2018) analyzes the 
effects of a partial offsetting service in the context of a central clearing counter-
party. Hayakawa (2018) utilizes a graph theoretic framework invented by Hayakawa 
(2020), in which banks’ timing decisions are completely abstracted, and the total 
required funds are derived in a non-strategic manner along with each scenario. The 
most relevant finding in his work, a bit surprisingly, is that partial offsetting could 
increase the total required funds. This negative effect can arise when partial offset-
ting cuts off the underlying network of payments.

In contrast to the finding in Hayakawa (2018), our main finding is that partial 
offsetting can further increase the total required funds through its effect on banks’ 
strategic behavior. In particular, we find a potential positive spillover effect through 
the connection of a payment network that serves to economize the funds used for 
the settlements. The addition of partial offsetting in the form of an LSM could dis-
miss the positive spillover effect by cutting off the underlying network. Thus, adding 
an LSM could increase liquidity costs. The total welfare consequences need to be 
examined together with the associated delay costs.

To demonstrate the welfare consequences, our investigation is based on a trac-
table class of core-periphery payment networks.3 In each core-periphery payment 
network, participant banks are classified into two groups: core and periphery banks, 
wherein the former serves as a hub to the latter. An LSM provides partial offsetting, 
such that only the payments among the core banks are offset. The effect is exam-
ined with the density of the network. To state informally, a network is considered 
more dense when periphery banks are more tightly connected with each other. The 
analyses show that the density has a nonlinear impact on the welfare consequence of 
an LSM, particularly in relation to the spillover effect arising through the payment 
network.

3  Imakubo and Soejima (2010) provide a network analysis on payment flows in Japan’s interbank money 
market and point out that the network structure is interpreted as a core-periphery structure, in which sev-
eral banks form a core network that serves as a hub for other peripheral banks. A similar observation is 
reported by Soramäki et al. (2007) for the Fedwire case, and Rordam and Bech (2009) for Danish inter-
bank money flow.
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From a policy perspective, the optimal policy of a central bank on the fee level 
for intraday lending is incorporated to examine the effect of an LSM. Implications 
on the policy mix between an LSM and the fee setting are discussed.

1.1 � Relevant literature

The behavior of banks under RTGS systems have been theoretically examined in 
several papers. Angelini (1998) points out that banks might excessively delay pay-
ments to avoid borrowing costs. Bech and Garratt (2003) provide a game-theoretic 
framework discussing the implications of several credit regimes, and show that 
intraday liquidity costs tend to deter efficient coordination. Mills  Jr. and Nesmith 
(2008) provide similar results by extending the model of Bech and Garratt (2003).

Several studies theoretically examine the welfare implications of LSMs in view 
of the strategic interactions between banks. Martin and McAndrews (2008, 2010) 
show that queuing availability can have a positive effect by mitigating coordination 
problems. Our study departs from their setting to focus on the effects of offsetting 
instead of queuing. Willison (2005) analyzes the implications of offsetting in a set-
ting different from that adopted in this study. He examines complete network struc-
tures of payments, for which an LSM can offset all outstanding payments. He shows 
that an appropriately equipped LSM tends to improve welfare. By contrast, our work 
shows a possible negative effect when an LSM can offset only part of all outstanding 
payments.

The effects of an LSM are also analyzed in Kobayakawa (1997); Roberds (1999); 
Kahn and Roberds (2001); Galbiati and Soramäki (2010), and Jurgilas and Martin 
(2013). Our work is different especially in that it examines the implications of the 
structure of the underlying payment network.

The rest of this paper is organized as follows. Section 2 introduces the setting. 
Section 3 provides the analysis. Section 4 presents the conclusions. The Appendix 
includes some of the proofs and complementary analyses.

2 � The setting

We consider an interbank settlement system with the set of banks I = Icore ∪ Iper 
with |I| = N and one settlement institution, where Icore and Iper denote the sets of 
“core" and “periphery" banks, respectively. Each bank is either a core or periphery 
bank. The banks are risk-neutral strategic agents, while the settlement institution is a 
non-strategic agent.4

We examine settlements within a day, which consists of four periods: opening, 
morning, afternoon, and closing periods. Periods are simply referred to as 1, 2, 3, 
and 4. There are two types of payments in a day; payments among the banks them-
selves and payments between the banks and the settlement institution. The former 

4  Non-strategic agents can be considered as clearing institutions or other types of intermediaries such as 
the CLS bank.
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type of payments are specified with a payment network � = {pi,j ∈ {0, 1}}i,j∈I , 
where pi,j indicates the size of the payment made by bank i to j. Each core bank 
makes and receives two payments, while each periphery bank makes and receives 
one payment. Each of the payments is settled in one of the periods, or delayed to 
the next day. A bank incurs unit delay cost �t−1 when a payment made by the bank to 
another bank is settled in period t, for t = 2, 3, 4 , where �4 is for the delay to the next 
day.

For payments between banks and the institution, each bank either makes and 
receives no payment, or makes and receives one unit of payment. These payments 
occur between periods 2 and 3, such that a bank must first send a payment to the 
institution before receiving a payment.5 Each bank learns whether it has a payment 
to make and receive against the institution only at the time of the payment to the 
institution; thus, these payments work as temporary liquidity shocks for banks. Con-
cerning the shocks, the type of bank i ∈ I is denoted with �i ∈ {high, low} , where 
the banks of the high type face the shock with probability �h , while the banks of the 
low type with probability �l , with 0 < 𝜎l < 𝜎h < 1 . We let �h and �l also denote the 
actual ratio of the banks that face the shocks within the banks of the high- and low-
shock types, respectively.

Each bank can borrow funds6 from the central bank (CB) in periods 1 and 4 
(opening and closing periods) and also at the middle of the day when making pay-
ments to the institution.7 The borrowed funds must be returned at the end of the 
day. The unit cost of fund from the CB is x. There is no market for banks to borrow 
intraday funds.

Remarks  Some remarks are warranted concerning the period structure and the 
assumption on the availability of intraday lending adopted in this study. The period 
structure in this study is highly stylized in that potentially much more frequent deci-
sions of banks in the real-world interbank settlements are reduced into four periods; 
however, it is interpreted as a generalization of the standard two period structure, as 
adopted in Martin and McAndrews (2008, 2010).8 Combined with the assumption 
of non-availability of intraday lending in periods 2 and 3—which could be inter-
preted as a consequence of an optimal policy of the CB in serving intraday lend-
ing, as mentioned in Footnote 7—, the setting in this study successfully reveals the 
possibility that payments made in a day are settled in a coordinated manner with 
circulating funds, thereby economizing the funds for the settlements considerably 
even without an LSM. From this perspective, the purpose of these settings is to ana-
lytically highlight the negative effects of an LSM, particularly when settlements are 
possible to be made in such a coordinated manner.

5  The role of the institution is to transfer funds without using its own fund.
6  “Reserves" and “funds" are interchangeably used in this paper.
7  One could consider a more realistic setting in which intraday lending is also allowed in each of peri-
ods 2 and 3. However, this tends to generate inefficient delays of payments, when intraday lending is 
available in the same manner as in period 1. Such a potentially inefficient option of intraday lending is 
excluded for our analytical purpose.
8  Further discussions on the period structure in this study are provided in Footnote 11.
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2.1 � The setting without an LSM

The setting without an LSM is described below. The setting with an LSM is 
described separately in Sect. 2.3.

Before entering period 1, a payment network between the banks � is given. Each 
bank initially has zero reserve. Let �t denote the remaining payments at the begin-
ning of period t = 1, 2, 3, 4 , where �1 = � . Moreover, let {Fi

t
}i∈I denote the amount 

of funds held by bank i at the beginning of period t = 1, 2, 3, 4 , where Fi
1
= 0 for 

every i ∈ I . We assume that �t and {Fi
t
}i∈I are common knowledge at the beginning 

of period t. At any point in a day before the liquidity shocks occur, every bank i ∈ I 
knows the own type with regard to the liquidity shocks �i and the probability of fac-
ing the shock of each type {�l, �h}.

