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Abstract
We develop an agent-based model (ABM) of a financial market with multiple assets
belonging either to the fixed income or equity asset classes. The aim is to reproduce
the main stylized facts of fixed incomemarkets with regards to the emerging dynamics
of the yield curves. Our ABM is rooted in the market model of Kaizoji et al. (J Econ
Behav Organ 112:289–310, 2015) formulated with two types of traders: the rational
and risk-averse fundamentalist investors and the noise traders who invest under the
influence of social imitation andpricemomentum.The investors involved in the present
market model diversify their investments between a preferred stock equivalent to a
perpetual bond andmultiple bonds of selectedmaturities. Among those, a zero-coupon
bond provides a constant rate of return, while the prices of the coupon-paying bonds
are determined at each time step by the equilibrium between the investors’ demands
and supplies. As a result, the ABM creates an evolving yield curve determined by
the aggregate impact of the traders’ investments. In agreement with real markets,
it also produces transient turbulent periods in the prices’ time series as well as a
humped term structure of volatility. We compare the dynamics arising from different
processes governing the risk-free rate with those of the historical US Treasury market.
Introducing Vasicek’s model of interest rates to both synthetic and empirical rates
demonstrates the capacity of our ABM in reproducing the main characteristics of the
surface of autocorrelation of the volatilities of the yields tomaturity of theUSTreasury
bonds for the selected time-frame.
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1 Introduction

This contribution aims at unveiling the potential residing in the creation of agent-
based models (ABMs) of the fixed income asset class involving fundamentalist and
chartist traders. To the best of the authors’ knowledge, we provide the first ABM of a
financial market containing multiple assets belonging to the fixed income asset class.
The value of this type of computational economic model lies in its capacity to produce
transient market phenomena originated by the interactions of the individual agents. As
pointed out in Sornette (2014), these models are freed from any stationary condition
and can reproduce such periods of market unrest instigated by prices’ rallies and their
subsequent corrections. Examples of ABMs developed to describe stock markets can
be found in Kyle (1985), Black (1986) and Samanidou et al. (2007), among others.

The literature provides a significant number of equilibrium models implemented
to analyse the dynamics of yield curves and to forecast their evolution through the
behaviour of the corresponding forward rates. Such analyses are, e.g. found in Nelson
and Siegel (1987), Cox et al. (1985), Vasicek (1977), Duffie and Kan (1996), Dai and
Singleton (2002), Duffee (2002) and Heath et al. (1992). These models have, however,
proven limited with regards to their capacity to account for out-of equilibrium con-
ditions corresponding to the ever-recurring extreme transient phenomena observed in
reality. Moreover, they do not consider the relationship between the equity and fixed
income asset classes. The market model developed below aims at laying a foundation
towards closing this gap. We thus propose a new approach to generate stylized facts
of fixed income markets by a market model including the two previously mentioned
asset classes. As exposed in Kaldor (1961), stylized facts represent “broad tenden-
cies” understood as empirical truths observed in the markets of interest. The focus
is therefore drawn on the emerging dynamics associated with the yields to maturity
and evolving as a function of the traders’ investments updated at each time step in
conformity with the rules developed in this novel type of ABM.

The present formulation derives from the market model proposed by Kaizoji et al.
(2015) introducing two types of agents investing in two assets. The risk-free asset
provides a constant rate of return and the remaining asset’s price is subjected to the
market clearing process applied at each time step. This risky asset also pays div-
idends determined from a stochastic multiplicative process. The agents are either
fundamentalists or noise traders and do not change their strategies in time. This is in
contrast to earlier ABMs in which the traders may switch between predictor (Arthur
et al. 1996) or between chartist and fundamentalist strategies (De Grauwe et al. 1995;
Brock and Hommes 1997). The fundamentalist strategy is as described in Brock and
Hommes (1998) and in Chiarella et al. (2009). The chartist strategy is derived from
the developments of Lux and Marchesi (1999). In a nutshell, their investments are
updated probabilistically at each time step under the influence of other agents and of
the momenta in the prices’ time series. At the aggregated level, Kaizoji et al. (2015)’s
model proved able to reproduce fat-tail distributions of returns, slow decaying autocor-
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relations of absolute returns, fast decaying autocorrelations of signed returns, volatility
clustering and transient faster-than-exponentially growing prices associated with bub-
bles. A market model characterized by the interactions of fundamentalist and chartist
traders through the price-vector of dimension higher than two is provided in Xu et al.
(2014). Other models introducing heterogeneous agents investing in a multi-asset
market can be found in Borghesi and Bouchaud (2007), Chiarella et al. (2007), Fedyk
et al. (2013) and Eckrot et al. (2016). More recent articles revealing a renewed interest
in agent-based modelling are proposed by Gualdi et al. (2015), Baghestanian et al.
(2015), Bouchaud (2013) and Hommes and LeBaron (2018). Concerning the appli-
cation to fixed income, Braun-Munzinger et al. (2018) in particular present a model
involving three distinct agents investing in a unique corporate bond.

