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Abstract
Patterns and processes emerge unbidden in complex systems when many simple enti-
ties interact. This overview emphasizes the role of networks in emergence, notably
network topology, modules, motifs, critical phase changes, networks of networks and
dual-phase evolution. Several driving mechanisms are examined, including percola-
tion, entrainment, and feedback. The account also outlines some of the modelling
paradigms and methods used to study emergence, and presents cases to show how
emergence occurs, and its implications in economics and other real-world contexts.
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1 Introduction

Almost everywhere we look, we find examples of large-scale patterns and organisation
that emerge in collections of simple entities.On theonehand, there are naturalwonders,
from growing crystals (Bisoyi and Kumar 2011) and flocks of birds to the beauty of
growing plants (Reuter et al. 2010). On the other hand, there are devastating events,
such as market crashes (Shi et al. 2022), bushfires (Zinck et al. 2011), epidemics
(Jenkins et al. 2020) and accidents (Coze 2015). There are also unanticipated trends in
society (Green2014) and in the businessworld (Arthur 2021).Understanding emergent
phenomena, and in some cases controlling them, poses a huge challenge. In every field
of activity, society needs to understandhowemergenceoccurs andwhat its implications
are.

B David G. Green
David.Green@monash.edu

1 Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11403-023-00385-w&domain=pdf
http://orcid.org/0000-0002-9488-6601


420 D. G. Green

The idea of emergence is intimately bound up with the study of complex systems.
In the past few decades, research on complexity has exploded into a vast literature
(Haynes and Alemna 2022), and has revealedmany insights about ways in which com-
plexity fosters emergence. In this perspective survey, I begin by defining emergence
and briefly overview examples in economics and society. This includes a discussion
of how intelligence emerges in groups of agents. I then survey common mechanisms
that lead to emergence. Finally, I survey some modelling paradigms and tools that
have been widely used to study emergence.

My account focuses on emergence in networks of simple agents. The reason for this
is that many, if not most, cases of emergence can be explained in terms of interactions
within networks. The network model of complexity is based on the observation that
all complex systems can be represented as networks (Green 1994, 2000). This has
two important implications. First, properties emerge out of interactions between the
nodes of the network, rather than the properties of individual nodes. Second, patterns
and processes in networks underlie many properties and behaviours that we see in real
systems.

Althoughhumans are certainly not “simple” agents in the general sense, simple rules
often govern human behaviour, rather than considered decisions. I therefore include
examples of emergence, such as crowds andmarkets, where networks of humans often
interact and behave in simple ways.

This account puts a strong emphasis on emergent phenomena in economics and
related fields. However, it also draws examples from across a broad spectrum of fields,
as these often throw a different light on emergence. Markets, for instance, are often
compared to ecosystems. For this reason, I include ecological examples that may hold
useful lessons for economics. One of the issues impeding complexity theory as a field
of research is that it has been studied in so many different disciplines, often with
relatively little dialogue between them. By presenting a wide range of examples, my
aim is to give readers a wider perspective for understanding emergence.

2 What is emergence?

Complex systems are collections of entities that are rich in interactions between them.
Emergent properties are the outcome of these interactions. We can define emergence
as the appearance of patterns, properties and behaviours within a system that are
not evident in individual components. Some examples (discussed later) include the
emergence of small world structures, modules, and hierarchies (patterns); the spread
of rumours (processes); cost spirals, and panic (behaviour).

The above definition of complexity is captured by the popular expression: the whole
is greater than the sum of its parts1. An economic example of this would be a group
of companies that form the supply chain for manufacturing a product. Together they
achieve a result that no one company could alone.

There is a close relationship between emergence and self-organization. Here I will
use self-organization as a general term for processes (e.g. feedback) that create order

1 Attributed to Aristotle
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within a system, as distinct fromorder that is imposed fromoutside. Emergence usually
arises by some form of self-organization, but some forms of self-organization can be
said to emerge in a system. In complexity theory, self-organization and emergence are
linked to the concept of Complex Adaptive System (CAS) (Holland 1992). These are
complex networks of dynamic interactions in which the collective behaviour adapts,
but is not predictable from the behaviour of its individual components. The term is often
applied to systems where conventional models (e.g. differential equations) provide no
insights into understanding the system’s behaviour.

In some respects, emergence is in the “eye of the beholder”. That is, its existence
depends on the way you observe a system (Goldstone and Janssen 2005; Green et al.
2020b). This problem is often a matter of scale: “seeing the wood for the trees”.
Random, local variations often obscure patterns that become apparent only when
observed at large scale (Hoel et al. 2013; Varley and Hoel 2022). A related issue is
the distinction between strong and weak emergence. Bedau (2008) defined a macro-
property P of a system S as weakly emergent if and only if P can be explained by the
system’s prior micro-facts, but without providing a way to compress the description
of it.

The above distinctions can have huge practical implications (Tian et al. 2011). The
tension between economic development and environmental conservation provides a
good example (Schoelynck et al. 2011). Whether or not to preserve or develop patches
of forest sometimes hinges on the way forests are classified. Developers are likely to
claim that every patch is just an instance of the same kind of forest, so all but one
or two representative patches could be cleared. On the one hand, environmentalists
might claim that every patch is a unique type of community and should be preserved.
Certainly the mix of species may differ from one patch to another, but the central
question is whether each patch is really distinct? In the end, the issue hinges on what
led to the particular assemblages of species found at each site. Are they merely ran-
dom combinations? or are they communities that emerged from interactions between
species over long periods of time?

3 Emergence in real world systems of simple agents

3.1 Emergence in economics and finance

In a sense, the idea of emergence is implicit in the foundations of economics. Smith
(1776) argued that when a need or opportunity arises, a solution emerges in the market
to meet it. Stock markets themselves have been characterized as emergent structures
that arise in trading networks (Overholt 1991; Arthur 1999; Odell 2000; Stringham
2002; Padgett and Powell 2012; Saeedian et al. 2019).

Economics played a significant role in the development of complexity theory during
the late Twentieth Century. This arose from a need to understand emergent aspects of
market behaviour that could not be explained by traditional economics. Economists
were quick to recognize that stock markets and economies are complex systems
(Arrow 1969; Arthur et al. 1987; Krugman 1996) and that economics needs to apply
ideas and methods from complexity theory (Beinhocker 2006). So-called “complexity
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economics” upturned conventional thinking (Arthur 2021). “Complexity portrays the
economy not as deterministic, predictable, and mechanistic, but as process dependent,
organic, and always evolving.” Arthur (1999)

In essence, conventional economics adopted a top-down approach. It assumes that
agents are rational, have perfect information and adopt consistent, optimal, strate-
gies. Moreover, large-scale market behaviour is just the sum of all these individual
behaviours, andmarkets settle into static equilibria (Gatti et al. 2010). Complexity the-
ory upturned these assumptions (Arthur 1999). In contrast to traditional economics,
it assumes that many features of market behaviour emerge bottom-up, arising from
interactions between individual agents.

Emergence takes many forms in economics. Perhaps the most widely studied are
processes that affect market volatility. Many processes contribute to the emergence of
stability inmarkets. They include: resilience (Stanley 2020), cooperation (Bargigli and
Tedeschi 2013; Aydogmus et al. 2020), confidence in decision-making (Rolls 2019;
Lorscheid and Meyer 2021), moral behaviour (Gaus 2019), and trust (Phuong et al.
2020; Kato and Sbicca 2021). In contrast, other processes can lead to the emergence
of market instability (Cavalli et al. 2022), including: cycles (Donaghy 2022), crises
(Kirsch and Rühmkorf 2017), criticality (Harré 2018), and financial bubbles (White
1990; Rappoport and White 1993; Seyrich 2015; Barbie and Hillebrand 2018). There
are also other ways in which changes emerge in markets, notably new technologies
(Jung 2019) and entrepreneurism (Yun et al. 2018).

In later sections, we will examine many processes that contribute to the above cases
of emergence in markets and finance. See percolation (Sect. 4.2), networks (Sect. 4.3),
feedback (Sect. 4.6), entrainment (Sect. 4.7), and modules and motifs (Sect. 4.8).

3.2 Human society

Although humans are intelligent, many phenomena in society emerge because people
act as simple agents.

In an influential series of studies, Dunbar (1992) argued that cohesion in social
groups emerges from interactions between individuals, and the nature of those inter-
actions places an upper limit on group size. He argued that in apes, grooming leads to a
natural group size of 30-60 individuals. However, in human social groups, speech pro-
vides a more efficient ‘social glue’, which makes it possible for larger natural groups
(100-150 individuals) to emerge. The formation of cohesive groups can be linked to
the emergence of consensus by the spread of a common belief (e.g. agreement that
“I belong to this group”) (Jiménez-Martínez 2015). A number of agent-based models
have supported Dunbar’s hypothesis (Stocker et al. 2002; Seeme et al. 2019; Seeme
2021). They represent human opinions as switches in Boolean network models (see
Sect. 5.10), in which changes of state are determined by simple interactions between
nodes.

Many kinds of dysfunctional behaviours emerge in social groups. They often arise
from poor communication and the limits on human perception. For instance, Confir-
mation Bias occurs when prior beliefs cloud a person’s perception (Nickerson 1998).
Suppose that an individual believes “I am always in the slow queue”, then confirm-
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ing instances reinforce the bias, whereas negative instances are ignored. Confirmation
bias can skew decision-making (e.g. risk aversion, poor judgement) (Nelson 2014)
and contributes to emergent trends, such as movements in market prices (Cafferata
and Tramontana 2019; Cipriano and Gruca 2014). Automation can also contribute to
the emergence of bias. Online search engines, for instance, form filter bubbles that
restrict what individuals see by feeding them information that is consistent with their
past searches (Pariser 2011).