In period 1, the banks simultaneously decide whether to make each of their pay-
ments to other banks or delay it to later periods. The payments made are settled by 
the settlement system in a sequential manner. Formally, let P1 ⊆ 𝜓 denote the set of 
payments that banks have decided to make in period 1. Let Seq(P1) denote the set 
of the sequences (i.e., permutations) of P1 . In the process of the settlements, one 
of the sequences s ∈ Seq(P1) is realized by the settlement system. When indexing 
s = (p1, p2, .., pk) (for |P1| = k ), the payments are settled one by one from the head 
p1 to the tail pj . When a payment pi,j that has been made by bank i to j is settled, the 
specified amount of funds pi,j is transferred from bank i to j. We assume that every 
sequence s� ∈ Seq(P1) is realized with equal probability. The sequential settlement 
process intends to express settlements on a purely gross basis, excluding simulta-
neous settlements wherein payments are offset or settled without any fund transfer. 
Whenever banks face shortage of funds, the CB promptly provides the necessary 
amount of funds in the form of intraday lending.9

In period 2, it is assumed that banks cannot borrow funds. The banks simulta-
neously decide whether to make each of their remaining payments to other banks 
“responsively" or delay the payment. At the same time, a core bank that chooses 
to make multiple payments “responsively" additionally prioritizes the payments 
as to which is to be paid earlier. Formally, let P2 denote the set of payments that 
are chosen to be paid responsively in period 2, and Pi

2
⊆ P2 denote the payments 

made by bank i ∈ I within P2 . Specifically, for Pi
2
= {pi,j� , pi,j�� } with some j�, j�� ∈ I , 

core bank i further chooses the order of the payments, such that (pi,j� , pi,j�� ) , which 
indicates that the former payment is endowed with a higher priority. When a bank 
chooses to make one of its payments “responsively," the payment is settled either 
with funds held at the beginning of the period or funds received in the course of 
the settlements within the period. When a bank has decided to make multiple pay-
ments, the one with the higher priority is settled first. The settlement system settles 
the given payments in a sequential manner as formally described below. Payments 
that are not settled at the end of the period are all delayed to later periods.

9  Typically, intraday lending is made by allowing a negative balance in interbank settlement systems.
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Settlement procedure in period 210

Step (0) Set initially F̂i
2
∶= Fi

2
 ; P̂i

2
∶= Pi

2
 for every i ∈ I , and set icurrent ∶= �.

Step (1) The settlement system arbitrarily chooses bank i ∈ I for which P̂i
2
≠ ∅ 

and F̂i
2
≠ 0 are satisfied, and set icurrent ∶= i . If there is no such bank, the process 

terminates.
Step (2) Suppose that picurrent ,j is endowed with the highest priority within P̂icurrent

2
 . 

Then, the system settles picurrent ,j by transferring one unit of funds held by bank icurrent 

to j. Set P̂icurrent
2

∶= P̂
icurrent
2

⧵picurrent ,j , F̂
icurrent
2

∶= F̂
icurrent
2

− 1 , F̂j

2
∶= F̂

j

2
+ 1 . If P̂j

2
≠ ∅ , set 

icurrent ∶= j , then repeat Step 2. Otherwise, go back to Step 1.
At the time of the liquidity shocks between periods 2 and 3, the CB promptly pro-

vides intraday funds whenever banks are short of funds in making payments to the 
institution. In period 3, the decisions of the banks and the settlement process are all 
the same as in period 2. Moreover, those in period 4 are the same as in period 1.11 At 
the end of the day, the funds borrowed from the CB are returned. Banks incur costs 
of borrowing and also costs of delaying payments.

2.2 � Core‑periphery network

For the structures of the payments among the banks, we define a class of core-
periphery network with the intention of capturing two observations in reality, sum-
marized as: 

(1)	 Payments among core banks are more interconnected than those among periph-
ery banks, and

(2)	 Core banks tend to make larger payments than periphery banks.

10  The analysis in this study does not necessarily rest on the details of the procedure. In the specified 
procedure, the same unit of funds is circulated as far as possible. Instead, one could consider different 
procedures in which other funds are used for settlements before one fund is used up for the settlements. 
(For example, we can consider a “multiple payments first" type procedure by changing the line in Step 
2 “If P̂j

2
≠ ∅ , set icurrent ∶= j , then repeat Step 2" to “If Ficurrent

2
≠ 0 and P̂icurrent

2
≠ ∅ , then repeat Step 2.") 

These changes in the procedure do not alter our analysis since the set of settled payments and the distri-
bution of the funds are the same as those attained by the procedure adopted in this study.
11  Note that in each of periods 1 and 4, a bank needs to commit either to make or delay a payment. A 
consistent interpretation of the setting is that each of periods 1 and 4 is sufficiently short for banks to 
react against receipts of funds in contrast to periods 2 and 3, for example, in light of the existence of 
operational or institutional overheads. Alternatively, suppose each of period 1 and 4 is sufficiently long, 
such that it consists of multiple sub-periods that are sufficiently short. Here, continue to assume that 
there is no delay cost within each of periods 1 and 4. Then, it would be always better for a bank to delay 
payments before the last sub-period since there is no cost of delay, but it potentially economizes the 
liquidity cost. The last sub-period effectively serves as period 1 in the setting of this study. Moreover, in 
view of the sub-period structure, an interpretation of periods 2 and 3 could be such that each period con-
sists of multiple sub-periods, in which one payment can be transferred once in each sub-period. Poten-
tially much more frequent decisions along with these sub-periods are expressed as a consolidated deci-
sion in each of periods 2 and 3 in the setting of this study.
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Definition 2.1  Core-periphery payment networks
Ψ̂(K,W) with 1 < K < W denotes a class of core-periphery payment networks 

among banks I such that: 

(1)	 Banks are divided into K core banks Icore =
{
icore,k

}
k=1,2,..K

 and K groups  
of periphery banks Iper =

{
Iper,k

}
k=1,2,..,K

 where |Iper,k| = W  for every 
k = 1, 2, ...,K ;

(2)	 Each core bank is given two units of payments to make such that one is to a core 
bank and the other is to a periphery bank. Moreover, it has two units of payments 
to receive, where one is from a core bank, and the other is from a periphery bank;

(3)	 Payments among the core banks form a cycle;
(4)	 Each periphery bank has one unit of payment to make and one unit to receive; 

and
(5)	 For each group of periphery banks indexed with k = 1, 2, ..K , the payments 

among Iper,k constitute a path, in which the starting node has a payment to receive 
from a core bank, while the ending node has a payment to make to a core bank.

Given 𝜓 ∈ Ψ̂K,W with 1 < K < W , index the banks with I = {1, 2, ...,N} , such 
that j� = j + 1 for periphery banks j, j� ∈ Iper whenever pj,j� = 1.

Throughout this study, we focus our analyses on Ψ(K,W) ⊂ Ψ̂(K,W) for each (K, W) 
to avoid certain technical complication, by adding a constraint that is introduced in 
the latter part of this subsection. Figure 1 shows examples of core-periphery net-
works within Ψ(3,4).

Note that K < W intends to describe that payments among core banks are more 
interconnected than those among periphery banks.

We proceed to define density for a core-periphery network. In Fig. 1, the network 
on the left (right) side is the most (least) dense among the three networks. Density is 
shown to be a crucial parameter in analyzing the effects of an LSM.

Definition 2.2  Density
For a core-periphery network 𝜓 ∈ Ψ̂(K,W) , suppose that the cycle of payments 

among core banks is removed. The rest of the payments now form several numbers 
of disconnected cycles of payments, and we call each cycle a core-separated cycle. 
Let d(�) denote the density for � , which indicates the number of core-separated 
cycles. Further, for � ,� � ∈ Ψ(K,W) , we say � is more dense than � ′ if d(𝜓) < d(𝜓 �).

2.2.1 � Eulerian property and aligned networks

There are two properties of networks, Euler property and alignment property, which 
help simplify our analysis.
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Eulerian property holds for the class of core-periphery networks Ψ̂(K,W).

Observation 2.1  Eulerian property12

For arbitrary core-periphery network 𝜓 ∈ Ψ̂(K,W) with 1 < K < W , the directed 
graph � constitutes a Euler graph.

Now, we restrict our attention to core-periphery networks that are aligned.

Definition 2.3  Alignment property
A core-periphery network is aligned if any combination of non-punctured 

cycles13 within the network is not mutually vertex-twisted.

The definition of vertex-twisted is provided in Appendix A.1, together with the 
necessary preparation of graph-relevant terminologies. Informally, we say that a net-
work is aligned when there is no inconsistency in the directions among any combi-
nation of the non-punctured cycles. We let the aligned networks within Ψ̂(K,W) con-
stitute Ψ(K,W) . Note that the networks shown in Fig.  1 are all aligned networks.14 
For our analysis, observe that there exist sufficiently many aligned core-periphery 
networks in the following sense.

