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Abstract
In this paper, we provide a wide-ranging survey of the state of the art in the area 
of communication and asset price dynamics. We start out by documenting empiri-
cal evidence that social communication influences investment decisions and asset 
prices, before turning to the main modelling approaches in the literature (both past 
and present). We discuss models of belief-updating based on observed performance; 
models of herd behaviour; and models with social interactions that arise from pref-
erences for conformity or contrarianism. Our main contribution is to introduce read-
ers to a social network approach which has been widely used in the opinion dynam-
ics literature, but only recently applied to asset pricing. In the final part, we show 
how recent contributions to both modelling and empirical work are using the social 
network approach to improve our understanding of financial markets and asset price 
dynamics. We conclude with some thoughts on fruitful avenues for future research.

Keywords Asset pricing · Social networks · Heterogeneous beliefs · Opinion 
dynamics

JEL Classification D84 · D85 · G11 · G40

Investing in speculative assets is a social activity. Investors spend a substantial 
part of their leisure time discussing investments, reading about investments, 
or gossiping about others’ successes or failures in investing. It is thus plausi-
ble that investors’ behaviour (and hence prices of speculative assets) would be 
influenced by social movements. (Shiller 1984)

[T]he time has come to move beyond behavioural finance to ‘social finance’, 
which studies the structure of social interactions, how financial ideas spread 
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and evolve, and how social processes affect financial outcomes.  (Hirshleifer 
2015)

1 Introduction

Asset prices defy easy explanation but affect the fortunes of individuals and entire 
economies. When asset prices increase, investors make capital gains and firms can 
raise more financial capital by issuing shares. Conversely, if asset prices fall sharply, 
aggregate wealth takes a hit and the resulting losses are widespread, from profes-
sional investors, to workers trying to supplement their income, to the old whose 
pensions depend on the value of the stock market. The ripple effect to the wider 
economy is a ‘financial accelerator’ in reverse. Therefore, understanding the deter-
minants of asset prices is a worthwhile endeavour.

Following the seminal paper of Shiller (1984), attention turned to communica-
tion as a potential determinant of asset prices. In short, the idea is that investors 
are influenced not only by ‘fundamentals’ or personal judgement about an asset’s 
value, but also by the opinions of others they come into contact with, such as friends 
and relatives, well-known successful investors or industry experts. There is a large 
empirical literature which has found that social factors influence investment deci-
sions, and alongside this literature has developed a model-based literature that stud-
ies the impact of communication on asset prices.

In this paper, we survey the literature that models communication and asset price 
dynamics. We start out by documenting empirical evidence that social communi-
cation influences investment decisions and asset prices, before turning to the main 
modelling approaches in the literature. As a benchmark, we first study an asset 
pricing model with rational expectations and no communication. We then set out 
an alternative framework based on heterogeneous expectations and communication 
between investors, and highlight some important implications. We emphasize heter-
ogeneous expectations because, in most models, communication between investors 
happens at the level of individual beliefs or asset demands. We also highlight what 
the main approaches in the literature have in common, such as the assumed use of 
rule-of-thumb behaviours, or heuristics, by agents in financial markets.

We consider in detail how communication has been modelled in the literature. 
In particular, we discuss models with updating of belief types (chartist or funda-
mentalist) based on the observed performance of other investors; models of herd 
behaviour; and models with ‘social interactions’ due to preferences for conformity 
or contrarianism at the individual level. Our main departure from previous literature 
is to highlight a social network approach, which has been widely used in the opinion 
dynamics literature, but only recently applied to asset pricing. We introduce some 
key concepts and notation in relation to networks, thus providing readers with the 
tools needed to understand this growing area of the literature.

In the final part, we show how the most recent contributions to modelling and 
empirical work are using the social network approach to good effect. We include 
here works that extend social interactions models via the inclusion of local social 
networks; models that build directly on the opinion dynamics approach by adding 
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a financial market and performance-based updating of beliefs; and diffusion-based 
models in which beliefs spread, like a virus, in the population of investors. We high-
light some advantages of these modern approaches, and we also show how social 
network models of asset prices can be—and are being—taken to the data by leading 
researchers with cutting-edge methods in hand. We conclude by discussing some 
promising avenues for future research.

2  Motivation

Interest in communication and asset prices was sparked by the work of Shiller 
(1984). Shiller argued that since investing in speculative assets is a social activity, 
investor behaviour (and hence asset prices) will be influenced by collective social 
movements, such as ‘fads’ and fashions. Shiller also pointed to ‘local’ social influ-
ences that could affect investor decisions and asset prices, such as group pressure 
to conform with the opinions of one’s peers or the exchange of information through 
word-of-mouth communication.

Many empirical studies have considered this social influence hypothesis. In an 
early paper, Shiller and Pound (1989) surveyed 131 investors and found that many 
stock purchases were influenced by interactions with personal contacts, such as 
friends and relatives. In a German study, Arnswald (2001) surveyed 275 fund man-
agers and found that information exchange with industry experts was cited as the 
most important source of information for their work, followed by conversations with 
colleagues and media reports.

Focusing on investment portfolios, Hong et  al. (2005) show that mutual fund 
managers in the US have similar asset holdings to those of other fund managers in 
the same city, while Ivković and Weisbenner (2007) show that US households are 
more likely to purchase stocks from a particular industry if their neighbours did so. 
Shive (2010) investigated the impact of social influence using trading data for the 20 
most active stocks in Finland; socially influenced trades were found to predict stock 
returns. In a similar vein, Ozsoylev et al. (2014) found that investors in the Istanbul 
Stock Exchange are connected in an empirical investor network and that more cen-
tral investors earn higher returns with respect to information events.

More recently, there has been attention on social media as a medium of commu-
nication that affects investment decisions and asset prices. For example, Jiao et al. 
(2020) study the impact of traditional news media and social media on turnover and 
stock volatility and find that traditional news coverage predicts decreases in subse-
quent turnover and volatility, whereas social media coverage predicts increases in 
subsequent turnover and volatility. They also show that these patterns are consistent 
with a model of ‘echo chambers’ in which social networks repeat news, but some 
investors interpret repeated news as new information. By comparison, Semenova 
and Winkler  (2021) study text data from online discussions on the investor forum 
WallStreetBets and find that discussions about particular stocks can be self-perpet-
uating and that peer influence on retail investors is primarily through consensus for-
mation and belief contagion by shifting investor attention to particular stocks.
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Finally, there are also several ‘lab experiments’ that study the impact of com-
munication on asset prices. For example, Oechssler et al. (2011) study the implica-
tions of inside information and communication among traders in an experimental 
asset market; they find that having traders with an information advantage can create 
bubbles, but communication is counterproductive for bubble formation. Schoenberg 
and Haruvy (2012) studied traders in an experimental asset market who received 
communication about their relative performance; this information had a significant 
impact on market prices and boom duration. Communication and price bubbles is 
revisited by Steiger and Pelster (2020), who find that face-to-face communication 
leads to significantly larger asset price bubbles than standard laboratory markets and 
increases size of bubbles more than communication via social media ‘likes’.

In short, there is compelling evidence that communication affects investment 
decisions and asset prices. This observation raises important questions for research-
ers interested in financial markets. How should social interactions between investors 
be modelled? Which social interactions, specifically, are most useful in explaining 
price volatility and stylized facts of empirical stock returns? In the next sections, we 
first set out a benchmark asset pricing model in which communication plays no role. 
We then add heterogeneous expectations in the model and use this framework to 
introduce the reader to the various approaches to modelling social communication in 
the literature, including the most recent developments.

3  Asset pricing without communication

Let us start by considering a benchmark model of asset prices with no social influ-
ence. We assume that investors have common rational expectations, consistent with 
the efficient market hypothesis (see e.g. Fama 1970). We refer to this as the ‘conven-
tional approach’.

The conventional approach stresses economic fundamentals as the key determi-
nant of asset prices. These fundamentals include, among others, interest rates on 
bonds and dividends paid out to shareholders. Note that dividends should be consid-
ered stochastic since future profitability of firms is uncertain ex ante and firms are 
not required to pay dividends to shareholders even if they earn a profit. As a result, 
investors must form expectations of future fundamentals, such as dividends, which 
are random variables.

To make this concrete, suppose there are N investors and two assets, a share and 
a bond. The first asset (shares, x) pays a stochastic dividend dt in each period t ∈ ℕ ; 
we assume dt is exogenous and has a fixed conditional variance. Shares can be pur-
chased at a known price pt and their (unknown) resale price one period ahead is 
pt+1 . The second asset (bonds) is riskless: it pays a fixed return r > 0 and has a price 
normalized to 1. Shares are in zero net supply, whereas bonds have a flexible sup-
ply. As a result, investors are not liquidity constrained and may take arbitrarily large 
positive or negative asset positions.

Investors want a portfolio of shares and bonds that maximizes their utility. Fol-
lowing Markowitz (1952), we give each investor i ∈ N  a mean-variance utility func-
tion with risk aversion parameter a > 0 , where N  denotes the set of all investors. 
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We also give all investors common rational expectations Et[.] = E[.|It] , where Et[.] is 
the conditional expectations operator and It = {pt, pt−1,… ;dt, dt−1,…} is the infor-
mation set of investors at time t.

The optimal portfolio choice of investor i ∈ N  solves the problem:

where wi
t+1

= (pt+1 + dt+1)x
i
t
+ (1 + r)(wi

t
− ptx

i
t
) is the future wealth, wi

t
− ptx

i
t
 

is holdings of the riskless asset (bonds), and Vt denotes conditional variance. Let 
Rt = pt + dt − (1 + r)pt−1 denote the excess return on shares.

The first-order condition for problem (1) is:

where we set Vt[Rt+1] = 𝜎2 > 0 because under standard assumptions about divi-
dends, there is a fundamental rational expectations solution with constant condi-
tional variance.1

Equation (2) says that the optimal demand for shares equals the ratio of the 
expected excess return to the (scaled) conditional return variance; intuitively, the 
latter is the product of the aversion to risk a and the quantity of risk �2 . Because 
all these terms are common knowledge to investors with rational expectations, the 
demand for shares is homogeneous.

Market-clearing requires that the aggregate demand for shares equal the zero net 
supply, or 

∑
i x

i
t
= 0 , which implies that pt =

Et[pt+1]+Et[dt+1]

1+r
 . Assuming that rational 

bubbles are ruled out, the asset price is given by2

i.e. price equals the expected present-discounted-value of the future dividend stream.
Hence, the rational expectations asset pricing model set out above implies that:

• Investors have common expectations, such that all investors value the asset 
equally and take the same asset position (given the absence of liquidity con-
straints);

• The price can be determined using the expectations of a ‘representative agent’ and 
these expectations reflect all available (useful) information about asset payoffs;

(1)max
xit

Et[w
i
t+1

] −
a

2
Vt[w

i
t+1

]

(2)xi
t
=

Et[Rt+1]

aVt[Rt+1]
=

Et[pt+1 + dt+1] − (1 + r)pt

a�2

(3)pt =

∞∑
j=1

Etdt+j

(1 + r)j

1 A common assumption is that dt follows an AR(1) process (which nests the cases of 
zero and full persistence). In this case, pt is a linear function of dt (see (3)) and hence 
Vt[Rt+1] = Vt[pt+1] + Vt[dt+1] + 2Covt[pt+1, dt+1] will be constant given our assumption that dt has a fixed 
conditional variance.
2 The derivation of (3) uses the law of iterated expectations in conjunction with the no-bubbles transver-
sality condition, limj→∞ ∶

(
(1 + r)−1

)j
Et[pt+j] = 0 . The asset pricing equation in (3) is referred to as the 

Gordon growth model if dividends are expected to grow at a constant rate (see Gordon  1959).
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• Price depends on expected future fundamentals (dividends and interest rates) in all 
future periods and is equal to the risky asset’s intrinsic value.

According to this textbook model of asset pricing, social factors play no role for the 
simple reason that no investor can learn anything useful from interactions with others: 
all investors share the same information and beliefs, and thus take the same investment 
decisions.

The conventional approach clearly makes strong assumptions and has strong impli-
cations. For instance, because investors value the asset equally and take identical asset 
positions, there is no trade between investors. From an empirical standpoint, both 
Shiller (1981) and LeRoy and Porter  (1981) pointed to problems with the simple pre-
sent-discounted-value model of asset prices in (3): historical US stock prices have been 
far too volatile to be explained by observed changes in dividends, so there is an excess 
volatility puzzle.

A further implication of the present-value model in (3) is that changes in stock prices 
should be due solely to unanticipated news about future fundamentals (e.g. dividends). 
However, large declines in the stock market have been observed even when there has 
been little or no extra news about fundamentals, and stock prices often seem to be at 
odds with events in the real economy, to which the profitability of firms is presumably 
linked.

If fundamentals are not volatile enough to explain the observed variation in share 
prices, it may be that expectations of future payoffs are excessively volatile. For exam-
ple, in a well-known passage of the General Theory, Keynes compares the stock mar-
ket to a newspaper ‘beauty contest’ in which the participants attempt to guess the aver-
age opinion, knowing that other readers are participating in the same guessing game. 
If investors in the stock market are indeed anticipating the expectations of others when 
forming their own expectations, then expectations need not coordinate on rational 
expectations, and thus behavioural and psychological influences on investors become 
relevant considerations. Keynes’ analogy also suggests that investors may prefer to be 
informed about the expectations of others before making their own investment deci-
sions; this could be achieved, for example, if investors communicate and share informa-
tion about their beliefs as we discuss below.

These three ingredients—heterogeneous expectations, behavioural influences, and 
social communication—provide the foundations of an alternative approach to asset 
pricing that has received considerable interest in recent decades. In the remainder of 
this paper, we set out this approach and then take the reader to the forefront of this 
literature.

4  Asset pricing with communication

In this section, we introduce a benchmark asset pricing model in which the inves-
tors have heterogeneous expectations about asset payoffs. We then add social com-
munication in the model and use this framework to discuss the main modelling 
approaches in the literature.



7

1 3

Communication, networks and asset price dynamics: a survey  

4.1  Heterogeneous expectations

Early work in the literature emphasized heterogeneous expectations across differ-
ent groups of investors. However, there are many ways in which expectations could 
differ across individuals, and each could have different asset pricing implications. 
Research has therefore been informed by psychological evidence that real-world 
decisions are based on rules-of-thumb, or heuristics, rather than full optimization by 
unboundedly rational agents (see e.g. Gigerenzer and Todd 1999). This behavioural 
approach to expectations formation emphasizes simple forecasting rules that may 
differ across individual investors.

Suppose, therefore, that our model is unchanged, except that investors differ in 
expectations. We denote the subjective expectation of investor i as Ẽi

t
[.] , where the 

‘tilde’ indicates that the expectation is boundedly-rational, in the sense of Simon 
(1957), to reflect cognitive limitations of investors.3 Similarly, Ṽ i

t
[.] is the subjective 

variance of investor i.
The optimal portfolio choice of investor i ∈ N  now solves the problem4

The demand of investor i is therefore amended from (2) to

where �̃�2
i,t

 is the subjective return variance of investor i at date t.
Equation (5) makes clear that if investors differ in expectations, then they will 

generally take different investment decisions. For example, optimistic investors will 
have higher (risk-adjusted) valuations than pessimistic investors and thus find it opti-
mal to invest more in the risky asset.5 Aggregating asset demands across investors 
and equating aggregate demand with the zero (net) supply of shares, we find that the 
market-clearing asset price is

(4)max
xit

Ẽi
t
[wi

t+1
] −

a

2
Ṽ i
t
[wi

t+1
]

(5)xi
t
=

Ẽi
t
[Rt+1]

aṼi
t [Rt+1]

=
Ẽi
t
[pt+1 + dt+1] − (1 + r)pt

a�̃�2
i,t

(6)
pt =

1∑N

i=1
(a�̃�2

i,t
)−1

∑N

i=1

Ẽi
t
[pt+1+dt+1]

a�̃�2
i,t

1 + r
.

3 There are also heterogeneous expectations models in which agents communicate and form rational 
expectations based on potentially different information sets (e.g. Ozsoylev and Walden 2011; Han and 
Yang 2013); in this survey, however, we confine our attention to behavioural models of expectations.
4 We assume (as is standard) that these operators satisfy some basic properties of conditional expecta-
tion operators, in particular Ẽ ∶i

t
[yt] = yt and Ṽ i

t
[yt] = 0 for any variable yt that is determined at date t; 

Ẽi
t
[xt+1 + yt+1] = Ẽi

t
[xt+1] + Ẽi

t
[yt+1] for any variables x and y; and Ṽ i

t
[xtyt+1] = x2

t
Ṽ i
t
[yt+1].

5 Note that investors with different expectations may take the same investment decisions if they face lev-
erage or short-selling constraints (see e.g. Anufriev and Tuinstra 2013; in’t Veld, D. 2016; Hatcher 2022).
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Some papers consider heterogeneous, time-varying conditional variances as in (5) 
and (6). In this case, both an investor’s expectations about payoffs Ẽi

t
[pt+1 + dt+1] 

and their subjective return variance �̃�2
i,t

 need to be specified (see De Grauwe and 
Grimaldi 2006; Ap Gwilym 2010). However, most papers have preferred to focus on 
heterogeneous expectations of payoffs by assuming subjective variances are homo-
geneous across agents. In this case, (6) simplifies to

Equation (7) simply says that the asset price equals the average expected payoff 
(across all investors), discounted by gross return on the riskless asset. There are 
some notable differences relative to the fundamental price under rational expecta-
tions in Eq. (3).