Another kind of bias is Groupthink, which arises when members of a group sup-
press their individual opinions, and base judgements on what they think the group’s
consensus would be. Groupthink leads to alternative ideas being dismissed or ignored,
and results in the emergence of poor decision-making (Schafer and Crichlow 2010),
and even collective delusions (Bénabou 2013). In contrast, Surowiecki (2005) argued
for the “wisdom of the crowd.” That is, good decision-making can emerge where a
group is comprised of people with a variety of differing views.

Many other kinds of dysfunctional behaviour also emerge in social groups. They
include: the impact of media on public opinion (Stocker et al. 2002), pluralistic igno-
rance (Seeme et al. 2019), the spiral of silence (Ross et al. 2019), and misinformation
(Brumley et al. 2012).

Aswe shall see later (Sect. 4.3),many trends emerge in human society as unintended
side effects of individual actions (Merton 1936). Interaction between different spheres
(e.g. work-life conflict) can lead to entrainment (Sect. 4.7), resulting in cascading
side-effects (Sect. 4.3). During economic booms, for instance, employees work more,
spend less time sleeping, and less time with family, or on recreational activities; but
in recessions, the opposite is true (Barnes et al. 2016).

3.3 Emergent intelligence

By emergent intelligence, I refer here to the ability of ensembles of simple agents to
solve problems collectively. The concept takes inmany problems andmany fields. One
of the first questions is how to recognize and measure intelligence. The problem has
a long and chequered history, but the advent of Artificial Intelligence (AI) extended
the question by asking how to measure intelligence, not only in humans, but also in
animals, machines, and its emergence in collections of agents. Given the vast scope of
the problem, a general solution needs to go beyond any specific domain. A promising
approach has been to link it to the measurement of complexity (Sect. 5.1). That is,
the more complex the problem, the greater the intelligence of an entity (of whatever
kind) that can solve the problem (Hernández-Orallo and Dowe 2010). This approach
raises the prospect of measuring (say) how much intelligence emerges when a team
of agents is brought together (Chmait et al. 2016).

A broad, and diverse area of AI research is Swarm Intelligence. This concerns the
way intelligent behaviour and problem-solving emerge within groups of simple agents
(Dorigo and Birattari 2007). It has its roots in flocking and similar behaviours (see
Sect. 5.6). In recent years, swarm intelligence has gained attention because of the need
to coordinate the movements of fleets of drones, as well as flocks of online software
agents.
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Swarm Intelligence has gainedmany applications in business, especially as financial
activities are conducted increasingly online. There is now awide range of applications,
such as sentiment analysis (Yildirim 2022), security (Mishra et al. 2021), competitive
bidding (Bajpai et al. 2008), and predicting financial markets (Rosenberg et al. 2017)
(see Sect. 5.6).

A simple example of swarm intelligence is Stigmergy (see Sect. 5.6). It has been
adapted to provide an algorithm (ant sort) by which simple agents sort items (Fig. 7).
Stigmergy is also an example of a broad class, known as Nature-Inspired Algorithms
(NIAs), which are often used to solve problems of optimisation, searching and sort-
ing, especially where complexity confounds traditional, analytic methods. Inspired
by the observation that optimal solutions to problems often emerge in nature, NIAs
represent a problem so that it imitates a natural process. Some NIAs are widely used,
but many have been criticized for associated practical problems, especially “... algo-
rithmic convergence and stability, parameter tuning, mathematical framework, role
of benchmarking and scalability” (Yang 2020). In recent years, much ingenuity has
been devoted to borrowing problem-solving methods from nature. Stripped of their
finery, however, ‘new’ NIAs often turn out to be existing meta-heuristics in disguise
(Tzanetos and Dounias 2021).

Thebest knownNIAs areGeneticAlgorithms (GAs),whichmimic thewaymutation
and recombination help populations of organisms to adapt (Holland andReitman 1978;
Goldberg 1989). The GA method has advantages, especially its ability to deal with
poorly specified problems. However, GA-derived solutions are likely to be only near-
optimal. There have been many modifications, mostly aiming to deal with problems
that bedevil GA applications. A well-known problem is local convergence. That is,
an entire population converges on the same genotype, before reaching an optimum
solution. Many approaches have been introduced to deal with this problem, such as
imitating evolution in a landscape (Kirley 2002).

Nevertheless, GAs have proved useful in some economic applications. For example,
a recent study demonstrated their usefulness for finding optimal trade-offs between
energy, economics and environment in agricultural production (Mousavi-Avval et al.
2017). Other uses have included trading models for foreign exchange (Drake and
Marks 2002).

Many algorithms deal with search problems. Optimisation, for example, can be
treated as a search through a fitness landscape, where points in the landscape corre-
spond to different combinations of parameter values and the “fitness” indicates how
good the solution is. These searches typically combine two kinds of search: explo-
ration, in which the agents seek to find the peak in the “landscape” where the best
solution lies, and exploitation, in which agents takes advantage of a known peak (e.g.
to search locally to find its highest point). Many kinds of search require a trade-off
between these two extremes, both for animals and humans (Mehlhorn et al. 2015).
In ant colonies, for instance, ants spread out and explore widely, then use pheromone
trails to bring many ants together and exploit each food source they find.

Animal intelligence emerges out of complex interactions among neurons, which are
nerve cells that excite each other electrically via synapses that link them. Conscious-
ness and intelligence can be seen as phenomena that emerge out of these interactions.
A popular model, based on the idea of clusters of neurons, is the Artificial Neural
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Network (ANN), which had its origins in early experiments to replicate the way per-
ception and thinking emerge in the brain (McCulloch and Pitts 1943; Rosenblatt 1958).
A typical ANN consists of layers of cells (“neurons”), with outputs from cells in each
layer becoming inputs to cells in the layer above. The bottom layer receives inputs (the
problem), and the outputs (results) emerge from the top layer. In a simple feed-forward
network, the neurons all process inputs in the same way. For instance, if the input is a
number, then the neuron might apply a mathematical transform and output the result.
The only differences between neurons in this case are the values of the parameters
applied.

A common criticism ofANNs is that they act like a black box: you feed in a question
and an answer pops out, but the reason for the answer is unknown. Another issue,
especially with early ANNs, is that they differ from real brains in several fundamental
ways.Attempts to improveperformance involve overcoming someof these differences.
First, Deep Learning has increased the sheer size of networks from a few hundred
neurons, in a typical early ANN, to millions of neurons (LeCun et al. 2015). Second,
Deep Learning builds modularity into its training and networks (Rotaru-Varga 1999).
Early ANNs were typically trained ab initio to solve a single specific problem. Deep
Learning involves training a system on many kinds of problems, and in particular on
problems that contribute to solving increasingly complex problems.

However, real brains still differ from ANNs in some important ways. One is that
ANNs are usually designed to converge on a particular behaviour, whereas real brains
exhibit sensitivity to initial conditions (Freeman 1975, 1991; Skarda and Freeman
1987). That is, small differences in inputs produce vastly different excitation patterns.
One advantage of this is that it allows brains to make fine discrimination between
similar patterns.

Artificial Neural Networks have been applied to a wide range of problems, such as
forecasting and pattern recognition. They are normally trained by being fed test cases
where the desired result is known (supervised learning). The ANN adapts by altering
settings within neurons to improve the results.

A recent review (Nosratabadi et al. 2020) highlighted the growing importance, in
economics and finance, of ANNs, and other artificial intelligence tools. It showed that
the applications of ANNs to economics has grown rapidly since 2016. The review
also found that several main areas of application have emerged. The most widespread
were in the stock market to forecast price movements from financial time series,
and algorithmic trading. Marketing applications included automated sentiment anal-
ysis and evaluating impressions on social media. In e-commerce, they were used
to improve the performance of web sites, analyze customer behaviour by categoriz-
ing items and by recommending products to customers. Other applications included
cryptocurrency (forecasting the price movements of digital currency), and predicting
corporate bankruptcies.
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4 Mechanisms of emergence

The following is a brief survey of processes that promote or influence emergence in
complex networks. In many cases, properties emerge from the combined effects of
more than one of these mechanisms.

4.1 Graphs and networks

Fundamental to understanding emergence and complexity are the ideas of graphs and
networks. Here we define a graph G to be a tuple G = 〈V , E〉, where V is a set
of vertices (also termed ‘nodes’) and E ⊆ V × V is a set of edges linking them. A
network is a graph in which the vertices and/or edges have associated attributes (e.g.
names of the vertices, quantities for the edges). Edges can be directed (e.g. “A affects
B”) or undirected (“A and B are linked”). Directed edges are often called “arcs”. The
above terms are often used interchangeably, but in general, graph is used for discussing
abstract structures and network for structures in the real world. Here I will use the term
‘vertex’ when discussing graphs and ‘node’ when discussing networks.

Manykinds of networks can be found in economics (Arthur 2021). Instances include
trading networks (Saeedian et al. 2019), supply networks (Hearnshaw and Wilson
2013), and international agreements (Bartesaghi et al. 2020; Fisher 2022). Societies
also contain many kinds of networks, including neighbourhoods, families, friends,
co-workers, and organizations.

Graphs are important for understanding emergence because they are inherent in the
structure and behaviour of all complex systems (Green 1994, 2000). So properties
of graphs are fundamental for understanding complex networks in the real world. In
particular, it means that features of graphs are involved in the emergence of many
properties and behaviours (Gignoux et al. 2017).

