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Abstract
This is a review about financial dependencies which merges efforts in econophysics 
and financial economics during the last few years. We focus on the most relevant 
contributions to the analysis of asset markets’ dependencies, especially correlational 
studies, which in our opinion are beneficial for researchers in both fields. In econo-
physics, these dependencies can be modeled to describe financial markets as evolv-
ing complex networks. In particular, we show that a useful way to describe depend-
encies is by means of information filtering networks that are able to retrieve relevant 
and meaningful information in complex financial datasets. In financial economics 
these dependencies can describe asset comovement and spill-overs. In particular, 
several models are presented that show how network and factor model approaches 
are related to modeling of multivariate volatility and asset returns, respectively. 
Finally, we sketch out how these studies can inspire future research and how they 
contribute to support researchers in both fields to find a better and a stronger com-
mon language.
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1 Introduction

Dependencies in financial markets are complex and can be found at many levels. 
These markets are influenced by changing economic fundamentals and economic 
policies around the world. There are also numerous interactions within the asset 
markets themselves, and there is feedback from market participants who have vary-
ing expectations about future developments. Many of these processes do not result 
in measurable streams of data but only manifest themselves in latent variables, like 
the observable changes in asset prices and other financial data. In order to under-
stand the functioning of financial markets we therefore have to analyze the structures 
that are present in market data, which in turn means to measure and explain their 
dependencies. This is of course not a new endeavor, and  the literature in the field 
of financial economics has dealt with this for several decades and has developed 
models that explain the differences in asset returns. Network science has however 
brought a new approach to the field, as it has enabled us to describe the dependen-
cies of large sets of assets jointly—and not only factors that explain differences.1

Research on the quantitative aspects of financial markets has always been inter-
disciplinary, at the intersection of economics, mathematics and statistics. With the 
advent of networks science however, even more fields became interested in finan-
cial markets, especially researchers from physics, computer science and engineer-
ing. This has led to many new and important insights into financial markets, but has 
also made it more difficult to understand the diversity of approaches and to evaluate 
what the most powerful methods are to study financial dependencies. This review 
therefore specifically aims at showing different approaches to measuring financial 
dependencies across disciplines and connecting them to the foundations in finan-
cial economics and statistics. The presentation will therefore sometimes be rather 
wide in scope than deep. This is intentional because we believe that interdisciplinary 
research is typically only impact-full if it reaches researchers in different disciplines, 
and when it shows that its authors understand and address research questions across 
disciplinary borders. We will focus on the analysis of asset returns, in particular 
the dependencies between stocks, measured by their daily price changes. Most of 
the presented material will however also apply to any other financial time series in 
any other frequency.2 We are guided by four questions: how are the returns mod-
eled? How are dependencies measured? How are filtering or dimensional reduction 
achieved? How are the measurements mapped into a network representation?

Hence, we first touch upon cornerstones in financial economics and new 
approaches from econophysics in Sect. 2. In Sect. 3, we summarize statistical regu-
larities of asset returns. In Sect.  4, we will explain the basics of calculating cor-
relations and its challenges together with some of its pitfalls. Section 5 shows the 
spectrum of correlation matrices and how it is related to finding stocks with simi-
lar behaviors. We then proceed to present recent approaches from econophysics and 
financial econometrics. In Sect.  6, we discuss how networks can be derived from 

1 See also Caldarelli (2012) and Sect. 2.
2 See also Tsay (2010) and Dacorogna et al. (2001) for general introductions to the analysis of financial 
market data.
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correlation measures and we introduce two filtering methods that apply structural 
constraints on the network. Further we show how clusters and emerging properties 
can be identified in such networks. We then turn to present GARCH models, pair-
wise estimation methods, and the variance decomposition approach in Sects.  7, 8 
and 9. In the last section, we present some conclusions.

2  The broader picture of financial market research

2.1  Cornerstones in financial economics

Before discussing recent studies on financial dependencies and networks, it is 
important to understand the origin of the field, together with its main motives and 
the scientific language used.

In financial economics, there are two important viewpoints when it comes to 
asset markets. One is the analysis of market efficiency; the other one is the analysis 
of the returns of an asset and how it relates to the development of the market and 
that of other factors. We will focus on the latter. A well-known model in this class is 
the so-called single index model by Sharpe (1963). Here we assume that a vector of 
returns ri of an asset i can be described by

where rM is the market return and �i measures how sensitive the stock’s return is 
with respect to the market. �i is a constant, �i is the residual error. Since we assume 
that the errors are uncorrelated, i.e., cov(�i, �j) = 0 for all i ≠ j , any correlation 
between stocks can only come from the market factor rM.

A slight variation of this idea is the capital market pricing model (CAPM, Sharpe 
1964; Lintner 1965), which includes a risk-free reference interest rate rF , and 
where the � then describes the risk of an investment relative to the market portfo-
lio. Additionally, there is also a large literature that discusses to which extent the � s 
are changing over time (see for example Bollerslev et al. 1988; Bodurtha and Mark 
1991; Raddant and Wagner 2017).

Variations with more factors have been developed over the years, including the 
well-known model by Fama and French (1992) which includes factors that account 
for size and value effects.

Here, �1 measures the sensitivity of a stock to market risk. �2 and �3 measure the sen-
sitivity to the factors SMB (Small Minus Big) and HML (High Minus Low). These 
factors represent the average return of stocks with certain characteristics in terms of 
firm size, value, and growth. Hence, implicitly this model assumes that stocks can 
be clustered according to these three characteristics.

While much of the differences in asset returns can be attributed to the actions and 
performance of the firms themselves, there is also ample evidence for the influence 
of investors. They sometimes evaluate stocks with certain characteristics in a too 

(1)ri = �i + �irM + �i,

(2)ri − rF = �i + �1,i(rM − rF) + �2,iSMB + �3,iHML + �i.
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homogeneous way, disregard differences and thus influence stock prices (Barberis 
et  al. 2005; Green and Hwang 2009). Investors are also not always good in spot-
ting firms that are economically linked, thus missing opportunities to predict returns 
(Cohen and Frazzini 2008).

It is important to note that the analysis of the comovement on the global level 
uses more aggregated data (see, e.g., Rigobon 2003). Most approaches have focused 
on the analysis of stock market indices or other smaller samples including sectoral 
indices. A wide range of methods has been applied; among these are unit root and 
cointegration tests, vector autoregression models, correlation-based tests (Forbes 
and Rigobon 2002; Fry et al. 2010), causality tests (Billio et al. 2012), multivariate 
GARCH models (Engle 2002), and models of variance decomposition (Diebold and 
Yilmaz 2009). We will have a closer look at the latter in the following sections.

Another aspect in the literature about financial market dependencies is the ques-
tion about its determinants (Bracker et al. 1999). Studies often find that structural 
similarity of the countries’ economies explains only partially the level of comove-
ment of their financial markets. This resulted in a debate about the influence of 
global sectoral factors (Dutt and Mihov 2013; Bekaert et  al. 2009, 2011). Previ-
ous results hint at an increase in the importance of these factors. Forbes and Chinn 
(2004) find that cross-country factors and global sectoral factors both are impor-
tant determinants of stock returns. They also note that changes in global linkages 
over time might make it difficult to disentangle different influences on asset market 
comovement.