Section 2 introduces the market framework involving the fixed income and equity
asset classes as well as the two trader types investing in this framework. The mar-
ket clearing process is defined subsequently before the unveiling of the parameter
selection and the initialization of the variables achieved in Sect. 3. The latter section
concludes with the analyses of the time series generated in two representative simula-
tions, the first one corresponding to a quiet market regime and the other one exhibiting
the characteristics of a turbulent regime. Section 4 presents the analyses comparing
the dynamics emerging from the market model with those of the US Treasury market
realized between November 1993 and June 2020. The section starts with the imple-
mentation of Vasicek’s model of interest rates to calibrate the synthetic risk-free rates
of the simulations. It continues with the presentation of the term structures of volatility
and surfaces of autocorrelations of the yields to maturity associated with each model
set-up and with the US Treasury market for comparison. Section 5 concludes.

2 Model set-up

Our market model is made of a stock and of multiple bonds of selected maturities. One
of the bonds is a zero-coupon bond providing a constant reference rate throughout the
simulations. The agents belong either to the fundamentalist or to the noise trader type.
The fundamentalist formulates expectations of the future returns as well as of the risk
associated with each asset. The fundamentalist’s investments are ruled by the need
to maximize a constant relative risk aversion (CRRA) expected utility function. The
noise traders’ investments are subjected to social imitation, adherence to momentum
trading and to the influence of a time-varying herding propensity parameter. Their
individual investments are updated probabilistically at each time step. Each trader
type is represented by a unique agent expressing the aggregate excess demands for
each asset at each time step. The market clearing condition imposing the equilibrium
between the supplies and demands for the assets determines the endogenous asset
prices.

In the following, we start with presenting the market framework considering the
fixed income asset class. The assets’ and wealth dynamics are then derived. The
description of both aggregated traders is then given, starting with the fundamentalist
and the associated generalized optimization problem.The threefold investment process
governing the chartist’s investments is subsequently defined before the presentation
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of the market clearing achieved by the Walrasian auctioneer (Walras 1874). The latter
process provides the system of nonlinear equations ruling the updates of the asset
prices at each time step. The selection of the parameter values initializing the market
model follows, before the presentation of the time series generated by a configuration
of the market model considering six coupon paying bonds and a unique preferred
stock.

2.1 The fixed incomemarket framework

Our aim is to constrain the model to involve traders following only “aggressive”
investment strategies. The selection of such traders is justified by their catalysing
effect on the market through the permanent rebalancing of their portfolio. This is
in contrast to passive investors who “freeze" their investments to collect the regular
coupon payments and benefit from the yields offered by their securities. This strategy
is known as “riding the yield curve".

• Assumption 1: The times to maturity of the bonds evaluated at t are assumed to
stay constant in [t; t + �t] for �t sufficiently small.

• Assumption 2: The investors are supposed to replicate at t the exact same portfolio
constructed at t − 1 before updating their investments. As soon as �t is such
that the earlier approximation does not hold anymore, each aggregated trader
sells the corresponding bonds and buys new ones with the appropriate maturities.
This replication has no impact on the bonds’ prices as the sell orders of an agent
replicating her portfolio are assumed to be compensated by the buy orders of
another agent doing the same process. The sole impact on the prices hence results
from the excess demands arising from the update of the agents’ investments.

• Assumption 3: The auctions of the coupon paying bonds take place at each time
step and are ruled by theWalrasianmarket making process. They are not reopened,
have no impact on the coupon rates and do not distinguish between competitive
and non-competitive bidders.

• Assumption 4: The coupon rates are defined by an exogenous stochastic process
reflecting the state of the economy. The dependency between the excess demands
for the bonds and the coupon rates is ensured by the traders’ investment processes.

• Assumption 5: The outstanding of coupon paying bonds remains constant in time.