Perhaps the most widely studied feature of graphs is their topology (patterns of
connections). Different topologies, and the ways they emerge, have far-reaching con-
sequences in networks. A random graph is formed by adding edges to pairs of vertices
with probability p, which is the edge density of the resulting graph. This edge density
is also the ratio of the number of edges to the maximum possible number n(n − 1)/2
(for an undirected graph of n vertices). Random graphs have been widely studied and
are often treated as a null hypothesis about the topology of observed networks. For
instance, Exponential Random Graph Models (ERGMs) (Lusher et al. 2013) provide
a tool for testing competing hypotheses about the way a network was formed.

Other topologies emerge when the formation rules change. If the graph is formed
from k vertices by adding edges that connect vertex vi to vertex vi+1 for i ∈ [0, k−1]
then a path of length k forms. If, at the end of that process, an edge is added between
the first and last vertex in the path, then the result is a cycle.

A tree (hierarchy) can form from a partition (disjoint subsets) of the vertices. Sup-
pose we have a vertex partition V = V0∪V1∪ . . . Vk and V0 = {r}, where r is denoted
the root node. We create a tree by iteratively adding edges as follows: For each vertex
v in Vi+1, we create a directed edge (arc) (u, v) where u ∈ Vi . The resulting tree is a
hierarchy.
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Fig. 1 The connectivity avalanche in a random graph. At left the graph is fragmented, and composed of
small components. At right, the addition of more edges connects most of the fragments into a single giant
component, indicated by the box. In dual-phase evolution (Sect. 4.4), a system flips back and forth between
the local phase (left) and the global phase (right)

Two of the best known topologies are small worlds (Watts and Strogatz 1998)
and scale-free networks (Barabási and Bonabeau 2003). Small worlds are typical of
traditional societies (see Sect. 4.4). A small-world emerges when random edges are
added to a cycle. The name “small” recognizes that this process creates shorter paths
between vertices that were otherwise widely separated. A scale-free network emerges
when a graph forms by preferential attachment. That is, the probability of a new vertex
attaching to any existing vertex is a function of the degree of the vertex (the number
of edges already incident to it). Both of these topologies emerge in real systems,
especially social networks in which people create new contacts in a consistent fashion
(Barabási and Bonabeau 2003; Watts and Strogatz 1998) (see Sect. 4.4).

A crucial feature of random graphs is the connectivity avalanche (Fig. 1). It occurs
when edges are added to a set of vertices to form a random graph (Erdös and Rényi
1960). The addition of edges creates components. These are sub-graphs in which
there are paths between every pair of vertices. The avalanche occurs at a critical
point, when there are n/2 edges; that it, when the edge density is 1/(n − 1) (Fig. 2).
At this critical point, separate components are rapidly absorbed into a single “giant
component” (Fig. 2a). Other changes also accompany the avalanche: the diameter of
the largest component is greatest at the critical point (Fig. 2b), but decreases rapidly
with increasing edge density. Also, the variation in the size of components reaches a
maximum (Fig. 2c).

The connectivity avalanche manifests itself in the emergence of many kinds of
phenomena (see Sect. 4.2). It usually occurs in combination with other processes
discussed below. One result is that networks exhibit two distinct phases: connected, in
which almost all vertices are linked into a single giant component; and fragmented, in
which the vertices are either isolated, or form small components. The transition (i.e. the
connectivity avalanche) between the two phases is marked by a critical region, within
which the giant component emerges. Its size increases exponentially as larger and
larger clumps of nodes become joined to it. We will discuss some of the implications
in Sects. 4.2–4.4.
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Fig. 2 The connectivity avalanche in a random graph as a function of the edge density (ratio of observed
to maximum possible number of edges). In this example, the critical point lies where the edge density is
∼59%. a The number of separate components; b The size of the giant component; c The variance in size
of the components. See text for explanation. (Redrawn from Green et al. 2020a)

4.2 Percolation

In abstract terms, percolation is an emergent process, inwhich a change of state spreads
from node to node through a network (Stauffer 1979). In physical terms, this change
of state may be the flow of a substance from node to node, for instance water seeping
through a porous medium. Alternatively, it may be a physical change brought on by
contact with neighbouring nodes, such as spread of a fire through a fuel bed, or the
spread of a rumour through a social network.

Originally studied to understand the movement of fluids through porous media,
percolation also occurs in many other contexts. It can be understood by considering
flow through a simple lattice, consisting of sites and bonds between them. There are
two kinds of percolation (Li et al. 2021a): bond percolation refers to links that enable
flow between neighbouring sites (nodes), and site percolation refers to flows in which
sites either allow flow through them, or not.

The critical phase change in networks, which we saw earlier (Fig. 2), applies to
both kinds of percolation (Yanuka and Englman 1990). Some phenomena can involve
either bond, or site percolation. In fire spread, for instance, a fire cannot spread if the
fuel is patchy and its density is below a critical level (site percolation). Similarly, in
cold weather (say), fire cannot spread, even in dense fuel, if the heat of burning fuel is
below the threshold needed to ignite neighbouring fuel (bond percolation). The same
duality applies to the spread of an epidemic. The greater the degree of contact between
potential hosts (site percolation), the less contagious the disease needs to be to spread.
Conversely, the more contagious it is, the less contact is needed for it to spread (bond
percolation).

We can interpret several economic processes as percolation. One is the spread of
information in financial markets (Duffie and Manso 2007; Byachkova and Simonov
2015; Chiaradonna and Lanchier 2021), especially between traders (Asparouhova and
Bossaerts 2017). This information can include the spread of rumours (Gaildraud et al.
2009), and, in extreme cases, can lead to herding behaviour and financial bubbles
(Seyrich 2015). Another financial process is the spread of new market technologies.
A good example is the Bitcoin Lightning Network. It is a “second-layer technology”
that provides channels for making fast payments off the main blockchain. It has spread
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Fig. 3 Emergence of cascading failures. This is an example both of networks of networks, and of dual-phase
evolution in a complex system. In normal conditions (left), a system behaves as closed (dashed box). In this
local phase, the system has no links to outside networks. Changed conditions (right) create new connections
with outside networks. This global phase allows unanticipated cascades of effects to spread through the
system

throughmarkets by bond percolation (Bartolucci et al. 2020), thus enabling blockchain
applications to scale more easily.

4.3 Networks of networks

In recent years, there has been increasing recognition of the need to understand com-
plex systems that are not a single network, but networks of networks (Karimi et al.
2021). As the name implies, these are comprised of different networks that are inter-
linked in some way (Gao et al. 2012, 2014). Infrastructure (roads, power, water, etc)
provides good examples. A railway system, for example, consists of networks of rails,
power supply, and communications. Failure in any one of these can cascade into failure
of the entire system. Human society consists of many overlapping networks, including
family, friends, and neighbours, as well as transport and communication networks that
link people.

Several kinds of behaviours can emerge from interactions between different net-
works. Events in one network can trigger emergent events in another. A common
problem is percolation leading to cascading failures (Buldyrev et al. 2010; Gao et al.
2013). A power grid, for example, compensates for failure in one local network by
shifting power across from another network. However, if demand is high, that demand
can overload the second network, setting off a series of failures across the entire grid.
Widespread power blackouts, such as the infamous New York blackout of 1965, often
emerge from this kind of cascade (Green 2014).

More generally, accidents and failures usually emerge as by-products of changes
within interlinked networks (Fig. 3). For instance, the Tenerife disaster (the worst
accident in aviation history) emerged from a sequence of forced changes, triggered
initially by a bomb placed in an airport waste bin. No single change—switching
flights to a secondary airport, fog on the runway, parking planes on the taxiway,
garbled communications—was itself fatal, but they cascaded to cause the deaths of
583 people (Bruggink 2000; Green 2014).
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Conceptually, we usually model working systems as closed boxes within a wider
environment that includes many other networks (Fig. 3). In these models, we assume
that interactions between a system and its external environment are negligible, and
can be ignored. However, a change in some part of that environment can impinge
significantly on the system, rendering the normal model invalid.

Perhaps themost widespread implication of the above process lies in the emergence
of unintended consequences in decision-making (Merton 1936). The dashed box in
Fig. 3 represents the range of issues considered in making a decision. The assumption
is that outside factors neither influence the system, nor are influenced by it. However, if
connections to the outside actually exist, or if changed conditions create connections
(Fig. 3), then outside influences can create unforeseen consequences. In this way,
decisions made in one context can have implications that are impossible to predict,
in another, different context (Merton 1936; Kozlowski et al. 2013). Decision-making
here can also take many forms. The introduction of new technology, for instance, can
be seen as a decision to change the way things are done.

We can see a good example of new technology driving unintended social conse-
quences in the case of labour-saving devices. Inmany countries, refrigerators, washing
machines, and other deviceswere introduced into homes during the lateTwentiethCen-
tury (Green 2014). In Australia, for instance, their introduction set off a cascade of
unanticipated social changes (Green 2014). Labour saved in the home created greater
free time and led to a large increase in the number of women in paid employment.
That increase launched a cascade of other social changes. Women in the workforce
had even less free time at home, which led to the rapid spread of child-minding centres,
and growth of the fast food industry. Financial independence for women also led to
increases in the number of single-parent families.

Similar cascades of changes have emerged following other technological innova-
tions, including industrial automation and the communications revolution, marked by
the introduction of the World Wide Web and mobile technology (Green 2014).