Observation 2.2  (Sufficiently many aligned networks)
For each Ψ(K,W) with 1 < K < W , there is at least one aligned network � ∈ Ψ(K,W) 

that attains each d(�) = 1, 2, ...,K.

When calculating borrowing costs, we will see that the Eulerian property simpli-
fies the derivation of the minimum possible total borrowed funds, while the align-
ment property does so concerning the maximum possible total borrowed funds. 
These simplifications allow us to focus on the implications of density in discussing 
welfare consequences.

2.2.2 � Distribution of the types concerning the liquidity shocks

We focus on a specific class of distribution concerning the heterogeneity of liquid-
ity shocks, which has a segregated property. For a given core-periphery network 
� ∈ Ψ(K,W) , we assume that every core bank is of the high type. For the periphery 
banks, there exists L ∈ {1, 2, ..,K} where every bank i ∈ Iper,L is of the low type, 
while all the other periphery banks are of the high type.

Note that the positive correlation between the volume of the payments and the 
probability of facing a liquidity shock intends to capture reality, while the small 

12  Observe that the graph � is connected and the in-degree and out-degree of each vertex are the same.
13  A cycle in a directed graph is said to be punctured when there is a vertex that has multiple incoming 
arcs.
14  For example, we can take a non-aligned network by changing the network shown on the left side of 
Fig. 1. For the cycle among core banks, the direction of the cycle is specified by the order of (a, b, c, a). 
When reversing the direction so that the order becomes (a, c, b, a); then, we have a non-aligned network.
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portion of the low type is to analytically highlight the negative effect of an LSM. 
For the sake of our subsequent analyses, denote the average probability of liquidity 
shocks as 𝜎̃ =

1

N
(Nh𝜎h + Nl𝜎l) , where Nl = |Iper,L|,Nh = N − Nl.

2.3 � The setting with an LSM

An LSM is added in period 1. The LSM provides a queue, and each bank now has 
an option to put each payment into the queue. For queued payments, the LSM con-
ducts partial offsetting. Specifically, for given Ψ(K,W) , the LSM offsets all queued 
payments when they constitute cycles with less than or equal to K number of pay-
ments.15 Thus, when a bank queues a payment and it is offset, the bank does not 
incur any borrowing cost. If a payment is queued but turns out not being offset, it is 
released to the original bank at the end of period 1. From period 2 onward, all previ-
ous settings are maintained.

3 � Analysis

We focus on subgame-perfect Nash equilibria in pure strategies. Let Si denote the set 
of available strategies for bank i ∈ I . Let (s1, s2, ..., sN) denote a strategy profile, and 
�i(si ∈ Si, S−i) denote the expected payoff of bank i under its own strategy si and the 
strategies of the other banks S−i = (s1, s2, .., si−1, si+1, , , ..sN).

Fig. 1   Examples of core-periphery networks Ψ(3,4) . Note  In each network, there are K = 3 core banks 
Icore = {a, b, c} , and K = 3 groups of periphery banks. The density for each network is 1, 2, and 3 from 
the left to the right. Thus, the network on the left is the most dense

15  Note that there is always one cycle of payments that can be offset within the class analyzed in this 
study; however, it is possible in a general payment network that there are multiple cycles of payments 
that can be offset. For such cases, different orders of the choices of the cycles in the offsetting process 
can cause different sets of offset payments. This issue is ignored in the setting of this study.
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3.1 � Real‑time gross settlement without a liquidity saving mechanism

3.1.1 � Strategies

A bank’s strategy consists of the decisions in period 1, 2, 3, and 4. For the decisions 
in period 4, we assume that �4 is sufficiently large so that any bank chooses to make 
all the remaining payments instead of delaying any of them. Concerning the deci-
sions in period 3, it is always better for a bank to choose to make all the remaining 
payments responsively instead of delaying any of them. The remaining decision that 
a bank must make in period 3 concerns prioritizing the outstanding payments. For 
analytical tractability, we focus on the situations in which the banks successfully 
coordinate such that the largest amount of payments is settled.1617

For the decisions in period 2, we make the same assumption as in period 3 con-
cerning the decisions on the priorities of making payments responsively. In period 2, 
a bank potentially has an incentive to delay payments, especially when it has funds 
at the beginning of the period, since the funds insure a bank from the risk of tempo-
rary liquidity needs that can arise between periods 2 and 3. In the analysis, we focus 
on situations where every bank chooses to make all the remaining payments respon-
sively, by making the following assumption.

Assumption 3.1  𝛾1

x
<

𝛾2

x
− 𝜎h , where x is defined as the unit cost of intraday borrow-

ing from the CB.

This assumption serves the following purpose. Suppose that a bank holds an out-
standing payment but does not have funds at the beginning of period 2. Suppose fur-
ther that the bank receives funds within period 2 through payments made by other 
banks. In this case, making the payment in period 2 costs �1 + �hx in expectation, 
which is smaller than the cost of delaying, �2 , that is incurred by the bank when 
delaying the payment to period 3.

In period 1, each bank faces a non-trivial choice of whether to make each of 
its payments or delay it. Thus, given our focus on the types of equilibria (which is 
stated later), it is sufficient to examine the following strategies. The strategy for each 
periphery bank j is sj ∈ {P,D} , where P is for making the payment in period 1, while 
D states that the bank delays the payment in period 1, makes the outstanding pay-
ment responsively in periods 2 and 3, and makes the outstanding payment in period 
4. The strategy for each core bank i becomes si ∈ {(P,P), (P,D), (D,P), (D,D)} , 
where P and D specifies the decisions for each payment in the same manner, and in 
each parenthesis the former shows the decision on the payment to a core bank, while 

16  When the largest amount of payments can be settled with different sets of the banks’ decisions regard-
ing the priorities, and the sets of payments settled are different, multiple equilibria occurs for the sub-
game that starts at period 3. These situations are safely ignored in this study, which investigates limited 
types of equilibria as described in the next subsubsection.
17  In discussing a real-time gross settlement system, Rotemberg (2011) demonstrates consequences 
when banks fail to coordinate on the routes of funds to be circulated, for a class of payment networks dif-
ferent from that adopted in this study.
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the latter is to a periphery bank. Note that the choices on the priority when making 
multiple payments in periods 2 and 3 are implicit. It is assumed that the choices on 
the priorities are formed through coordination.

We focus on two types of strategy profiles as the candidates of equilibrium in our 
analysis. 

1.	 All-pay: sj = P and si = (P,P) , for every j ∈ Iper and i ∈ Icore.
2.	 Sole-pay: There exists j ∈ Iper such that sj = P , while sj� = D for every 

j� ≠ j ∈ Iper , and si = (D,D) for every i ∈ Icore.

We refer to the former type of strategy profile as S1 , and the latter type as S2 . The 
payments in periods 2 and 3 are assumed to be made in the best coordinated man-
ner.18 Thus, combined with the Eulerian property, observe that all the payments 
made in period 2 are successfully settled for any S2 type strategy profile.

Note that under our core-periphery networks, there are various other types of 
strategy profiles that can achieve equilibria. Nonetheless, our limited focus is ration-
alized, such that each of the S1 and S2 type strategy profiles could become the first 
best equilibrium, as shown in Sect. 3.1.3.

3.1.2 � Equilibrium and spillover effect

To examine the conditions for each of S1 and S2 to be an equilibrium, we assess the 
relevant payoffs. First, we examine the payoff of core bank i ∈ Icore under the others’ 
strategies S−i , in which there is a periphery bank j ∈ Iper with sj = P . Observe that 
for each core bank, there are two payers–one core bank and one periphery bank. Let 
s
p

i
∈ {{P,P}, {P,D}, {D,D}} denote the unordered pair of the strategies of the pay-

ers to bank i.19

The payoffs of core bank i ∈ Icore with respect to arbitrary S−i in which sp
i
= {P,P} 

and there exists a periphery bank j ∈ Iper that takes sj = P , are derived as follows:

(1)�i((P,P), S−i) = −
(
1

6
(2x) +

1

2
x +

1

3
�hx

)
= −

5

6
x −

1

3
�hx,

(2)�i((P,D), S−i) = �i((D,P), S−i) = −
1

3
x −

2

3
�hx − �1,

(3)�i((D,D), S−i) = −�hx − 2�1.