2.2  Statistical physics, econophysics, and complex networks

The contribution of statistical physics and the development of econophysics 
approaches have much to do with the data revolution in social science and econom-
ics (see also Pentland 2014; Kutner et al. 2019; Caldarelli et al. 2018; Steinbacher 
et  al. 2021). Large-scale investigations on the scaling-properties of asset returns 
(Plerou et al. 1999, see also Sect. 3) opened the field for many similar investigations 
of financial data (Mantegna and Stanley 1999; Bouchaud and Potters 2009b). These 
approaches have rather quickly led to the realization that important challenges in the 
field are the dependencies of financial data and the complexity of the financial sys-
tem in general (Laloux et al. 1999; Plerou et al. 2002).

Over the course of a decade, the analysis of the cross-correlations of asset returns 
has developed into an analysis of asset markets seen as complex networks, studied 
with techniques from network theory (Mantegna 1999; Song et al. 2011a). This has 
been accompanied by a general influx of network science into the analysis of finan-
cial markets in general, fueled of course by the financial crisis that peaked in 2008 
(Bardoscia et al. 2021; Summer 2013; Acemoglu et al. 2015; Battiston et al. 2016; 
Elliott et al. 2014). Further extensions in the methodology are the analyses of bi-par-
tite networks, systems with couplings, and multiple layers of networks (Tumminello 
et al. 2011; Gualdi et al. 2016; Buldyrev et al. 2010).
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Describing the details of this evolution is outside the scope of this paper. The 
developments of new methodology however show that collaboration across dis-
ciplines is happening, especially when important problems arise to which estab-
lished models have too little to offer. The connecting element between disci-
plines is the data. Yet, in order to respond to economic and social challenges, 
the observed data have to be explained by models in a way that researchers from 
different disciplines appreciate.

3  Preliminaries about asset returns

Dependencies between financial assets are mostly analyzed based on their log 
daily returns ri,t , which are calculated from the stock prices pi,t of asset i at the 
days t and t − 1,

where i = 1,… ,N and t = 1,… , T  . N denotes the number of stocks, T denotes the 
number of observations, in this case these correspond to trading days.

Daily closing prices are the most common data used in the analysis of asset 
returns. For some applications, e.g., when different markets are involved and 
trading hours are not perfectly aligned, lower frequencies, for example weekly 
returns, can be used. Note that the use of logarithmic returns allows to calculate 
these by summation of the higher frequency returns. On the other end, there is a 
trend toward the use of higher frequency data in the trading industry that utilizes 
advances in scalable computing and often employs machine learning.

For most of the following analyses we use daily data covering the time period 
from April 2006 until March 2021 ( T = 3, 775 trading days) for N = 404 stocks 
that are constituents of the S &P 500 index. Three exemplary time series of daily 
prices and returns are plotted in the left panels of Fig. 1. For the purpose of com-
parison, we plot normalized prices p̃ , such that

While stock prices show generally some upward trend in the long run, we can see 
that the returns shown in the bottom left panel fluctuate around zero with some vis-
ible spikes and clusters.

The volatility of returns can be defined by their sample variance �̂�2 as

One can also define a variance in terms of the expectation of the time series. A com-
mon notation is to state that

(3)ri,t = ln pi,t − ln pi,t−1 ,

(4)p̃i,t =
pi,t

pi,1
.

(5)�̂�2 =
1

T − 1

T∑

t=1

(
rt − r̄

)2
.
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where ⟨ ⟩ denote the expectation. There are also instances where |r| or r2 are used as 
measures for volatility. This is of course motivated by the fact that ⟨r⟩ is typically 
close to zero and that the intercept of r is in many models estimated separately from 
the volatility component (more on volatility models in Sect. 7).

Hence, one aspect of the returns is that their distributions are non-Gaussian, 
heavily skewed, and fat-tailed. In fact, the tail of these distributions is well repre-
sented by a power-law, in our case with an exponent of 2.94, as can be seen in the 
top right panel of Fig. 1 (see also Plerou et al. 1999).

Another aspect of the returns is that the volatility is not constant over time. 
Times with high volatility are often followed by more high volatility. This phe-
nomenon is also called long memory (see also Cont 2001). We can measure this 
aspect by calculating the autocorrelations, which are the correlations of the time 
series with lagged versions of itself. Their entirety is also called the autocorre-
lation function (ACF), which is shown in the bottom right panel of Fig. 1. The 
autocorrelations of the absolute returns are typically significantly positive for 

(6)�2 = ⟨r2⟩ − ⟨r⟩2 ,
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Fig. 1  Daily stock returns and their properties. The top left panel shows the normalized stock price p̃ for 
three stocks over time. The bottom left panel shows the corresponding daily returns of these three stocks 
(two of them plotted with an offset of ±0.2 ). The top right panel shows complementary CDFs (CCDFs) 
of absolute returns on log-log scales for the three stocks, as well as the CCDF for all stocks (black line, 
with the CCDF = 1 − F(x) , where F(x) = Pr[X ≤ x] ). The bottom right panel shows the corresponding 
auto-correlations dependent on the lag in days
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more than 100 days (Ding et al. 1993). Hence, while we cannot forecast tomor-
row’s stock prices, some information about tomorrow’s volatility is included in 
today’s prices.

These findings are important for two reasons. First, because they influence how 
we can analyze the time series of returns and their dependencies. The changing vol-
atility can make it difficult to determine whether two time series are in fact signifi-
cantly related. Properties of the distribution of stock returns imply that many para-
metric tests do not apply for this data. The second aspect of these findings is that 
they have of course been discussed in streams of literature in different fields and 
that it is therefore important to understand what the state-of-the-art models are that 
deal with them – so that future research on financial networks can benefit from and 
contribute to them.

4  Correlations of asset returns

The correlations between all pairs of returns can be represented by a N × N cor-
relation matrix C. Each element Ci,j of this matrix describes the type of relationship 
(dependence) between a pair of stocks i and j.

Pearson’s correlation coefficient is the most common measure to describe corre-
lations that are linear. For each pair of stocks i and j it can be calculated as

where �i�j is the product of the standard deviations of the returns of stocks i and j 
(see also Eq. 6).

Correlation coefficients will always be in the range [−1, 1] since we divide by the 
product of the standard deviations of both variables. An alternative way of measur-
ing dependencies is the covariance, which is given by the numerator of the above 
expression. This can be useful if one wants to preserve the differences in the scale of 
the returns for further calculations.

Figure 2 shows distributions of correlation coefficients for the S &P sample of 
stocks. While the distribution of the correlation coefficients of stocks from different 
sectors (between-sector) shows similarity to a Gaussian distribution, the distribution 
of within-sector correlations has a higher mean and shows skewness.

In many applications, we are interested in a dynamical analysis of these correla-
tions. Pearson’s correlation coefficients are therefore often calculated by applying a 
running window approach, as illustrated in Fig. 3. Equation 7 is in this case applied 
only to the returns inside a time window with length Δt . Here the first three panels 
show pairs of stocks from different sectors, while the last panel shows an example 
for a pair of stocks which both belong to Non-cyclical consumer goods.