Supply networks can be vast and complex. Their diverse nature makes them highly
susceptible to the emergence of unanticipated consequences (Matos et al. 2020). For
instance, the global spread of supply chains has made them vulnerable to exploitation
as commercial and military weapons (Farrell and Newman 2022). The quest for sus-
tainability has also impinged on many supply networks. Subsidising sustainable and
other socially beneficial behaviour can have the effect of inflating prices, thus harm-
ing consumers (Arya and Mittendorf 2015). Similarly, “... lean logistics practices
improve operational performance, [but] they may unintentionally increase environ-
mental impacts” (Ugarte et al. 2016).

In ecosystems, the introduction of new species can set off a “trophic cascade”,
leading to the emergence of instability and the loss of species (Walsh et al. 2016).
Conversely, the removal of a “keystone species” can also trigger a trophic cascade.
An infamous example was the removal of wolves from Yellowstone National Park.
Reintroduction of wolves in the 1990s largely restored the park’s ecosystems (Ripple
and Beschta 2012).

Arguably, one of the most important examples of interlinked networks lies in the
interactions between human socio-economic networks and natural ecosystems. A sim-
ple model of traditional economics casts the flow of money as a closed system that
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forms a virtuous circle: income–investment–production–growth. This circle is a pos-
itive feedback loop, in which each step enables the next. The model casts economic
activity as a closed box, ignoring interactions with outside influences, such as environ-
mental constraints. A controversial demonstration of the danger of closed box models
was the Club of Rome model (Meadows et al. 1972). By linking economic activity
to human and environmental networks, it showed the potential for crashes to emerge
in several vital systems. Environmental Economics embeds economic activity within
larger environmental networks (Hanley et al. 2019). In particular, economic activities
rely on a range of ecosystem services (Reid et al. 2005; Arrow et al. 2014). Failure
of any one of these services could trigger a cascade of economic disasters (Mastny
2015).

4.4 Dual-phase evolution

As shown earlier (Figs. 1 and 2), the connectivity avalanche in random graphs means
that networks normally exist in one of two phases: connected or fragmented. This
property underlies the process of Dual-Phase Evolution (DPE), which occurs when a
network exhibits three features (Green et al. 2014; Paperin et al. 2011):

– The network switches back and forth between the connected and fragmented
phases;

– Different processes, selection and variation, predominate in each phase. In a frag-
mented phase, small component networks are separate from one another, allowing
variations to appear. In a connected phase, links within a giant component dampen
variations;

– The system has memory. That is, changes that occur in one phase carry over to the
other phase, allowing order to accumulate.

An example is the formation of small worlds in human society (Watts and Strogatz
1998). Traditionally people are limited by time and distance to contact with people in
their immediate neighbourhood (local phase). Sometimes, however, individuals visit
distant places and meet people from elsewhere (global phase). These contacts create
long-distance connections, which typify small-worlds (Paperin et al. 2011).

Studies have shown that dual-phases underlie many environmental processes. Ox-
bow lakes, for instance, emerge from alternation of flooding events and slow erosion
(Paperin et al. 2011). Storms in central Australia flood dry water channels, creat-
ing migration pathways that allow widespread populations of water birds to emerge
(Roshier et al. 2001). Another example can be seen in the post-glacial forest history
of North America and Europe. Preserved pollen records show clear forest zones over
time (Green 1994). These zones emerged because existing tree populations excluded
northward migrating species, until intermittent wildfires cleared tracts of land, allow-
ing new ecosystem assemblages to emerge.

In economics, dual-phase evolution has been linked to changes occurring during
social (Xu et al. 2013) and market cycles (Goodman 2014). It has been suggested that
prosperity is “... a dual phase process of alternating highly prosperous, connected
phases and non-prosperous, fragmented phases.” Cavaliere et al. (2012) More gen-
erally, dual-phases are often associated with processes in networks of networks. As
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noted earlier (Sect. 4.3), a change in the environment of a system can create new inter-
actions between networks. In effect, the larger, surrounding network enters a more
connected phase (Fig. 3). As we saw above, unintended economic consequences can
emerge this way. The process can also trigger the emergence of permanent change in
a market, such as the disrupting effect of a new technology.

Dual-Phase Evolution (DPE) should not be confused with the theory of Self-
Organized Criticality (SOC) (Bak et al. 1988). Many cases of DPE were incorrectly
interpreted as SOC (Green et al. 2014). SOC proposed that for many systems, their
natural state lay in a critical region, to which they return after any disturbance. The
chief identifying signature was presence of a power law (the so-called “1/ f noise”) in
the distribution of avalanche size. SOC has been invoked to explain many phenomena,
but critiques have pointed out the theory’s flaws (e.g. Paperin et al. 2011; Watkins
et al. 2016). First, the theory offered no underlying causal mechanism. However, its
signature 1/ f noise can be explained by the exponential nature of the connectivity
avalanche that occurs in random graphs. Also, 1/ f noise is not a definitive indicator.
Based on detection of power laws, many studies blindly claimed to find SOC in sys-
tems, even where the power law resulted from external factors (e.g. size of storms),
not self-organization. Even the validity of SOC’s exemplar sand-pile model (Bak et al.
1988) can be questioned: the sand pile’s natural state need not be within the critical
region; it has a stable configuration, and collapses only when it is driven into the
critical region by falling sand.

4.5 Evolution: selection and adaptation

Species evolution, in particular the mechanism of natural selection, shapes organisms
so that new phenotypic features emerge. Selection occurs when some aspect of an
organism’s world conveys an advantage (greater fitness) to individuals that possess a
certain attribute. This selective pressure may be imposed by the physical environment
(e.g. climate, soil), by interactionswith other species (e.g. predation), or by competition
within a population (e.g. sexual selection). Interactions between species can lead to
co-evolution, in which both species evolve in relation to mutual selection, such as the
need for predators to catch fast-running prey.

The mathematics of genetic recombination mean that mutations within an inter-
breeding population tend to be suppressed by crossover. However, in a small isolated
population there is a much higher chance of a mutation persisting and even becoming
fixed in the population. That is, every member of the population shares the mutation.
Hence, the usual process of speciation is by isolation (allopatry) of small populations.
However, other modes of speciation can occur. Both field and modelling studies show
that speciation can occur within populations that share the same geographic area
(sympatry). An example is where local variations andmating sort a species in ecotypes
that minimise hybridisation (Sadedin et al. 2009).

Glacial cycles during the Pleistocene present examples of species emergence by
allopatry in different parts of the world. For example, the repeated cycles of glaciation
and thawing during the Pleistocene in Europe led to dual-phase evolution (Sect. 4.4).
The cycles forced alternating retreats of species into refugia, followed by rapid expan-
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sion, accompanied by genetic variation (Hewitt 2000). In North America, the effect
of repeated glacial cycles on the emergence of novel flora and fauna has been likened
to a “speciation pump” (April et al. 2013).

Some theoretical models have characterised evolution as a search through a hypo-
thetical fitness landscape. In these models, phenotypic attributes (e.g. size) of an
organism define the dimensions of a landscape, and the organism’s fitness defines
the elevation of each point in the landscape. One drawback of the fitness landscape
model is that it considers only selection within a fixed range of variables or attributes.
For instance, placing organisms in a different environment could lead to a different
“landscape”.

A common issue in evolution is genetic trade-off. That is, selection for one attribute
comes at the cost of another attribute. A classic example is seen in reproduction.
Animals can either produce few offspring and nurture them to ensure they survive
(e.g. birds, mammals), or they can produce many offspring, relying on chance to
ensure that some survive (e.g. many insects). Likewise, different operational models
emerge when businesses face similar kinds of trade-offs. For instance, restaurants
usually invest resources into fostering a regular clientele, whereas fast-food outlets
invest in efficiency and high throughput.

4.6 Feedback

Feedback occurs when the output of a process leads to an input. If a positive output
returns as negative input, then the feedback is negative. If it returns as positive input,
then the feedback is positive. Familiar examples are thermostats (negative feedback)
and compound interest (positive feedback).

In dynamic systems, negative feedback tends to dampen changes. Hence it pro-
motes stable equilibrium. More generally, by suppressing change, it acts to preserve
the state of a system. However, cyclic behaviour can emerge if there are delays in a
negative feedback loop. For example, in a growing population, if seasonal reproduc-
tion is too fast, then the population can exceed the carrying capacity of its environment.
This causes the population size to fall and cycles of growth and collapse occur. Some
systems avoid population cycles through dual feedback loops, where one loop elim-
inates oscillations that the other promotes (Nguyen 2012). In a survey of emergence
in economics, Fromm (2005) argued that optimal “... pricing of goods in an econ-
omy and free markets emerges from the interaction of agents obeying the local rules
of commerce and the law of supply and demand. It is based on negative, stabilizing
feedback.”

In contrast, positive feedback accelerates change, hence destabilizing systems. In
complex systems, it allows local variations to grow into global properties or behaviour.
It is thus amechanism that drives emergence inmany natural systems. Numerous stud-
ies have reviewed the literature on its role in emergence (e.g. DeAngelis et al. 2012;
Strogatz 2018). This research touches on too many aspects of science to review here,
but they include areas such as: population ecology (Boone et al. 2011), physiology
(Prochazka et al. 1997), metabolism (Chimenti et al. 2015), cellular control systems
(Mitrophanov and Groisman 2008), reproduction (Harter et al. 2018) and develop-
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Fig. 4 Conceptual model of the formation of a stable core in a dynamic system. Addition of new nodes
(Time=1) produces several feedback loops. The positive loops collapse (Time=2), leaving behind negative
feedback loops (Time=2), around which a larger, stable network can emerge (Time=3)

ment (Cheng et al. 2003), neurodegenerative disease (Zilberter and Zilberter 2017),
autoimmune disease (Shlomchik et al. 2001), and memory (Yang et al. 2011).