Table 1 presents the different types of assets involved in the market model and their
corresponding maturities. The preferred stock is granted an infinite maturity and is
hence considered as a perpetual bond. The model involves M = 8 assets, the first one
being the risk-free bond and the last one the preferred stock.

The yields to maturity (YTM), implied spot rates, yield duration, convexity and
dispersions are defined as follows.

1. Yields to maturity The market model is developed such that the bonds’ yields
are derived from the associated prices. The prices are updated at each time step
through the market making process, with the updates of the corresponding yields
being simultaneous. The YTMs are defined as internal rates of returns equalizing
the present values of the future cash flows (coupons and principal payments) with
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Table 1 Asset types and maturities considered in the market model

Asset type Maturity (years) Identifier

Zero-coupon bond 1 A1

Coupon-paying bonds (k − 1) × 5 for k ∈ {2, . . . , M − 1} Ak

Preferred stock/perpetual bond ∞ AM

the bonds’ prices. They satisfy Eq. (87) presented in Appendix A.1. Their approx-
imate expressions are derived below for each asset Ak with k ∈ {1, . . . , M} and
where the no-arbitrage prices, times to maturity, principal and coupon payments
are, respectively, represented by PVk , Nk , FVk and Ck :

YTMk ≈
Ck +

(
FVk−PVk

Nk

)

FVk+PVk
2

. (1)

As the time to maturity of AM tends to infinity, the associated yield YTMM is
evaluated by:

YTMM ≈ lim
NM→∞

CM +
(
FVM−PVM

NM

)

FVM+PVM
2

= CM
FVM+PVM

2

. (2)

The consideration of the preferred stock as a perpetual bond is further justified by
considering Eq. (89) provided in Appendix A.1, which emphasizes the fact that the
price of the associated zero-coupon bond vanishes as the time to maturity tends to
infinity.

2. Implied spot rates The implied spot rates (ISR) associated with each bond are
introduced successively and correspond to the holding period returns realized over
the entire life of each bond. They are particular forward rates covering thematurities
of the bonds and thus provide approximations of the yields to maturity with the
advantage to allow omitting the consideration of the rates at which the coupons
are reinvested. These rates are evaluated in terms of the corresponding discount
factors, as presented in Appendix A.1.

3. Yield durations and convexities The market model considers both modified
(ModDurkt ) and Macaulay (MacDurkt ) durations associated with each asset. The
Macaulay duration is defined as in Marrison (2002). Equations (99) to (101) of
Appendix A.1 provide the approximations of these durations as well as of the
corresponding convexities (Convkt ).

4. Portfolio yields, durations, convexities and dispersionsThe aggregated portfolio
statistics are defined successively in Appendix A.1, considering each portfolio as a
unique entity equivalent to a bigger bond paying bundles of cash flows at each time
step. Two approaches are applied to approximate the yields of the traders’ port-
folio: the market-value-weighted (MV-weighted) and basis-point-value-weighted
(BPV-weighted) approaches. The latter replaces the traders’ wealth fractions by
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the proportion of each asset’s BPV to the sum of the BPVs of the assets in which
the portfolios are invested. The BPVs are expressed as the change in market value
of each asset originated by a variation of its yield by a basis point, i.e. by 0.01%.
The modified market-value-weighted average portfolio and Macaulay durations,
convexities and dispersions are further defined in the appendices.

This concludes the presentation of the parameters involved in the fixed income
framework.

2.2 Assets and wealth dynamics

This section defines the assets’ returns and how the traders’ wealth are updated. A
particular attention is paid to the accrued interests in the returns of the coupon-paying
bonds of finite maturities.

• Assets’ returns

– Risk-free asset As in Kaizoji et al. (2015), the risk-free asset provides a con-
stant rate of return r f . A1 is further defined as a zero-coupon bond having a
maturity of one year. The selected “day-count” convention defines a year to
correspond to 250 time steps. The issuance price PV1 and face value FV1 of
A1 are related by r f as follows:

FV1 = PV1(1 + 250 × r f ). (3)

– Preferred stock The preferred stock AM pays periodical dividends to its hold-

ers. Its “one time step” return rMt consists of the sum of the price return PM
t

PM
t−1

−1

with the return provided by the dividend payment dM
t :

rMt = PM
t + dM

t

PM
t−1

− 1

= PM
t + dM

t−1(1 + rd + σduM
t )