Using running windows can however lead to spurious results when the window 
size Δt is too small. Correlations are then likely to be exaggerated. Also, the com-
parison of these correlations is difficult since the normalization by the changing var-
iance in Eq. 7 will drive the results.

(7)Ci,j =

�
(ri − ⟨ri⟩)(rj −

�
rj
�
)
�

�i�j
,
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The assessment of the significance of correlations therefore deserves a closer 
look. It is well known that both the error of the correlation coefficient itself as well 
as intervals for significance levels that determine whether a correlation coefficient 
is significantly different from zero can easily be calculated making use of the cor-
responding t-distribution. The latter is achieved by a parametric test that essentially 
answers the question what range of correlation coefficients can be expected from 
time series with a specific length when they are uncorrelated and normally distrib-
uted (i.e., when they consist of random variables that are independent and identi-
cally distributed). In order to evaluate in how far the violation of this assumption 
affects the correlations, we can compare correlation coefficients of permutated time 
series pairs of returns (of which the expected correlation is zero) with that of uncor-
related noise (see also Aste et al. 2010). Figure 4 shows the distributions of correla-
tion coefficients, both for permutated real data as well as for independent normally 
distributed noise (we draw 500,000 samples for Δt = 20 and 60 days with random 
starting points, and we calculate all possible correlation coefficients for Δt = 3775 , 
which corresponds to the entire sample).

First of all, it is important to realize that the significance of correlation coeffi-
cients becomes much more difficult to assess once the length of the time window 
becomes smaller. We can clearly see this by comparing the distribution of obtained 
correlation coefficients for the entire sample period with that associated with the 
time window length used before, Δt = 60 days (left panel). With regard to our 
results on the dynamics of correlations presented in Fig. 3, this means that the cor-
relations between most stocks are only significantly positive for some time windows.

A second aspect is the slight inaccuracy when parametric tests are applied to this 
correlation measure of asset returns. In order to visualize the effect it is necessary to 
focus on the tails of the distributions (right panel in Fig. 4). When we compare these 
tails with the corresponding distributions of independent normally distributed noise, 
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Fig. 2  Histogram of correlation coefficients for the S &P stocks. The two colored areas show the dis-
tributions of correlations between stocks from different sectors (between-sector, orange) and within the 
sectors (blue)
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we observe slightly too many extremes in the correlation coefficients of the permu-
tated returns, especially for small Δt . Hence, relying on a parametric test for the 
correlation coefficients can in this case lead to an overstatement of their significance 
(see also Kowalski 1972).

It is therefore of utmost importance to select time windows such that true depend-
encies can be reliably identified as significant. In some applications, the choice of 
the window length can be a trade-off, especially when there is the necessity to asso-
ciate networks with specific economic events. It turns out that an improvement can 
be achieved by introducing a weighting of the observations within a time window. 
By putting high weights on the latest returns and successively lower weights on past 
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lated in a window with Δt = 20 days. The dark blue line shows these correlations calculated for Δt = 60 
days. The red line shows exponentially weighted correlations with a time window of Δt = 60 days (and 
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panel shows an example of within-sector correlations
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observations, the correlations can be smoothed while retaining a relatively high time 
resolution (Pozzi et al. 2012). In this case a weighting applies to the sample mean, 
the variance and the covariances in Eq. 7. The weights 

∑Δt

t=1
wt = 1 follow

which describes an exponential weighting scheme.3
It should be noted that several other techniques exist to work around the unreli-

ability of Pearson’s correlations or that try to filter the returns for certain effects.
One technique for such a filtering is the use of partial correlations, which inves-

tigates how the correlation between two stocks i and j depends on the correlation 
of each of the stocks with a third variable, typically a stock index m as the medi-
ating variable. The partial correlation �i,j|m can be viewed as the residual correla-
tion between stocks i and j, after subtraction of the contribution of the correlation 
between each of the stocks with the index.

Some studies have extended this approach to the analysis of the ratio of partial 
and raw correlations and the metacorrelations between different markets (Shapira 
et al. 2009; Kenett et al. 2011, 2012).

Another alternative is the use of correlation measures that are nonparametric, 
like rank correlation, or the tail dependence. The latter is a nonparametric estima-
tor of the tail copula that provides a measure of dependence focused on extreme 
events (Musmeci et  al. 2017). Also a transformation of the returns can improve 

(8)wt = w0 exp
(
t − Δt

�

)
, t ∈ {1, 2,… ,Δt} ,
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3 � is the weights’ characteristic time, with 𝜃 > 0 . w
0
 is a constant, in the case of Pearson’s correlations 

equal to (1 − exp(−1∕�))∕(1 − exp(−Δt∕�)).
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measurements if it brings their distribution closer to that assumed by a particular 
model or test.

5  Properties of correlation matrices

In the previous sections, we have introduced the correlation matrix of returns and 
have given examples for the empirical results that we typically obtain by calculat-
ing correlations coefficients from stock returns. In this section, we want to con-
nect these findings to the most important theoretical concepts about the decompo-
sition of correlation matrices, since these are useful foundations to understand the 
structure contained in stock markets.

In Eq. 7, we have already shown how to calculate correlation coefficients. An 
equivalent statement is the definition of the sample correlation Ri,j.

Note that we use sum notation here instead of the brackets as in Eq. 7; the mean of r 
is thus denoted by r̄ . It is worth to be familiar with both notations since they are both 
frequently used in the literature.

We also note that some contributions to the literature, especially about the 
eigenvalue spectrum, assume standardized returns r̃ . In this case, the sample cor-
relation R̃ can be written as follows and R = R̃

We can use the spectral analysis of the correlation matrix to infer a few proper-
ties with respect to the level of noise versus structure that it contains. A prominent 
method concerned with the spectrum of correlation matrices of uncorrelated data is 
random matrix theory (RMT). Assuming time series of white noise with zero mean 
and unit variance, Marĉenko and Pastur (1967) state that the distribution of eigen-
values � of its correlation matrix follows

 where Q = T∕N adjusts for the ratio of the length of the time series versus the sam-
ple size. �r is a further adjustment parameter which is 1 in the case of standardized 
data. It can also be used to compensate for single eigenvalues outside the predicted 
spectrum.

The boundaries of the spectrum are given by

(9)Ri,j =

∑T

t=1
(ri,t − r̄i) (rj,t − r̄j)

�∑T

t=1
(ri,t − r̄i)

2

�∑T

t=1
(rj,t − r̄j)

2

.

(10)R̃i,j =
1

T

T∑

t=1

r̃i,t r̃j,t .

(11)p(�) =
Q

2��2
r

√
(�+ − �)(� − �−)

�
,
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If N → ∞ and T ≫ N the eigenvalues should all lie in the interval [�−, �+] (Laloux 
et al. 1999; Plerou et al. 2002; Bouchaud and Potters 2009a).

An example is shown in Fig. 5. Artificial time series, i.e., simulated returns drawn 
from a normal distribution that are uncorrelated, produce a histogram of eigenvalues 
that agrees with the prediction from Eq. 5 (left panel).

We should clarify that this analysis does not suggest that the MP prediction 
describes the spectrum of eigenvalues from empirical asset return data perfectly (see 
also Livan et al. 2011). It merely shows that the number of eigenvalues that are far 
outside the predicted spectrum is rather small.