In most cases, positive feedback combines with other processes to produce emer-
gent features or behaviour. The exact mechanisms depend on the nature of the system
involved. However, a few examples can show that combinations of feedback and net-
work processes are widespread and occur in many kinds of systems. In the onset of
autism, for instance, “...a positive feedback loop ... amplifies small functional varia-
tions in early-developing sensory-processing pathways into structural and functional
imbalances in the global neuronal workspace” (Fields and Glazebrook 2017). A bio-
logical example is stigmergy (Sect. 3.3). Positive feedbackoccurs because large clumps
of eggs grow faster than small ones. This reinforces the results of sorting arising
from insect behaviour and leads to the emergence of organisation in ant colonies (see
Sect. 5.6).

In many instances, positive and negative feedback combine to produce emergent
order in complex adaptive systems. In general terms, this occurs where positive feed-
back creates emergent features, and negative feedback operates to stabilize those
features (e.g. by dual-phase evolution).

As a specific example, the above process operates in ecosystems, where it drives
the emergence of stable species assemblages (Green et al. 2020a). We can view an
ecosystem as a food web, in which populations of different species interact with one
another. Repeated arrival of new species in such a system can create feedback loops.
Positive loops lead to collapses, whereas negative loops create stable cores that enable
component networks to persist, and grow (Neutel et al. 2002). This idea resolved an
apparent paradox: complex ecosystems, such as coral reefs and rain forests, are known
to be stable (they recover from disturbances). So it was assumed that complexity begat
stability. However, in model ecosystems, the more complex the system, the more
unstable it is May (1972). However, the stable core hypothesis resolved the paradox
by showing that ecosystems can grow complex only if they are stable (Fig. 4).

Positive feedback plays a prominent role in the market economy (Arthur 1990;
Dobusch and Schüßler 2013; Arthur 2021). Awidespread practice is positive feedback
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trading (De Long et al. 1990; Antoniou et al. 2005; Koutmos 2014). Often a deliberate
strategy, this occurs when trading success leads agents to continue and expand on the
same activity. Recent studies show that it has had widespread influence, for instance
on stock pricing in China (Liu andWan 2022) and in the behaviour of Bitcoin markets
(Wang et al. 2022).

Positive feedback also plays a significant role in the emergence of boom and bust
cycles in markets (Arthur 1990, 2021). As early as 1841, Mackay (1980) provided
vivid, detailed accounts of several market bubbles and the way they burst, including
Tulip Mania in Holland (1634–36), the South Seas bubble in Britain (1711), and the
Mississippi Company (1715–16) in France. There are many, recent examples, such as
the collapse of the Dot-com bubble in 2000 (Wheale and Amin 2003),

Given the prominence of boom and bust cycles in economics, much effort has been
devoted to understanding them. One problem is that positive feedback trading can lead
to herd behaviour (Zhou and Lai 2008; van Roekel and Smit 2022), so a significant
movement in stock prices can become a loop (Blomme 2012), which quickly turns
into a virtual stampede. Loops can also arise between agents (Mercure et al. 2016)
and if the resulting feedback is positive, it can drive debt cycles (Lojak 2018).

The introduction of automated agents for buying and selling shares had some unfor-
tunate side-effects on market behaviour. The early agents used simple criteria for
decision-making. Essentially, if the price of a stock went up by a set amount, they
would buy; if it went down, they would sell. Single agents following such rules helped
brokers react quickly to price movements. A problem emerged when large numbers
of agents used the same principle for trading at speeds humans cannot match (Poirer
2012). Automated buying bymany agents at the same time led to rapid price increases,
which drove automated agents to buy more, and hence sent the price spiralling. Auto-
mated selling can also produce crashes: “The stock market crash of ‘29 was a result
of individual human agents–not a central controller. The crash of October ’87 partly
resulted from individual software agents that buy and sell securities according to pro-
grammed rules” (Odell 2000). More sophisticated logic has reduced the problem, but
automation ensures that rapid market movements remain common.

4.7 Entrainment

A widespread mechanism for emergence is entrainment. It is often associated with
feed-forward (Takahashi et al. 2009), which occurs where node B passes on inputs
from node A as inputs to other nodes. An example is retweeting messages on Twitter.
In dynamic systems, entrainment can be interpreted as a process in which a system’s
state falls into an attractor region, from which it cannot escape. That is, it falls into a
stable equilibrium, a cycle, or into a chaotic state (strange attractor). Entrainment can
arise from negative feedback, if (say) one agent constrains and restricts the behaviour
of another.

Entrainment is most famously associated with the mode-locking of oscillations
in cyclic phenomena (Kuramoto 2003). It occurs when interactions between neigh-
bouring agents leads to synchronization, so that small local vibrations can affect a
global whole. The phenomenon has long been known to occur in the pendulums of
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mechanical clocks mounted on a wall (Nikhil et al. 2015). Other famous examples
are spontaneous synchronised clapping in a crowd and the spread of laughter within
groups of people (Lee et al. 2020). Physical examples of contexts where entrainment
occurs include material rheology in debris and snow avalanches (Cuomo et al. 2014;
Issler and Pérez 2011). In the firing of a laser, light emitted from atoms stimulates emis-
sions of the same wavelength in other atoms. When the energy of synchronized atoms
exceeds a critical level, the laser fires (Schawlow and Townes 1958). Entrainment also
appears in biological contexts, such as the timing of circadian rhythms (Golombek and
Rosenstein 2010; Brodsky 2006), the emergence of bipedal locomotion (Taga 1994),
cognitive development (Wass et al. 2022), and shimmering, where bees flip abdomens
up simultaneously in self-defence (Kastberger et al. 2010).

In economics and finance, entrainment arises in two ways: by the appearance of
constraints that limit behaviour; or by reinforcement (Lussange et al. 2021), which can
act as positive feedback, lockingmarket players into particular strategies or behaviours
(Arthur 1990; Forrester 1997; Anesi and De Donder 2013; Li et al. 2021b; Lussange
et al. 2021). The emergence of trust can be interpreted as entrainment (Phuong et al.
2020; Kato and Sbicca 2021). Other consequence of entrainment include the formation
of economic clusters (van Roekel and Smit 2022), the adoption of new technologies,
and the emergence of economic niches (Cazzolla Gatti et al. 2020; Li et al. 2021b).
In prehistoric times, for instance, the domestication of animal species produced a
cycle of positive feedback, which “... sparked ongoing intensification of agriculture
production” (Shelach-Lavi 2022). A present-day example is the emerging transition
to renewables in energy markets (Chappin and Blomme 2022).

Entrainment can be seen as a mechanism bywhich the stockmarket adapts (Holland
2018). However, it can also lead to market volatility (Koulakiotis and Kiohos 2016;
Song 2021). For instance, long-term cycles can emerge through locking of capital in
sectors (Haxholdt et al. 1995). Entrainment, combined with positive feedback, also
leads to herd behaviour, and the kinds of boom and bust cycles described earlier.

4.8 Modules andmotifs

Two network structures—motifs and modules—often play roles in emergence. In
network terms, a motif is a small set of nodes and edges, often repeated, that plays
a well-defined role in a complex system (Milo et al. 2002) (Fig. 5). Feedback loops
(see Sect. 4.6) provide a good example. In financial markets, modules can take several
forms, such as economic clusters (van Roekel and Smit 2022) and niches (Cazzolla
Gatti et al. 2020).

In general, bothmodules andmotifs are structures that serve to fix emergent patterns
in a network. Elsewhere, I present two examples of this. One is stigmergy (Sect. 3.3)
and the way clumps (effectively modules) form and grow, under the influence of
positive feedback. The other is the formation of a stable core in dynamic systems,
where negative feedback stabilizes a set of nodes (Sect. 4.6). In general, complex
systems can accumulate order by forming motifs that provide stabilizing structures.
These can play roles in the emergence of network organisation (Benson et al. 2016).
Motifs emerge in many settings, including protein interactions (Yeger-Lotem et al.
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Fig. 5 Examples of common motifs of three vertices that can appear in directed graphs

2004), emergence of molecular functions (Aziz et al. 2016), genetic regulation (Burda
et al. 2011), and social networks (Girvan and Newman 2002). Proteins, for instance,
exhibit motifs comprised of short sequences of amino acids (Hofmann et al. 1999).
Typically, the sequences form structural elements, such as bends, sheets and helices,
that play a crucial role in the way a protein folds.

Some motifs, especially feedback loops, are common in finance (see Sect. 4.6).
Motif patterns have also been shown to play a role in certain economic conditions,
such as price spillover (Liu et al. 2019).

Modules take encapsulation of ordered elements a step further. We can define a
module to be a network component that is well-connected internally, but minimally
connected to the rest of the network. Tree growth, for instance, is highly modular,
being dominated by the repetition of elements such as buds, branches, leaves and fruit.
Genetic regulatory networks also exhibit modularity (Caetano-Anollés et al. 2019).
In development, the genome includes modules that control the growth of anatomical
features (Gu et al. 2015; Szenker-Ravi et al. 2022), such as the eye (Halder et al. 1995;
Arnoult et al. 2013), neural development (Gu et al. 2015), and anatomical asymmetry
(Szenker-Ravi et al. 2022). Simulation studies have accounted for the prevalence of
modules in neurological and genetic regulation by showing that selection favours the
emergence of modules because they reduce the cost of connections between nodes
(Clune et al. 2013; Mengistu et al. 2016). Other studies show that relatively simple
processes, such as gene relocation and selection, can account for the emergence of
genetic modules (Karlebach and Shamir 2008; Newth and Green 2007; Mittenthal
et al. 2012).