PM
t−1

− 1,

(4)

where rd is the long-term growth rate, σd the standard deviations of the mul-
tiplicative process and uM

t ∼ N (0, 1) an i.i.d. random variable.
– Coupon-paying bonds of finite maturities Assuming the absence of taxation
and the simultaneous payments of the coupons and dividends, the returns real-
ized on each bond Ak for k ∈ {2, . . . , M − 1} are expressed as the sum of the
price and coupon returns as follows:

rkt = Pk
t + dkt
Pk
t−1

− 1. (5)

In particular, the coupon payment dkt inherently corresponds to the interest accrued
between the purchase of the bond Ak at t − 1 and its sale at t . This arises from the
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replication process exposed earlier and requiring to buy another bond at t having the
same maturity as the bond bought at t − 1. The accrued interests are related to the
annual coupon payments ofCk

t through: d
k
t = Ck

t ×dt/250, where the time increment
is set to dt = 1. The multiplicative process governing the determination of the accrued
coupon payments is further expressed as:

dkt = (1 + σ kνkt )d
k
t−1, (6)

where σ k and νkt , respectively, represent the standard deviation of the process and the
associated i.i.d. random variable ∼ N (0, 1).

• Wealth dynamics

The wealth dynamics are expressed in terms of the wealth fractions of the cor-
responding traders and of the assets’ returns described above. Let Wi

t represent the
wealth level of trader i ∈ { f , c} at time step t . Also, let the number of shares zi,kt
of asset k held by the corresponding trader at t be expressed in terms of the wealth
fraction xi,kt : zi,kt = xi,kt W i

t /P
k
t . The wealth of the trader allocated to this asset is

updated as:

�Wi,k
t−1→t = xi,kt−1W

i
t−1

Pk
t

Pk
t−1

− xi,kt−1W
i
t−1. (7)

Summing over the 7 coupon- and dividend-paying assets, one obtains:

Wi
t−1→t |A2,...,AM = Wi

t−1

M=8∑
k=2

xi,kt−1r
k
t . (8)

The following trivial conditions are moreover applied on the agents’ wealth fractions
due to the absence of both borrowing and short selling:

{
0 ≤ xi,kt ≤ 1 ∀t,
0 ≤ ∑M

k=2 x
i,k
t ≤ 1 ∀t . (9)

The fraction of wealth xi,r ft invested in the risk-free asset is thus:

xi,r ft = 1 −
M∑
k=2

xi,kt . (10)

By summing the wealth increments given by Eq. (8) with the one associated with the
risk-free asset, one can express the overall wealth dynamics between two consecutive
time steps as:

�Wi
t−1→t = Wi

t−1

[
M∑
k=2

xi,kt−1r
k
t + xi,r ft−1 r f

]
, (11)

123



954 A. Kopp et al.

which is equivalent to the formulation proposed hereafter, considering the expressions
of the total returns exposed earlier:

Wi
t = Wi

t−1

[
M∑
k=2

xi,kt−1

(
Pk
t + dkt
Pk
t−1

)
+
(
1 −

M∑
k=2

xi,kt−1

)
(1 + r f )

]
, (12)

where the coupon and dividend payments associated with each asset Ak for k ∈
{2, . . . , 8} are:

dkt =
{

(1 + σ kνkt )d
k
t−1 for k = 2, . . . , 7,

(1 + rd + σ kνt )dkt−1 for k = 8.
(13)

This concludes the presentation of the wealth updates and leads to the introduction of
the fundamentalist’s investment strategy.

2.3 Fundamentalist trader

The fundamentalist trader is defined in accordance with the descriptions provided in
Chiarella et al. (2009), Kaizoji et al. (2015) and Xu et al. (2014). The trader is granted
a constant relative risk-aversion (CRRA) utility function required to be maximized
w.r.t. the wealth allocations. This objective is represented by a generalized myopic
mean-variance optimization problem expressed in terms of the ex ante expectation of
the utility function depending on the asset returns and wealth allocations introduced
previously. Accounting for Eq. (12), the optimization problem proposed in Kaizoji
et al. (2015) is generalized to the multi-asset case hereafter.