First, the rational expectations price (3) equals the expected discounted present 
value of future dividends—i.e. the intrinsic value of the risky asset. The price under 
heterogeneous expectations, (7), will coincide with the latter only if subjective 
expectations are on average equal to the rational expectation. Second, to the extent 
that average opinion determines asset prices, the asset price in (7) is in line with 
Keynes’ beauty-contest view of the stock market: speculative asset prices depend on 
average opinion, which consists of the subjective assessments of individual inves-
tors, rather than strictly rational valuations. Finally, note that each expectation has 
an equal weight of 1/N, so investors whose subjective expectations are strongly opti-
mistic or pessimistic may ‘bias’ the price in one direction or another.

A common approach in the literature has been to focus on heterogeneous price 
expectations Ei

t
[pt+1] by holding expected dividends Ẽi

t
[dt+1] equal across investors.6 

Price expectations Ẽi
t
[pt+1] are often assumed to be of two types: chartist and fun-

damentalist. The basic idea is that at any given point in time, investors may make 
either a chartist (or trend-following) forecast of asset prices or a ‘fundamentalist’ 
forecast which conditions on fundamental indicators such as dividends and interest 
rates. The key difference between the two forecasting approaches is that the char-
tist approach is backward-looking (relying on past prices), whereas the fundamen-
tal approach is forward-looking: investors use information on current and projected 
future fundamentals such as dividends and interest rates.

A chartist forecasting rule c has the general form:

where the function fc ∶ ℝ
L
→ ℝ describes how the chartist forecast relates to past 

prices.

(7)pt =

1

N

∑N

i=1
Ẽi
t
[pt+1 + dt+1]

1 + r
.

(8)Ẽc
t
[pt+1] = fc(pt−1,… , pt−L)

6 Using the additive property of the operator Ẽi
t
[.] gives Ẽi

t
[pt+1 + dt+1] = Ẽi

t
[pt+1] + Ẽi

t
[dt+1] . It is then 

usually assumed that, for all i,  Ẽi
t
[dt+1] coincides with the actual conditional mean of the dividend pro-

cess.
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The parameter L ≥ 1 in (8) is the longest price lag that is taken into account by 
chartists. The function fc may be linear or nonlinear, but linearity is often assumed 
in the literature for the sake of analytical tractability. Note that the above specifica-
tion nests both extrapolative rules (that consider the size and direction past price 
changes) and level rules (that consider the absolute level of prices). Hence, (8) 
allows a range of behaviours associated with the trend-following and technical anal-
ysis popularized by Charles Dow.

A fundamentalist forecasting rule f has the form:

where Et[p
∗
t+1

] is the expected future fundamental price.
Note that the forecast Et[p

∗
t+1

] would equal the (actual) expected future price if 
all investors were fundamentalists with rational expectations; it is thus equal to the 
one-period-ahead conditional expectation of (3). Equivalently, Et[p

∗
t+1

] is the price 
that is expected to clear fundamental demand at date t + 1,7 Note that (9) implies 
that fundamentalists base price forecasts on fundamental information only, even if 
the market is populated by some chartists; hence such fundamentalist forecasts are 
behavioural in the sense that they ignore (or are ignorant of) the presence of char-
tists in the market. This ‘fundamentals-only’ approach appears to be a good (rough) 
description of some prominent investors.8

Early works that modelled both chartist and fundamental investors, include Zee-
man (1974), Beja and Goldman (1980) and Chiarella (1992). These papers showed 
that the presence of chartist investors in the market provides an explanation for the 
unstable short run behaviour of stock prices. For example, in the model of Zeeman 
(1974), there is endogenous switching of asset prices between bull and bear mar-
kets that can be traced to the behaviour of fundamentalists and chartists, whereas 
Beja and Goldman (1980) show that with sufficiently strong trend-following in their 
model, the dynamic system is unstable with exploding price oscillations, such that 
speculative trading of chartists destabilizes asset prices. In Chiarella (1992), the 
Beja-Goldman model is generalized such that the demand of chartists is nonlinear, 
increasing and S-shaped; as a result, a unique stable limit cycle exists along which 
the asset price and chartists’ assessment of the price trend fluctuate over time.9

The focus on chartists and fundamentalists is consistent with evidence on the 
forecasting strategies of real-world investors. For example, Frankel and Froot (1990) 
provide survey evidence from foreign exchange forecasting firms: some firms 
described themselves as focusing on economic fundamentals, whereas others said 
they relied on chartist analysis or a combination of the two approaches. Interest-
ingly, the relative proportion of firms using chartist forecasting approaches increased 

(9)Ẽ
f

t [pt+1] = Et[p
∗
t+1

]

7 Some papers define the fundamental ‘forecast’ as the price that clears fundamental demand today such 
that xft (p∗t ) = 0 , where p∗

t
 is the date-t fundamental price (e.g. Beja and Goldman 1980; Chiarella 1992).

8 For example, Warren Buffet on the long side of the market or Jim Chanos on the short side.
9 For a more detailed discussion of the above models, see the excellent survey by Hommes (2006).
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substantially over the decade from 1978 to 1988—a period of substantial Dollar 
appreciation which is difficult to explain using economic fundamentals.

Further evidence is provided by Taylor and Allen (1992) using questionnaire 
surveys of foreign exchange dealers in London: both chartist (technical) and funda-
mentalist forecasting approaches are cited, but there is a skew towards chartist, as 
opposed to fundamentalist, analysis at shorter horizons, which is steadily reversed as 
the forecast horizon is increased. In a review, Menkhoff and Taylor (2007) find the 
overall shares of chartist and fundamentalist approaches in foreign exchange fore-
casting are quite similar, whereas Menkhoff (2010) finds that the pattern of greater 
reliance on technical analysis at short horizons applies also to fund managers, with 
the pattern again reversed at longer horizons such as months and years.

The survey evidence above indicates that the popularity of chartist versus funda-
mentalist forecasting strategies is not fixed over time and seems to be linked to the 
relative performance of these forecasting approaches (see Frankel and Froot 1990). 
In the early models with chartists and fundamentalists discussed above, the popula-
tion shares of the two groups were taken as fixed, and hence updating of forecasting 
strategies was neglected. Note that specifying such updating requires us to take a 
stand on communication between investors, since adoption of a different forecasting 
rule based on performance implies that investors know both the forecasting rules of 
others and their relative performance.

These are some key themes that have been taken up in the subsequent literature.

4.2  Social communication models

We now introduce asset pricing models with heterogeneous expectations and com-
munication, including type updating based on performance, herding models, and 
social interactions.

4.2.1  The Brock–Hommes model

The Brock and Hommes (1998) model brings together some key ingredients dis-
cussed so far. In the simplest version of the model, a large population of investors 
may choose between a chartist forecasting rule and a fundamentalist forecasting 
rule. It is assumed that each investor can observe the performance (i.e. profitability) 
of all other investors and the forecasting rule they follow. The key dynamic in the 
model is the updating of forecasting strategies: in any period, the better-performing 
rule will have a higher rate of adoption in the population of investors (as we show 
below).10 The Brock–Hommes model can be interpreted as a simple model of com-
munication: social comparisons matter for belief updating.

Investors are boundedly-rational. The price forecast of investor i is denoted by 
Ẽi
t
[pt+1] (as in Sect.  5.1 above), and all investors are assumed to have a common 

subjective return variance which is fixed at �̃�2 > 0 . Dividends follow an exogenous 

10 A similar approach was used in some earlier asset pricing models such as De Grauwe et al. (1995), but 
the Brock and Hommes (1998) model is the benchmark in the literature.
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process of the form dt = d̄ + 𝜀t , where d̄ > 0 and �t is IID and mean zero. It assumed 
that all investors know the dividend process, such that Ẽi

t
[dt+1] = d̄ for all i ∈ N  . In 

any period t ∈ ℕ , an investor must adopt either a chartist forecasting rule or a funda-
mental forecasting rule for the price.

Given the above assumptions, the demand of investor i at date t (see (5)) is

where Ẽi
t
[pt+1] is the expectation of investor i given their forecasting rule at date t.

The fundamental forecasting rule can be derived by finding the price p∗
t
 that 

would clear the market if all investors were fundamentalists with common rational 
expectations, such that Ẽi

t
[pt+1] = Et[p

∗
t+1

] for all i ∈ N  . Using this expression in 
(10) and noting that market-clearing requires xi

t
(p∗

t
) = 0 ∀i ∈ N  gives the funda-

mental price as11

such that the fundamental forecasting rule (9) simplifies to

Here, p is the fundamental price in (3) when expected dividends equal d̄ in every 
period. It says that in the absence of rational bubbles, an asset that is expected to 
pay a fixed dividend d in perpetuity has a price (= intrinsic value) given by the pre-
sented discounted value of the dividend stream. The fundamental forecast (12) is 
based upon this intrinsic value.

The chartist forecasting rule is given by a special case of (8) when there are L = 1 
lags and the function fc is linear:

where g > 0 is the trend-following parameter.
Note that the forecasting rule (13) has the interpretation that chartists expect the 

future deviation of price from the fundamental price to be linked to its past value 
(pt−1 − p̄) via the trend-following parameter g; hence, chartists extrapolate from the 
past to the future. Note that the one-lag chartists are myopic in contrast to the funda-
mentalists who are farsighted.

The key mechanism in the model is the adoption of types via evolutionary com-
petition. In particular, at a given date t, each investor must be either a chartist or a 
fundamentalist, and the probabilities of being each type are depend on the relative 
performance of the two forecasting rules. In a large population N → ∞ , only the 
population shares of investors of each type need to be tracked. Brock and Hommes 

(10)xi
t
=

Ẽi
t
[pt+1] + d − (1 + r)pt

a�̃�2

(11)p∗
t
= p̄ ∶= d̄∕r

(12)Ẽ
f

t [pt+1] = p̄.

(13)Ẽc
t
[pt+1] = (1 − g)p̄ + gpt−1

11 The equation to be solved is: pt =
Et [pt+1∶]+d̄

1+r
 . Hence, the derivation is analogous to that of (3).
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therefore assume the population shares are determined by a discrete choice logistic 
updating equation:

where � ≥ 0 is the intensity of choice and Uh
t
∈ ℝ is the fitness of predictor h at date 

t.
Equation (14) says that the share of the population using the chartist predictor c 

at date t + 1 depends on its relative performance against the fundamentalist predictor 
f, as judged by the past observed levels of fitness Uc

t
 and Uf

t  . The intensity of choice 
parameter � determines how fast agents switch to better-performing predictors. In 
the special case � = 0 , the population shares are fixed and equal to 1/2; in this case, 
performance is ignored by investors and they are split equally between the two pre-
dictors. At the other extreme � → ∞ , all investors will adopt in period t + 1 the best-
performing predictor in period t.12

Note that for any � ∈ (0,∞) , the better-performing predictor will be adopted by a 
larger share of the population, which is apparent if we write (14) as nc

t+1
=

1

1+e�(U
f
t −U

c
t )

.
The model is closed with the fitness measures Ut,c and Ut,f  . Brock and Hommes 

(1998) use the realized profits under a given predictor h ∈ {c, f } net of a predictor 
cost13

where R̃t ∶= pt + dt − (1 + r)pt−1 is the realized excess return on shares at date t and 
Ch ≥ 0 is the cost of obtaining predictor h.

Brock and Hommes assume that only the fundamental predictor is costly: Cc = 0 , 
Cf = C ≥ 0 . The basic idea here is that fundamental information may be more costly 
to obtain because it relies on more than past prices (which are readily observable). 
The asset price pt is determined by market-clearing, given an assumption of zero 
outside supply, such that 

∑
h∈{c,f } n

h
t
xh
t
= 0 . The market-clearing asset price is

where p̃t ∶= pt − p̄ is the deviation of price from the fundamental price.
Brock and Hommes (1998) establish several properties of the dynamical system 

(10)–(16):

(14)nc
t+1

=
exp(�Uc

t
)

exp(�Uc
t ) + exp(�U

f

t )
, n

f

t+1
= 1 − nc

t+1

(15)
Uh

t
= R̃tx

h
t−1

− Ch

= (pt + dt − (1 + r)pt−1)x
h
t−1

− Ch

(16)p̃t =
nc
t
g

1 + r
p̃t−1

12 That is, if Uc
t
> U

f

t  all investors adopt predictor c in period t + 1 , such that nc
t+1

= 1 (and vice versa if 
U

f

t > Uc
t
 ). Hence, a corner solution for the population share is avoided for � → ∞ if and only if Uc

t
= U

f

t .

13 In their general model, Brock and Hommes (1998) allow the fitness Uh
t
 to depend on accumulated: 

realized profits by adding a term �Uh
t−1

 to the right hand side of (15), where � ≥ 0 is a memory param-
eter; however, they set � = 0 when studying the two-type chartist-fundamentalist model as here.
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• For 0 < g < 1 + r , the model has a unique, globally stable steady state. At this 
(fundamental) steady state, the asset price p is equal to the fundamental price p̄.

• For g > 2(1 + r) , there are three steady states: two non-fundamental steady states 
with (resp.) positive and negative price deviation, and a fundamental steady state 
where p = p̄ , such that p̃ = 0 . The fundamental steady state is unstable.

• For 1 + r < g < 2(1 + r) , there are two possibilities: either (i) there are three 
steady states (as above) and the fundamental steady state is unstable, or (ii) the 
fundamental steady state is the unique, globally stable steady state.14

• For 1 + r < g < 2(1 + r) , there is a pitchfork bifurcation at some 𝛽 = 𝛽∗ > 0 , and 
as the intensity of choice increases further there is a Hopf bifurcation at some 
� = �∗∗ . The non-fundamental steady states are unstable for 𝛽 > 𝛽∗∗.

In Fig.  1, we show a numerical bifurcation diagram for the case 
1 + r < g < 2(1 + r) . For low enough intensity of choice � , the fundamental steady 
state p̃ = 0 is stable. As the intensity of choice increases, the fundamental steady 
state becomes unstable due to a pitchfork bifurcation ( �∗ ≈ 2.37 ) in which two extra 
(non-fundamental) steady states p̃∗ < 0 < p̃∗ are created (since we assume p̃−1 > 0 , 
only the upper ‘fork’ appears in the diagram). As the intensity of choice increases 
further, the non-fundamental steady states become unstable due to a Hopf bifurca-
tion ( �∗∗ ≈ 3.33 ), giving more complicated dynamics, including stable limit cycles 
and quasi-periodic attractors. For intensity of choice above (approx.) 3.6, there is a 
positive Lyapunov exponent, indicating chaotic price dynamics.

The social aspect of the model (switching based on observable differences in 
performance) is essential for these dynamics. If the population shares of chartists 
were instead exogenous and fixed at some n̄c ∈ [0, 1] , then for any initial condi-
tion p−1 ≠ p̄ the price would converge monotonically to the fundamental price if 
0 ≤ n̄cg < 1 + r ; remain fixed and equal to p−1 if n̄cg = 1 + r ; and diverge mono-
tonically to +∞ or −∞ if n̄cg > 1 + r.

Several papers have provided empirical support for the two-type Brock–Hommes 
model. For example, Boswijk et  al. (2007) estimate an empirical version of the 
model on annual US stock price data from 1871 to 2003. The estimation supports 
the existence of heterogeneous expectations that differ in the extent of fundamental-
ist or trend-following behaviour, and the model offers an explanation for the run-up 
in stock prices after 1990 in terms of increased trend-following among investors. 
The estimated two-type model of fundamentalists and chartists in Chiarella et  al. 
(2014) also supports the assumption of heterogeneous expectations, and the model 
can explain endogenously the rise and collapse of asset prices in a bubble-like fash-
ion, as seen in the dot-com bubble.15 The importance of heterogeneous expecta-
tions for asset price fluctuations has also been highlighted by ‘learning to forecast’ 
experiments in laboratory asset markets: evolutionary selection between behavioural 
expectation rules improves out-of-sample predictive performance and endogenous 

14 For further details of this case, see (Brock and Hommes 1998, Lemma2).
15 In the model of Chiarella et al. (2014) the price is set by a market maker, in contrast to the market-
clearing price in the Brock–Hommes model. The results suggest this approach also does well empirically.
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bubbles are related to trend-chasing behaviour (Hommes et al. 2008; Anufriev and 
Hommes 2012).

4.2.2  Herding models

We now turn to models of herd behaviour among investors. We confine our attention 
to behavioural herding models, which have been widely used in the asset pricing 
literature.16

An early contribution was Kirman’s stochastic recruitment model (see Kirman 
1993). The model was motivated by a puzzle in biology concerning the behaviour of 
ants: when faced with two identical food sources, ants concentrate more on one of 
the two food sources, but after a period they would switch their attention to the other 
food source. Thus, ants facing a symmetric situation behave collectively in an asym-
metric way. Similar asymmetry has been observed in humans choosing between res-
taurants of similar price and quality situated on either side of a street: a large major-
ity choose the same restaurant. Here, we consider a financial markets version of the 
Kirman (1993) model, as in the survey by Hommes (2006).