Modular organisation lends itself to the emergence of hierarchical structures, con-
sisting of modules within modules. Such hierarchies convey the advantage of breaking
big processes or structures into smaller, efficient, and easily managed ones. Human
organisations exploit this property deliberately. A large company, for instance, can
achieve efficiency by dividing its operations into separate divisions, each dealing with
a different area of work (e.g. manufacturing, transport, marketing). Engineering and
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architecture adopt the same approach to design, which provides efficiencies for con-
struction and maintenance. The downside of modularity is the emergence of failures
arising in cases that do not fit neatly into the hierarchy. A business example would be
a problem that goes unnoticed because it does not fit neatly under (say) manufacturing
or marketing.

In networks, a module is a set of nodes that are connected internally, but with min-
imal edges joining them to the rest of the network. Attempts to measure modularity
in these terms have not been completely satisfactory. Some metrics requires identi-
fication of a candidate module. However, this approach cannot work in a search to
detect unknown modules. Newman introduced a general metric to assess the degree
of modularity in an arbitrary network (Newman 2006). However, this metric suffers
from being highly correlated with the network’s edge density.

5 Modelling paradigms

Several approaches to modelling have been widely used in studies of emergence in
complex systems. In many cases, they provide alternative ways to represent the same
phenomena.

5.1 Measuring emergence

In many contexts, it is useful to knowwhether new features emerge in a system. To this
end, metrics that test for emergence are appealing. By analogy with “seeing the wood
in the trees”, emergent features are often obscured by random details in observations
made at micro-scale, and become obvious only in macro-scale, compressed data (Hoel
et al. 2013; Varley and Hoel 2022). For this reason, metrics to detect emergence have
usually been based on changes in complexity (Gershenson and Fernández 2012).

The problem of capturing complexity in a single number amounts to finding a
simple solution to something that is, by definition, not simple. A complexity metric
does away with all the richness. However, it can be useful when comparing the relative
complexity of different systems, or changes in complexity over time or scale.

Most attempts tomeasure complexity have adopted one of two approaches: descrip-
tion or thermodynamics. The first approach is to consider how a system is described.
In early studies, several authors argued that complexity can be measured as the length
of the code or algorithm that generates a description of the system (Solomonoff 1964;
Chaitin 1966; Kolmogorov 1968). However, these metrics depend on the encoding
system employed, and different encoding systems may yield inconsistent results. A
greater problem is that adopting this interpretation suffers from the drawback that a
random system would be considered complex. This confuses complexity with com-
plication. That is, these metrics fail to capture the richness of connections that make
systems truly complex.

To deal with the above problem, a refinement is to regard complexity as a message
that falls into two parts: program plus data (Wallace 2005). Similarly, Papentin
(1980b) proposed two kinds of order: primary (orderly pattern) and secondary (random
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entropy). The ordered component can be taken as an indicator of emergence in the
system.

The alternative approach is to apply thermodynamic concepts, which have moti-
vated several measures of complexity, and hence emergence (Prokopenko et al. 2009),
Mnif and Müller-Schloer (2011). The Shannon-Wiener index relates information to
the entropy of a system. Thus, a quantitative measure H of complexity, based on
Shannon’s definition, is given by

H = −
n∑

i=0

p(i) log(p( j))

for a system with n attributes, where p(i) is the probability of attribute a(i). This
metric reaches its maximum value, log(1/n) when all n states have equal probability,
that is, when the system is random. The entropy in the system is higher when the
system is less ordered. Emergent order can then be measured by the difference of the
observed entropy from the maximum (e.g. Mnif and Müller-Schloer (2011)):

Hemergence = Hmax − Hobserved ,

where Hmax is the entropy obtained from the uniform probability distribution.
Note that information measures can be misleading. For example, the same system

can appear to be self-organizing, or disorganizing, when partitioned at different scales
(Gershenson and Fernández 2012). Two further objections can be raised about the
above direct entropy measure (Nowosad and Stepinski 2019). The first is that, like the
previous approach, it does not discriminate between ordered and random systems. The
second objection is that it focuses only on proportions, not on organization: it fails to
consider interactions within a system.

To capture interactions within a system, an alternative is to use mutual information
between parts of a system. We can measure this via joint entropy, which extends the
Shannon-Wiener index by considering interactions (Szabo et al. 2014; Varley andHoel
2022). For a collection of n entities, the (pairwise) joint entropy is given by

Hjoint = −
n∑

i=0

n∑

j=0

p(i, j) log(p(i, j)),

where p(i, j) is the probability of entities i and j occurring together.
A visual example highlights the difference between entropy and joint entropy.

Consider a grid in which the entities are n colours of cells in a grid (Fig. 6). In this grid,
colours are linked if they appear in adjacent cells. A simple entropy metric yields the
same result for both random and organized patterns, whereas joint entropy identifies
the difference clearly (Fig. 6).

Metrics that use variations on joint entropy, or related ideas, have been applied to
the emergence of various group forms, such as flocks, crowds, and traffic congestion
(Wright et al. 2000, 2001). Other criteria have also been applied as measures of
emergence. For instance, fractal patterns often appear as by-products of emergence,
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Fig. 6 Use of entropy measures to compare spatial patterns. At the top are uniform (left) and scattered
(right) patterns. The plot below them shows entropy as a function of the number of colour classes present.
The Shannon index (solid line), is based on the frequency of each class and gives the same values for both
uniform and scattered patterns. The dashed lines show the joint entropy for the two patterns. (Redrawn from
Green et al. 2020a)

so fractal dimension, and related measures, have sometimes been treated as metrics
(see Sect. 5.7).

Most alternatives to the above metrics were developed to deal with specialized con-
texts, using suitable kinds of data. Examples include information discovery (Kerne
et al. 2008); collective intelligence in groups (Chmait 2017), emergence of new
technology (Li et al. 2021b), and entrepreneurial activity (Lichtenstein et al. 2006).
As discussed in Sect. 4.1, the increasing availability of network data inspires other
approaches.

5.2 Networkmodelling and analysis

The increasing use of network data raises the question of how to detect and test for
emergence, based on network structure. The essential problem is that causal patterns
can get lost amidst the noisy detail of individual nodes and edges (see Sect. 2). An
obvious solution is to reduce the effect of local detail by taking a higher-level view
of a network. One such approach is embodied in the idea of “causal emergence”
(Hoel et al. 2013). This method calculates the difference in “effective information”
between microscopic topology and one in which individual nodes are grouped into
“macronodes” (Hoel et al. 2013; Klein and Hoel 2020). However, the method has so
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far proved difficult to apply, because it makes assumptions that real networks rarely
satisfy (Rosas et al. 2020).

Network metrics are widely used to test for emergent features and other issues
(Boccaletti et al. 2006; Newman et al. 2002; Oehlers and Fabian 2021). We met
modularity earlier (see 4.8). Some other common metrics include the following:

– Clustering tests for the presence of tightly linked clusters, which are common in
small worlds.

– Centrality tests for the presence of important nodes (Rodrigues 2019), such as
influential people in a social network.

– Assortativity tests for the tendency of similar nodes to link together. Social appli-
cations usually base assortativity on node degree (the number of edges a node has),
but any numerical property could be used (e.g. company size).

– Path length tests for the average length of paths within a network. In small worlds,
for instance, the path length is relatively low.

A rapidly growing area of research concerns graph similarity (Emmert-Streib et al.
2016). These methods compare how alike two networks are, based on various criteria
(Bause et al. 2021; Zager and Verghese 2008). There have been many applications,
often using specialized methods. However, we can identify three broad areas of appli-
cation:

– Searching for known patterns in a network. This kind of application has long been
common in bioinformatics, notably in motif searching in proteins and genes.

– Comparing different observed networks. Comparison of networks is increasingly
used to study social networks and markets. For instance, a recent study (Fai-
zliev et al. 2019) constructed networks of links between companies, based on
co-mentions in newspaper reports. Comparing similarity of the resulting networks
at different times provided a test of market stability.

– Testing models against observed networks. Similarity has been widely used to test
whether social and other networks conform to known models (Lusher et al. 2013).

5.3 Thermodynamics and self-organisation

Thermodynamics treats emergence and self-organization in a system at a macroscopic
scale. This “top-down” approach contrasts with (and complements) network models,
which provide a “bottom-up” approach to emergence. Non-linear interactions between
objects produce emergent structure in many kinds of systems. Gravity, for instance,
drives clouds of dust and gas to aggregate into stars, and the emergence of solar
systemswith orbiting planets. In water, if the heat energy of atoms falls below a critical
threshold (freezing point), then hydrogen bonds form between the water molecules
and ice crystals emerge.

Prigogine (Prigogine and Lefever 1968) used the term dissipative to describe
open systems that are far from equilibrium and share energy with the outside. Near-
equilibrium systems tend to dampen variations; non-equilibrium behaviour is very
different. Local irregularities can expand (e.g. bypositive feedback, entrainment), lead-
ing to the emergence of large-scale order. The thermodynamic idea of open systems
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corresponds to the model of a system as a network embedded within an environment
of other networks (see Sect. 4.3). So, local irregularities in the system can arise by
interactionswith an outside network, setting off a cascade of changes, aswe saw earlier
(Sect. 4.3).

5.4 Dynamic systems

A dynamic system is a system whose state at any time is a function of its previous
states. The term is usually applied to systems in which changes are represented by
variable quantities that are associated with the system. A simple example is logistic
growth.

dp

dt
= rp (1 − p/L) ,

where p is population size, t is time, r is growth rate, and L is the environment’s
carrying capacity. In this continuous form, it has the explicit solution

p(t) = L

1 + e−r t
.