It is very common to find one large eigenvalue, which is associated with the mar-
ket mode. Its corresponding eigenvectors can for example be used to calculate the 
weights of stocks in a market index or conversely for the construction of certain opti-
mized portfolios. The other eigenvalues outside the MP spectrum generally describe 
groups of stock that show a systematic behavior that is different from the market. 
It should therefore be possible to generate good approximations of the correlation 
matrix by models that decompose it using a number of factors k = 1…K much 
smaller than N. We will now introduce two approaches for such a decomposition.

The correlation matrix defined above is by construction an N × N symmetric 
matrix that can be diagonalized. This is the basis of the well-known principal com-
ponent analysis (PCA). In fact, for many cases it makes sense to go one step further 
and to use this decomposition to model the returns themselves. We therefore decom-
pose changes in ri,t into decorrelated contributions of decreasing variance. In terms 
of the eigenvalues �k and eigenvectors vk , the decomposition reads

(12)�± = �2

r

(
1 +

1

Q
± 2

√
1

Q

)
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Fig. 5  Histograms of eigenvalues of correlations matrices and MP spectrum. The left panel shows the 
histogram of the eigenvalues for random time series with the same Q as the real data. The MP spectrum 
fits the data exactly. The right panel shows the distribution of eigenvalues of the market data. The largest 
eigenvalue, �

1
= 170 , is not shown. The insert shows the eigenvalues in the range predicted by MP. Large 

parts of the market’s spectrum deviate from MP. When one adjusts the MP spectrum for the leading 
eigenvalue by setting �r = 0.58 some qualitative alignment can be achieved
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where vk,i denotes element i in the kth eigenvector and �k,t are uncorrelated random 
variables with unit variance.

We note that the formulation above is very common in any physics textbook, yet 
statistics textbooks in economics or business often use a different viewpoint, which 
we will also briefly sketch out. Let us assume that our sample of returns (our vari-
ables) are stored in a matrix X with dimensions N × T  . We can then calculate a new 
set of variables, the principal components F, which are linear combinations of the 
original variables (for examples for a dimensional reduction of the system). Hence, 
we search for F = YX . The column vectors in Y carry the weights for each new vari-
able, and it can be shown that the solution to this problem amounts to solving for

where Y = V  contains the eigenvectors of the correlation matrix R (typically ordered 
by descending eigenvalues, see Jobson 1991). The eigenvectors with the highest 
eigenvalues account for a large amount of the variance in the data, while low eigen-
values stand for eigenvectors and components that contribute very little to the vari-
ance and can therefore be neglected to describe X.

The difference between these two approaches is what is explained on the left hand 
side (note that we can derive the factor loadings by scaling the eigenvectors with the 
variance 

√
� ). Equation 13 states the decomposition of the returns as a stochastic 

model, Eq. 14 states an identity that describes the factors of said decomposition. For 
a more detailed example the reader might refer to Verma et al. (2019).

6  Correlations and networks

6.1  Networks, filtering, and dimensional reduction

Financial markets are systems with a large number of elements, in our case the num-
ber of stocks N. All these stocks can be differently affected by one another. We aim 
to infer the network of most relevant links by studying the mutual dependencies 
between stocks based on an analysis of correlation measures. In other words, we 
search for stocks that behave similarly and we want to link them with edges in the 
network. Conversely, we do not want to directly connect stocks that behave inde-
pendently. In many cases, it is further necessary to determine which nodes can be 
clustered together. This information can either be used to group these stocks, and it 
can also be used to dimensionally reduce the system and to define a new set of nodes 
based on these clusters’ aggregations.

Hence, there are typically two considerations to be dealt with when it comes to 
mapping stocks into networks. The first one is which links to include into a network 
given the full set of stocks. The second one is the dimensional reduction on the part 

(13)ri,t =

N�

k=1

√
�kvk,i �k,t ,

(14)F = VX ,
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of the nodes (stocks) itself. The later becomes more important once the size of the 
network becomes large and can no longer be usefully visualized, or when subse-
quent analyses of the network are not feasible for the entire sample. The problem of 
a dimensional reduction can either come into play at the stage of the visualization of 
the network or it may come into play earlier, namely at the stage of estimating cor-
relations within part of an econometric model.

Let us start with the simplest case, which is the mapping of the correlation matrix 
into an adjacency matrix by using a threshold rule. The adjacency matrix is a matrix 
where rows and columns are labeled according to the nodes (stocks) in the network 
and where the entries in the matrix describe whether certain nodes are connected 
(adjacent) to each other. In this case, we create an adjacency matrix A with dimen-
sions N × N , identical to our correlation matrix. One constructs this adjacency 
matrix by setting a threshold for the correlation coefficient and defining that the 
elements Ai,j are 1 if the corresponding correlation coefficients are above a certain 
threshold and zero otherwise. The diagonal elements of A are typically zero, unless 
the concrete example requires to express a self-loop. The result will be an undirected 
unweighted network. Weighted networks can be obtained by using the absolute 
value of the correlation coefficients (or transformations of these) as weights of the 
edges. Examples are shown in Appendix A.4

While these networks can be informative, there are also some drawbacks. Their 
visualizations can sometimes change drastically depending on the threshold level 
that is chosen. They often contain a very high number of edges and it can be difficult 
to asses the significance of these connections. Resulting networks may also contain 
several components. In other words – they do not necessarily provide a meaningful 
and robust simplification of the system by means of network topology.5

The second consideration in creating networks is the dimensional reduction of the 
system itself. We will illustrate this by applying a simple clustering technique to our 
dataset. The output of such a clustering can be used to reduce the number of nodes 
in the system. Most clustering techniques will require to asses the similarity of stock 
returns by some distance measures. The correlation matrix contains information 
about similarity, yet it makes sense to transform it in such a way that it reflects a 
metric. Hence, the following transformation can be used to derive a distance matrix 
D (see also Mantegna 1999)

Hence, the elements of the correlation matrix are transformed in such a way that 
D has a lower bound of 0 that can only be obtained by perfectly correlated stock 
returns.

(15)Di,j =
√

2(1 − Ci,j) .

4 The network visualization in this review were produced in Gephi (Bastian et al. 2009), mostly using 
the algorithm by Hu (2005).
5 It should be noted that on an only slightly generalized level the problem of finding the ‘relevant’ links 
in a network connects to an incredibly large amount of literature in mathematics, computer science and 
statistics, all in some way concerned with finding sparse versions of covariance matrices. A noteworthy 
example, outside the scope of this review, is, for example, specific convex optimization (Bayesian) meth-
ods also known as the Lasso (see, for example, Zou 2006; Bien and Tibshirani 2011).
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One can then use the matrix D in an algorithm that joins the stocks together based 
on their distances. Here we will focus on a hierarchical approach. Assume that at 
the start all stocks are in a group (or cluster) on their own. We will start by joining 
the pair of stocks with the lowest distance. Before searching for the next shortest 
distance between all groups, we have to make a choice about how to define the dis-
tance between the now joined first cluster and the remainder of the stocks. Common 
solutions are to use the average or the minimum. Hence, by repeatedly joining the 
groups that are closest together and by updating our distance matrix for the groups, 
we will ultimately connect all stocks in a hierarchical structure – at different levels 
of the distance measure.