There are N investors who form an expectation about the future asset price pt+1 , 
which may be either optimistic or pessimistic. An investor’s expectation depends on 
the outcome of random meetings with other investors. Let kt ∈ {0, 1,… ,N} denote 
the number of investors that hold the optimistic view at date t; the initial number of 
optimistic investors k0 is given. Beliefs in periods t ≥ 1 are formed as follows. When 
two investors meet, the first investor is converted to the other investor’s belief with 
probability (1 − �) , where � ∈ [0, 1] . There is also a small probability � that the first 
investor will change their view independently.

Given the above assumptions, the number of optimistic investors kt is updated as 
follows:

where P+
t
 and P−

t
 are the state-contingent probabilities of a change in optimism, 

which depend on the prevailing number of optimists kt.
In Fig. 2, we simulate the fraction of optimistic investors kt∕N over 60,000 peri-

ods (left panel) and the ‘optimism distribution’ over a long time horizon (right 
panel). The fraction of optimistic investors starts out close to zero and remains 
below 10% for the first third of simulated periods (left panel), i.e. there is strong and 
persistent herding on the pessimistic belief. In the middle of the simulation, the frac-
tion of optimistic investors rises due to a run of ‘optimism shocks’ and at one point 

(17)kt+1 =

⎧
⎪⎨⎪⎩

kt + 1 with probabilityP+
t
=
�
1 −

kt

N

��
� + (1 − �)

kt

N−1

�

kt − 1 with probability P−
t
=

kt

N

�
� + (1 − �)

N−kt

N−1

�

kt with probability1 − P+
t
− P−

t

16 Examples of rational herding models include Scharfstein and Stein (1990) and Banerjee (1992). For 
a recent financial markets application that is estimated on stock market data, see Cipriani and Guarino 
(2014).
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exceeds 50% before becoming very volatile and then strongly pessimistic again. In 
the final third of the simulation, however, we see a sudden switch from herding on 
the pessimistic belief to persistent herding on the optimistic belief.

The herd-like behaviour of beliefs is also clear from the simulated distribution 
of the fraction of optimists (right panel). The distribution is bimodal with peaks at 
the extremes of 0 and 1, for which all investors are either pessimistic or optimis-
tic. Although the average fraction of optimistic investors is one-half, the share of 
optimistic investors spends least time at this value and most time near the extremes 
of 0 and 1. There is a U-shaped distribution for the population share of optimists, 
as in Fig. 2, provided that � (the probability of an independent change in an inves-
tor’s beliefs) is small enough; in particular, we require 𝜖 < (1 − 𝛿)∕(N − 1) for a 
U-shaped distribution (see Kirman 1993, p. 144).

Kirman (1991) adds this simple herding mechanism in an asset pricing model, 
such that the population share of chartists nc

t
 is determined by stochastic recruit-

ment as in (17). Hence, unlike the Brock–Hommes model, population shares are 
determined by pure social dynamics, without any reference to profitability. The 
forecasting rules in the model are similar to the fundamentalist and chartist rules 
(12)–(13).17 Price volatility is high when chartist beliefs dominate the market ( nc

t
 

close to 1) and low when fundamental beliefs dominate ( nc
t
 close to 0). As the popu-

lation share of chartists switches from low to high values as in Fig. 2, price volatility 

Fig. 1  Bifurcation diagram for price deviation p̃t in the two-type model (chartists and fundamentalists). 
Parameters are g = 1.2 , r = 0.1 , C = 1 , a�̃�2 = 1 and we simulate the deterministic skeleton, i.e. dt = d for 
all t. For each � we plot 350 points following a transitory of 4000 periods from initial values p̃−1 ∈ (0, 2)

17 Specifically, Kirman assumes that fundamentalists look at the past price deviation, while chartists 
consider both the past level of the price and the most recent price change The asset price is therefore 
given by an equation similar to (16), but with two lags. Further, Kirman assumes investors observe kt∕N 
with noise.
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switches from a low volatility regime to a high volatility regime. The model thus 
provides a qualitative explanation for volatility clustering in returns.

Cont and Bouchaud (2000) also construct a herding model and assess its implica-
tions for stock market returns. In their model, investors interact through a random 
communication structure to determine the asset price (see below). In each period 
the investors i ∈ {1,… ,N} receive a random signal �i(t) ∈ {−1, 0, 1} . If �i(t) = +1 , 
investor i buys the asset in period t; if �i(t) = −1 , investor i sells the asset; and if 
�i(t) = 0 , then investor i does not trade in period t. Aggregate excess demand for the 
asset at date t is thus:

The evolution of �i(t) is described by

A value of b < 1∕2 allows a finite fraction of traders not to trade, with positive prob-
ability, in a given period. Given the assumption of a symmetric marginal distribu-
tion in (19), expected excess demand is zero. Thus, in any given period t, excess 
demand will vary around zero due to random variations in the aggregate sentiment ∑N

i=1
�i(t) . 

The asset price pt is given by a market-maker equation in which the change in 
price is a linear function of the past excess demand:

where parameter 𝜆 > 0 is referred to as the market depth.

(18)Dt =

N∑
i=1

�i(t).

(19)�i(t) =

⎧⎪⎨⎪⎩

+1 with probability b

−1 with probability b

0 with probability 1 − 2b

, where b ∈ (0, 1∕2].

(20)pt − pt−1 =
1

�
Dt−1 ⟹ pt = pt−1 +

1

�

N∑
i=1

�i(t − 1)

Fig. 2  Fraction k/N in the Kirman (1993) model with parameters � = 0.002 , � = 0.01 , k0 = 0 , N = 100 . 
Left panel: T = 60,000 periods. Right panel: T = 5 × 107 periods
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Cont and Bouchaud (2000) first consider the case where individual demands 
[�i(t)]1≤i≤N are IID random variables with finite variance. Since this assump-
tion implies that individual demands are statistically independent, they call this 
the ‘independent agents’ hypothesis. In the case, the joint distribution of the 
demands is the product of the individual distributions, and the change in price 
Δp = pt − pt−1 is a sum of N IID random variables with finite variance (and hence 
pt is a random walk; see 20). For large N, the distribution of Δp is well-approxi-
mated by a normal distribution via the central limit theorem.

Is this a good model of stock market returns? The basic answer is no. Empirical 
distributions of asset returns and price changes are strongly non-normal, exhibit-
ing fat tails and excess kurtosis; moreover, the tails of the empirical distributions 
are heavy with finite variance (see Pagan 1996; Mandelbrot and Hudson  2010). 
Accordingly, Cont and Bouchaud conclude that the ‘independent agents’ hypoth-
esis is at odds with the data and turn to the hypothesis that individual demands 
are determined by communication between investors.

Cont and Bouchaud (2000) suppose that investors organize into groups which are 
given by forming independent binary links with probability c/N, where 0 < c < 1 is 
a connectivity parameter. The components of the so-formed Erdös and Rényi ran-
dom network (see Sect. 6.1.2) then determine the trading groups. Investors in a par-
ticular group (or cluster) coordinate their actions in a herd-like manner, such that all 
members of a group act in unison to buy or sell (or to not trade).

For the case of ng groups, the price equation is adjusted from (20) to

where D�,t = N���(t) is the demand of group � at date t, N� is the number of inves-
tors in group � , and ��(t) is the common individual demand of each member of the 
group.

Cont and Bouchaud assume that the demands of each cluster ��(t) are indepen-
dently random variables with a symmetric distribution analogous to (19), i.e.

The parameter b is taken as proportional to order flow in a given time period and 
inversely proportional to the number of investors N; this implies that only a finite 
number of investors trade at the same time when the number of investors increases 
without bound.

Under the above assumptions, Cont and Bouchaud (2000) show that the distri-
bution of price changes as N → ∞ has the following properties:

• The density of price changes Δp = pt − pt−1 has a heavy, non-Gaussian tail
• The heaviness of the tails, as measured by the kurtosis of the price change, is 

inversely related to the order flow (i.e. liquidity of the market)

(21)pt = pt−1 +
1

�

ng∑
�=1

D�,t

P(��(t) = +1) = P(��(t) = −1) = b, P(��(t) = 0) = 1 − 2b.
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In summary, Cont and Bouchaud show that the ‘independent agents’ version of 
their model is rejected by the data, but adding communication between investors 
through a simple herding mechanism allows the model to generate a distribution 
of price changes that shares some key features of the empirical distribution of 
stock market returns.

4.2.3  Herding plus performance‑based updating

In a series of papers, Lux and co-authors combine herding mechanisms with endog-
enous updating of investor types based on the evolution of asset prices. In particular, 
these works combine herd-like behaviour as in the Kirman and Cont and Bouchaud 
models with performance-based updating as in the Brock and Hommes model, such 
that there is a coupled dynamics of prices, trader sentiment and investor types.

The herding mechanism, known as mimetic contagion, is set out in Lux (1995).18 
Time is continuous and there is a fixed number of chartist investors 2N. Investors 
may be either optimistic or pessimistic, such that n+ + n− = 2N , where n+ ( n− ) is 
the prevailing number of optimistic (pessimistic) chartist investors. Chartists are 
assumed to react to the prevailing sentiment m = n∕N , where n = (n+ − n−)∕2 , such 
that m ∈ [−1, 1] . Lux assumes the probability of switching from pessimism to opti-
mism P+− is higher the larger the prevailing share of optimistic chartists, and vice 
versa for a switch in the opposite direction:

where v > 0 and the parameter b > 0 measures the strength of herd behaviour.19

Given the above assumptions, the dynamics of the sentiment index s is given by

For b ≤ 1 , there is a unique stable steady state at m = 0 , whereas for b > 1 , the 
steady state at m = 0 is unstable and two extra, stable, steady states m+ > 0 , 
m− = −m+ < 0 exist.

Thus, if the herd effect is relatively weak ( 0 < b ≤ 1 ), then the dynamics return to 
a balanced sentiment m = 0 after a disturbance. On the other hand, for b > 1 small 
disturbances will make a majority of speculative investors bullish or bearish through 
mutual contagion, such that the steady state m = 0 is unstable and the dynamics lead 
to an unbalanced steady state ( m+ or m− ) in which the majority has either an opti-
mistic or a pessimistic opinion, with the majority being bigger for a larger herding 
parameter b.

(22)P+− = v exp(bm), P−+ = v exp(−bm)

(23)
dm∕dt = (1 − m)P+− − (1 + m)P−+

= 2v[Tanh(bm) − m]Cosh(bm).

18 The term ‘mimetic contagion’ seems to have been introduced in asset pricing by Topol (1991). The 
mutual mimetic contagion approach in Lux (1995) is a behavioural version of the contagion dynamics.
19 Note that P++ = 1 − P−+ and P−− = 1 − P+− (both < 1 ) are the probabilities that an agent’s sentiment 
will remain unchanged. In addition, the probabilities P+−,P−+ in (22) should be bounded above by 1.
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Stock market dynamics are introduced through demand and supply for shares. At 
any instant, a chartist investor may either buy or sell a fixed amount of stock tN > 0 ; 
the optimistic chartists are the buyers and the pessimistic chartists are the sellers. 
Under these assumptions, the net demand of chartist investors is

where TN = 2NtN is the trading volume of chartists.
Only if m = 0 would all trades of speculators be carried out within the group. 

Therefore, to close the model, Lux (1995) also introduces fundamentalists. Fun-
damental demand depends on the difference between the prevailing price p and a 
fundamental price p:

where TF > 0 represents the trading volume of fundamentalists.
A market-maker sets the price in response to excess demand, such that

with 𝜇 > 0 being a speed of adjustment coefficient.
To allow feedback from the market price to the disposition of chartists, Lux 

(1995) amends the switching probabilities in (22) as follows:

where b1, b2 > 0 , ṗ denotes the time derivative of the price (i.e. the price trend), and 
the parameter b1 is a weight that describes how the probability of switching disposi-
tion is affected by the price trend (as opposed to the prevailing sentiment, m, among 
chartists).

With this amendment, the system of contagion and price dynamics is given by

System (28) allows a rich variety of dynamic behaviours (see Lux 1995, Proposition 
2): 

 (i) For b2 ≤ 1 , there exists a unique (fundamental) steady state Ef = (0, p)

 (ii) For b2 > 1 , two additional steady states exist: E+ = (m+, p+) , E− = (m−, p−) , 
where m+ > 0 , m− = −m+ and p+ − p = −(p− − p) > 0 . If E± exist, Ef  is 
always unstable.

 (iii) When Ef  is a unique steady state, it may either be stable or unstable.
 (iv) If Ef  is unique and unstable, at least one stable limit cycle exists and all tra-

jectories of the system converge to a periodic orbit.

Note that stability of the zero-contagion steady state ( Ef  ) is no longer guaranteed 
when the herding parameter b2 ≤ 1 . Stability is favoured by low ‘responsiveness 

(24)DN = n+ tN − n− tN = mTN

(25)DF = TF(p − p)

(26)dp∕dt = �[DN + DF] = �[mTN + TF(p − p)]

(27)P+− = v exp(b1ṗ∕v + b2m), P−+ = v exp(−b1ṗ∕v − b2m)

(28)
{

ṁ = 2v[Tanh(b1ṗ∕v + b2m) − m]Cosh(b1ṗ∕v + b2m)

ṗ = 𝜇[mTN + TF(p − p)]
.
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to trend’ b1 and by high (low) values of the trading volume of fundamentalists TF 
(chartists TN).

As noted in part (iv), a cyclic motion prevails when Ef  is a unique steady state 
(i.e. b2 ≤ 1 ) and the local stability condition is violated. In this case, the price 
switches between undervaluation and overvaluation as the disposition of chartists 
switches between pessimism and optimism. The price trend and sentiment rein-
force each other in the upward and downward phases of the cycle; however, sta-
tionary majorities are avoided because contagion reaches a climax and declines 
thereafter, as illustrated in Fig. 3.20

Finally, Lux (1995) shows that cycles are not ruled out when herding is strong 
( b2 > 1 ) if the switching probabilities are amended with an ‘mood term’ that 
depends on average returns relative to average expected returns.21 This switching 
between bull and bear markets is related to opinion reversals of the speculative 
traders (i.e. chartists). In particular, as stock prices increase, the ‘mood’ is initially 
positive due to positive realized returns; however, once the overwhelming major-
ity of chartists are bullish, the mood switches because the pool of potential buyers 
is exhausted, such that price increases start to diminish. Ultimately, this change in 
sentiment causes the bubble to collapse, and chartists then become more pessimistic 
and prices fall until the next bull market is triggered by diminishing deflation.

In Lux (1998) and Lux and Marchesi (1999), switching based on profit is intro-
duced. The mechanism is similar to that in Brock and Hommes (1998), except that 
there are two types of chartists—optimistic and pessimistic—and the switching 
probabilities of these types are allowed to differ. In particular, the probabilities to 
switch from fundamentalist to optimistic chartist, from optimistic chartist to funda-
mentalist, from fundamentalist to pessimistic chartist, and from pessimistic chartist 
to fundamentalist are:

where v > 0 and � ≥ 0 is the sensitivity of traders to the fitness measures U1 and U2.
The fitness measures U1 and U2 are based on the difference in profits between 

chartists and fundamentalists—in particular, the realized excess profit per share of 
chartists and the expected (discounted) profit of fundamentalists. There are two fit-
ness measures U1 and U2 because optimistic chartists buy shares, while pessimistic 
chartists sell shares. Note that n+∕2N ( n−∕2N ) is the probability of a fundamentalist 
meeting an optimistic chartist (pessimistic chartist), and nf∕2N is the probability of 
a chartist meeting a fundamentalist.

P+f = v0
n+

2N
exp(�U1), Pf+ = v0

nf

2N
exp(−�U1)

P−f = v0
n−

2N
exp(�U2), Pf− = v0

nf

2N
exp(−�U2)

20 Here, we have adapted Fig. 2 of Lux (1995) for our notation and we present it in landscape orienta-
tion.
21 Lux (1995) develops the analytical results for the case where the impact of the price trend on switch-
ing probabilities is absent, but he notes that the main insights are robust to inclusion of the price trend 
term.
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Lux (1998) shows that the model with herding and performance-based updating 
has chaotic attractors for a wide range of parameter values. Consistent with empiri-
cal evidence, the distribution of price returns implied by the chaotic trajectories has 
higher peaks around the mean than the Normal distribution and fat tails. In a similar 
vein, Lux and Marchesi (1999) show that a version of the model with IID-Normal 
news arrival in the fundamental price generates volatility clustering in returns, a 
plausible frequency of extreme events, and other features of the empirical distribu-
tion of stock returns, such as a slower than exponential fall-off in the density of large 
price fluctuations that ‘dies out’ under time aggregation.

In short, a simple model that combines herding and performance-based type 
updating does well at replicating some key empirical regularities of stock market 
returns. The social aspects of the model—herding related to aggregate sentiment 
and updating of types based on meeting other investors—play a central role in the 
empirical performance of the model.

We now consider some alternatives to the models discussed above, which 
are based on social interactions. We then turn to network approaches to social 
communication.

4.2.4  Social interactions

Social interaction refers to a situation where the utility or payoff of an individual 
depends directly upon the choices of other individuals in their ‘reference group’. 
Note that such interactions differ from the (indirect) dependencies between individu-
als that occur through, say, market prices or congestion effects when all agents have 
‘selfish’ utility. Social interactions include, for example, the behaviours of conform-
ity and contrarianism. We first introduce a simple discrete choice model of social 
interactions (Brock and Durlauf 2001), and we then discuss how this approach has 
been used in the context of asset pricing.