18  Note that the coordinated decisions on the priority of the payments in periods 2 and 3 can be dis-
cussed as an equilibrium behavior for each type of strategy profile S1 and S2.
19  The identities of the payers are irrelevant for the payoff of the receiver bank.
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For Eq. (1), bank i borrows two units of funds in period 1 with probability 1
6
 , one 

unit with 1
2
 , and none with 1

3
.20 The insurance effect of early payment prevents bank i 

from borrowing when a liquidity shock arises. For Eq. (2), bank i borrows one unit 
in period 1 with probability 1

3
 and none with 2

3
 . At the end of period 1, the bank holds 

two units of funds in the former case, and one unit for the latter. Note that one unit 
of funds held at the end of period 1 is always used to settle the bank’s own remain-
ing payment. Thus, the insurance effect of early payment similarly works. For Eq. 
(3), observe that the payments are surely settled in period 2.

The payoffs of core bank i ∈ Icore with respect to arbitrary S−i in which 
s
p

i
= {P,D} and there exists a periphery bank j ∈ Iper that takes sj = P , are derived 

as follows:

For Eq. (4), bank i surely receives one unit of payment in period 2, which insures 
the bank from a liquidity shock. For Eq. (5), when bank i does not borrow funds in 
period 1, which occurs with probability 1

2
 , the bank has no funds at the end of the 

period. In period 2, the remaining payment is settled with an incoming fund. Thus, 
again, there is no fund for insurance against a liquidity shock when the bank has not 
borrowed in period 1.

The payoffs of core bank i ∈ Icore with respect to arbitrary S−i in which 
s
p

i
= {D,D} and there exists a periphery bank j ∈ Iper that takes sj = P , are derived 

as follows:

Next, for periphery bank i, we similarly denote the strategy of the payer as 
s
p

i
∈ {P,D}.

(4)�i((P,P), S−i) = −
1

3
(2x) −

2

3
x = −

4

3
x,

(5)�i((P,D), S−i) = �i((D,P), S−i) = −
1

2
x −

1

2
�hx − �1,

(6)�i((D,D), S−i) = −�hx − 2�1.

(7)�i((P,P), S−i) = −2x,

(8)�i((P,D), S−i) = �i((D,P), S−i) = −x − �1,

(9)�i((D,D), S−i) = −2�1 − �hx.

20  The asymmetry between the probabilities of borrowing 2 units and not borrowing any is understood as 
follows. Observe that a bank borrows 2 unit of funds only when it makes two payments before receiving 
any payment. In contrast, a bank does not borrow any funds not only when it makes two payments after 
receiving two payments, but also when it first receives a payment, then makes a payment, receives a pay-
ment, and lastly makes a payment.
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The payoffs of periphery bank i ∈ Iper with respect to arbitrary S−i in which 
s
p

i
= P are derived as follows:

The payoffs of periphery bank i ∈ Iper with respect to S−i in which sp
i
= D are 

derived as follows:

The following lemma shows the conditions for each S1 and S2 strategy profile to be 
equilibria.

Lemma 3.1  Equilibrium S1 and S2

1. All-pay: Strategy profile S1 is an equilibrium if the following Condition (A) is 
satisfied.

Condition (A)

	 (i)	 𝛾1

x
<

𝛾2

x
− 𝜎h,

	 (ii)	 1

2
(1 −

2

3
�h) ≤

�1

x
 , and

	 (iii)	 1

2
(1 − �l) ≤

�1

x
.

2. Sole-pay: There exists a strategy profile S2 that constitutes an equilibrium if the 
following Condition (B) is satisfied.

Condition (B)

	 (i)	 𝛾1

x
<

𝛾2

x
− 𝜎h,

	 (ii)	 1 − �l ≤
�2

x
,

	 (iii)	 𝛾1

x
<

1

2
(1 − 𝜎l) , and

	 (iv)	 𝛾1

x
< 1 − 𝜎h.

Proof  See Appendix A.2. 	�  ◻

(10)�i(P, S−i) = −
1

2
x −

1

2
�ix,

(11)�i(D, S−i) = −�1 − �ix.

(12)�i(P, S−i) = −x,

(13)�i(D, S−i) =

{
−�1 − �ix if ∃i� ∈ I, si� ∈ {P, (P,P), (P,D), (D,P)}

−�2 − �ix otherwise.
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A crucial observation regarding the negative effects of an LSM in our later 
analysis is the possibility of a spillover effect without an LSM that is formally 
described below.

Proposition 3.1  Spillover effect

Under Condition (B) and when 1
2
(1 − �h) ≤

�1

x
 , 

	 (i)	 If there were no bank of the low-shock type, that is, �i = high for every i ∈ I , 
then, any S2 type strategy profile no longer constitutes an equilibrium, but S1 
does.

	 (ii)	 A strategy profile within S2 wherein sj = P for j ∈ Iper and j + 1 ∈ Iper consti-
tutes an equilibrium if and only if �j+1 = �l.

Proof  This is immediate from the best responses of the banks shown in Appendix 
A.5. 	�  ◻

Part (i) of the proposition states that there is a spillover effect from a bank of the 
low-shock type to those of the high-shock type for the specified parameter values. 
Considering the banks’ best responses, which are elaborated in Appendix A.5, for 
the given parameter values in the proposition, high shock type banks would choose 
to make payments in period 1 if the payers make payments, while delay payments if 
the payers delay payments. High-shock type banks adopt such conditional choice on 
making payments because the merit of the insurance effect of early payment is rela-
tively large. By contrast, low-shock type banks choose to delay payments in period 
1 even when the payers choose to make payments, since the merit of the insurance 
effect of early payment is relatively smaller. Thus, the existence of a low-shock type 
bank prevents the receiver from making payments in period 1, which further affects 
similarly the next receiver, and so on. The effects are spilled over along with the 
payment relation to the whole payment network. Part (ii) of the proposition clarifies 
that the spillover is sourced from a low-shock type bank that receives a payment but 
chooses to delay its payment in period 1.

3.1.3 � Welfare

Social welfare consists of the social delay costs associated with the delay of pay-
ments and the social liquidity costs associated with the funds lent intraday. For the 
former, we assume that social delay costs are internalized through the costs of delay-
ing payments incurred by the banks. For the latter, we let r express the social cost 
associated with one unit of intraday lending.21

21  When credit risk associated with intraday lending is incurred by the CB, this could undermine the 
credibility of the CB, which could be interpreted as a social cost. For further discussion, see Mengle 
et al. (1987) and Evanoff (1988).
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When evaluating social liquidity costs, observe that there is uncertainty on the 
size of the intraday lending, particularly under the S1 strategy profile where all banks 
pay in period 1. Social liquidity cost is evaluated under the worst-case scenario.22 
Note that the focus of the worst-case scenario is to highlight the positive effect of 
offsetting through an LSM. The formal expression below summarizes our definition 
of social welfare W(S,�) under a strategy profile S and a network structure � ∈ Ψ.23

where ri(S,�) shows the amount of funds borrowed by bank i multiplied by r, and ∑4

t=2
�i,t(S,�) is the realized delay cost incurred by bank i. max[.] operator indicates 

the evaluation in the worst-case scenario.
We now introduce the following definition.

Definition 3.1  The first best strategy profile
A strategy profile S under a network structure � ∈ Ψ attains the first best if and 

only if W(S,�) ≥ W(S�,�) for any other available strategy profile S′.

The following assumptions are maintained for the rest of the analysis. The 
assumptions as a whole ensure that either S1 or S2 attains the first best as shown in 
Proposition 3.2, as well as allow the welfare for each of S1 and S2 to be derived in a 
simple manner as shown in Lemma 3.2.

Assumption 3.2  𝛾1

r
< 1.

Assumption 3.3 1 < (N + K)
𝛾2

r
− (N + K + 1)

𝛾1

r
.

Assumption 3.4  𝛾1

r
<

𝛾2

r
− 𝜎h.

Assumption 3.5  2K

N
< 𝜎̃ <

N−K

N
.

Assumption 3.2 serves to limit our focus on a particularly interesting situation 
where each of S1 and S2 is possible to be the first best. In fact, for the opposite case 
( 𝛾1
r
> 1 ), S2 is no more a candidate of the first best while S1 is, as is apparent by the 

statement of Proposition 3.2.24 Assumptions 3.3 and 3.4 concern the relative sizes 
of delay costs �1 and �2 . Assumptions 3.3 is to focus on realistic situations wherein 

(14)W(S,�) = −max

[∑

i∈I

ri(S,�)

]
−
∑

i∈I

4∑

t=2

�i,t(S,�)

24  Thus, analysis on the effect of introducing an LSM for the case of 𝛾1
r
> 1 is a trivial extension focusing 

on the consequences relevant to S1.