This result can be demonstrated by the dendrogram shown in the right panel of 
Fig. 6. It illustrates which stocks would be sorted into the same group given a cer-
tain threshold for the distance. The left panel shows a visualization of the correlation 
matrix where the rows and columns are sorted according to the dendrogram. The 
regularities in the color-coding hint at uncovered structures in the correlation matrix.

While such a grouping can certainly be visualized as a network, we should 
note that a few more steps would be needed to obtain proper adjacency matrices. 
First, one would have to set a threshold for a cutoff point in the dendrogram. Sec-
ond, one would have to set a rule that defines how connections within the identified 
clusters are dealt with, or if new nodes, based on the identified clusters, would be 
constructed.

The number of clustering techniques is very large, as are its applications to net-
works, which leads to the problem of community detection (see also Jobson 1991; 
Newman 2010). Studies on the use of correlations in this context include MacMahon 

Fig. 6  Color-coded correlation matrix and dendrogram of the hierarchical clustering for the constituents 
of the S &P 500. The rows and columns in the left panel are ordered according to the dendrogram in 
the right panel. Sector classifications for the clusters are superimposed based on the most frequent label 
within a cluster
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and Garlaschelli (2015) and Masuda et al. (2018). An excellent comparison of com-
munity detection algorithms can be found in Lancichinetti and Fortunato (2009).

The literature in financial economics has a slightly different approach on the fil-
tering of dependencies. Since the sample sizes discussed in this strand of the lit-
erature are typically slightly smaller than in econophysics, many approaches aim at 
deriving full matrices of weighted dependency measures. The problems that these 
approaches face with respect to system size are however tightly related to the prob-
lems that we have just sketched out. Dimensional reductions are in these models 
often made in the process of estimating the dependencies in order to circumvent 
numerical limitations. We will come back to some of these issues in Sects. 7, 8 and 
9.

In the following, we will now present approaches that provide an efficient filter-
ing of the system of dependencies and we show how these can be extended to an 
endogenous clustering.6

6.2  Minimum spanning tree

The minimum spanning tree (MST) is a tool to analyze and filter the information 
contained in the correlation structure of a set of financial assets. We look at the cor-
relation matrix as the adjacency matrix of a network and generate an MST on this 
network in order to retain the most significant links. The complete network is repre-
sented by links which weights are determined by the corresponding correlation coef-
ficients. This complete network has N(N−1)

2
 links, representing the full information of 

the system.
The MST approach by itself is a rather old mathematical problem that has been 

discussed since the 1930 s (and solved, see Sedgewick and Wayne 2011). A mini-
mum spanning tree (MST) consists of the subset of edges (links) of a graph that 
connects all the vertices (nodes) using the minimal total edge weight. Hence, it can 
be interpreted as the “least expensive” connected graph. It contains no loops and the 
number of edges is N − 1 , given that N is the number of vertices (nodes).7

The details of applying MSTs to asset markets were for the first time presented by 
Mantegna (1999). In order to describe the dependencies of stock returns as a MST, 
we first have to define distances between our stocks, and we do this again by apply-
ing Eq. 15. Several algorithms for the construction of MSTs have been proposed, 
here we are using hierarchical clustering and single linkage (Gower and Ross 1969; 
Kruskal 1956; Prim 1957).

To construct the MST, let us assume that at the start our network consists of all 
the stocks (nodes) in our dataset, yet no links exist between them. We start by sort-
ing all the pairs of stocks by their distances in ascending order. We start by connect-
ing the stocks with the shortest distance. We then proceed with all the remaining 
pairs in the order of their distances while omitting links that would create a loop.

6 We note that further important contributions to the research on correlation-based networks include 
Song et al. (2011a), Onnela et al. (2003b) and Tumminello et al. (2010).
7 MST being a classical math problem, you will find the terminology of graphs, vertices and edges in the 
related literature instead of networks, nodes and links. The former terms are common in settings when 
abstract networks are discussed, yet by today they are often used interchangeably.
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It can be shown that this algorithm does in fact produce the MST with the lowest 
overall edge-weight (sum of distances) possible. The proof goes along the lines of 
showing that at each step of the algorithm we are using the lowest weight edge to 
connect the single parts of the so-called forest of clusters of nodes into a single tree, 
hence, there can be no improvement to the total edge weight by swapping edges.

This algorithm will in the early stage typically produce several components of 
connected stocks that will gradually grow together to form a connected network. 
Often one will find several star-like regions that are made up of stocks that belong 
to similar sectors of the economy. A visualization is provided as part of Fig. 7. The 
MST algorithm provides a hierarchical classification of the stocks (see also Mus-
meci et al. 2015b). For a further analysis of asset trees see also Onnela et al. (2003a).

6.3  Planar maximally filtered graphs

6.3.1  Construction principles

The MST does by its very nature lead to a relatively drastic reduction in information 
by describing the dependencies by only those links that are absolutely necessary to 
produce a connected network. It is therefore natural to ask if further algorithms can 
be formulated, which allow for more links and thus information to be represented in 
more detail.

A side effect of the construction of the MST is that it produces networks that can 
without much effort be displayed in a 2-dimensional plain representation. When we want 
to increase the amount of information in the network by adding more links we therefore 
have to define a consistent rule that stops us from adding links that make the network 
become too complex. The most cited method for this is the planar maximally filtered 
graph (PMFG) described in Aste et al. (2005) and Tumminello et al. (2005). The idea 
here is to include all links that produce a graph that is planar. This corresponds to creat-
ing a network embedded on a sphere with genus equal to 0. In principal, this method can 
be applied to surfaces of different genera, yet in practice the most useful one is that of the 
planar case (Aste et al. 2012).

To construct the PMFG, we again define distances according to Eq. 15 and employ 
an algorithm similar to that used for the construction of the MST. Hence, we add links in 
ascending order based on the distance measure. The difference is that now we do not dis-
card links between already connected stocks right away. Before adding links, we confirm 
that their addition does not produce a non-planar graph.

Checking this feature is unfortunately not entirely trivial. The problem of proving that 
a graph is planar goes back to work done by Leonard Euler. It turns out that it is rela-
tively easy to show which conditions are necessary for planarity and non-planarity, but 
that sufficient conditions are relatively tricky. The problem was however solved by Kura-
towski (1930) who showed that a graph is non-planar if and only if it contains a sub-
graph homeomorphic to two particular graphs that are mostly described as K3,3 and K5.8

8 Two graphs are homeomorphic if one is a subdivision of another, or they are both subdivisions of some 
third graph. K

3,3
 is a bipartite structure with 3 nodes in each set, K

5
 in a completely connected set of 5 

nodes.
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We will not go further into the details of this proof; the problem is however 
rather apparent when one sketches a network with 4 nodes and connects them all 
with a pen on a piece of paper. Adding another node and connecting it to all other 

HoneywellHoneywell

ExxonExxon

3M3M

AT&TAT&T

Coca ColaCoca Cola

Fig. 7  PMFG for the constituents of the S &P 500. Connections of the corresponding MST are shown 
by bold edges. Color-coding by sector classification: pink—Energy, bright blue—Basic Materials, bright 
purple—Industrials, dark purple—Cyclical Consumer Goods, dark blue—Non-cyclical Consumer 
Goods, bright green—Financials, dark green—Healthcare, orange—Technology, brown—Utilities. This 
visualization highlights the clustering features of the PMFG and not its planarity—thus some edges cross
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nodes is impossible. Hence, cliques with more than 4 nodes are not possible in a 
PMFG, and the number of links in a PMFG is always equal to 3(N − 2).