Each individual in a population of N agents makes a binary choice �i ∈ {−1,+1} . 
In an asset pricing context this could be the choice to buy or sell a stock, or the 
choice between two different price predictors. Let �−i = {�1,… ,�i−1,�i+1,… ,�N} 
denote the choices of all agents other than i. The utility that agent i derives from 
choice �i has three components:

Fig. 3  Contagion and price dynamics: a non-fundamental steady states, b cycles
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where u(�i) is private utility, S(�i,�
e
i
(�−i)) is social utility that depends on i’s choice 

�i and on a generic conditional probability measure �e
i
(�−i) that agent i places on 

the choices of other agents, and �(�i) is a random utility term that is assumed to be 
IID across agents.

A common specification for �e
i
(�−i) is the mean expected choice of all other 

agents22:

where �e
i,j

 is the expected choice of agent j as forecast by agent i.
Brock and Durlauf (2001) consider a simple specification for the social utility 

term:

Since J > 0 , the specification in (31) implies a positive externality from conforming 
to the average. In fact, maximizing (31) by choosing �i is equivalent to maximiz-
ing a conformity-based specification S(𝜔i,𝜇

e
i
(𝜔−i)) = −

J

2
(𝜔i − m̄e

i
)2 , since �2

i
= 1 is 

independent of �i.
The random utility terms �(−1) and �(1) are assumed to be independent with an 

extreme-value distribution, such that the differences in the errors follow a logistic 
distribution:

Under these assumptions, the probability of individual choices follows a logistic 
model:

where � can be interpreted as the intensity of choice.
Note that the exponents in (32) may be nonlinear in �i due to the private util-

ity u(�i) . However, since �i ∈ {−1, 1} , the private utility can be replaced with a 
linear utility function ũ(𝜔i) = k + h𝜔i , where h and k are parameters that satisfy 
h + k = u(1) and k − h = u(−1) , such that h = (u(1) − u(−1))∕2 . Note that the 

(29)V(�i) = u(�i) + S(�i,�
e
i
(�−i)) + �(�i)

(30)𝜇e
i
(𝜔−i) = m̄e

i
∶=

1

N − 1

∑
j≠i

𝜔e
i,j

(31)S(𝜔i,𝜇
e
i
(𝜔−i)) = J𝜔im̄

e
i
, J > 0.

P(�(−1) − �(1) ≤ x) =
1

1 + exp(−�x)
, � ≥ 0.

(32)P(𝜔i) =
exp(𝛽[u(𝜔i) + J𝜔im̄

e
i
])∑

𝜔i∈{−1,1}
exp(𝛽[u(𝜔i) + J𝜔im̄

e
i
])

22 Since the reference group here is all other agents, we are studying the case of global interactions. For 
a more general framework for studying social interactions, see the paper by Glaeser and Scheinkman  
(2000).
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function ũ(𝜔i) recovers u(�i) exactly, such that the probabilities in (32) can be sim-
plified by replacing u(�i) with k + h�i.23

Using (30), the expected value of �i is given by

Under common rational expectations, �e
i,j
= E[�i] for all i, j, so E[�i] = E[�j] ∶= m∗ 

for all i, j. In this case, (33) simplifies to

Brock and Durlauf (2001) show that a rational expectations equilibrium m∗ always 
exists and, depending on parameters, there may be multiple solutions. For 𝛽J < 1 , 
(34) has a unique solution, whereas for 𝛽J > 1 , (34) has three solutions if either 
h = 0 or h ≠ 0 and |𝛽h| < H (where threshold H depends on �J ) and a unique solu-
tion if |𝛽h| > H.

With a dynamic model in discrete time t ∈ ℕ and myopic expectations based on 
past mean choices, we have �e

i,j,t
= mt−1 for all i, j and �e

i,t
= mt for all i ∈ N  , so by 

(33), we have:

The steady states of (35) correspond to the rational expectations solutions m∗ dis-
cussed above. When there is a unique steady state (e.g. 𝛽J < 1 or |𝛽h| > H ), this 
steady state is globally stable. On the other hand, if (35) has three steady states, 
then the middle one is locally unstable, whereas the other steady states are locally 
stable (see Hommes 2006). Thus, when there are multiple steady states, the system 
will settle at one of the extremes in which there is herd behaviour: all agents choose 
either �i = −1 or �i = 1 . In such cases, small differences in individual utility may 
lead to large changes in aggregate choices.

The social interactions approach is applied to asset pricing in Chang (2007, 
2014). In these papers, the Brock–Hommes model is extended with myopic global 
interactions (see (35)), such that parameter h is the difference in fitness of chartists 
and fundamentalists. Interestingly, Chang (2007) shows that the strength of social 
interactions depends not just on the parameter J, but also on an ‘endogenous coef-
ficient’ that reflects the characteristics of the predictors, such that the steady state 
version of (35) reads as:

(33)

E[𝜔i] = 1 ⋅
exp(2𝛽[h + Jm̄e

i
])

1 + exp(2𝛽[h + Jm̄e
i
])

+ (−1) ⋅
1

1 + exp(2𝛽[h + Jm̄e
i
])

= Tanh

(
𝛽h +

𝛽J

N − 1

∑
j≠i

𝜔e
i,j

)
.

(34)m∗ = Tanh(�h + �Jm∗).

(35)mt = Tanh(�h + �Jmt−1).

23 For any given u(�i) we can compute u(−1) and u(1) to get h = (u(1) − u(−1))∕2 and 
k = (u(1) + u(−1))∕2 . Note that ũ(1) = k + h = u(1) and ũ(−1) = k − h = u(−1) . We can then simplify 
the probabilities in (32) by eliminating common terms that appear in the numerator and denominator.
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where Jg, Jb are coefficients that depend on m∗ and Jb generally differs from zero.24

For the two-type model with chartists and fundamentalists Chang (2007) shows 
that additional steady states may exist if the strength of social interactions J is strong 
enough (i.e. if 𝛽J > 1 ), while weak social interactions ( 𝛽J < 1 ) can give rise to 
attractors where the population share and asset price have a cyclical behaviour. Fur-
ther, local stability of steady states can be quite sensitive to the strength of social 
interactions. In Chang (2014), herd behaviour and price bubbles are examined. The 
main finding is that for strong enough social interactions, a small deviation from the 
fundamental price may lead to herding that results in a price ‘bubble’ and causes the 
price-type dynamics to settle at a new steady state where herding is permanent and 
the asset is mispriced relative to fundamentals.25

5  Networks and opinion dynamics

In the papers introduced so far, communication or social interactions are global. 
Empirical evidence, however, suggests that the interactions determining financial 
investment decisions are usually local; see Sect. 3. To model local interaction, some 
recent papers on communication and asset price dynamics employ results from the 
literature on opinion dynamics and the spread of diseases on networks.

This social network approach to communication has been widely used in the 
opinion dynamics literature and has some important advantages. First, networks pro-
vide a precise description of social connections that is general enough to nest many 
different communication structures observed in practice. Second, given increased 
availability of computing power and big data, there is now an empirical literature 
that estimates social networks directly. Third, networks are convenient both analyti-
cally and computationally because they can be analysed using the tools of linear 
algebra.

Despite these attractions, social networks have not been widely used in asset pric-
ing models until recently. We therefore introduce useful network concepts in this 
section, before turning to recent literature that embeds social networks in asset pric-
ing models.

5.1  Networks and notation

A network is fully described by the set of vertices and edges, which satisfies the def-
inition of a graph in mathematics. In the context of economics and financial markets, 
the vertices represent the interacting agents or investors and are usually assumed to 

(36)m∗ = Tanh(�Jg + �(Jb + J)m∗)

24 The coefficient Jb is zero if both chartist and fundamentalist beliefs are unbiased (i.e. if they equal 
zero when the price deviation is zero) or if the two types have equal but opposite bias coefficients.
25 In Chang (2014), only chartists and arbitrageurs are considered, where the latter can be interpreted as 
fundamentalists who bet against the trend (with pure fundamentalists nested as a special case).
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stay fixed over time. Hence, we use the same notation for the set of vertices that we 
used for the set of investors, i.e. N = {1,… ,N} . In this paper, we will not use the 
set-theoretic notation of the set of edges, but rather describe a network by its N × N 
adjacency matrix A . Figure  4 gives some example networks and their adjacency 
matrices where

In many applications, networks are binary such that the modeller only cares about 
whether two agents i and j influence each other or not. In this case, each entry aij is 
of binary nature such that the restriction aij ∈ {0, 1} is imposed and an entry aij = 1 
denotes a link from agent i to agents j. Examples where the direction of the link mat-
ters include information flow, citations, or following behaviour in social media. Such 
a network can be represented by its directed edges as in Fig. 4b). A further restric-
tion may require the network to be undirected which best describe bilateral relations 
like friendship, cooperations, or co-authorship. In this case, the adjacency matrix is 
restricted to be symmetric such that aij = aji for all i, j ∈ N  and an entry aij = aji = 1 
is referred to as a link between agents i and j. An example of an undirected network 
is given in Fig. 4a. Non-binary or weighted networks play a role for opinion dynam-
ics to determine relative influences. In this case, a weighted network is required to 
be row stochastic to account for relative influences such that 

∑
j∈N aij = 1 for all 

i ∈ N  is imposed. While binary networks often impose the assumption that there are 
no self-links, i.e. aii = 0 ∀i ∈ N  , this is often not the case for row-stochastic influ-
ence matrices, as these loops represent self-trust. An example of a weighted, row-
stochastic network is drawn in Fig. 4c.

In the application of financial markets, information flow plays a crucial role. If the 
network represents information flow or influence between agents, then agents can 
only influence each other directly if they are connected by a link in the network A . 
To account for the direction of information flow, define Ni(A) ∶= {j ∈ N ∶ aij > 0} 
as the set of agents that i observes and let Mi(A): = {j ∈  :aji > 0} be the set of agents 
that observe  i. For example, in Fig. 4b, N1 = {2} while M1 = {2, 3, 4} . Clearly for 
undirected networks, Ni = Mi for all i ∈ N . In this case, the number of neighbours is 
called the degree and denoted by �i ∶= |Ni| for all i ∈ N .

Agents can also influence each other indirectly via multiple connections. To cap-
ture this, define a walk from node i to node j of length k ∈ ℕ by a sequence of con-
nected nodes (i1,… ik) such that ail,il+1 = 1 for all 1 ≤ l ≤ k − 1 and i1 = i and ik = j . 
Note that a walk of length k from i to j exists, if and only if we have (Ak)ij > 0 where 
Ak denotes the k-th power of the matrix A . The set of nodes that lie on a walk that 
starts in node i are defined as Wi ∶= {j ∈ N|∃k ∈ ℕ ∶ (Ak)ij > 0}. Clearly, Wj ⊆ W

i 
for all j ∈ W

i . For instance, W4 = {1, 2, 3, 4} in Ab in Fig. 4c and Wj = {1, 2, 3} for 
j = 1, 2, 3.

Aa =

⎡
⎢⎢⎢⎣

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎦
, Ab =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 1 0

1 0 0 0

1 0 0 0

⎤
⎥⎥⎥⎦
and Ac =

⎡
⎢⎢⎢⎣

0.5 0.5 0 0

0.4 0.4 0.2 0

0.6 0 0.4 0

0.1 0 0 0.9

⎤
⎥⎥⎥⎦
.
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A subset of agents C ⊂ N  is said to be strongly connected if there is a walk from 
any i ∈ C to any j ∈ C , i.e. j ∈ W

i for all i, j ∈ C . Thus, information can flow between 
any two agents of a strongly connected subset. For instance, the sets {1, 2} and 
{1, 2, 3} are the only strongly connected (non-singleton) sets in Fig. 4a–c. A subset 
of agents C ⊂ N  is said to be closed if there exists no walk from any i ∈ C to any out-
sider j ∈ N ⧵ C , i.e. Wi ⊆ C for all i ∈ C . Note, that the sets {1, 2, 3} and {1, 2, 3, 4} 
are the only closed sets in Fig. 4a–c. Thus, the notion of walks induces a partition of 
the set of agents into communication classes Π(N,A) = {C1, C2,… , CK ,R} such that 
the sets Ck are strongly connected and closed and R denotes the (possibly empty) 
rest of the world of agents not belonging to a strongly connected and closed set. 
Note that there always exists at least one non-empty strongly connected and closed 
set C for each network. A network is called strongly connected if N  is strongly con-
nected. In the examples of Fig. 4a–c, the set {1, 2, 3} is the only closed and strongly 
connected communication class and the singleton set {4} is the rest of the world.

The distance between two nodes i and j in network A is defined as the mini-
mal walk length denoted by d(i, j) ∶= min{k ∈ ℕ ∶ (Ak)ij > 0} . A path between 
two nodes i and j is a shortest walk, i.e. a walk with distance d(i,  j). If two nodes 
are not connected by a walk, we set d(i, j) = ∞ . Clearly a network is strongly 
connected if d(i, j) < ∞ for all i, j ∈ N . The diameter of the network is given by 
D(A) = maxi,j∈N d(i, j).

5.1.1  Network centrality

In many applications, the centrality of nodes (e.g. investors) in a network plays an 
important role. This is also true if we think about opinion dynamics, information 
flow, and influence in networks as discussed later. Before economists paid attention 
to networks, a large body of literature in sociology introduced measures to assess 
how central an agent is in a network.

The most straightforward way to define a node’s centrality is to count the neigh-
bours, which is also called the degree centrality of an agent. Clearly, such a cen-
trality measure ignores large parts of the network structure and may be too simple 
for many applications. More elaborated centrality measures take into account more 
structural properties of the network which may be intuitively thought of as assessing 
network ‘flows’ (Borgatti 2005).

Fig. 4  a Undirected network Aa , b directed network Ab , and c weighted network Ac
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Taking into account only the shortest possible network flows, i.e. paths between 
nodes in the network, Freeman (1979) defines the seminal measures of Closeness 
and Betweenness centrality. Closeness centrality simply discounts the distance d(i, j) 
between any two nodes such that agents with many short paths to others receive a 
high closeness centrality. Betweenness centrality, on the other hand, considers all 
paths between any two nodes and counts for each node i ∈ N  the respective share of 
paths which pass through i.26

Reducing network flows to only the shortest possible ones may be relevant 
in some applications, but often this assumption is a bit restrictive. For instance, 
Betweenness centrality only takes into account the paths between any two nodes. 
Potential outside options via walks of greater distance play no role. Similarly, infor-
mation flows usually take place not only along walks of minimum distance, but also 
along all possible walks in a network.

Seminal notions of centrality taking into account all network flows, were devel-
oped by Katz (1953) and Bonacich (1987). In a similar spirit as Freeman closeness 
centrality, Bonacich centrality discounts the length of all possibly walks between any 
two nodes by a parameter 0 < 𝛿 < 𝜆1(A)

−1 where �1(A) is the eigenvalue of A hav-
ing largest modulus. The idea is that agents with many short walks to others receive 
a high Bonacich centrality. This centrality measure can be alternatively expressed by 
a self-referential notion such that the centrality index proposed by Bonacich (1987), 
bi(A) , is given by, bi(A, �) = 1 + �

∑
j∈Ni(A) bj(A, �) for all nodes i ∈ N  . This self-

referential notion expresses the idea that an agent is central, if the neighbours are 
central (see e.g. Hellmann 2021, for more details). Similar ideas trace back to Katz 
(1953) who defined status of a node to be high if the status of observing neighbours 
Mi is high. The most straightforward way to define this is to directly impose the 
condition that centrality is proportional to the sum of centralities of neighbours, i.e. 
ci(A) =

1

�

∑
j∈Mi cj(A) , with � being some constant. This system of equations can be 

rewritten in matrix notation such that

For this system of equations to have a solution, � must be an eigenvalue and c(A) 
must be a (left) eigenvector of A . Usually, � is assumed to be the largest eigenvalue 
such that all entries of the eigenvector are guaranteed to be real (by Perron Frobe-
nius). For instance, the principal eigenvalue of the weighted network in Fig. 4c is 
� = 1 (since Ac is row stochastic) and the eigenvector normalized such that entries 
sum to unity is c(Ac) = (

18

38
,
15

38
,

5

38
, 0)� . Note that nodes from the rest of the world 

always receive eigenvector centrality of 0. PageRank developed by Google founder 
Larry Page uses similar ideas (but introduces additional scaling factors) and helped 
Google dominate over other search engines.

One advantage of the eigenvector based centrality measures defined in Eq. (37) 
is that it not only applies to binary networks, but can also be applied for weighted 

(37)�c(A) = c(A)A.

26 We do not explicitly define Closeness and Betweenness formally here since these are not needed in 
the application of financial markets. For a formal definition of these, the reader is referred to Freeman 
(1979).
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and directed networks. We show in Sects. 6.3.3 and 7.2.2 that these centrality meas-
ures appear in applications of opinion formation and belief formation in financial 
markets.