23  The lending fee x is not included in the welfare, as any transfer among the CB and the banks is can-
celled out in the calculation of welfare.

22  Note that deriving the liquidity costs in the worst-case scenario is not a trivial task in general. In this 
respect, Hayakawa et al. (2019) formulate a corresponding graph problem that derives the maximum pos-
sible required funds to settle a given payment network, and find that the problem is NP-hard for a general 
class of networks.
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delaying payments by all banks is not the first best. Assumptions 3.4 is also to focus 
on realistic situations wherein payments are better to be made in period 2 rather than 
to be delayed further. Assumption 3.5 is to avoid certain inessential complication in 
calculating social welfare.

The welfare under types S1 and S2 strategy profiles is derived as below.

Lemma 3.2  For arbitrary � ∈ Ψ , we have;

W(S1,�) = −(N + K)r , and

W(S2,𝜓) = −(1 + N𝜎̃)r − (N + K − 1)𝛾1.

Proof  See Appendix A.3. 	�  ◻

As Lemma 3.2 shows that the welfare under each of S1 and S2 does not depend 
on � , we denote the welfare as W(S1) and W(S2) , respectively. The following lemma 
helps to rationalize our focus on the S1 and S2 equilibria, as further elaborated in 
Sect. 3.1.4.

Proposition 3.2  The first best strategy profiles 

	 (i)	 Strategy profile S1 attains the first best if N+K−1
N

(1 −
𝛾1

r
) ≤ 𝜎̃ <

N−K

N
.

	 (ii)	 Strategy profile S2 attains the first best if 2K
N

< 𝜎̃ ≤
N+K−1

N
(1 −

𝛾1

r
).

Proof  See Appendix A.4. 	�  ◻

3.1.4 � Regimes

To analyze the functioning of an LSM, we classify the relevant parameter values into 
two sets, called “liquidity non-precious regime" and “liquidity precious regime."

Definition 3.2  Regimes
(i) Liquidity non-precious regime refers to the parameter values that satisfy Con-

ditions (A) and N+K−1
N

(1 −
𝛾1

r
) < 𝜎̃ <

N−K

N
 , for which strategy profile S1 is an equilib-

rium and attains the first best.
(ii) Liquidity precious Regime refers to the parameter values that satisfy Condi-

tions (B) and 2K
N

< 𝜎̃ ≤
N+K−1

N
(1 −

𝛾1

r
) , for which there exists a strategy profile S2 

that is an equilibrium and attains the first best.

In each regime, the CB is assumed to optimally choose the fee level x so that 
the first best strategy profile is an equilibrium. The welfare effect of the addition 
of an LSM is analyzed given the fee level x for each regime, which would amount 
to examining a rather short-term effect of the addition of an LSM. The next lemma 
ensures the existence of each regime.
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Lemma 3.3  Existence of the regimes

(i) When strategy profile S1 attains the first best, S1 constitutes an equilibrium with 
sufficiently low fee level x.

(ii) When arbitrary strategy profile S2 attains the first best, there exists a strategy 
profile S2 that constitutes an equilibrium with an appropriate fee level for a suffi-
ciently large �2 , such that max(2,

1−𝜎l

1−𝜎h
, 1 +

2𝜎h

1−𝜎l
,

1

1−𝜎h
) <

𝛾2

𝛾1
.

Proof  Part (i) is immediate from Condition (A). For Part (ii), Condition (B) is 
rewritten as: 

	(B1)	 x <
𝛾2−𝛾1

𝜎h
,

	(B2)	 x <
𝛾2

1−𝜎l
,

	(B3)	 2𝛾1

1−𝜎l
< x , and

	(B4)	 𝛾1

1−𝜎h
< x.

The condition reduces to max(
2�1

1−�l
,

�1

1−�h
) < x < min(

𝛾2−𝛾1

𝜎h
,

𝛾2

1−𝜎l
) . This reduces to 

max(2,
1−𝜎l

1−𝜎h
, 1 +

2𝜎h

1−𝜎l
,

1

1−𝜎h
) <

𝛾2

𝛾1
 . The condition is consistent with Assumption 3.1: 

𝛾1 + 𝜎hr < 𝛾2 , and it is also consistent with the condition for S2 being the first best: 
N+K−1

N
(1 −

𝛾1

r
) < 𝜎̃ <

N−K

N
 . 	�  ◻

3.2 � Real‑time gross settlement with a liquidity saving mechanism

3.2.1 � Strategies and welfare

Let Q denote the decisions of a bank with respect to one of its payments to another 
bank, such that the bank puts the payment into the queue in period 1, makes the out-
standing payment responsively in periods 2 and 3, and makes the outstanding pay-
ment in period 4. Let P and D denote the same decisions as in the setting without an 
LSM. Observe that for a payment that is made to a periphery bank, putting the pay-
ment into the queue will never be settled in period 1. Thus, it is sufficient to examine 
the following strategies: for periphery bank j ∈ Iper , sj ∈ {P,D} , while for core bank 
i ∈ Icore , si ∈ {(P,P), (P,D), (D,P), (Q,P), (Q,D), (D,D)}.

Under the LSM, we focus on the following three types of strategy profiles, which 
are shown to constitute equilibria.

1. All-pay: si = (Q,P) for every core bank i ∈ Icore , and sj = P for every periphery 
bank j ∈ Iper.

2. d(�)-pay: si = (Q,D) for every core bank i ∈ Icore , and there exists one periph-
ery bank j ∈ Iper with sj = P within each core-separated cycle, and all other periph-
ery bank j′ takes sj� = D.
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3. High-pay: Separate I into I = ∪n=1,2,..,d(�)I
n so that each constitutes a core-sep-

arated cycle of payments. Denote IL ∈ {In}n=1,2,..,d(�) when it satisfies Iper,L ⊂ IL.25 
With these notations, the strategies are specified as follows: si = (Q,D) for every 
core bank i that belongs to IL , while si� = (Q,P) for every core bank i′ that does not 
belong to IL . In addition, sj = P for every periphery bank j that does not belong to 
IL . Among periphery banks that belong to IL , there exists a periphery bank j′ with 
sj� = P , and all other periphery bank j′′ ≠ j′ takes sj�� = D.

Let S1
net
, S2

net
 and S3

net
 denote each type of the strategy profile, respectively. To per-

ceive S3
net

 , consider core-periphery networks within Ψ(3,4) shown in Fig.  2, where 
Iper,L shows the set of periphery banks with low liquidity shock. Figure 3 shows the 
payment network after the payments among the core banks are offset and eliminated 
from the network.

On the left side of the figure, IL = I since all banks belong to one connected pay-
ment network. In this case, S3

net
 states that any one periphery bank takes P, while all 

the other periphery banks take D. For the network shown in the middle of the figure, 
IL refers to the banks that belong to a cycle of payments including core banks b and 
c. S3

net
 specifies strategies such that one periphery bank j ∈ IL takes P, while the 

other j� ∈ IL takes D, and the core banks b and c take (Q, D). For the other banks 
that belong to another cycle of payments including core bank a, all the periphery 
banks take P, and core bank a takes (Q, P). For the network shown on the right side 
of the figure, IL refers to the banks that belong to a cycle of payments including core 
bank b. The strategies are similarly specified.

The social welfare under each S1
net

 , S2
net

 , and S3
net

 is derived as follows26:

and

where Nl = |Iper,L| , Nh = N − Nl , and nh(�) = |I⧵IL|.
Note that nh(�) is later shown to be interpreted as the number of high shock type 

banks that had enjoyed the spillover effect under RTGS without the LSM but no 
longer do after the LSM is introduced. Since nh(�) depends on the location of Iper,L 
in general, the relevance of the density is not simply derived. The following lemma 
shows the relevance for each polar case.

W(S1
net
) = −Nr,

W(S2
net
) = −(d(𝜓) + 𝜎̃N)r − (N − d(𝜓))𝛾1,

W(S3
net
) = −(1 + �lNl +min(Nh, nh(�) + �hNh))r − (N − 1 − nh(�))�1,

25  Note that each core-separated cycle includes core banks and their payments.
26  The formulation does not include potential counterparty risk that would be reintroduced by the LSM. 
Although the counterparty risk would be an important negative aspect of LSMs, our setting excludes the 
risk because our purpose is to highlight negative effects of LSMs that could be brought by their partial 
offsetting services.
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Lemma 3.4  nh(�) and density

For � ∈ Ψ(K,W) , 

i)	 nh(�) = 0 if and only if d(�) = 1 , and
ii)	 nh(�) ≤ Nh − 1 for arbitrary � ∈ Ψ(K,W) , and the equality holds if d(�) = K 

regardless of the location of Iper,L in the network �.