A visualization of a PMFG is shown in Fig. 7. We have labeled the positions of 
stocks that were mentioned before. Honeywell appears as a root in this network, as it 
comoves closely with many other stocks. Finding one stock as a dominant hub in the 
PMFG is a common finding in PMFGs of asset markets. The structure of the periph-
ery of the network partly coincides with the sector classifications, while the center 
of the network is less segmented. For more detailed applications of the PMFG the 
reader may refer to Tumminello et al. (2007) and Kumar et al. (2020). A computa-
tionally more efficient algorithm suitable for large datasets is developed in Massara 
et al. (2017).

6.3.2  Clustering

When we look at the MST- and PMFG-filtered networks in Fig. 7, we note that some 
clustering emerges naturally. In the following, we therefore present a clustering that 
is based on the PMFG, the so-called DBHT method (short for Directed Bubble Hier-
archical Tree). This particular algorithm produces a clustering that is deterministic 
and does not use any thresholding values and/or parameters, and it does not fix the 
number of clusters a priori.

In short, the DBHT method (Song et  al. 2012) can achieve a clustering of the 
PMFG, because the network can be hierarchically divided by separating 3-cliques of 
nodes. This results in a set of planar graphs, which are referred to as bubbles. Nodes 
typically belong to more than one bubble, hence in a first step nodes are assigned 
to a unique bubble. In a second step the algorithm will then merge some bubbles 
to larger structures based on different distance measures. For further details on the 
method, see also Song et al. (2011b) and Musmeci et al. (2015a).

The results are shown as a color-coded graph in Fig.  8. We obtain 12 clusters 
with varying size. The borders of the groups follow the hierarchical structure of the 
PMFG.

The grouping is in some relationship with the sector classification, as the bar plot 
in the bottom of the figure shows. Many clusters are dominated by stocks from only 
one or two sectors. An exception is the largest cluster (1) which is comprised of a 
large number of stocks from different sectors which do not show very strong sector-
specific behaviors.

7  GARCH models

7.1  Overview

The stylized facts of financial data presented in Sect.  3 have of course not only 
inspired research from statistical physicists, but are in fact at the root of the develop-
ment of financial econometrics as we know it today. Modeling the volatility of an 
asset serves as the foundation for applications not only in asset pricing but also in 
risk management, derivatives pricing and forecasting.
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The most popular class of models in this field are the GARCH (generalized 
autoregressive conditional heteroskedasticity) models. These models are first 
of all time-series models. They provide a framework to model and estimate the 
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Fig. 8  Clusters in the PMFG. The network on top shows the color-coded clusters in the PMFG that are 
idetified by the DBHT algorithm. The bar plot in the bottom shows the decomposition of each of these 
12 clusters into fractions, i.e., the share of stocks from a particular sector
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heteroscedasticity in volatility and at the same time they allow a rudimentary fore-
cast of volatility. They have however originally not been invented with the analysis 
of correlations in mind, at least not of large samples. Hence, while an estimated 
dynamic conditional covariance matrix is the natural by-product of any multivariate 
GARCH model, only recent improvements on the estimation methodology have ena-
bled us to utilize these kind of models in network settings. Independent of this fact, 
GARCH models, even in simpler form, can be helpful for constructing financial net-
works, since they allow us to disentangle joint volatility shocks from idiosyncratic 
ones.

We will first have a look at the univariate GARCH model and some examples 
of estimated stock volatility. We will then briefly show the basics of a multivariate 
GARCH and its complications before finally sketching out a network application of 
such a multivariate GARCH model.

7.2  Univariate GARCH

Let us first have a look a the univariate form of GARCH (Bollerslev 1986). We 
assume that the returns follow a random process with �t = vt

√
ht , where vt is white 

noise and

Hence, we assume that the volatility ht depends on the lagged values of the returns 
and its own lagged values ( �i and �i are the estimated parameters for lag i, �0 is a 
constant).

It is common to refer to a specific lag specification as a GARCH(p,q)-process. 
One typically finds that already one lag for q and p are sufficient to describe the 
volatility by the time series ht (see also Hansen and Lunde 1998). The parameters 
for this recursion formula can easily be estimated by maximum likelihood. One of 
the applications of this model is obviously to relate the current (expected) volatility 
to past realizations of the returns. Another one is that ht can be used to normalize 
(de-garch) the returns and to derive time series with constant unit volatility. Some 
examples for volatility estimates are shown in Fig. 9. Note that most of the GARCH 
literature differentiates between the actual returns rt and the process that is modeled, 
�t , like in the equation above. In the following we will however label any return 
again as rt.

7.3  Multivariate GARCH

The GARCH approach has of course been extended to a large number of multi-
variate versions, the most popular ones are the BEKK (Engle and Kroner 1995) 
and DCC (Engle 2002) model. The volatility is in this case described by a matrix 
of conditional covariances Ht (and its mean H̄ ). The recursion of the K-compo-
nent BEKK(1,1,K) model can for example be stated as follows:

(16)ht = �0 +

q∑

i=1

�i�
2

t−i
+

p∑

i=1

�iht−i .
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C,Ak and Bk are N × N matrices (C is upper triangular, we denote the transpose 
of matrices and vectors by the superscript ′ ). This specific form has the advantage 
that it ensures positivity of Ht even for K = 1 . An application is shown in Fig. 10. 
We will not go into the details of multivariate GARCH here, instead the reader is 
referred to the excellent review by Bauwens et al. (2006), yet we will discuss some 
of the problems related to large sample sizes (see also Raddant and Wagner 2022) 
and possible applications to financial networks.

To start with, when the number of stocks N is large, the high number of so-
called nuisance parameters in H̄ can lead to biases in the maximum likelihood 
estimation. More important in our case however is the estimation of the dynamics 
of Ht , which runs into similar problems for large samples. Most models therefore 
try to limit the number of parameters that describe the covariances of assets. For 
example, in the VEC model (Bollerslev et al. 1988) the elements of Ht are treated 
as a N(N + 1)∕2 vector. In its scalar version (Ding and Engle 2001), the dynam-
ics are reduced to two parameters. The K-factor BEKK model (Engle and Kroner 
1995) shown above uses N-dimensional matrix multiplication.

Additionally, a computational problem is that most estimation methods require 
Ht to be inverted repeatedly during the estimation. This can further limit the 
application to large samples. This problem can partly be circumvented by the 
use of covariance targeting (Engle and Mezrich 1996). Here H̄ is replaced by the 
observed time-averaged covariance. This method also allows for covariances and 
GARCH parameters to be estimated in two separate steps.