In ecology, the logistic model describes the growth of a population whose size
is limited by the carrying capacity of its environment. In economics, it leads to the
Diffusion of Innovation model (Rogers et al. 2014; Meade and Islam 2006), which
describes the sigmoid pattern of growth that typically follows the entry of a new
product into the market.

The continuous form of the logistic model converges to L as a limit. However, in
the discrete form

p′ = rp(1 − p/L),

different kinds of behaviour emerge, depending on the value of r . For positive values
of r , the system exhibits five main patterns of behaviour: converging asymptotically
to zero (r < 1), converging to (r − 1)/r (1 < r < 2), emerging cycles and period
doubling according to Feigenbaum’s ratio 4.66 (2 < r < 3.57), sensitivity to initial
conditions (chaos) (3.57 < r ≤ 4), and rapid population crash (r > 4).

In general, dynamic systems often exhibit attractors as emergent patterns. From its
initial state, a system will undergo transient behaviour before falling into an attractor
state. This statemay be an equilibrium, a limit cycle, or a strange attractor.As described
above, all of these behaviours can emerge in logistic growth. Strange attractors are
associated with chaotic behaviour and exhibit several characteristic properties. First,
they are sensitive to initial conditions. In the logistic, for instance, a small difference
in initial population size soon leads to completely different behaviour by the popula-
tion. This makes the future behaviour of a chaotic system essentially unpredictable.
However, the strange attractor is usually confined to a finite region, so values will lie
within a limited range.
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For multi-species communities, we can express system dynamics using the gener-
alized Lotka–Volterra equation,

dpi
dt

= ri pi

⎛

⎝1 −
n∑

j=1

αi j p j

⎞

⎠ ,

where pi is the size of population i of n populations, ri is the population growth rate
for population i and αi j is the interaction between populations i and j .

By interpreting populations as economic agents, and biomass as capital, we can
draw parallels between ecosystems and financial systems. The Lotka–Volterra equa-
tions, originally introduced to describe the dynamics of food webs, can be applied to
financial transactions. Many of these applications concern transactions in the stock
market (Solomon et al. 2000) and trace the movement of wealth between traders
(Samanidou et al. 2007). Other applications include models of competition for market
share (Marasco et al. 2016; Ziegler et al. 2020) and the movement of capital between
banks (Comes 2012).

The above, continuousmodel assumes that interactionswithin the system are imme-
diate, and synchronous. However, the model can fail in several ways, causing different
behaviours to emerge. First, a population consists of discrete entities, so when popula-
tions are small, individual interactions are likely to be asynchronous. Also, the model
implicitly assumes a uniform spatial distribution of individuals at all times. Spatial
heterogeneity can alter the dynamics completely. Both of these issues have raised the
need for agent-based models to understand the patterns that emerge in non-uniform
conditions (see Sect. 5.6).

Temporal heterogeneity can likewise cause different behaviour to emerge. For
instance, seasonal breeding introduces delays into population growth. In a simple,
predator–prey system, for example, these delays canbe seen as feedback (seeSect. 4.6).
Cyclic behaviour often emerges in the presence of negative feedback, with the cycling
period being governed by the delays in the loop.

Although the emergence of chaos is easy to show in models, the combination of
sampling and other practical issues makes it difficult to prove in real populations.
This raised the question, does it actually occur in nature? (Turchin and Ellner 2000)
Subsequent studies into the necessary field methods, as well as careful experiments,
appear to show it does occur in some organisms (Becks et al. 2005).

5.5 Automata

Many processes that occur in discrete steps can be represented as automata. These are
abstract entities that change state (behave) according to inbuilt programming, and to
inputs (from their environment). Note that networks are inherent in the behaviour of
automata. We can treat an automaton’s state at any time as a node, and the transitions
to the next state as a (directed) edge. Features of automata can contribute to emergent
patterns and behaviour, which may arise out of combinations of the following:
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– Programming, especially iteration. Examples include emergence of periodic or
chaotic behaviour.

– System memory. Retention of states during iteration is essential for anything to
emerge in most of these processes.

– Interactions between different automata (“agents”, see Sect. 5.6). This is a rich
source of emergent behaviour, especially promoting changes of state, e.g. perco-
lation, entrainment.

– Interactions between automata and their environment. These might be inputs,
constraints, or effects that the automaton (agent) has on its environment.

– Other contributing processes. Examples include feedback (output returning as
input), phase changes in the connections between automata, and increase in the
population of automata.

Most of the above apply when there is more than one automaton involved, and
they exchange information. Many of the following sections concern particular cases,
especially in the way the automata are organized and how they interact with their
environment.

5.6 Agent-basedmodels

Agent-based models (ABMs) represent a system as an ensemble of independent
automata (autonomous agents), in which the outputs of one agent can become an input
to another agent (Bonabeau 2002). Agent-based models have become increasingly
popular for understanding complex systems because global features usually emerge
bottom-up from interactions between simple agents (Odell 2000; Haynes and Alemna
2022). Often, the agents are embedded in an environment. Most of the modelling
paradigms discussed below are variations on this idea, but put particular constructs on
the agents.

Several questions have attractedmuch attention in agent-basedmodeling. One is the
emergence of cooperation in groups. Game theory approaches look at the strategies
that agents employ with the goal of achieving the best return. Prisoner’s dilemma
(Rapoport et al. 1965) poses this as a choice in which each of a pair of agents can
either cooperate or defect. If they cooperate, then they each receive a small penalty. If
one defects, then that agent receives no penalty and the other agent receives a heavy
penalty. If both defect, then both receive a heavypenalty. Thegamecan also be inverted,
so that rewards are at stake, rather than penalties. Iterated Prisoner’s Dilemma repeats
the trial many times to discover what emerges as a population evolves. The outcome
depends on the relative risks and rewards, but some scenarios make the emergence of
social cooperation inevitable (Aydogmus et al. 2020; Fogel 1993).

The manner in which the states of agents change can have a big impact on the kinds
of behaviour that emerges in a system (see Sect. 5.9).

One of the first agent-based models of living systems was of bumble-bee colonies
(Hogeweg and Hesper 1983). This study showed that organisation of the colony
emerged from simple TODO rules that govern individual behaviour. Similar models
have since shown that in many organisms, group organisation emerges from sim-
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Fig. 7 A simple example of stigmergy (ant sort algorithm). From an initially random scatter of objects
(left), order emerges via a combination of simple behaviour and positive feedback

ple rules of behaviour. In stigmergy, for instance, ants sort material in their nests by
obeying simple rules (Dorigo et al. 2000), such as:

– If you see an egg, pick it up;
– If you see a pile of eggs, drop the egg you are carrying.

Positive feedback contributes to this process: larger piles tend to grow at the expense
of smaller ones, until all the eggs are stored in one location (Fig. 7).

An important application of ABMs has been to study the movement of large groups
of agents. For instance, a flock of birds emerges when individual birds follow simple
rules, such as: (a) collision avoidance (avoid getting too close), (b) velocity matching
(move in same direction and speed as those nearby) and (c) flock centering (stay close
to flock) (Reynolds 1987). Models of self-organisation can explain how the shape and
internal structure of groups emerge in flocks of birds and schools of fish (Hemelrijk
and Hildenbrandt 2012).

When moving en masse in crowds, humans tend to behave in simple ways. Their
behaviour causes spatial patterns to emerge, especially if barriers are involved.Thedual
problems of efficient movement of people, and preventing catastrophic jams during
emergencies, have motivated a whole field of study (Helbing et al. 2000, 2005). In
emergency situations, for example, exiting a building rapidly can make the difference
between life and death. However, if a crowd of people tries to exit through a single
door, then the exit becomes jammed and no one can move. Placing a small wall in
front of the door forces people to move around it in singe file. This turns the crowd
into two rapidly flowing streams.

One of the most widely used paradigms for modelling intelligent, autonomous
systems is BDI agents (Rao et al. 1995). Here, BDI is short for Belief, Desire, and
Intention.This approach arose in researchon artificial intelligence andhas been applied
widely in programming autonomous agents, such as robotics, automated processing,
traffic control systems, and control of electric power grids (De Silva et al. 2020;
Cardoso and Ferrando 2021). The underlying idea is that an agent is programmed to
decide what action to take in any situation. To do this, it has a belief (what it believes to
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be the current state of its environment, itself and other agents), a desire (the state that
it wants to result), and an intention (the sequence of actions it plans to take to achieve
the result). However, interaction between agents was not part of the original BDI
paradigm, so it has not been so widely used inmodels of multi-agent systems (Cardoso
and Ferrando 2021). However, the ability of BDI to embody cognitive reasoning has
made it ideal for many financial applications, such as blockchain (Alaeddini et al.
2021).

ABMs have become increasingly popular in economics because of their ability to
embody endogenous, bottom-up processes (Arthur 2006). Many of the studies cited
in previous sections used ABMs, especially for dealing with feedback (Sect. 4.6),
and entrainment (Sect. 4.7). In ABM studies of economics, the agents can represent
individuals, companies or traders. Interactions between the agents are usually financial
transactions, but can also be exchange of goods, or influence.

The need for agent-based models in economics was summed up succinctly by Gatti
et al. (2010), who argued that traditional economics is reductionist: “aggregates are
just the sum of individual behaviours”, so “... all explanations must be reduced to the
more fundamental lower level, that is to microeconomics”. Instead, they proposed “...
a bottom-up approach: let us start from the analysis of the behaviour of heterogeneous
constitutive elements (defined in terms of simple, observation-based behavioural rules)
and their local interactions, and allow for the possibility that interaction nodes and
individual rules change over time (adaptation).”