3.2.2 � Equilibrium and the effects of an LSM

We first observe that the strategies (P, P), (P, D), (D, P), (D, D) can be ignored for 
our analysis. Consider deviations of a core bank from each strategy profile S1

net
 , S2

net
 , 

and S3
net

 , in which core banks take either (Q, P) or (Q, D). The deviation to (P, P) 
from (Q, P) is worse because it merely increases the cost of borrowing in expecta-
tion. Furthermore, the deviation to (P, P) from (Q, D) is worse than the deviation 
to (Q, P). Thus, (P, P) is excluded from our analysis. For the same reason, (P, D), 
(D, P), and (D, D) are excluded. Thus, for core bank i ∈ Icore , it is sufficient to focus 

Fig. 2   Examples of core-periphery networks Ψ(3,4) before offsetting

Fig. 3   Examples of core-periphery networks Ψ(3,4) after offsetting. Note For the original networks shown 
in Fig. 2, this figure shows only the payments that cannot be offset by the LSM
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on si ∈ {(Q,P), (Q,D)} . To examine the relevant payoffs of core banks, observe that 
under strategy profiles S1

net
 , S2

net
 , and S3

net
 , the strategies of the payers for a core bank 

i ∈ Icore is sP
i
∈ {{Q,P}, {Q,D}}.

The payoffs of core bank i ∈ Icore with respect to arbitrary S−i in which 
s
p

i
= {Q,P} and there exists a periphery bank j ∈ Iper that takes sj = P , are derived 

as follows:

The payoffs of core bank i ∈ Icore with respect to arbitrary S−i in which sp
i
= {Q,D} 

and there exists a periphery bank j ∈ Iper that takes sj = P , are derived as follows:

All the payoffs for the periphery banks are derived in the same manner as the case 
without an LSM. The next lemma confirms that each type of strategy profile consti-
tutes an equilibrium.

Lemma 3.5  Netting equilibrium 

1.	 All-pay: Strategy profile S1
net

 is an equilibrium if 𝛾1
x
+ 𝜎h <

𝛾2

x
 , and 1

2
(1 − �l) ≤

�1

x
.

2.	 d(�)-pay: Strategy profile S2
net

 is an equilibrium if 𝛾1
x
+ 𝜎h <

𝛾2

x
 , 𝛾1

x
<

1

2
(1 − 𝜎h) , 

and 1 − �l ≤
�2

x
 . 3. High-pay: Strategy profile S3

net
 is an equilibrium if 𝛾1

x
+ 𝜎h <

𝛾2

x
 , 

1

2
(1 − 𝜎h) ≤

𝛾1

x
<

1

2
(1 − 𝜎l) , 𝛾1

x
< 1 − 𝜎h , and 1 − �l ≤

�2

x
.

Proof  As the proof is almost the same as that for Lemma 3.1, it is omitted. 	�  ◻

Note that the difference in equilibrium conditions between S2
net

 and S3
net

 comes 
from the incentive of periphery banks with high shock. Observe that under the 
parameter values in which the spillover effect exists without an LSM, the addition 
of the LSM lets an S3

net
 type equilibrium emerge. We proceed to state the effects 

of the LSM for each regime.

Proposition 3.3  Effects of an LSM: liquidity non-precious regime

Under the liquidity non-precious regime,

(a) S1
net

 is an equilibrium under RTGS with the LSM, but S2
net

 and S3
net

 are not, and

(b) W(S1) < W(S1
net
).

(15)�i((Q,P), S−i) = −
1

2
x −

1

2
�hx,

(16)�i((Q,D), S−i) = −�hx − �1.

(17)�i((Q,P), S−i) = −x,

(18)�i((Q,D), S−i) = −�hx − �1.
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Proof  The proof for part a) is evident by comparing the two sets of conditions. For 
part b), W(S1

net
) −W(S1) = −Nr − (−(N + K)r) = Kr > 0 . 	�  ◻

Proposition 3.3 states that under the liquidity non-precious regime, the use of 
an LSM improves welfare.

Proposition 3.4  Effects of an LSM: Liquidity precious regime (no spillover)

Under the liquidity precious regime with 𝛾1
x
<

1

2
(1 − 𝜎h) , 

(a)	 S2
net

 is an equilibrium under RTGS with the LSM, and
(b)	 W(S2) ≤ W(S2

net
) if and only if d(�)−1

K+d(�)−1
≤

�1

r
.

Proof  The proof of part (a) is immediate and omitted. For part (b), 
W(S2

net
) ≥ W(S2) ⇔ −(d(𝜓) + 𝜎̃N)r − (N − d(𝜓))𝛾

1
≥ −(1 + 𝜎lNl + 𝜎hNh)r

−(N + K − 1)�
1
⇔ (d(�) − 1)r ≤ (K + d(�) − 1)�

1
 . 	�  ◻

Proposition 3.4 states that under the liquidity precious regime, introducing an LSM 
does not always improve welfare. Furthermore, welfare is more likely to decrease when 
the payment network is less dense, that is, the number of core-separated cycles is larger. 
It is simply understood by observing that the activation of offsetting among the core 
banks ends up in an additional unit liquidity cost for each core-separated cycle.

Proposition 3.5  Effects of an LSM: Liquidity precious regime (spillover)

Under the liquidity precious regime with �1
x
≥

1

2
(1 − �h),

(a) S3
net

 is an equilibrium under RTGS with the LSM, and

(b) W(S2) ≤ W(S3
net
) if and only if min((1−�h)Nh,nh(�))

K+nh(�)
≤

�1

r
.

Proof  The proof of part (a) is immediate and thus, omitted. For part (b), W(S3
net
) ≥ W(S2) ⇔

−(1 + �lNl + min(Nh
, nh(�) + �hNh))r − (N − 1 − nh(�))�

1
≥ −(1 + �lNl + �hNh)r

−(N + K − 1)�
1
⇔ min((1 − �h)Nh

, nh(�))r ≤ (K + nh(�))�
1
 . 	�  ◻

Proposition 3.5 states that for the liquidity precious regime, the partial offsetting 
might dismiss the positive spillover effect that is possible to arise under RTGS with-
out an LSM. To clarify the welfare impact shown in part b), define a function as 
f (nh(�)) =

min((1−�h)Nh,nh(�))

K+nh(�)
 . Note that (1 − �h)Nh can be interpreted as the number 

of banks with high liquidity shock that are not hit by the liquidity shocks.
We observe a nonlinear welfare impact of nh(�) as; f �(nh(𝜓)) > 0 for 

0 < nh(𝜓) < (1 − 𝜎h)Nh , and f �(nh(𝜓)) < 0 for (1 − 𝜎h)Nh < nh(𝜓) . Intuitively, 
when nh(�) is not too large, the increase of nh(�) has a larger negative welfare 
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impact since it brings additional liquidity cost. By contrast, when nh(�) is suffi-
ciently large, the increase of nh(�) no longer increases liquidity cost since the liquid-
ity costs associated with the banks with high liquidity shock have already reached 
the maximum, and the effect of economizing delay cost dominates.

The density has a welfare impact through its effects on nh(�) , as indicated in 
Lemma 3.4. For the most dense network, there is no dismissal of the spillover effect 
as nh(�) = 0 ; thus, adding an LSM always improves welfare. For the least dense 
network, though the dismissal of the spillover effect is largest as nh(�) is the maxi-
mum possible, whether the addition of an LSM improves welfare or not depends on 
the parameter values. Lastly, the nonlinear welfare impact of nh(�) indicates that 
adding an LSM tends to have the largest negative welfare impact for networks with 
middle range density as 1 < d(𝜓) < K.

3.2.3 � Policy implications

The analyses bring insights for policies concerning fee control in terms of the rela-
tive cost of liquidity against the cost of delay. When the cost of liquidity is evaluated 
as relatively smaller, reserve should be lent at a sufficiently small fee to encourage 
earlier payments. Furthermore, adding an LSM tends to be socially better in that it 
reduces liquidity costs. By contrast, when the cost of delay, particularly short delay 
within a day, is evaluated as relatively smaller, reserve should be lent at a sufficiently 
high fee to promote efficient circulation of funds. Once funds circulate efficiently 
without offsetting, introducing an LSM could have a negative effect by dismissing 
the efficient circulation. In particular, the negative effect tends to be large if a spillo-
ver effect had worked, as shown in the analyses.