(17)Ht = C�C +

K∑

k=1

A�
k

(
rt−1r

�
t−1

)
Ak +

K∑

k=1

B�
k
Ht−1Bk.
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Fig. 9  Estimated volatility from a GARCH(1,1) model for three stocks. These three time series of volatil-
ity show typical qualitative features, including pronounced peaks and decay. Nevertheless there are sig-
nificant differences between the stocks that are relevant for the evaluation of stock comovement
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Several approaches have worked on the scalability of the estimation of multivari-
ate GARCH models, most notably Aielli (2013) who proposed improvements in the 
modeling of the conditional covariance matrix and Engle et al. (2021) who devel-
oped an approach that uses a composite likelihood and builds on the estimation of 
pairs of assets. A different solution is the method proposed by Engle et al. (2019) 
which renders improved estimates by using nonlinear shrinkage.

A different approach to deal with large samples and to reduce the number of param-
eters is to use factor models. An early example is the OGARCH model by Alexander 
(2001) which allows to drastically reduce the number of parameters by describing the 
cross section of asset returns by a number of factors K that can typically be chosen 
much smaller than N. This reduces the number of parameters that have to be estimated 
substantially. A more involved variant is the GO-GARCH model (van der Weide 2002). 
It is applied to the de-correlated returns. The principal components of these are then 
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Fig. 10  Stock correlations over time. The plots show comparisons of the correlations estimated with a 
multivariate GARCH model (using a 10-day average) and those calculated from using the method of 
exponentially weighted correlations (with a time window of Δt = 60 days and � = 20)
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rotated by a K−dimensional rotation. The K(K − 1)∕2 angles are additional parameters 
in the estimation.

Yet another approach to reduce the number of parameters is to restrict the form for 
Ht as in the DECO model (Engle and Kelly 2012). It assumes identical yet time-vary-
ing correlations between all pairs of stocks and one calculates the covariance matrix 
based on univariate de-garched returns. An alternative way to restrict Ht is presented by 
Raddant and Wagner (2022), they employ a dynamic two-factor model and a system of 
recursion equations to reduce the dynamics.

7.4  Application

An interesting approach to apply the GARCH framework in a network setting has been 
presented by Isogai (2016). He derived dynamic networks of 50 stocks in the Japanese 
market using the DCC framework. As mentioned above, this framework is advanta-
geous for large N since it can be estimated in two steps. A drawback is that by construc-
tion the conditional correlations all follow the same dynamics.

Hence, in this case we model the vector of returns rt as

where the residuals �t = H
1∕2
t zt , E(zt) = 0 and Var(zt) = IN . The N × N matrix Ht 

corresponds to the conditional covariance of rt . H
1∕2
t  is positive definite.

The mean �t is modeled as an autoregressive moving average model depending on 
lagged returns and volatility. The volatility part is given by

where H̃t is the diagonalized version of Ht . S and T are also diagonal matrices, ⊙ 
is the Hadamard (element-wise) product. The actual dynamic correlation Rt of the 
model is calculated via a proxy variable Qt (that again depends on the lagged z and 
Q) to ensure that Rt stays positive definite, which leads to the well-known sandwich 
structure where

These dynamic correlations can then be used to describe the relationships between 
stocks over time. Isogai (2016) shows that these correlations will in many cases dif-
fer from correlations calculated in rolling windows applied to rt.

8  Pairwise estimation of dependencies

8.1  Estimating feedback

A seminal work in the literature on the estimation of dependencies of time-series 
is the paper by Granger (1969). This paper discusses, in a rather general sense, 

(18)rt = �t + H
1∕2
t zt ,

(19)H̃t = Ω +

q∑

i=1

Si𝜀t−i ⊙ 𝜀t−i +

p∑

j=1

TjH̃t−j ,

(20)Rt = diag(Qt)
−1∕2 Qt diag(Qt)

−1∕2 .
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approaches to identify influences of co-evolving processes, also called feedback. 
The idea that became famous however was the two-variable model that describes 
the influence of two stationary time series xt and yt (stationary and with zero mean), 
which can be modeled by their lagged values, hence

where � and � are uncorrelated noise.
In this case, the influences from x to y and vica versa are described by the param-

eters a, b, c and d. Today we would refer to this specification as a vector autoregres-
sive model (an alternative would be to allow for contemporaneous effects). When we 
restrict the model to the case j = 1 we arrive as what is often stated as a model that 
tests Granger causality. This expression should not be taken too literally. It refers to 
the idea that if the values of one time-series explain the lagged values of the other, 
then this temporal relationship might also indicate some fundamental relationship 
between the variables (see also Zellner 1962; Lütkepohl 1991).

8.2  Application of Granger‑causality

There have been several applications of Granger-causality to financial time series, 
yet the most interesting and complete one in the context of financial networks is 
probably the one by Billio et al. (2012). They analyze Granger-causality for a sam-
ple of 100 hedge funds, brokers, banks and insurers for the the time before and dur-
ing the 2008 financial crisis. For the time series of returns i and j they test the sig-
nificance of their connection by estimating ai , aj , bij and bji , hence

If the b-parameters are significantly different from zero, one can speak of a relation-
ship between i and j. This relationship can be uni-directional or bi-directional.

There are two aspects to note for this model. First, it is not at all likely to have 
significant relationships that explain the return of another asset in the future (the 
study uses monthly returns). One would expect that arbitrage and a certain level of 
market efficiency would prohibit this. In fact the study by Billio et al. (2012) shows 
that at most times the number of connections that is significant at a 5% level is only 
slightly larger than 5%. This however changes in times of pronounced market stress, 
in this case at the end of 2007. Hence, while this method could show the effects of 

(21)xt =

m∑

j=1

ajxt−j +

m∑

j=1

bjyt−j + �t

(22)yt =

m∑

j=1

cjxt−j +

m∑

j=1

djyt−j + �t ,

(23)ri,t = airi,t−1 + bijrj,t−1 + �i,t

(24)rj,t = ajrj,t−1 + bjiri,t−1 + �j,t .
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the financial crisis relatively well, applications to other time periods can be more 
challenging.

The second aspect is of course related to the long memory in asset prices. Sim-
ilarities in volatility changes of the assets would drastically influence the estima-
tion results for all parameters and would lead to a misrepresentation of connectivity. 
The analysis is therefore not performed with the raw returns but the authors assume 
a GARCH(1,1) model. In practice, we can assume that the returns have been de-
garched (see Eq. 16) before estimating the parameters for the model in Eq. 23.

8.3  Pairwise estimation with a larger dataset

A related approach to measure financial dependencies has been proposed by 
Raddant and Kenett (2021). Here the estimation is based on synchronous daily and 
weekly returns of a much larger sample of stocks from different markets. Also here 
we assume that the returns follow a random process with �t = vt

√
ht , where vt is 

white noise and h follows a GARCH(1,1) process.
The conditional variance ht is then used to produce filtered returns rf  , such that

By de-garching the returns, we obtained time series that can be treated in an almost 
standard regression framework, since performing pairwise regressions of all the fil-
tered returns generates a measure for the comovement. It should however be noted 
that the distributions of the filtered returns are not perfectly normally distributed. 
It is therefore appropriate to assume t-distributed errors and apply what is mostly 
called the robust regression approach (Lange et  al. 1989) (the distributions of fil-
tered returns are closer to a Normal distribution for monthly returns).