5.1.2  Random networks

The networks discussed so far have deterministic links. When the modeler does 
not know the entire network or wants to use degree distributions rather than the 
precise structure of the network, a simplifying assumption is that network forma-
tion is random. The most straightforward way to model random networks is to 
assume that all links in an (undirected) network form with some probability p 
which is identical and independent across all links. Erdös and Rényi advanced the 
findings for such models in such a way that these types of random networks are 
often referred to as Erdös and Rényi networks; see e.g. Erdös and Rényi (1959, 
1960). Due to their simplicity, Erdös and Rényi random networks provide a good 
benchmark to compare with empirical facts in order to find out how real-world 
networks differ from purely random networks (see also Sect. 6.2).

For Erdös and Rényi networks, it is quite easy to calculate the degree distribu-
tion as this is binomial. The probability that a given node has exactly � neigh-
bours is given by

For large N and small p, this degree distribution is well approximated by a Poisson 
distribution such that the fraction of nodes that have � links is given by 
exp(−(N−1)p)((N−1)p)�

�!
.

Erdös and Rényi networks already appear in Cont and Bouchaud (2000) where 
trading groups are determined by the random network (see Sect.  5.2.2). More 
recently, Granha et  al. (2022) apply these types of random graphs in an agent-
based model to analyse opinion dynamics of noise traders and fundamentalists.

Other approaches to random networks aiming to capture some real-world phe-
nomenon directly impose degree distributions. One example is the class of scale-
free networks where the degree distribution follows a power law, i.e. which can be 
written as

where k is a constant ensuring that the probabilities sum to unity and � ∈ ℝ+ . In a 
log-log plot mapping degrees to probabilities (or relative frequencies of observa-
tions), such a distribution is given by a straight line. Scale-free networks seem to 
better capture some stylized facts about real world networks which we present sub-
sequently and which play an important role in diffusion models; see Sect. 6.3.

P(�) =

(
N − 1

�

)
p�(1 − p)N−1−�

(38)P(�) = k�−�
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5.2  Stylized facts of real‑world networks

Many real-world networks across different contexts share common properties. In 
this section, we only sketch some stylized facts about real-world networks and 
refer the reader to textbooks such as Watts (1999) or Jackson (2008) and refer-
ences therein for more details. 

Connectivity Social networks with many participants are often quite sparse, i.e. 
each node is only connected to a very small subset of nodes. As a case in point, 
Ugander et al. (2011) study Facebook data from 2011 and find that out of 721 
million users, the median friend count is 99 with most users having less than 200 
friends (out of a possible 721 million connections).

High clustering Clustering refers to the likelihood that three connected nodes in an 
undirected network form a ‘clique’ which means that they are completely con-
nected. To put it simply, it is a measure determining the likelihood that two neigh-
bours of a node are neighbours themselves. In Erdös and Rényi networks where 
links form independently, two friends of a given node are not more likely to be 
friends themselves than any two random nodes. Instead, in real-world networks, 
this is clearly not the case and clustering is quite high. For instance while the 
global Facebook network is quite sparse, the clustering coefficient is independent 
of the number of friends and is estimated at 0.14, which is quite high compared 
to the relative frequency of links (see above).

Small worlds The small world property refers to the fact that many real-world 
networks have small diameters relative to the number of nodes and small average 
distances although networks are sparse and highly clustered. This was observed 
by Milgram (1967) in the famous letter experiments where participants had to 
send a letter to unknown persons within the USA by only sending and forward-
ing letters to acquaintances. The experiments seemed to confirm the phrase ‘six 
degrees of separation’ since the median number of steps for a letter to reach a 
target was 5, although this phrase was not used by the authors themselves. Modern 
studies (Backstrom et al. 2012) using global Facebook data (with more than 1.59 
billion facebook users) estimate the average distance to be 4.57, corresponding 
to 3.57 intermediaries or ‘degrees of separation’.

Degree distribution The distribution of (the number of) neighbours in a net-
work usually does not follow a Poisson distribution as would be expected for 
sparse but large networks if links form with IID probability, as in Erdös and Rényi 
networks. Instead, the distribution of degrees in real-world networks often exhib-
its fat tails: nodes with very high degrees and with very low degrees occur a lot 
more frequently than expected from a Poisson distribution. Some studies find that 
the degree distributions of real-world networks are well-approximated by scale-
free power law distributions, see (38). For instance, Liljeros et al. (2001) study 
the network of human sexual contacts in Sweden and conclude that the degree 
distribution is well approximated by a power law. Multiple studies also confirm 
that the world wide web has a scale-free degree distribution (Albert et al. 1999, 
2000; Caldarelli et al. 2000; Medina et al. 2000). In particular, scale-free networks 
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satisfy the fat tails property, though not all studies on the degree distribution of 
real-world networks confirm a strict power law.27

Assortativity Many studies have found real-world networks to exhibit positive 
assortativity with respect to degrees. In other words, nodes with many neighbours 
will be connected to other nodes with many neighbours with higher probability 
than under pure random network formation. For instance, Newman (2003) finds 
a high correlation of neighbouring nodes’ degrees in scientific co-authorship 
networks. One network structure with positive assortativity is the core-periphery 
structure composed of a well-connected core and a sparse periphery of nodes (see 
Borgatti and Everett 2000,and references therein); this structure is observed quite 
frequently in social and financial contexts—e.g. the institutional funds market 
has this sort of hierarchical structure (Alfarano et al. 2013). An example core-
periphery structure is presented in Fig. 5.

5.3  Models of diffusion and opinion formation in networks

Particularly relevant for communication and asset prices is the theory of how infor-
mation (respectively diseases) or opinions and beliefs spread through a network. We 
present here two models in epidemiology, the SIR model and the SIS model, and a 
model of opinion formation, the so-called DeGroot model, that have recently been 
used to model the spread of information or types within models of communication 
on networks and asset prices.

The SIR and the SIS model are diffusion models originating in epidemiology and 
use networks to model local interaction. In this case, networks are usually assumed 
to be random to allow aggregation over transmission probabilities or use of mean-
field approaches. Typical questions include infection rates and diffusion thresholds 
at which a phase transition occurs from only a small fraction of the population being 
infected to the large parts of the population catching the disease. Such approaches 
have been applied to find relative frequencies of chartist and fundamentalist types 
and diffusion thresholds in asset pricing models.

The DeGroot model instead assumes a fixed network that is allowed to be directed 
and weighted, thus modeling relative influences. Research focuses on long-run opin-
ions, consensus, time to convergence, and wisdom of the crowds. This approach has 
been recently applied model the dynamics of investor types and asset prices.

5.3.1  The SIR model

The most widely used model of the spread of diseases like the recent Covid-19 pan-
demic, influenza virus, or sexually transmitted diseases is the susceptible-infected-
removed (SIR) model. Individuals can be in one of three states: (a) susceptible 
which means that they are susceptible to becoming, (b) infected upon contact with 
other infected (which entails that they stay infected for some time) before getting, 

27 See, for example, the Facebook data on degree distribution (Ugander et al. 2011).
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and (c) removed (e.g. becoming immune) such that they cannot become infected 
anymore and, therefore, cannot infect others. Such models date back to the 1920 s 
but have been studied using networks in the last two decades. Newman (2002) stud-
ies a large class of randomly generated networks and assumes pair-specific transmis-
sion rates. This extension of the classical SIR model also nests the more complex 
disease transmission models such as SEIR models in which there is an infected but-
not-infective period (E). Depending on the network-generating function, Newman 
(2002) characterizes the outbreak sizes, the epidemic transition, threshold and the 
fraction of infected individuals (infection rate).

Newman applies this methodology to the spread of sexually transmitted diseases 
assuming a scale-free power law distribution as in Liljeros et al. (2001) and shows 
that these types of networks have a lower epidemic transition threshold than the 
fully mixed SIR model where no network is assumed. In the SIS model, which we 
introduce in more detail in the next section, the epidemic threshold is zero in scale-
free networks, and this explains why scale-free networks are particularly susceptible 
to diffusion.

The SIR model on random networks has been used beyond epidemiology to 
model, e.g. social influence and, more relevant in our context, communication and 
investment behaviour. The idea is that being infected can be viewed as holding a 
positive opinion about investing, an optimistic expectation of asset returns, or a buy 
signal. For instance, Shive (2010) shows that the infection rate in the SIR model is a 
good predictor of investment decisions and returns of investors in the Finnish stock 
market, as we explain in Sect. 7.4.28

5.3.2  The SIS model

The other seminal model from epidemiology is the so-called SIS model which 
stands for susceptible-infected-susceptible. Compared to the SIR model which 
assumes removal (immunity, death) after infection, the SIS model has only two pos-
sible states: susceptible and infected. In other words, this implies that after infec-
tion, individuals become susceptible again which makes this model useful to model 

Fig. 5  A core periphery network with core {1,… , 5} and periphery {6,… , 9}

28 Shive (2010) does not use the infection rate directly, but shows that the product of the fractions of the 
population that are infectious and susceptible is a good predictor of returns. This product is proportional 
to the infection rate in the SIR model.
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the spread of diseases that only have a short-term immune reaction (or no immune 
reaction at all) as with the common cold or computer viruses (Pastor-Satorras and 
Vespignani 2001).

The model has found some application in economics (Jackson and Rogers 2007; 
López-Pintado 2008) as the SIS model can easily be interpreted as diffusion of 
behaviour like adopting a product where adoption rates depend on the number of 
others using the same product. In most contexts of diffusion of economic actions, 
the SIS model is a better choice than the SIR model if economic agents can easily 
switch between actions (and hence do not obtain immunity). Such switching is easy, 
for example, in liquid financial markets, and there is evidence that investors trade 
too often to maximize profit (Odean 1999).

A general treatment of the SIS model can be found Bailey et al. (1975) and has 
been applied to scale-free networks by Pastor-Satorras and Vespignani (2001). 
To show how the SIS model works with networks, we follow the presentation of 
López-Pintado (2008): at any time t ∈ ℕ each individual i ∈ N  is either susceptible, 
denoted by si,t = 0 or infected denoted by si,t = 1 . The state of the system at time 
t ∈ ℕ is described by a vector st = (si,t)i∈N  with si,t ∈ {0, 1} for all i ∈ N  . Agents 
are connected by a random network according to some degree distribution P(�) . A 
susceptible agent i with a number of infected neighbours ai becomes infected with 
probability

where � is the spreading rate and f is called the diffusion function. A very simple 
example of a diffusion function is f (�i, ai) = ai as in Jackson and Rogers (2007) 
where the infection probability is linear in the number of infected neighbours. After 
infection, individuals ‘heal’ with probability � in each period—i.e. an infected agent 
j becomes susceptible again with probability � independently of neighbours’ infec-
tion status. The effective spreading rate is then denoted by � = �∕�.

Although the dynamical system is clearly a time-homogeneous continuous 
Markov Chain, closed-form characterizations become intractable quickly for arbi-
trary network structures. The literature often reverts to a mean-field approximation 
(Pastor-Satorras and Vespignani 2001; Jackson and Rogers 2007; López-Pintado 
2008). An important underlying assumption in using the mean-field approach is that 
the random network is re-generated at every time step, meaning that an agent with 
degree � makes � new and independent draws from the population N  at each time 
step t ∈ ℕ . Further, the mean-field approximation only holds for large populations 
(infinite N); hence, it is an approximation for most contexts.

Denoting by �(t) the probability that a given link is to an infected indi-
vidual, we get that the number of infected neighbours is binomial which 
implies that the transition probability from susceptible to infected is given by 
g�,�(�(t)) =

∑�

a=1
�f (�, a)

�
�a

�
�(t)a(1 − �(t))�−a.29

F(�, �i, ai) = �f (�i, ai)

29 Note that while in Erdös and Rényi networks the degree distribution is also binomial, this transition 
probability holds for any degree distributions as the degree is taken as a variable.
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The mean-field equation for the relative density of infected agents at time t with a 
degree � , denoted by ��(t) , can be written as

The first part of (39) is the fraction of susceptible nodes that become infected and 
the second part is the fraction of infected nodes that recover to become susceptible.

A steady state is such that ��� (t)
�t

= 0 and, hence, requires 𝜌𝜂 =
g̃𝜈,𝜂 (𝜃)

1

𝛿
+g̃𝜈,𝜂(𝜃)

. Averag-

ing over all relative frequencies �� implies that for a steady-state probability of 
linking to an infected node � we get � =

1

EP(�)

∑
�≥1 �P(�)�� , where 

EP(�) =
∑

� �P(�) denotes the average degree given degree distribution P(�) . 
Together this gives

Any solution to the recursive Eq. (40) is a steady state of the dynamical system. For 
any degree distribution and any diffusion function f, there may exist multiple steady 
states. For instance, � = �� = 0 for all degrees � is always a steady-state infection 
level, but there can also exist steady states with positive infection rates.

Whether a positive steady state exists is determined by the effective spreading 
rate � =

�

�
 inherent in the disease (or: economic behaviour). If the effective spread-

ing rate � exceeds a critical threshold �c , then a positive steady state exists (assum-
ing that infection requires infected neighbours, i.e. f (�, 0) = 0 ). If multiple steady 
states exist, the only stable steady state is a nonzero one, if the diffusion function 
f is weakly concave as shown in López-Pintado (2008). In other words, the critical 
threshold marks a phase transition in the sense that if starting from an infinitesimally 
small part of the population, the disease dies out when the effective spreading rate is 
below the critical threshold, but it infects a positive fraction of the population at any 
point in time otherwise.

The following holds for the threshold �c under weakly concave diffusion 
functions:

• The critical threshold is given by 

 and thereby depends on the network via the degree distribution P(�) and is inde-
pendent of the diffusion function f (�, a) for all a > 1 . For the simple case of the 
diffusion function being independent of � (Jackson and Rogers 2007), this 
implies �c =

EP(�)

EP(�
2)

.
• In the case of a scale-free network, where the degree distribution P(�) follows a 

power law (see (38)), we have VP(�
2) = EP(�

2) = ∞ , which implies that �c = 0 . 
In other words, the infection can spread regardless of how small the effective 

(39)
𝜕𝜌𝜂(t)

𝜕t
= (1 − 𝜌𝜂(t))g̃𝜈,𝜂(𝜃t) − 𝜌𝜂(t)𝛿.

(40)𝜃 =
1

EP(𝜂)

∑
𝜂≥1

𝜂P(𝜂)
g̃𝜈,𝜂(𝜃)

1

𝛿
+ g̃𝜈,𝜂(𝜃)

.

�c =
EP(�)∑

� �
2P(�)f (�, 1)
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spreading rate � is. Hence, there is no epidemic threshold in scale-free networks 
meaning that any disease will spread to a positive fraction of the population, 
which was already pointed out by Pastor-Satorras and Vespignani (2001) and 
which is empirically confirmed for computer viruses. The intuition behind this 
is that there are many hubs (high-degree nodes) in scale-free networks which 
are likely to become infected because of their high exposure and then spread the 
disease/virus to many other nodes.

• Other types of networks can be compared in terms of epidemic thresholds, and 
comparative statics results between degree distributions are obtained in López-
Pintado (2008) and Jackson and Rogers (2007) using mean-preserving spreads 
and stochastic dominance relations.

In the context of communication and asset price dynamics, the SIS model has been 
used to study the adoption of chartist behaviour in a network of investors (Gong and 
Diao  2022), as we discuss in more detail in Sect. 7.3.1.

5.3.3  The DeGroot model

While both the SIR and the SIS model have their origins in epidemiology and have 
been applied as models of social influence, a more direct and straightforward way 
to model opinion dynamics has been proposed by DeGroot (1974). Suppose each 
individual i ∈ N  initially holds an opinion or a belief gi

0
 about some underlying state 

of nature. At discrete time steps t ∈ ℕ , individuals communicate with each other. 
How individuals take each other’s opinions into account is described by a weighted 
network A where the entry aij denotes the updating weight. Since only relative influ-
ences matter, the network A is assumed to be row stochastic such that aij ≥ 0 and ∑

j∈N aij = 1 for all i ∈ N .
The most radical assumption in DeGroot (1974) is that individuals update accord-

ing to the same network A at each time step t ∈ ℕ . Thus, given individuals hold 
opinions gjt in period t ∈ ℕ for each j ∈ N  , we get that individual i′s opinion in 
period t + 1 is given by

This assumption entails that opinions are updated naïvely and influence does not 
vary over time. While rational updating is beyond the scope of this article,30 we 
briefly present the literature dealing with time-varying updating matrices/networks 
below.

Denoting the vector of opinions at time step t ∈ ℕ by gt = (g1
t
,… , gN

t
) , (41) can 

be written as a power series of the network A such that

(41)gi(t + 1) =
∑
j∈N

aijgj(t).

30 There is a body of literature on Bayesian updating which is not covered in this article. The interested 
reader can refer to the survey article by Acemoglu et al. (2011).
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Steady states of this dynamical system are such that g = Ag . In other words, a vec-
tor of opinions is a steady state of the opinion dynamics if and only if it is a unit 
eigenvector of the matrix A . An eigenvalue equal to 1 always exists since A is row 
stochastic and, hence, has a spectral radius equal to 1.

Not all row stochastic matrices imply that opinions converge to a steady state. 
For instance, the 2 × 2 matrix A with entries aii = 0 and aij = 1 for i ≠ j has opinions 
alternating and never obtaining a steady state if initial opinions differ. Such a matrix 
is called periodic. A common assumption to rule out periodicity is to assume that 
the diagonal of A is strictly positive, which seems reasonable in many contexts of 
communication.