Overall, the baseline policy implication is that the use of an LSM should be 
examined together with the policies that promote efficient circulation of funds. In 
this respect, controlling the fee level would not be the sole method. Banks can be 
classified into groups considering the underlying payment network or bank charac-
teristics, and each group may be allowed to make payments in each time zone.27 The 
effects of an LSM should be contemplated in combination with these policies.

4 � Concluding remarks

This paper analyzed the effect of introducing an LSM in a strategic context. The 
addition of an LSM could have a negative welfare effect when it serves partial offset-
ting. Particularly, the negative effect is pronounced under situations in which funds 
are circulated in a coordinated manner for the relevant settlements. The negative 
effect can arise when the LSM separates the underlying payment network into dis-
connected subnetworks. The disconnection itself has a possible negative effect since 
each cycle requires at least one unit of liquidity input. Furthermore, the disconnec-
tion could also dismiss a spillover effect among the connected payment networks. 

27  In fact, in interbank settlement systems, it is typical to separate a day into several time zones so that 
each type of payment is made in each time zone.
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The fact that an LSM could have a negative effect suggests the need for an effective 
policy mix, in which the addition of an LSM is examined together with the adoption 
of other policies that promote efficient circulation of funds.

The analyses focused on the qualitative aspect of the effects of LSM. The nega-
tive aspect is elaborated with the class of core-periphery networks, particularly in 
view of the density of the network. Although the concept of density is defined on 
a limited class, the key insights hold for other types of networks. Still, many ques-
tions about the implementation of an LSM remain unanswered. A possible exten-
sion of this study could be to investigate the effect of setting a minimum proportion 
of the value of payments sent through the LSM. For this purpose, the effect would 
be clearly examined under situations where the demonstrated negative effects aris-
ing from partial offsetting are not relevant. To quantitatively assess the effects of 
an LSM, the analyses need to be reframed considerably in various dimensions, for 
example, concerning the way of incorporating the sequential nature of the interbank 
settlements, the realistic level of coordination concerning funds circulation, or the 
dynamic nature of the underlying network structure. These challenges remain for 
future work.

Appendix

Definition of alignment property

In Definition 2.3, alignment property is defined through the vertex-twisted con-
cept that was originally introduced in Hayakawa (2020). Below, we show the 
definition. Let G =< V ,A > denote a directed graph, where V denotes a set of 
vertices and A = {(v,w)|v,w ∈ V} specifies a set of arcs.28 A cycle c ⊆ A with 
c = {(v1, v2), (v2, v3), ..., (vn−1, vn)} is simply denoted with (v1, v2, .., vn+1) by letting 
vn+1 = v1 . We prepare to define the vertex-reverse number.

Definition A.1  (Vertex-reverse number) For < V ,A > , define the vertex-sequence 
sv ∶ V → {1, 2, .., |V|} as a one-to-one mapping. For a given < V ,A > together with 
a vertex-sequence sv on V, let cycle c ∈ A consist of (v1, v2, ..., vn, vn+1) , where 
vn+1 = v1 . Then, the vertex-reverse number is defined as 

rvtwi(c, sv) =
∑n

k=1
1{sv(vk)>sv(vk+1)} . When there are multiple ways to index the vertices 

for a cycle and accordingly multiple values of the vertex-reverse number (which is 
possible when the cycle is punctured), we set the vertex-reverse number for the cycle 
as the minimum among them.

Definition A.2  (Vertex-twisted) Let CG denote the set of cycles for G =< V ,A > . 
Cycles in C ⊆ CG are in vertex-twisted relation, or simply they are vertex-twisted if 
there is no vertex-sequence sv such that rvtwi(c, sv) = 1 for every c ∈ C.

28  The original paper allows multi-arcs. For our purpose, it is sufficient to focus on the single-arc setting.
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The focus on alignment networks in this study avoids complication concerning 
the calculation of the maximum borrowed funds under strategy S1 . The relevant 
result is shown in Theorem 6 in Hayakawa (2020).

Proof of Lemma 3.1

Case for S1

(a).	  Periphery bank i has no incentive to deviate from si = P if
	   �i(P, S−i) ≥ �i(D, S−i) ⇔ 1

2
x +

1

2
�ix ≤ �1 + �ix.

	   The condition is rearranged as 1
2
(1 − �l) ≤

�1

x
.

(b).	 Core bank i has no incentive to deviate from si = (P,P) if
(1)	 �i((P,P), S−i) ≥ �i((P,D), S−i) ⇔ 5

6
x +

1

3
�hx ≤

1

3
x +

2

3
�hx + �1 , and

(2)	 �i((P,D), S−i) ≥ �i((D,D), S−i) ⇔ 1
3
x +

2

3
�hx + �1 ≤ �hx + 2�1.

Conditions (1) and (2) are rearranged as 1

2
−

1

3
�h ≤

�1

x
 and 1

3
(1 − �h) ≤

�1

x
 . 

Here, the latter condition is satisfied by the condition derived in (a), since 
1

3
(1 − 𝜎h) <

1

2
(1 − 𝜎h) <

1

2
(1 − 𝜎l).

Thus, when combined with Assumption 3.1, S1 is an equilibrium if �1
x
+ �h ≤

�2

x
 , 

1

2
(1 − �l) ≤

�1

x
 , and 1

2
−

1

3
�h ≤

�1

x
.

Case for S2 Within S2 , we focus on a strategy profile where si = P for periphery 
bank i ∈ Iper with �l . Moreover, the bank that receives a payment from bank i is a 
periphery bank j ∈ Iper with �l.

(a). For periphery bank i with si = D , there is no incentive to deviate if
(1) 𝜋i(D, S−i) > 𝜋i(P, S−i) with sP

i
= P ⇔ 𝜎ix + 𝛾1 <

1

2
x +

1

2
𝜎ix,

(2) 𝜋i(D, S−i) > 𝜋i(P, S−i) with sP
i
= D ⇔ 𝜎ix + 𝛾1 < x.

Condition (1) and (2) are rearranged as 𝛾1
x
<

1

2
(1 − 𝜎l) and 𝛾1

x
< 1 − 𝜎h.

(b). For periphery bank i with si = P , there is no incentive to deviate if
(1) �i(P, S−i) ≥ �i(D, S−i) ⇔ x ≤ �ix + �2.
The condition is rearranged as 1 − �l ≤

�2

x
 for bank i with �i = �l.

(c). Core bank i has no incentive to deviate from si = (D,D) when sp
i
= (D,D) if

(1) 𝜋i((D,D), S−i) > 𝜋i((P,P), S−i) ⇔ 𝜎hx + 2𝛾1 < 2x,
(2) 𝜋i((D,D), S−i) > 𝜋i((P,D), S−i) ⇔ 𝜎hx + 2𝛾1 < x + 𝛾1.
Condition (1) and (2) are rearranged as 𝛾1

x
< 1 −

1

2
𝜎h and 𝛾1

x
< 1 − 𝜎h . The latter 

condition is sufficient for the former condition.

Thus, when combined with Assumption 3.1, S2 is an equilibrium if 𝛾1
x
<

1

2
(1 − 𝜎l) , 

𝛾1

x
< 1 − 𝜎h , 𝛾1

x
+ 𝜎h <

𝛾2

x
 , and 1 − �l ≤

�2

x
.
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Proof of Lemma 3.2

Under strategy profile S1 , every bank makes payments in period 1. For the net-
works within class Ψ , observe that there are at most K + 1 non-punctured cycles. 
The alignment property indicates that for each non-punctured cycle, there exists at 
most one payment that is settled in period 1 without borrowing.29 Thus, there are at 
most K + 1 payments that are made in period 1 without borrowing funds. Since we 
focus on the worst-case scenario, the liquidity shocks must first hit the banks with-
out holding funds. Since the former part of Assumption 3.5 ensures K + 1 ≤ Nh�h , 
every payment requires intraday borrowing in the end. Since there are |I| = N banks 
with K core banks, the total borrowed amount becomes N + K . Thus, we have 
W(S1) = −(N + K)r.