Hence, to measure dependence we estimate the dependencies for all pairs of 
stocks i, j as

The results of the estimation can now be mapped into a network representation. We 
choose a threshold in terms of the significance level and construct networks in which 
connections are defined by observing a significantly positive �1,ij . For constructing 
weights we can use the corresponding p-values, namely pij (of the null-hypothesis 
significance test for �1,ij ), that are obtained in the course of the estimation. The exact 
values of the link weights Aij correspond to the extend to which pij exceeds a given 
threshold � , i.e.,

This adjacency matrix has a weighted positive entry if stocks i and j are significantly 
linked, measured by the estimated conditional correlation.

In this particular case where the assets under consideration come from differ-
ent markets from all around the globe the time difference in trading hours are an 

(25)r
f

i,t
=

ri,t√
hi,t

.

(26)r
f

i,t
= �0,ij + �1,ijr

f

j,t
+ �t .

(27)Aij ∝ (� − pij) .
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additional complication. The estimated dependencies based on daily returns may be 
biased downwards because the time series are asynchronous (see also Martens and 
Poon (2001); Christensen et  al. (2010); Hayashi and Yoshida (2008)). In general, 
this can be dealt with in two ways: by using tick data and calculation of synchronous 
pseudo closing prices, or by time aggregation. The approach by Raddant and Kenett 
(2021) uses an approximate correction for this effect that is applied to the p-values 
derived from the estimation. The method assumes that the estimation results based 
on the weekly data are unbiased. The results from the daily data are thus adjusted in 
such a way that they are consistent with the dependencies obtained from the weekly 
data.

Since the sample is rather large, it is for most purposes not useful to report results 
only on the level of stocks. A dimensional reduction can be achieved by hierarchi-
cally aggregating the results on the level of sectors and countries (according to GICS 
and TRBC classification). The resulting network is shown in Fig. 11. The p-values 
have been averaged on a sector-by-sector and country-by-country level. The visuali-
zation shows that many sectors of ‘western’ markets are globally integrated, while 
some markets like China, Japan and India remain more segregated.

9  Variance decomposition

In the previous section we have already touched upon the use of vector autoregres-
sive models (VAR) for the analysis of dependencies in financial markets. While 
many applications of such models to financial markets and macroeconomic perfor-
mance exist, these have mostly been cases with samples of limited size. One rea-
son is that once N becomes large, it can become difficult to estimate all possible 
influences on a certain time-series jointly. The other reason is that one is typically 
interested in obtaining an orthogonalized version of the shocks to calculate impulse 
responses or decomposed forecast errors, which can become troublesome even for 
moderate N (see also Koop et al. 1996; Pesaran and Shin 1996, 1998).

A decisive improvement on this issue is the variance decomposition proposed in 
Diebold and Yilmaz (2009). As in any case, we will first estimate a standard VAR 
model for a specific sample or time window with a certain number of lags. Then we 
can evaluate in how far each variable contributes to the generalized forecast error 
variance decomposition of the other variables. For the application shown in Die-
bold and Yilmaz (2014), the idea is that the sums of these contributions can then for 
example be used to calculate contributions to market volatility and are also seen as a 
proxy for contributions to systemic risk.

We assume that the underlying process xt that describes, for example, a vector 
with daily volatility of stocks, follows xt = Θ(L)ut , where

Hence, xt depends on the lagged orthogonal shocks ut in a way that is described by 
the parameters contained in the Θ matrices. L is the lag operator. The decisive part 
of this approach is now to calculate the generalized variance decomposition matrix 

(28)Θ(L) = Θ0 + Θ1L + Θ2

L
.
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DH with entries dH
ij

 that specify how stock i’s H step ahead forecast error variance is 
influenced by stock j (where i ≠ j ). These entries are given by

Fig. 11  Vizualization of pairwise estimated stock dependencies, averaged on the sector level, color-
coding applied by country. Stocks from the materials, energy and financial sector, mainly from the US 
(purple), Germany (green), the UK (gray), The Netherlands (blue), France (yellow) and Spain (beige), 
form the densly connected center of this network. The markets of Canada, Brasil, Australia, China, India, 
Singapore and Hong Kong show in mostly peripheral positions
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where ej is a vector where the jth element is 1 and the others are zeros. Θh is the 
coefficient matrix multiplying the h-lagged shock vector in the infinite moving-aver-
age representation of the non-orthogonalized VAR. Ω is the covariance matrix of the 
shocks and �jj is the jth element of the diagonal of Ω.

This variance decomposition matrix can easily be interpreted as an adjacency 
matrix. The matrix is directed, because the elements dij and dji are typically not the 
same. The sums over the rows of this adjacency matrix sum to 1 since they resemble 
the shares of received contributions to the variance decomposition. To account for 
the remainder of these contributions it makes sense to write the diagonal elements 
as Aii =

∑
j,j≠i Aij.

While this approach presents a useful connection from the class of VAR models 
toward network models, there are also some weaknesses. As Chan-Lau (2017) and 
Lanne and Nyberg (2016) point out, the generalized forecast error variance decom-
position in the form presented in the original paper can lead to inconsistencies when 
comparing the contributions of firms to systemic risk over time. Improvements in 
the method can however mostly mitigate this issue. Another issue is the still some-
what limited scaleability with respect to the sample size, which is discussed by 
Greenwood-Nimmo et al. (2021).

A further development in this class of models is the so-called TVP-VAR (time-
varying parameter vector autoregressive model). Here the variance-covariance 
matrix is allowed to vary by applying a Kalman filter estimation with forgetting fac-
tors. This means that it is no longer necessary to choose time windows and window 
sizes. For the details, the reader may refer to Koop and Korobilis (2014); Lütkepohl 
et al. (2015); Korobilis and Yilmaz (2018); Antonakakis et al. (2018) and Antonaka-
kis et al. (2020).

10  Conclusions

This survey has shown that a variety of viewpoints exist in analyzing financial 
dependencies. While some approaches focus on topological network representa-
tion constraints, others are more focused on a modeling of details of the time-series 
properties of returns. This has of course implications for the scalability to larger 
datasets and its applicability to different current issues in financial market research. 
Nevertheless, this survey has also shown that the field has moved beyond a phase of 
exploration of asset market data.

Therefore we encourage researchers to take into account results outside of their 
domains and to apply network-related research to problems that are relevant from 
a societal, economic or political perspective. We believe that a collaborative effort 
among different disciplines will be the key to solve many current challenges.

(29)dH
ij
=

�−1
jj

∑H−1

h=0
(e�

i
ΘhΩej)

2

∑H−1

h=0
(e�

i
ΘhΩΘ

�
h
ej)

,
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Appendix A Correlation‑based graphs

See Fig. 12.

Fig. 12  Complete network and networks with links above the 60%, 80% and 95% interval of the distri-
bution of correlation coefficients. The giant connected components consist of 404, 397, 372, 240 nodes 
and 81,406, 32,562, 16,279, 3,727 links. Color-coding by sector classification: pink—Energy, bright 
blue—Basic Materials, bright purple—Industrials, dark purple—Cyclical Consumer Goods, dark blue—
Non-cyclical Consumer Goods, bright green—Financials, dark green—Healthcare, orange—Technology, 
brown—Utilities
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