If A is aperiodic, the opinion dynamics always converges to a steady state g(∞) 
such that the following holds (see e.g. Golub and Jackson 2010; Buechel et al. 2015):

• Each closed and strongly connected communication class Ci obtains a long-run 
consensus which is given by gj(∞) = v�

Ci
gCi(0) for all j ∈ Ci where vCi is the left 

unit eigenvector of the matrix ACi
 which has its entries sum to 1.31 In other 

words, the consensus obtained in each closed and strongly connected group is 
the weighted average of the initial opinions of its members where the weights are 
determined by the eigenvector centrality of each group member; see (37). The 
more central an individual is in the network within a closed and strongly con-
nected communication class, the higher the influence of this individual’s initial 
opinion on the consensus. Each closed and strongly connected communication 
class is not influenced by opinions outside this class. Further, the absolute value 
of the second largest eigenvalue � of ACi

 is a measure of how fast opinions in Ci 
converge to consensus. Greater values of |�| imply slower convergence of opin-
ions and can be thought of as a measure of how similar individuals are con-
nected.32

• The opinions in the rest of the world are formed as weighted averages of the con-
sensuses reached in the closed and strongly connected communication classes 
according to the connections that each member of the rest of the world has. Since 
these may differ, the rest of the world usually does not obtain a consensus if there 
is more than one closed and strongly connected group. Formally, the long-run 
vector of opinions in the rest of the world is given by, 

(42)g(t + 1) = Ag(t) = At+1g(0)

gR(∞) =

K∑
i=1

(I − ĀRR)
−1ĀRCi

gCi (∞)

31 ACi
 and gCi denote the restrictions of the matrix A and the vector g , respectively, to the subset C ⊂ N .

32 If all members of Ci use the same updating weights, then ACi
 has rank 1 and � = 0 , hence, convergence 

after one period. The other extremes � = 1 and � = −1 represent very heterogeneous updating weights, 
e.g. if two groups are non-connected. These are excluded by the assumptions of strong connectedness of 
Ci and aperiodicity, respectively, and would lead to non-convergence to consensus.
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 where gCi(∞) = gi(∞)1Ci = v�
Ci
gCi(0)1Ci is the consensus vector in each Ci such 

that 1Ci denotes the |Ci| × 1 vector with all entries equal to 1.
The classical model of opinion dynamics dating back to DeGroot (1974) has been 
extended in multiple directions in recent decades. For instance, Golub and Jackson 
(2010) study how well this naïve model of opinion formation performs in terms of 
information aggregation when there is an underlying true state of nature and ini-
tial opinions are unbiased random variables. Golub and Jackson show that there is 
wisdom of the crowds when there are many non-central individuals. Other studies 
allow the influence matrix A to vary over time in models where individuals only 
update from others with close opinions Hegselmann and Krause  (2002); when self-
trust varies over time (DeMarzo et  al. 2003); when cultural traits are transmitted 
across generations (Buechel et al. 2014); or when opinions can be misrepresented to 
account for conformity or contrarianism (Buechel et al. 2015). A general treatment 
of time-varying influence matrices in the model of opinion dynamics can be found 
in a series of studies by Lorenz (see e.g. Lorenz 2005, 2007). A time-inhomogene-
ous version of the DeGroot model is used to model communication between differ-
ent investor types in Hatcher and Hellmann (2022), which we discuss in more detail 
in Sect. 7.2.2.

6  The state of the art: networks and asset prices

In this final section we review recent contributions the literature on communica-
tion in social networks and asset price dynamics. We focus on works that build on 
the network approaches outlined in the previous section by setting out asset pricing 
models with local social networks of some kind. We then discuss leading empirical 
work that has estimated social network models using financial data, thus giving an 
empirical perspective on these models. Finally, we conclude with some thoughts on 
useful directions for future research.

6.1  An early model

Yang (2009) studies opinion formation in an asset market. There are N investors, and 
pt is the asset price in period t. Investor i’s forecast of the future price is Ẽi

t
[pt+1] , 

dividends are zero, and there is no risk-free asset. Therefore, the demand of inves-
tor i is a simple function of their price forecast (see (10)). Let ki

t
 be the exogenous 

capital ratio of investor i at time t, with 
∑N

i=1
ki
t
= 1 . Note that ki

t
 may be interpreted 

either as the relative capital available to a single investor, or the share of total capital 
available to a particular investor type. Given these assumptions and a fixed asset 
supply, the pricing equation is33

33 E.g. if we set d = r = 0 in (10), demand by investor i is xi
t
= (a�̃� ∶2)−1(Ẽi

t
[pt+1] − pt) . Assuming 

zero outside supply, market-clearing gives 
∑N

i=1
ki
t
(Ẽi

t
[pt+1] − pt) = 0 , so pt =

∑N

i=1
ki
t
Ẽi
t
[pt+1] given ∑N

i=1
ki
t
= 1.
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An investor’s price expectation Ẽi
t
[pt+1] is influenced by their social network. Analo-

gous to the DeGroot model, the social network weights ãij ∈ [0, 1] measure the (rel-
ative) influence of agent j on agent i such that 

∑
j∈N ãij = 1 holds, giving rise to the 

row stochastic network Ã.
Investor i’s price expectation is given by the weighted opinion of their neighbours:

where Fj

t is investor j’s date-t opinion about the future price pt+1 and depends, in a 
chartist manner, on past prices up to some lag:

with mj being the ‘memory span’ of investor j and M being the longest memory 
span.

Thus, past prices combined with memory spans determine investor opinions, 
which in turn determine price expectations (by (44)) and therefore the current asset 
price by (43). Hence, there is feedback from past prices to investor opinions and to 
current prices, with the feedback strength depending on the influence weights in the 
matrix Ã.

Substitution of (44) and (45) into (43) shows that the price dynamics are given by 
a difference equation with maximum order M. Letting �t ∶= (pt, pt−1,… , pt−M+1)

� , 
(45) can be written as Fj

t = fj(�t−1) and, therefore, the price equation (43) can be 
written as

such that the price vector �t is given by a first-order difference equation:

where �M−1 is the identity matrix of size M − 1 and �M−1 is an ( M − 1)-vector of 
zeros.

The stability of the price dynamics depends on the Jacobian matrix J of (47). 
Proposition  1 in Yang (2009) provides a general stability condition of the form 
||�t|| < R(JQt

) , where �t = [q1
t

q2
t
… qM

t
] is the first row of the Jacobian matrix 

and R(JQt
) is the stability radius of the characteristic equation. As an example, Yang 

(2009) considers the L-1 norm ��x��1 = ∑N

i=1
�xi� and shows the stability condition in 

(43)pt =

N∑
i=1

ki
t
Ẽi
t
[pt+1]

(44)Ẽi
t
[pt+1] =

N∑
j=1

ãijF
j

t

(45)F
j

t = f (pt−1,… , pt−mj
), 1 ≤ mj ≤ M

(46)pt =

N∑
i=1

ki
t

(
N∑
j=1

ãijfj(�t−1)

)

(47)�t = Φ(�t−1) ∶=

�∑N

i=1
ki
t

�∑N

j=1
ãijfj(�t−1)

�

(�M−1 �M−1)�t−1

�
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this case amounts to ||�t||1 < 1∕M . The social weighting matrix Ã matters for price 
stability as it influences the value of ||�t||.

The relative influences in Ã are assumed to result from an undirected network 
structure A where each investor i ∈ N  has degree of at least 1, i.e. �i ≥ 1 . The 
degree matrix is given by H = diag[�1, ,… , �N] , which is an N × N diagonal matrix 
with degrees on the diagonal.

The influence matrix Ã is then given by

The parameter � can be interpreted as the relative weight on other connected inves-
tors’ opinions versus the investor’s own opinion. Because Ã is row stochastic, 1 is an 
eigenvalue of Ã and all eigenvalues lie in the unit circle.

Yang (2009) illustrates the implications of different network structures with 
numerical examples. The four chosen networks of size N = 5 and are called power 
law network (abusing notation) APL , star network AS , ring network AR , and com-
plete network AC.34 Further, the functional form for investors beliefs is assumed to 
be linear:

Investor (node) i ∈ {1,… , 5} is given a price memory of length mi = i + 1 , such that 
M = 6 . Yang (2009) considers three values of the relative weight � : 0.1, 0.5 and 0.9, 
where higher values mean more emphasis on opinions of others versus own opinion.

The numerical results are relatively tricky to interpret. One observation is that the 
complete network has a comparatively larger stability space that the other networks, 
i.e. it is more likely that the dynamic system will be stable.35 There is no clear pat-
tern in terms of dynamic stability when the other networks are compared against 
each other. Further, the stability space was larger for higher values of � , meaning 
influence from other agents. Thus, opinion exchange is most effective if agents are 
well connected, are equally important, and place high weight on others which may 
‘diffuse’ potentially destabilizing beliefs of individual investors. In a second experi-
ment, the central node in the star network was given a longer memory horizon and 
the stability space in this case was close to that of the complete network, suggesting 
that a central investor with more feedback data from the past is stabilizing relative to 
having a central but myopic agent.

(48)Ã = 𝛼H−1A + (1 − 𝛼)�N , 0 < 𝛼 ≤ 1.

Fi
t
=

1

mi

(pt−1 +…+ pt−mi
), for i = 1,… , 5.

34 

APL =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

 

AS =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

 

AR =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

⎤
⎥⎥⎥⎥⎦
,

 

AC =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

35 The numerical results are presented in terms of the �-stability of space (see Proposition 4 in Yang 
2009), which is the collective set of (capital-ratio) vectors that satisfy the stability condition.
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The results of Yang (2009) show the potential of social network asset pricing 
models. At the same time, there are some clear limitations of the analysis—for 
instance, the implications of different network structures for price stability can be 
difficult to interpret, and the performance of social connections is ignored by inves-
tors.36 As discussed below, some recent works have tried to fill this gap by providing 
models in which asset price dynamics depend on the financial performance of social 
contacts and can easily be related to properties of networks, such as degree, eigen-
vector centrality and network diameter.

6.2  Performance‑based updating in social networks

Both Panchenko et al. (2013) and Hatcher and Hellmann (2022) set out asset pricing 
models in which investor types depend on the relative performance of neighbours on 
a social network. We discuss these papers in this section, starting with Panchenko 
et al. (2013).

6.2.1  Brock–Hommes model with local networks

Panchenko et al. (2013) extend the two-type Brock and Hommes model with local 
social networks. Recall that in the original model (see Sect.  5.2.1) investors are 
either chartist or fundamentalist and update their type after observing differences in 
profit across a large population of investors. The profitability of each investor—and 
their type— is thereby visible to every other investor (i.e. public information). Seen 
this way, it is clear that the original Brock–Hommes model uses a specific social 
structure: a complete network.

To investigate local social interactions, Panchenko et al. study four different net-
works: the complete network (which nests the Brock–Hommes model); a regular lat-
tice where each agent has degree d = 4 ; a Erdös and Rényi random graph; and a 
small world network. The small worlds network is adapted from Watts and Strogatz 
(1998) and results from a regular lattice with additional random links, and can be 
motivated by the observation that real-world networks are sparse and clustered, and 
have a small diameter (see Sect. 6.2).37

The investors are represented by the nodes of the social network and can observe 
the performance (past profitability) only of those investors who reside on the nodes 
directly connected to them. Hence, an investor who is connected to investors of 
a different type has the possibility to switch type, whereas an investor connected 
only to investors of the same type will not update at that time step. Let Pi,t denote 
the probability that investor i adopts the chartist type in period t, and let Ii,t be an 

36 These weaknesses are shared by other early social-network asset pricing models, e.g. Bakker et  al. 
(2010). In their model there is no opinion formation and the results are based entirely on numerical simu-
lations.
37 A limitation of the small worlds network is that it is unable to reproduce the degree distribution 
observed in real-world social networks such as a power law degree distribution (see Panchenko et  al. 
2013, p. 2626).
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indicator variable equal to 1 (0) if investor i has the chartist (fundamentalist) type at 
date t. The evolution of Pi,t is described by

where Ni is the set of investors that i observes (including herself), Δt ∈ (0, 1) is a 
probability with Uh

t
 being past profit associated with belief type h, and � ≥ 0 is the 

intensity of choice.
Equation (49) states that i does not update their type at date t if either they are 

a chartist and all their neighbours are chartists, or if they are a fundamentalist and 
all their neighbours are fundamentalists. If investor i has at least one neighbour 
with a different type to herself, then her probability of updating to the chartist type 
is given by the discrete choice logistic probability Δt ∈ (0, 1) as in the original 
Brock–Hommes model; see (14). Note that Δt does not depend on the number of 
chartist neighbours that investor i has.

For the case of a complete network, the set of neighbours of any given investor 
i is all other investors, such that Pi,t = Δt for all i ∈ N  and t (excluding degenerate 
cases where all investors start with, or adopt by chance, the same type). If we then 
let the number of investors increase without bound, then by the law of large numbers 
we recover original Brock–Hommes model in which nc

t
= Δt is the chartist popula-

tion share.
In the case of local social networks, tractable analytics are hard to come by. How-

ever, Panchenko et al. (2013) show that for a random graph and an infinitely large 
population of investors, the population share of chartists is approximated by

where k is the average degree of the random graph.
As k increases the population share dynamics approximate complete net-

work case, and for k → ∞ we recover the original Brock–Hommes population 
dynamics: limk→∞ nc

t
= Δt . In this case, the price-type dynamics are given by the 

original model (10)–(16). For small values of k, however, the population dynam-
ics—and hence the price dynamics in (16)—can be very different to the original 
Brock–Hommes model.

Panchenko et al. (2013) establish the following results for existence and stability 
of steady states in the case of the degree-k random graph38

• Case 1: 0 < g < 1 + r . For 𝛽 < 𝛽 tr there are three fundamental steady states: one 
with all chartists E1 ; one with all fundamentalists E0 ; and one E with chartist 
share nc ∈ [0.5, 1) . E is stable and E0,E1 are unstable. At � = � tr , a transcriti-

(49)Pi,t =

⎧
⎪⎨⎪⎩

0 if Ij,t−1 = 0 ∀j ∈ Ni

1 if Ij,t−1 = 1 ∀j ∈ Ni

Δt ∶=
exp(�Uc

t
)

exp(�Uc
t )+exp(�U

f
t )

otherwise

(50)nc
t
= (nc

t−1
)k+1 + [1 − (nc

t−1
)k+1 − (1 − nc

t−1
)k+1]Δt

38 These results are based on Proposition 1 of the paper (see Panchenko et al. 2013, p. 2630). The bullet 
points can be compared with those in the original Brock–Hommes model; see Sect. :5.2.1.



41

1 3

Communication, networks and asset price dynamics: a survey  

cal bifurcation occurs. For 𝛽 > 𝛽 tr , E does not exist, E1 becomes stable, and E0 
remains unstable.

• Case 2: 1 + r < g < 2(1 + r) . For 𝛽 < 𝛽∗ , there are three fundamental steady 
states: E0 , E1 , E . E0,E1 are unstable and E is stable. At � = �∗ , a pitchfork bifur-
cation occurs, E loses stability and two non-fundamental steady states E+ and E− 
emerge. For 𝛽∗ < 𝛽 < 𝛽∗∗ , E+ and E− are stable. At � = �∗∗ there is a Neimark-
Sacker bifurcation and E+ , E− lose stability for 𝛽 > 𝛽∗∗ . E0 and E1 are unstable 
for any �.

• Case 3: g > 2(1 + r) . There are three fundamental steady states E0 , E1 , E and two 
non-fundamental steady states, E+ and E− . All the fundamental steady states are 
unstable. The two non-fundamental steady states are stable for 𝛽 < 𝛽∗∗.

Relative to the original Brock–Hommes model, the main differences are as follows. 
First, for a relatively small trend-following parameter g < 1 + r , there are now two 
‘corner’ fundamental steady states where all investors have a single type (either all 
chartist or all fundamentalist). Second, for intermediate values of the trend-follow-
ing parameter g ∈ ((1 + r), 2(1 + r)) , the bifurcation values �∗ and �∗∗ are lower than 
in the original Brock–Hommes model. The bifurcation values are increasing in k, 
and in the limit as k → ∞ they converge on the original bifurcation values. Finally, 
for strong trend extrapolation g > 2(1 + r) , the non-fundamental steady state is sta-
ble for 0 < 𝛽 < 𝛽∗∗ , but this region may be relatively small as just noted.

The implications of the other two networks—regular lattice and small world—
are studied using numerical bifurcation diagrams in which the intensity of choice � 
is increased. The results indicate that the regular lattice and small world networks 
have similar bifurcation values to the random network, which are much smaller than 
those for the complete network (i.e. the original Brock–Hommes model for the same 
parameter values). Hence, the price dynamics are more sensitive to investors will-
ingness to switch type in response to past performance, and market stability in the 
sense of convergence to the fundamental price is far less robust to increases in � 
once we deviate from the complete network assumption.

Panchenko et al. (2013) also document the impact of the networks on some time 
series properties such as return autocorrelations (both squared and in levels), but 
stop short of a full empirical assessment of the different networks. In light of this, 
a useful exercise for future research would be to identify which types of network 
structures perform best empirically. Since a complete network can be nested in the 
above model, explanatory power will at least match the original Brock and Hommes 
(1998) model, but we would hope to identify empirically-plausible networks for 
which the model’s quantitative performance is improved.