Traditional economic models typically assume that players follow a single strategy,
have perfect information, and that systems converge to an equilibrium state (Arthur
2021).Agent-basedmodels typically relax all those assumptions, and allowbehaviours
to emerge out of interactions between agents (Arthur 2006). This break, from tradi-
tional numerical models to a computational approach, has been heralded as a new
paradigm in economics (Odell 2000; Axtell 2007; Gatti et al. 2010; Bargigli and
Tedeschi 2013).

ABM studies have shown how bottom-up interactions can lead to many kinds
of emergence, including for example: macro-level phenomena (Ballot et al. 2015),
rise of entrepreneurism (Yun et al. 2018), growth of specialization (Jung 2019), and
the appearance of key players in markets (Galeotti 2006). Applications of ABMs to
stock markets (Padgett and Powell 2012; Lussange et al. 2021; Cavalli et al. 2022)
have helped to explain many kinds of emergence, such as price-taking behavior (Flåm
2020),market criticality (Harré 2018), crises (Kirsch andRühmkorf 2017), andbubbles
(White 1990; Rappoport and White 1993; Barbie and Hillebrand 2018).

5.7 Fractals

Fractals are patterns that emerge by the iteration of the same rules on different scales
(Papentin 1980a; Mandelbrot 1982). The formation of fractal architecture has been
shown to explain the emergence of metabolic networks (Aon et al. 2004) and the
tightly paired emergence of airways and blood vessels in the lung (Glenny 2011).
The emergence of nested clusters of cells during neuronal development shows fractal
properties (Mir et al. 2014).
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Because fractal patterns coincide with emergence in many contexts, fractal analysis
has sometimes been proposed as a way to measure emergence in complex systems,
such as the emergence of order inmicrobial communities (Balaban et al. 2018). Fractal
properties have been widely used in conjunction with spectral properties to analyse
time series (Gneiting et al. 2012) especially in association with transitions to chaos
(Yu et al. 1990).

Despite early interest in fractal properties within economics (Peters 1994; Qian
1994; Corning 1995), fractal analysis has not been widely adopted. However, fractal
patterns have been observed within the structure of supply networks (Hearnshaw and
Wilson 2013) and in the patterns of transactions in bonds (Kim and Yoon 2004) and
other financialmarkets (Peters 1994; Inaoka et al. 2004; Lussange et al. 2021). Greatest
interest has been shown in the association of fractal patterns with chaotic market
behaviour (Díaz 2015), especially when they are associated with market crashes (Shi
et al. 2022).

5.8 Formal languages

Formal language models contain three elements: an alphabet to represent constants,
variables and other symbols; semantics that define the meaning of the symbols; and a
syntax to set rules for how expressions are formed.

Language based approaches to modelling complex systems are effective at captur-
ing organization and patterns. However, they have not been widely adopted, at least
in explicit form. Nevertheless, syntactic rules are implicit in many widely used appli-
cations, such as machine learning (Liang and de Rijke 2016), and agent-based models
(Becerra-Bonache and Jiménez-López 2015) (see Sect. 5.6).

Syntactic models are very good at capturingmodular processes. An excellent exam-
ple of this are L-systems (named after their inventor Aristid Lindenmayer). They
are formal languages that represent the organisation of growth (Lindenmayer 1968).
Growth models are characterized by iteration of syntactic rules, in which constants
correspond to discrete fixed units and variables denote growth elements (Herman and
Rozenberg 1975). In plant growth, for instance, the iteration of similar elements often
leads to emergent structures that are fractal in nature (Prusinkiewicz and Lindenmayer
2012).

A criticism labelled at early syntactic models was their over-reliance on first-order,
context-free grammars. This made it impossible to deal with the context-sensitive
nature of many kinds of growth and behaviour. In contrast, numerical models of
growth use the paradigm of environmental constraints, such as biochemical gradients
that control rate of growth of different organs during development. A solution, which
combined both kinds ofmodels,was to introduce parametric L-systems (Prusinkiewicz
et al. 1999). These enable the introduction of context-sensitive rules, such as

S0 : condition → Snew,

where condition relates to the values currently taken by someparameter. These parame-
ter values can be determined byneighbouring units, or by conditions in an environment.
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Fig. 8 Emergence of spatial pattern in vegetation. a Seeds disperse anywhere; b Local seed source; c As in
b, but fires clear patches; d As in c, but an environmental gradient limits distributions (redrawn from Green
et al. 2020a)

For instance, in plant growth, a bud may form on a branch only if there is sufficient
sunlight and moisture to allow it to form. This is an example of clocked processing
(see Sect. 5.9).

5.9 Cellular automata

A fruitful paradigm for studying emergence in computation is the Cellular Automaton
(abbreviated “CA”) (Wolfram 1984). A CA is a specialized agent-based model, in
which the agents (cells) form a fixed grid. In addition, each cell has a neighbourhood,
which is comprised of other cells, and accepts their states as inputs. All cells are
identically programmed and update their states in a series of time steps, according to
their programming. An early CAmodel was the Game of Life, introduced by Conway
(1970) to demonstrate the way in which patterns can emerge in systems that obey
simple rules.

Cellular automata have been used to simulate emergent patterns and behaviours in
several kinds of real-world systems, especially where processes are spread across a
surface (e.g. percolation) or landscape. Examples include fire spread, seed dispersal,
and hydrodynamics. CA models have also been combined with other ABMs, with the
CA being a substrate (e.g. landscape) on which the agents move (e.g. animals) (Fig. 8).

CAs, especially 1-Dimensional CAs, have also been used as vehicles for investi-
gating properties of the state space of processes. For this purpose, the state of the CA
grid is a vector comprised of the combined state of every cell in the grid. The states
form a network, in which the nodes are states and the edges are transitions between
states. In a grid of N cells, the number of possible states of a binary, deterministic CA
is 2N , which means that the CA must eventually return to a previous state in less than
2N time steps. Hence it must ultimately fall into a fixed state, or a limit cycle. Given
this network structure of the state space, three classes of behaviour emerge, depending
on the degree of connectivity between the possible states of individual cells. When
the connectivity is low, the resulting CAs quickly fall into a fixed state, or else cycle.
If the connectivity is high, then fixed states are rare, and long cycles are common.
Experiments show that the most “interesting” behaviour occurs when the connectivity
of the state space lies in the critical region between low and high connectivity (the
so-called “edge of chaos”) (Langton 1990).
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Fig. 9 Effects of processing order on emergent patterns. a Synchronous, bCyclic (OAS), c Clocked (OAS),
d Independent (RAS), e Random order (RAS). (Redrawn, based on Cornforth et al. (2005))

The emergence of patterns in CAs also depends on the manner of processing. Time
is usually represented as a series of discrete steps, in which the state of every cell
is updated in parallel, and synchronously. However, many real-world systems do not
update synchronously. In plant growth, for instance, the rate at which new branches
appear is limited by the supply of water, nutrients and light (see Sect. 5.8).Where these
resources are not available uniformly, parts of the tree will grow faster than others. In
social networks and markets, interactions between agents are usually asynchronous
too.

We can highlight the impact of asynchronous processing using simple CAs, where
different update schemes are applied (Fig. 9). Different patterns emerge, depending on
the scheme applied. Several common processes have been identified (Cornforth et al.
2005):

– synchronous, where all events occur simultaneously;
– random asynchronous (RAS) where events happen in random order, such as trans-
actions in a stock market;

– ordered asynchronous (OAS), where events are asynchronous but occur in a fixed
order;

– clocked scheme, such as the example of plant growth above, where events are
asynchronous, but occur locally at a fixed rate;

– locally synchronizing, events are initially random asynchronous, but synchronisa-
tion emerges from local interactions.

5.10 Boolean networks

Boolean networks (BNs) are computational structures in which a set of identically
programmed processors (with just two states: ON or OFF) are linked into a network.
The state of each processor at time T + 1 is determined by its prior state at time T ,
as well as the states of neighbouring processors. A cellular automaton is special case
in which the processors form a grid. Boolean networks have been used to study social
phenomena, such as the spread of beliefs, rumours, or consensus (e.g. Seeme et al.
2019; Green et al. 2014).
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In an influential study, Kauffman (1969) applied the idea of a Boolean network to
genetic regulation. This model treated genes as simple switches and the state of each
gene affected changes in the state of other genes. These switching sequences form
cycles. Surprisingly, although the number of potential cycles grows astronomically as
the network grows, the length of cycles grows very slowly and corresponds to the way
reproductive cycles grow with genome size.

6 Conclusion

In this survey of emergence in systems of simple agents, I have tried to present the core
ideas, point to seminal studies, explain important issues that arise, and point to recent
research. My overview summarizes several widespread mechanisms that contribute to
emergence. However, as my account shows, emergence is often the result of several
different mechanisms acting in concert.

It is difficult in a succinct account to do justice to the subject. Almost every topic
covered here is nowavast field of research,with literally thousands of studies published
each year. Moreover, they are often spread across many different fields, so it is difficult
for readers to locate relevant research. Given this problem, one of my aims was to
provide references and examples that help readers bridge the gulfs that now exist
between fields.

I have used emergence in human activity, especially economics, as examples of
several processes. As explained earlier, although humans are not simple agents, some-
times we do behave in very simple ways.

Finally, my account included description of modelling paradigms that are widely
used to study complex systems in which emergence occurs. My aim here was to show
ways in which we can interpret emergence, and to use those models to illustrate some
aspects of it.
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