• Generalized optimization problem

max
x f
t

Et

[
U (W f

t+1)
]

∀t ∈ [0, T ], (14)

whereU (W ) ∈ R is the CRRAutility function and x f
t the vector containing thewealth

fractions associated with each asset at t .
The derivation of the solution is provided in Appendix A.2 and consists in solving

the Hamilton–Jacobi–Bellman partial differential equation (PDE) associated with the
generalized optimization problem of concern. The equivalent formulation of the opti-
mization problem as a stochastic optimal control problem is proposed below. This is
achieved by considering Eq. (12) to define the wealth update in terms of a stochastic
differential equation (SDE). To do so, the individual returns rkt+1 of each asset Ak

for k ∈ {2, . . . , 8} are expressed as in Xu et al. (2014) in terms of the expectations

Et

[
rkt+1

]
formulated at t of the returns to be realized at t+1, of the standard deviations

σ k
t and of the i.i.d. random variables ψk

t such that ψk
t ∼ N (0, 1):

rkt+1 = Et

[
rkt+1

]
+ σ k

t ψk
t . (15)
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Repeating, we use discrete time equations and the slight abuse of notation of rep-
resenting one time step by the symbol dt (which is equal to 1) and the corresponding
one-step increment of the wealth of the fundamentalist trader is denoted dW f

t . Con-
sidering Eqs. (12) and (15), the SDE accounting for the stochasticity of the wealth
level of the fundamentalist is hence expressed as:

dW f
t =W f

t−1

[(
1 −

M−1∑
k=1

x f ,k
t−1

)
r f +

M−1∑
k=1

x f ,k
t−1Et−1

[
rkt
]]

+ W f
t−1

M−1∑
k=1

x f ,k
t−1σ

k
t−1ψ

k
t−1,

(16)

which can be synthesized by the successive formulation proposed in Xu et al. (2014),

dW f
t = μt (W

f )dt + σt (W
f )�t , (17)

where μt represents the drift coefficient, σt the standard deviation and �t ∼ N (0, 1)
an i.i.d. random variable. Considering the unit vector e ∈ R

M−1 and the transpose
operator (.)	, one can further express μt (W f ) and σt (W ) in both scalar and vector
notations:

μt (W f ) = W f
t−1

[(
1 −∑M−1

k=1 x f ,k
t−1

)
r f +∑M−1

k=1 x f ,k
t−1Et−1

[
rkt
]]

= W f
t−1

[(
1 − x f 	

t−1e
)
r f + x f 	

t−1Et−1 [rt ]
]
,

(18)

σt (W f ) =
{
W f

t−1
2 [∑M−1

k=1 x f ,k
t−1

2
σ k
t−1

2 +∑M−1
k=1

∑M−1
l=1 x f ,k

t−1x
f ,l
t−1σ

kl
t−1

]} 1
2

= W f
t−1x f 	

t−1σt−1,

(19)

where we distinguish σt (W f ) and σt , the former accounting for the diffusion term of
Eq. (17) and the latter representing the vector containing the standard deviations of
the individual assets’ returns. Combining Eqs. (17), (18) and (19), the resulting SDE
is given by:

dW f
t = W f

t−1

[(
1 − x f 	

t−1e
)
r f + x f 	

t−1Et−1 [rt ]
]
dt + W f

t−1x f 	
t−1σt−1�t , (20)

where �t represents a one-dimensional Brownian motion and where the covariance
matrix is expressed as � = σσ T ∈ R

(M−1)×(M−1). Letting μ ∈ R
M−1 account for

Et−1 [rt ], one can finally write:

dW f = W f
[
(1 − x	e)r f + x	μ

]
dt + W f x	σ�. (21)

The cost functional subjected to the previous wealth dynamics is subsequently intro-
duced as follows:

J (x) = E[U (W f )] ∈ R. (22)
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The problem hence requires to find the optimal control x ∈ R
M−1 maximizing the

cost functional subjected to the wealth defined by the stochastic system of Eq. (21).

• Generalized stochastic optimal control problem:

J (x∗) = max
x:[0,T ]�→RM−1

J (x). (23)

The solution is given by the optimal state trajectory x∗ : [0, T ] �→ R
M−1. Introduc-

ing the risk aversion parameter γ �= 1 (γ > 0 always holds), the cost-to-go function
is given by:

J (x, t) = E

[
W f (t)1−γ

1 − γ

]
. (24)

Consequently, the stochastic optimal control problem is expressed as follows, con-
sidering the differential form of the standard Brownian motion 	(t) ∈ R:

max
x:[0,T ]�→RM−1

E

[
W f (t)1−γ

1 − γ

]
(25)

subjected to:
dW f =μ(W f )dt + σ(W f )d	

W f (0) =W f
0 .