6.2.2  Repeated‑averaging in networks and performance weights

The discrete belief types approach in Brock and Hommes (1998) can be contrasted 
with belief updating in the opinion dynamics literature. The latter approach allows 
individuals to form beliefs (or ‘types’) which are continuous and may potentially 
differ from those of all other individuals. In an asset pricing context this means 



42 M. Hatcher, T. Hellmann 

1 3

that—depending on the network structure—investors with initially different types 
may either converge to a long-run type consensus or remain permanently heteroge-
neous in terms of types (as explained below).

Hatcher and Hellmann (2022) take this approach. In their model, there are N 
investors who are connected via a social network in each period t ∈ ℕ . The links 
between investors are described by the network matrix A , with aij = 1 if i observes 
j and aij = 0 otherwise. The network diameter is denoted D(A) . Each investor 
observes herself, so aii = 1 for all i ∈ N  . Note that aij = 1 has the interpretation that 
investor i receives advice from investor  j before taking investment decisions. The 
risky asset is in fixed net supply X ≥ 0.

Individual demands xi
t
 follow the Brock and Hommes and Panchenko et al. mod-

els (see (10)); however, an important difference is that investors adopt personal 
subjective beliefs rather than being restricted to two polar types (chartist or funda-
mentalist). Investors update their beliefs based on observed relative performance in 
their social network using repeated-average updating rather than a discrete choice 
approach. In particular, beliefs are determined by individual-specific types on the 
spectrum from pure fundamentalist to arbitrarily strong chartist; it is these types 
which are updated and ultimately determine an investor’s beliefs.

Specifically, an investor’s price expectation (or belief) is a type-weighted com-
bination of the chartist and fundamentalist beliefs. Investor i’s type is denoted by 
gi
t
∈ ℝ+ . Accordingly, the price expectation of investor i is given by

where p is the fundamental price and pt−1 is an (unbiased) chartist belief.39

Note that the beliefs in (51) generalize the two-type model in which an investor 
must adopt either a chartist or a fundamentalist belief in a given period. Investors 
can thus differ in terms of how strongly chartist or fundamentalist they are in their 
thinking—i.e. they form an expectation on the range between fundamentalist and 
arbitrary strong chartist.

Types are updated according to

where Ni is the set of neighbours of investor i, Uj

t is the past profit earned by investor 
j given their belief type, and � ≥ 0 is a performance-weight parameter.

The type updating in (52) bears some resemblance to the discrete choice 
approach. In particular, the updating weights, exp(�Uj

t)∕
∑

k∈Ni exp(�Uk
t
) , for each 

neighbour have the interpretation that investor j’s type is weighted according to their 
relative performance against other neighbours of investor i. However, in contrast to 

(51)
Ẽi
t
[pt+1] = gi

t
Ẽc
t
[pt+1] + (1 − gi

t
)Ẽ

f

t [pt+1]

= gi
t
pt−1 + (1 − gi

t
)p

(52)gi
t+1

=
�
j∈Ni

exp(�U
j

t)∑
k∈Ni exp(�U

k
t )

g
j

t, ∀i ∈ N

39 Dividends are assumed to follow an IID process, so expected dividends are fixed at some value d . 
Bias is absent in both forecast types, such that Ẽc

t
[pt+1] = pt−1 and Ẽf

t [pt+1] = p ∶= (d − a�̃�2X)∕r in (51).
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the local-networks version of the Brock–Hommes model in Panchenko et  al. , an 
investor i is not restricted to two fixed types (fundamentalist or chartist) but instead 
takes a weighted average of types among their neighbours. As a result, both the 
types and the fractions of investors adopting a given type are endogenously deter-
mined in the model.

The parameter � is similar to the intensity of choice in the discrete choice 
approach. For finite � , investors consider the belief types of all investors in their 
social network, and better-performing investors receive a higher weight for 𝛽 > 0 . If 
� = 0 , performance is irrelevant and the types of every neighbour in i’s social net-
work are given the same weight 1

|Ni| in the updating Eq. (52); i.e. updating is purely 
social. For the other polar case � → ∞ , investors update only from the best-per-
formers in their social network in each period.40

The vector of types g(t) = (g1(t),… , gn(t))
� is thus updated according to

where Ã(t) =
[
ãij(t)

]
i,j∈N

 and ãij(t) ∶= aij
exp(𝛽U

j
t )∑

k∈Ni exp(𝛽U
k
t )

 are the updating weights.
Given price beliefs of the form (51), market-clearing 

∑N

i=1
xi
t
= X determines the 

price of the risky asset. With p̃t ∶= pt − p denoting the deviation of the price from 
the fundamental price, the price equation has a simple form:

where gt =
1

N

∑N

i=1
gi(t) is the average type in the population. The initial price is 

p̃0 ≠ 0.
Relative to the Brock and Hommes model, the average type in the population 

enters in place of the population share of chartists scaled by the fixed trend-follow-
ing parameter. As a result, the long-run price dynamics will depend crucially on 
whether the average type gt converges to a limit as t → ∞ , and the on value of the 
limit when it exists.

By (53) and (54), we have the following: (i) price converges to the funda-
mental price p̃ = 0 if limt→∞ gt < 1 + r ; and price diverges to +∞ or −∞ if 
limt→∞ gt > 1 + r ; (ii) if limt→∞ gt = 1 + r , price converges to some p̃ ∈ ℝ . Note 
that if gt does not converge to a finite limit, then price may converge, price may 
diverge to +∞ or −∞ , or there may be permanent price oscillations. Price is guar-
anteed to converge for any initial price p̃0 if all investors are initially weak chartists 
( gi(0) ≤ (1 + r) ∀i ∈ N  ) and is guaranteed to diverge to either +∞ or −∞ for any p̃0 
if all types are initially strong chartists ( gi(0) > (1 + r) ∀i ∈ N ).41

With initial types either side of 1 + r , price oscillations occur if gt fluctuates 
between values > (1 + r) and < (1 + r) as t → ∞ , and the long-run price dynamics 
depend on how strongly chartist is the long-run average type in the population. The 

(53)g(t + 1) = Ã(t)g(t)

(54)p̃t =
gt

1 + r
p̃t−1

40 For � → ∞ , the updating weights are 1

|Umax
t (Ni)| (0) for neighbours in (not in) the set of best-performers.

41 Because Ã(t) is a row stochastic, average type is bounded above (below) by the max (min) initial type.
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latter depends on the coupled price-type dynamics (53) and (54), whose evolution 
depends on the social network A and performance-weighted updating in response 
to realized returns that include stochastic dividends. In the polar cases � = 0 and 
� → ∞ , there are tractable analytical results.

Since for � = 0 performance of neighbours is ignored, the type dynamics (53) 
are independent of the price dynamics. In this case, type updating from neighbours 
is purely social as in the time-homogeneous DeGroot (1974) model and the type 
dynamics follow a process akin to that described in Sect. 6.3.3.42 In the long-run, 
each closed and strongly connected group C forms a consensus gC(∞) that is a 
weighted average of initial types such that these weights are given by eigenvector 
centrality and the rest of the world forms an average of the consensuses in the closed 
and strongly connected groups. A simple conclusion in terms of price stability is the 
following:

• Price stability can be fully characterized in terms of the network structure (via 
eigenvector centrality of the investors) and the initial types by taking the long-
run average type ḡ∞ =

∑
i∈N gi(∞).

• For instance, price divergence to +∞ or −∞ is likely if strong chartists 
( gi(0) > 1 + r ) are central in the network or have a large population share, 
whereas price stability is more likely if more fundamental types ( gi(0) < 1 + r ) 
are influential or many. At the knife-edge ḡ∞ = 1 + r where strong chartists and 
fundamentalists are offsetting, the price will converge to a value that may deviate 
from the fundamental price.

For � → ∞ , investors update only from best-performing neighbours (given realized 
profit). In this case, average initial sentiment ḡ0 is crucial as it determines whether 
chartists or fundamentalists perform better, and the initial price p̃0 also matters if 
the risky asset is in positive net supply. Hatcher and Hellmann (2022) focus on the 
case of deterministic dividends and give analytical results for consensus. Here, we 
concentrate on the results under zero net supply X = 0 , which can be summarized as 
follows43:

• If ḡ0 < (1 + r)2 , any investor i ∈ N  adopts the most fundamental type within the 
set Wi in finite time and keeps this type forever, implying closed and strongly 
connected groups form a consensus on the most fundamental type. Analogous 
conclusions hold with respect to adoption of the most chartist type within the set 
W

i if ḡ0 > (1 + r)2.
• The time to adoption of such an extreme type depends on the distance to an 

investor carrying the extreme type initially. In a strongly connected network, all 

42 Since we assumed agents listen to themselves (such that the diagonal of A is strictly positive) the 
matrix Ā is aperiodic and we can draw on standard results in the opinion dynamics literature (e.g. 
DeGroot 1974).
43 For the case of stochastic dividends and X = 0 , it is straightforward to derive bounds for the shocks, 
or restrictions on the support of the dividend process, such that the same results obtain. For the case of 
positive outside supply, we refer the reader to the results and discussion in Hatcher and Hellmann (2022).
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investors will have adopted the most fundamental, respectively the most chartist 
type, by time step t ≥ 2D(A) − 1 which depends on network diameter D(A).

• Price always diverges if ḡ0 > (1 + r)2 or if gmin
0

< (1 + r) . Price always converges 
to the fundamental price if gmin

0
< (1 + r) and ḡ0 < (1 + r)2 . In a strongly con-

nected network, the other direction of both statements holds, too (i.e. if and only 
if holds).

Relative to the case � = 0 , there are some dramatic differences. The in-group con-
sensuses no longer depend on eigenvector centrality, but instead go to the maxi-
mum or minimum initial type in the group (depending on whether ḡ0 < (1 + r)2 
or ḡ0 > (1 + r)2 which determines whether high or low types earn higher profit). 
Hence, the network only has an indirect impact on consensus by determining group 
membership. With consensus on extreme types, price stability is likely if initial 
chartist sentiment is low ( ̄g0 < (1 + r)2 ) and impossible if initial chartist sentiment is 
high ( ̄g0 > (1 + r)2).

Though network structure plays little role in determining the type consensuses 
when investors are strongly focused on performance, network diameter influences 
time to convergence. To see the implications, suppose the network is strongly con-
nected and there exists at least one pure fundamentalist, i.e. gi(0) = 0 for some i. 
If ḡ0 < (1 + r)2 , consensus is on the pure fundamental type of 0, so p̃t = 0 for all 
t ≥ 2D(A) − 1 (see (53)). In this case, the market is efficient in the long run, but not 
in the short run, and the maximum distance between investors gives an upper bound 
on the date when mispricing is eliminated.

For intermediate 0 < 𝛽 < ∞ , Hatcher and Hellmann (2022) show by simulation 
that agents adopt a long-run type that is a weighted average between the eigenvec-
tor centrality based type (network determined type) and one of the extreme types 
(performance determined type). The weights depend on the intensity of choice � in a 
continuous but non-linear way such that the intensity of choice � scales between the 
network determined type and the performance determined type.

There are also two further numerical applications. First, Hatcher and Hellmann 
show that if � → ∞ and the dividend shock variance is large enough, the consensus 
is hard to predict and may differ substantially from the ‘extreme type’ prediction 
in the deterministic case because the performance ranking will switch if dividend 
shocks change the sign of realized returns. At the same time, time to convergence 
varies dramatically and is highest for intermediate shock variances, so even small 
noise is enough to delay the ‘long run’ substantially. In a second exercise, they con-
sider a deterministic model with positive outside supply and both a stubborn fun-
damentalist and a stubborn chartist who are followed by others but do not change 
their type. Here, permanent price fluctuations arise when � is sufficiently large; the 
reason is that with positive outside supply, the performance ranking of types can 
switch endogenously when price moves either side of a price threshold which is 
itself endogenous.

While the above results are interesting, it is an open question whether belief 
updating is better modelled by a discrete-choice approach as in Brock and Hommes 
(1998) or by the approach in Hatcher and Hellmann (2022). Future empirical work 
may be of help here.
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6.3  Diffusion models with social networks

A third strand of recent modelling work has considered diffusion-based models of 
investor beliefs with explicit social networks. We focus, in particular, on the theo-
retical paper of Gong and Diao  (2022) and the empirical contribution of Nicolas 
(2022).44

6.3.1  A SIS‑type model

Gong and Diao  (2022) consider a model with imitation and performance-based 
updating. There are N investors in the population, where N is large. Investors are 
connected in an undirected random network. Let �i denote the degree of investor i 
and P(�) the degree distribution. Investors have either a chartist or a fundamentalist 
type, and there are two groups of investors, A and B. Investors in group A care about 
what their neighbours do but ignore strategy performance; investors in group B fol-
low a Brock–Hommes updating rule.

In group A the investors imitate each other according to a SIS mechanism. The 
degree distribution of group A satisfies 

∑
i∈A PA(�i) = 1 , where PA(�i) is the frac-

tion of the population in group A with �i neighbours. The population fractions of 
groups A and B are � and (1 − �) (respectively); under these assumptions we have the 
interpretation that investors imitate other investors’ trading strategies with (herding) 
probability � and consider past profit with probability (1 − �) . Investors who update 
type based on profitability compare profit under the chartist and fundamentalist trad-
ing strategies and select the chartist strategy with the usual discrete choice probabil-
ity Δt in (49), with Uh

t
 being the (net) profit of type h.45 Given the assumption of a 

large population, the fraction of chartists in group B is Δt.
Asset demands are determined as in the Brock and Hommes (1998) model (see 

(10)). For investors in group B, beliefs are determined by profits as just discussed. 
For investors in group A, the imitation dynamics determine their belief at each t 
(and hence their demand). The diffusion framework is based on the SIS model (see 
Sect. 6.3) adopted from López-Pintado (2008), with vf  being the probability that a 
chartist type switches to a fundamentalist type after contact with a fundamentalist. 
Analogously, vc is the switching probability of a fundamentalist type that meets a 
chartist.

For an investor i ∈ A with �i neighbours, we have �i = ai + bi , where ai ( bi ) is the 
number of fundamentalist (chartist) neighbours. Gong and Diao  (2022) assume that 
investor i’s imitation decision depends on the conditional probabilities �h and the 
number ( �i ) of neighbours and their composition ( ai, bi ). In particular, the respective 
probabilities of switching from the fundamentalist type to the chartist type at time 
t + 1 , and vice versa, are:

44 Early empirical support for an epidemic-type model of financial markets was provided by Shive 
(2010); we discuss this paper in more detail in the next section.
45 There is a small change in the forecasting rules of chartists and fundamentalists and the performance 
measure relative to the Brock–Hommes model.
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where � ≥ 0 represents a neighbourhood effect.
The larger is � , the more attention investors pay to the relative number of neigh-

bours who have different trading strategies. For � = 0 , the imitation mechanism 
matches the standard SIS model, in which the switching probability is proportional 
to the number of neighbours with the other type. Note that the parameters �c and �f  
in the diffusion functions (55) are the spreading rates of the trading strategies. Let �t 
be the probability of meeting an investor adopting the fundamental strategy at date t. 
Via the binomial distribution, the rates at which an investor in group A with � neigh-
bours switches state from chartist to fundamentalist is �f �t�1−� , and the switching 
rate fundamentalist to chartist is �c(1 − �t)�

1−�.
Gong and Diao  (2022) show the mean-field equations for the switching dynamics 

are46

where ��,t is the share of degree-� investors adopting the fundamental strategy at 
date t, and 1 − Δt is the share of fundamentalists in group A. Note that the popula-
tion share of fundamental investors in group A is 𝜌t ∶=

∑
𝜂>0 PA(𝜂)𝜌𝜂,t.

Equation (56) is the population dynamics of investors in group A, while (57) is 
the probability �t of meeting a fundamentalist in the entire population. Recall that an 
investor picked at random is in group A with probability � and group B with prob-
ability (1 − �) . Given the assumption of a large number of investors, the market pop-
ulation shares are:

It follows that per-investor demand for the risky asset at date t is xt = nc
t
xc
t
+ n

f

t x
f

t  . 
The price is set by a market-maker who updates the price in response to past excess 
demand according to pt+1 = pt + �xt , such that the deviation of price from the fun-
damental price is:

Gong and Diao  (2022) first consider steady states of the above system. There exist 
only fundamental steady states with p̃ = 0 and �∗

k
=

�f �
∗

�f �
∗+�c(1−�

∗)
 , where �∗ = nf  , 

(55)F(�c, �i, bi) = �c
bi

��
i

, F(�f , �i, ai) = �f
ai

��
i

(56)��,t+1 − ��,t = (1 − ��,t)�f �t�
1−� − ��,t�c(1 − �t)�

1−�

(57)𝜃t = 𝛿
�
𝜂>0

PA(𝜂)𝜂

⟨𝜂⟩ 𝜌𝜂,t + (1 − 𝛿)(1 − Δt)

(58)n
f

t = ��t + (1 − �)(1 − Δt), nc
t
= �(1 − �t) + (1 − �)Δt.

(59)p̃t+1 = p̃t + 𝜇xt, 𝜇 > 0.