Under an S2 strategy profiles, only one periphery bank makes a payment in 
period 1. All payments are settled successfully before the liquidity shock at the end 
of period 2. In the worst-case scenario, the liquidity shock increases the borrowing 
amounts by Nh�h + Nl�l . The latter part of Assumption 3.5 states that N𝜎̃ < N − K , 
which ensures that every bank that is hit by the liquidity shock does not hold 
funds. Thus, the total borrowed amount is 1 + N𝜎̃ . Since the total delay costs are 
(N + K − 1)�1 , we have W(S2) = −((1 + 𝜎̃N)r + (N + K − 1)𝛾1).

Proof of proposition 3.2

Referring to Lemma A.1, it is sufficient to compare W(S1) and W(S2) . 
W(S1) ≤ W(S2) if (N + K)r − (1 + N𝜎̃)r − (N + K − 1)𝛾1 ≥ 0 , or, 
(N + K − 1 − N𝜎̃)r ≥ (N + K − 1)𝛾1 . We have, 𝜎̃ ≤

N+K−1

N
(1 −

𝛾1

r
) . Combining this 

with Assumption 3.5, we complete our proof.

Lemma A.1  Under Assumption 3.2, 3.3, and 3.4, either S1 or S2 attains first best.

Proof  Suppose some of the payments 0 ≤ n < N + K are made in period 1, and all 
the other payments are not made in period 2 but held instead. Now, we change the 
strategy profile so that one payment is made instead of being held in period 2. This 
improves welfare by at least �2 − �1 − �hr , which is positive based on Assumption 
3.4. Since each additional replacement done in the same manner improves the wel-
fare similarly, it is sufficient to examine strategy profiles where the outstanding pay-
ments are always made in period 2.

For the remaining alternative strategy profiles, the number of payments made in 
period 1 essentially differ. Consider a strategy profile where every bank does not 
make any payment in period 1. The total cost is N𝜎̃r + (N + K)𝛾2 . Against this strat-
egy profiles, Assumption 3.3 ensures that S2 attains larger welfare.

29  Note that if a network is not aligned, there exists a non-punctured cycle wherein more than one pay-
ment are settled without borrowing in period 1 under the worst-case scenario.
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Now, replace S2 such that k > 1 payments are made in period 1. When moving 
from the case with k to the case with k + 1 , it decreases welfare by r − �1 as long 
as it generates additional liquidity cost in the worst-case scenario. Assumption 3.2 
ensures that r − 𝛾1 > 0 . Note that an additional liquidity cost emerges as long as the 
liquidity shock is sufficiently small. Suppose this additional liquidity cost emerges 
for the case with k′ but not in the case with k� + 1 . Then, moving from the case with 
k′ to the case with k� + 1 let social welfare increase by �1 . Observe that moving from 
the case with k� + 1 to the case with k� + 2 , to the case with k� + 3,..., the welfare 
always increases by the same amount. Since this procedure reaches S1 , either S1 or S2 
attains the first best. 	�  ◻

Best responses and spillover effect

For periphery banks, we focus on the following three types of reactions as candi-
dates for the best responses.

For periphery bank i ∈ Iper;
(B1): si = P for any S−i;
(B2): si = P only if si−1 = P or no other bank i′ ≠ i takes 

si� ∈ {P, (P,P), (P,D), (D,P)} ; and
(B3): si = P only if no other bank i′ ≠ i takes si� ∈ {P, (P,P), (P,D), (D,P)}.
For core banks, the relevant reactions are classified into five types. Below, 

the reactions of core bank i ∈ Icore are stated in relation to the payer’s strategies 

s
p

i
∈ {{P,P}, {D,D}}:

(Bc0) : si = (P,P) for sp
i
∈ {{P,P}, {D,D}}.

(Bc1) : si = (P,P) if sp
i
= {P,P} , while si = (P,D) if sp

i
= {D,D}.

(Bc2a) : si = (P,P) if sp
i
= {P,P} , while si = (D,D) if sp

i
= {D,D}.

(Bc2b) : si = (P,D) for sp
i
∈ {{P,P}, {D,D}}.

(Bc3) : si = (P,D) if sp
i
= {P,P} , while si = (D,D) if sp

i
= {D,D}.

(Bc4) : si = (D,D) for sp
i
∈ {{P,P}, {D,D}}.

Observation A.1  (Best response)
(i). With sufficiently large �2 , the best response for periphery bank i with 

�i ∈
{
�l, �h

}
 is:

(B1) if 1 − �i ≤
�1

x
.

(B2) if 1
2
(1 − 𝜎i) ≤

𝛾1

x
< 1 − 𝜎i.

(B3) if 𝛾1
x
<

1

2
(1 − 𝜎i).
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(ii). The best responses against strategy profiles S1 and S2 are examined. For S2 , 
let sj = P for j ∈ Iper , which is not a payer to any core bank. Then, with sufficiently 
large �2 , the best response for core bank i with �i = �h is:

(Bc0) if 1 ≤
�1

x
.

(Bc1) if 1 − �h ≤
�1

x
 and 1

2
(1 −

1

3
�hx) ≤

�1

x
.

Fig. 4   Relevant best responses 
for periphery banks. Note 
Relevant best responses of 
periphery banks are presented 
with sufficiently large �

2

Fig. 5   Relevant best responses for core banks. Note Relevant best responses of core banks are presented 
with sufficiently large �

2
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(Bc2a) if 
𝛾1

x
< 1 − 𝜎h and 1

2
(1 −

1

3
�hx) ≤

�1

x
.

(Bc2b) if 1 − �h ≤
�1

x
 and �1

x
≤

1

2
(1 −

1

3
�hx).

(Bc3) if 
�1

x
≤

1

2
(1 −

2

3
�h) , 𝛾1

x
< 1 − 𝜎h , and 1

3
(1 − �h) ≤

�1

x
.

(Bc4) if 
𝛾1

x
<

1

3
(1 − 𝜎h).

Figure  4 shows the best responses for periphery banks in a two-dimensional 
presentation regarding parameters �1

x
 and �l, �h.

Figure 5 similarly shows the relevant best responses for core banks in the same 
two dimensional representation. For core banks with two payments, the insurance 
for liquidity shock matters only for making one payment. Thus, whether making 
both payments (Bc0) constitutes a best response or not does not depend on �l, �h . 
It is the best response when the relative cost of delay is sufficiently large, that is, 
𝛾1

x
> 1 . In the case of S2 in which sp

i
= (D,D) for core bank i ∈ Icore , the logic of 

the insurance is evident: a payment is made when a larger shock is experienced 
( (Bc1) and (Bc2b) ), and not otherwise ( (Bc2a) , (Bc3) , and (Bc4) ). In the case of S1 , 
where sp

i
= (P,P) , the insurance is less attractive for making additional payments 

since there is a smaller increase in the probability of borrowing a reserve. Thus, 
the marginal increase of the liquidity shock leads to lower marginal increase in 
the attractiveness of the insurance, as confirmed in the figure wherein the divid-
ing lines �1

x
=

1

3
(1 − �h) and �1

x
=

1

2
(1 −

1

3
�hx) gets steeper. We obtain the latter 

line by a parallel shift of the former line to the right since making the second 
additional payment is possibly accompanied by an ex-post “excessive" insurance 
when the bank borrows two units of funds. Note that the occurrence of (Bc2b) or 
(Bc2a) depends on the level of �h.

Figure  6 summarizes the relationship between equilibria and relevant best 
responses in a one-dimensional figure with varying parameter �1

x
 given specific 

values for 𝜎h(<
3

4
) , �l , and �2 . Observe that the dividing line between S1 or S2 is 

Fig. 6   Equilibrium, best response, and spillover effect. Note The figure shows equilibria, best 
responses(BRs) of periphery banks (peri) and core banks (core), and the existence of “spillover effect" 
(Spillover) for 0 <

𝛾
1

x
≤ 1 , with (a) = 1

3
(1 − �h) , (b) = 1

2
(1 − �h) , (c) = 1

2
(1 −

2

3
�h) , (d) = 1

2
(1 − �l) , 

(e) = 1 − �h , and (f ) = 1 − �l . Specifically, the consistent parameter values are: �h = 0.45 , �l = 0.2 , and 
�
2

x
= 1.5 . Under the values, (a) = 0.183̇ , (b) = 0.275 , (c) = 0.35 , (d) = 0.4 , (e) = 0.55 , and (f ) = 0.8
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determined by the line between (B2) and (B3) for the periphery banks with low 
liquidity shock. The dark area shows an equilibrium for S2 , wherein a spillover effect 
arises.
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