46 Gong and Diao  (2022) assume that degrees are uncorrelated in group A and define the average 
degree of group A investors as ⟨𝜂⟩ = ∑

𝜂>0
∶ PA(𝜂)𝜂 , such that the probability of having � neighbours is 

�PA(�)∕⟨�⟩.
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such that �∗
k
 is independent of the degree � (and hence network structure). They also 

show the following:

• If the spreading rates �c and �f  differ, or if �c = �f  and � ∈ [0, 1) , then there is 
a unique fundamental steady state. Otherwise, there are infinitely many steady 
states corresponding to the many different values of �∗ such that �∗

k
= �∗.

• When 𝜈f > 𝜈c and � ∈ [0, 1) , the fundamental strategy is adopted with higher 
probability in the market than warranted by its relative performance (i.e. 𝜃∗ > nf  ).     

Having studied steady states, Gong and Diao  (2022) proceed to stability analysis. 
For � = 1 , only the composition of neighbours matters for imitation (see (55)) and 
network structure is irrelevant. In this case, stability is favoured if the price adjust-
ment parameter � is small, if � is large, and if the intensity of choice � is not too 
large or too small; further, herding can aid market stability, even if herding is on the 
chartist strategy. For � ≠ 1 the network structure matters and stability is weakened 
as the Jacobian has a unit eigenvalue. Further, a market with conservative investors 
( 𝜆 > 1 ) is more likely to be stable than one with aggressive investors ( 𝜆 < 1 ), like 
the standard SIS model, where � = 0 and only the absolute number of neighbours 
matters for contagion. Finally, Gong and Diao show that for small � , the stability 
condition is less likely to be satisfied for large variance of the degree distribution, 
⟨�2⟩ . In such cases, network structure is important for market stability.

6.3.2  An estimated Lux‑type model with sentiment data

A diffusion-based asset pricing model is taken to the data in Nicolas (2022). In par-
ticular, the Lux herding model is adapted to include a social network and is esti-
mated using a sentiment index based on 15 US stocks and five cryptocurrencies. 
Fundamental investors are absent, so the population of investors consists of chartists 
(i.e. speculators) who may be either optimistic or pessimistic. Accordingly, at time t 
there are n+ optimistic investors and n− pessimistic investors; the overall population 
size is therefore 2N = n+ + n−.47

The prevailing sentiment m ∈ [−1, 1] is given by

If m > 0 ( < 0 ) then optimistic (pessimistic) investors are predominant in the popu-
lation; hence m > 0 can be interpreted as positive sentiment and m < 0 as negative 
sentiment. Switches between optimism and pessimism are governed by transition 
probabilities analogous to those in (22), except for the inclusion of an ‘intercept 
term’ b0:

(60)m =
n

N
=

n+ − n−

2N
, where n ∶= (n+ − n−)∕2.

(61)P+− = v exp(b0 + b1m), P−+ = v exp(−b0 − b1m).

47 For easy reference, see our earlier discussion of the Lux (1995) model in Sect. 5.2.3.
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where b1 ∶= �N , such that � can be interpreted as a ‘strength of herding’ parameter.
In the Lux (1995) model, each individual forms their opinion knowing the cur-

rent societal configuration, which is equivalent to investors being fully connected 
via a complete network. Accordingly, the coefficient b1 in (61) is proportional to 
N, reflecting more interactions in a large population. In a model with large N, how-
ever, this assumption is hard to justify because individuals can only participate in 
a limited number of interactions (e.g. due to congestion). Further, as discussed in 
Sect. 6, real-world networks have properties such as clustering and sparsity, which 
are inconsistent with a complete network.

Nicolas (2022) therefore augments the model with local social networks. Given 
the definition of n in (60), the social configuration of neighbours of investor i is 
defined by

where Ni is defined as the set of investors to which i is connected (excluding self).
For tractability, a mean-field approximation is used as in Alfarano and Milaković 

(2009). Under this assumption, heterogeneity is negligible and (62) can be approxi-
mated by

Define �̄� as the average number of neighbours per investor ( = average degree of the 
network). At the mean-field approximation, every investor has �̄� neighbours. There-
fore, taking n+∕2N and n−∕2N as approximations to the unconditional probabilities 
that a neighbour of investor i is, respectively, optimistic or pessimistic, yields:

such that (63) is given by

The transition probabilities are therefore amended from (61) to

where b̃1 ∶= 𝜅�̄� is independent of the number of investors (i.e. does not depend on 
N).

The key difference between (64) and (61) can be seen by letting N → ∞ . The tran-
sition probabilities (61) in the original Lux model depend on the coefficient b1 , which 
explodes as N is increased. By comparison, the transition probabilities in (64) depend on 
b̃1 , which is scale-independent due to the fixed average number of interactions �̄� of each 
investor.

There are two important advantages of this approach. First, the problem of 
N-dependence highlighted by Alfarano and Milaković (2009) is avoided, such 
that increasing the number of agents does not lead to a lack of robustness in the 

(62)n(i,Ni) = (n+(i,N
i) − n−(i,N

i))∕2

(63)⟨n(i)⟩ = (⟨n+(i)⟩ − ⟨n−(i)⟩)∕2.

⟨n+(i)⟩ = �̄�
n+

2N
, ⟨n−(i)⟩ = �̄�

n−

2N
,

⟨n(i)⟩ = �̄�(n+ − n−)∕2N =
�̄�

2
m

(64)P+− = v exp(b0 + b̃1m), P−+ = v exp(−b0 − b̃1m)
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macroscopic properties of the model. Second, because the coefficient b̃1 does not 
explode, it becomes feasible to estimate the herding parameter using a dataset with 
large N. Both these properties are important from an empirical perspective since 
real-world markets—and datasets—often have many investors.

Nicolas (2022) estimates the model using data extracted from the StockTwits 
social media platform. The sample period is daily 1 Jan 2018 to 1 Jan 2021, and 
the sample consists of 15 US stocks and five cryptocurrencies which trended on the 
platform during the sample period (based on discussion activity). To construct a 
sentiment index m, sentiment analysis was used to classify messages as either bull-
ish, bearish or neutral, giving a weekly measure of overall sentiment. Alongside 
this, price and returns data for the assets was also obtained at weekly frequency. The 
model was estimated using maximum likelihood methods.

The estimation results for the parameter b̃1 indicate a strong influence of investor 
interactions in the formation of sentiment that is stronger for high volatility assets, 
consistent with the hypothesis that herding behaviour is linked to higher volatility 
levels. Further, for the five cryptocurrencies that experienced a bubble in late 2017, 
the herding effects were found to be particularly strong during this bubble period. 
As noted by Nicolas (2022), these results cast doubt on the efficient markets view 
that traders make decisions independently of one another and ignore non-fundamen-
tal information such as investor sentiment.

6.4  Empirical work and model estimation

As we have seen, recent work has added explicit social networks in asset pricing 
models. Alongside these new models there have been attempts to estimate real-
world investor networks and asset pricing models in which social networks are 
embedded. In this section, we discuss these leading empirical works as well as 
recent developments in methods for estimating financial market models with het-
erogeneous agents.

Early work which investigated the impact of social influences in investment deci-
sions found that investors rely on advice from close contacts, such as friends and 
relatives, and consider communication with industry experts as one of the most 
important factors in their decisions. This initial work relied on surveys of investors, 
but subsequent literature also identified social connections based on asset holdings: 
mutual fund managers have similar asset holdings to those of other fund managers in 
the same city, while households are more likely to purchase stocks from a particular 
industry if their neighbours did so.48

Shive (2010) sets out an epidemic model of the stock market: the basic idea is that 
investors with a strong opinion about a stock are likely to take a position (infection) 
and share their opinion with others (spread the ‘infection’). Consistent with the SIR 
model, the infection rate is assumed to be proportional to product of the populations 
of infective and susceptible. Shive tests this hypothesis using data on investor trades 
in the leading stocks in Finland from Dec 1994 to Jan 2004. The empirical results 

48 See Shiller and Pound (1989), Arnswald (2001), Hong et  al. (2005), and Ivković and Weisbenner 
(2007).
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support the ‘social influence hypothesis’: a 1% increase in the intensity of social 
meetings is associated with a 2% increase in subsequent buys or sells, and socially-
motivated trades help to predict stock returns. In a similar vein, estimated models of 
herd behaviour in financial markets, such as Franke and Westerhoff (2011) and Cip-
riani and Guarino (2014), find that social connections exert an influence on invest-
ment decisions, and a recent paper by Granha et al. (2022) sets out a model of opin-
ion dynamics via random networks that has impressive empirical performance.

The interconnectedness of the financial system—as shown by the Global Finan-
cial Crisis—has focused attention on the implications of networks for financial sta-
bility. Detailed studies of investor social networks include Ozsoylev et  al. (2014), 
in which the authors uncover an empirical investor network in the Istanbul Stock 
Exchange; and Ahern (2017), which provides evidence of illegal insider-trading 
networks in the USA, with links formed through family, friends and geographical 
proximity. In addition, Rossi et al. (2018) document a positive relationship between 
network centrality and risk-adjusted performance of delegated portfolio managers, 
whereas Li and Jiang (2022) find that well-connected institutional investors in China 
contribute to an increase in stock price crash risk.

Some recent papers have estimated asset pricing models with social networks 
directly. For example, the model of Nicolas (2022), discussed in the previous sec-
tion, was estimated using maximum likelihood and data on 15 US stocks, five 
cryptocurrencies and a measure of sentiment. The estimation results show a strong 
impact of herding behaviour on sentiment for highly volatile assets. Interestingly, 
financial returns appear to have limited impact on sentiment for high-volatility 
assets, but exert an important influence for low-volatility assets; hence the relative 
importance of pure social effects versus financial performance seems to depend on 
return volatility. Clearly, such estimation exercises are important to determine the 
relative contribution of modelling social networks in asset pricing models.

In general, there are several methods available for estimating structural asset 
pricing models with heterogeneous agents and social interactions. Two broad 
approaches have been used in the literature (see Lux and Zwinkels  2018). The first 
approach is based on some form of simulated method of moments estimation. For 
example, Boswijk et  al. (2007) use nonlinear least squares to estimate a two-type 
Brock–Hommes model with time-varying population shares, while Amilon (2008) 
uses simulated method of moments to estimate a three-type model. An alternative 
approach is to use maximum likelihood estimation. Chiarella et al. (2014) estimate 
a simplified two-type model using quasi maximum likelihood, while some recent 
contributions (see below) use filtering techniques to approximate the conditional 
densities that enter into the likelihood function. The main advantage of the latter 
approach is the precision of parameter estimates and the possibility of inferring the 
trajectories of latent variables, such as the fundamental price or sentiment index, in 
heterogeneous-agent models.
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In Lux (2018), a sequential Monte Carlo method with the particle filter is used to 
estimate two such models. The first model is based on Alfarano et al. (2008) and is 
essentially a discrete-time Kirman–Lux model in which the fundamental price fol-
lows a random walk, speculative traders have fixed trading volume, and the overall 
disposition of sentiment-prone traders (as measured by the sentiment index) is deter-
mined by transition probabilities that allow herding on an optimistic or pessimis-
tic sentiment alongside occasional shifts in opinion, as in Kirman’s ant recruitment 
model. The second estimated model is inspired by Franke and Westerhoff (2012); 
it is similar in spirit to the previous model but allows trading volume to depend on 
the past price trend, and agents can switch between chartist and fundamental types. 
The results of a Monte Carlo exercise on both models are encouraging, although the 
intensity of using the particle filter increases computation time substantially relative 
to other approaches. The empirical application which estimates both models sug-
gests that goodness-of-fit is better for the Alfarano et al. (2008) model.

In Majewski et al. (2020), a Bayesian filtering approach is used—in conjunction 
with the Unscented Kalman Filter—to estimate a version of the Chiarella (1992) 
model with non-linear demand of fundamentalists. The estimation uses monthly 
time series on a range of asset classes since 1800, including a US stock price index. 
A key advantage of this approach is that it reduces computational burden relative to 
the particle filter while allowing the identification of latent variables. For example, 
the fundamental price is estimated without using any external information such as 
dividends or a pricing equation, and the resulting fundamental value is endogenous 
since it is treated as a ‘reference point’ that can be filtered out from the time series of 
prices. This feature is attractive given the difficulty of finding plausible equations to 
describe the level and dynamics of fundamental values.

In summary, the estimation of heterogeneous-agent model remains a challenge, 
and many papers have considered models with a small number of investor types. 
However, recent developments in both modelling and estimation techniques give 
cause for optimism, and this is only reinforced when one factors in likely improve-
ments in data availability, computing power and the potential of machine-learning 
and other artificial intelligence methods.

6.5  Future research

As impressive as the literature on communication and asset price dynamics is, there 
are some clear gaps in our understanding and several interesting directions for future 
research.

First, models which incorporate explicit social networks are in their infancy, and 
hence, there is a need for future work that explores the potential of this approach for 
explaining price dynamics and empirical stylized facts of stock market returns. If 
such models are useful from an empirical perspective—as initial work suggests—
then the next step will be to discipline such models with social networks and inves-
tor behaviour that are supported by real-world data. In this case, it will be important 
to have rich data on social connections for both professional and retail investors. As 
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shown, several works have estimated investor networks using real-world data and 
improved our understanding of investment decisions.

Ultimately, such works may make it possible to adapt financial market models 
to specific settings, in which case they may eventually be useful guides, or testing 
grounds, for forecasting or the design of robust regulatory policies. Admittedly, we 
are some distance from this right now, but with increasing computing power, and the 
promise of artificial intelligence and big data, modelling investor networks makes 
sense precisely because they may (plausibly) be disciplined by real-world data. In a 
similar vein, experimental and survey evidence are shedding light on how investors 
form expectations and the relative importance of social communication for events 
such as financial market booms and crashes.

Second, many recent models of communication and asset prices can be viewed as 
extensions of earlier models, but with the addition of social networks. Nevertheless, 
different models can have very different implications for asset price dynamics, and it 
is therefore important to understand conditions under which alternative models pro-
duce similar or different results. As an example, some approaches emphasize past 
profitability as an important factor in belief updating on social networks whereas 
others ignore this possibility; and even among approaches that emphasize perfor-
mance, the details of the updating can matter a lot for beliefs and asset prices. More 
work is also needed to evaluate the importance of past performance for investment 
decisions and to shed light on the ‘memory length’ of investors.

While most of this survey article has focused on communication between inves-
tors with respect to price expectation, there may also be other parts of investors’ 
utility that drive investment decisions. One example is a preference for environmen-
tal or socially-focused investments such as green tastes (Pástor et al. 2021). A gen-
eral finding (without communication) is that if investors have preferences for certain 
assets that are unrelated to prices, then these assets are overvalued because investors 
enjoy holding them. When investors instead communicate and their tastes evolve 
accordingly, what are the implications for the performance of the associated assets? 
Should financial institutions and fund managers invest in accordance with these 
tastes, if they have a strong preference for financial performance?

Last but not least, there have been dramatic changes in how investors communi-
cate over the past 20 years—including social media, online forums and retail invest-
ing—yet our understanding of how these modern developments impact financial 
markets is limited. Some important questions are: do online forums facilitate herd 
behaviour by making it easier for investors to observe and imitate the opinions of 
others? Do amateurs (i.e. retail investors) tend to rely on the opinions of others to a 
greater or lesser extent than professional investors, and what are the implications of 
this for market stability and financial regulation? How does online communication 
compare with face-to-face in terms of influence on investment decisions? Answering 
questions like these is important not only for regulators, but to ensure that the next 
generation of asset pricing models are useful and draw on relevant data.
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7  Conclusion

In this paper, we provided a survey of the state of the art in the area of communica-
tion and asset price dynamics. We focused in particular on attempts to model asset 
prices as the outcome of various social communication protocols, and on how this 
growing literature has evolved over time. One common feature among studies is that 
communication between agents is modelled at the level of investors expectations or 
demands, which follow simple rules-of-thumb or heuristics. A robust finding from 
the literature is that simple investor behaviour, combined with social communica-
tion, gives rise to complex asset price dynamics.

By taking communication seriously, these models can explain several stylized 
facts which challenge the efficient markets hypothesis. Early contributions to the lit-
erature focused on herding or adoption of the most successful investment strategies, 
and showed these models do well empirically. Recent work has modelled communi-
cation using explicit social networks which specify connections between individual 
investors, as in the opinion dynamics literature. In these models, investor beliefs 
influence both the asset price and the beliefs of other investors, so communication 
plays an important role in price determination. On top of this, recent work allows 
belief updating from an investor’s (local) social network to depend on performance, 
thus extending an important tradition from the early models.

This modern approach appears to have much potential, and we discussed some 
leading examples which support this view. The most interesting questions relate to 
the empirical value of this approach and how researchers can build better models of 
asset pricing. Promising avenues for future research include attempts to better under-
stand the consequences of communication for asset prices and regulation of financial 
markets, including the roles of performance-based social updating and ‘influencers’; 
work to assess how well different communication models of asset prices perform 
empirically via model estimation, evaluation against stylized facts, or asset pricing 
experiments; and research that documents social connections between investors and 
thus facilitates the calibration of models with social networks. Admittedly, this is a 
list of highly ambitious goals, but with continuing developments in big data and arti-
ficial intelligence, much of this may soon be feasible for ordinary researchers.
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