(26)

The solution of the generalized stochastic optimal control problem is obtained in
Appendix A.2 and reads

xk
∗ = 1

γ

M−1∑
l=1

�−1
kl (μl − r f ) for k ∈ {2, . . . , M}. (27)

The remaining unknowns consist of the covariance matrix and of the vector con-
taining the expectations of the future returns. The matrix � = σσ	 is defined to
be diagonal and the individual variances remain constant. One obtains the following
notations introducing the Kronecker delta δkl :

{
�kl = δklσkl

2,

�−1
kl = δkl

σkl
2 .

(28)

The expectations of the future returns are taken as the sum of a constant and a
variable term for each of the yields to maturity and implied spot rates. This allows
us to account for the trader’s own opinion about the returns provided by each bond
(constant term) while still considering the reality of the market (variable term). The
constant terms consist of the initial values of the parameters. The variable terms are
those evaluated at t − 1 as a consequence of the replication process explained in
Sect. 2.1. Therefore, for each bond Ak where k ∈ {2, . . . , M − 1}, one expresses:
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Fig. 1 Representation of the
market as seen by the chartists:
differentiation of the two pools
of assets and corresponding
steps of the investment process.
The arrows represent the transit
of the agents’ wealth

μk
t =ω1

1

2

{[
(1+YTMk

0)
1

250 −1
]
+
[
(1+ISRk

0)
1

250 −1
]}

+ω2

[
(1+YTMk

t−1)
1

250 −1
]

+ω3

[
(1 + ISRk

t−1)
1

250 − 1
]

+ dkt
Pk
t

, (29)

where ω1, ω2 and ω3 are the weights, respectively, associated with the initial values
of the yields to maturity and implied spot rates as well as with their evaluations at
t − 1. As explained in Appendix A.1, the implied spot rates cannot be computed for
the preferred stock. Moreover, due to the particular identity of the asset, the varying
term associated with the yield to maturity is neglected. For k = M , one hence obtains:

μM
t = (1 + YTMM

0 )
1

250 − 1 + dM
t (1 + rd)

PM
t

. (30)

The wealth fractions of the fundamentalist trader are ultimately expressed as:

x f ,k
t = 1

γ σ 2
k

(μk
t − r f ) for k ∈ {2, .., M}, (31)

with the boundary condition given by
∑M

i=1 x
f ,i
t = 1.

The subsequent developments introduce the investment process of the chartist trader
taking the other side of the trades.

2.4 Noise traders

As in Kaizoji et al. (2015), the individual chartist traders do not diversify their alloca-
tions but instead select an individual asset inwhich they invest their entirewealth. Their
investments are updated probabilistically at each time step through an Isingmodel-like
set-up under the influence of the momentum in the assets’ prices’ time series and the
opinion of other noise traders. At the aggregated level, the representative noise trader
allocates her wealth proportionally to the number of individual traders invested in the
corresponding assets.

As shown in Fig. 1, the noise trader identifies two mutually exclusive pools of
assets. The first one contains all the bonds including the risk-free one and is identified
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as P . The second one is solely constituted of the preferred stock AM . Built on this
market representation, three distinct steps are defined below to decompose the invest-
ment process of the aggregated chartist. Figure 1 further illustrates which particular
pool is concerned by each of these steps. The first one tackles the rebalancing of the
aggregated chartist’s portfolio between the two asset classes considered. The second
one is concerned with the update of the investments of the individual agents inside the
bonds of P . The third one finally reconciles the two previous updates simultaneously
in order to derive the wealth fractions of the aggregated trader.

Step 1: Aggregated chartist’s portfolio rebalancing between P and AM :
The first step of the investment process of the aggregated chartist deals with the

update of the allocations in either of the two groups of assets defined previously. It
derives an estimate of the number of individual traders transiting between the two
asset classes. Both social imitation and adherence to a momentum-following strategy
influence the outcome of the present step.

The number of individual chartists invested in AM is NM and the number of remain-
ing agents is N 1�M−1. The total fraction of wealth invested in AM at t is hence:

xct
∣∣
AM = NM

t

NM
t + N 1�M−1

t

. (32)

Following the definition of Kaizoji et al. (2015), the associated opinion index sct is
defined as:

sstep1t = NM
t − N 1�M−1

t

N M
t + N 1�M−1

t

= 2 xct
∣∣
AM − 1 ∈ [−1, 1]. (33)

The parameter accounting for momentum is moreover defined as:

H step1
t = HM

t − H1�M−1, (34)

introducing the momentum associated with the preferred stock:

HM
t = θHM

t−1 + (1 − θ)

(
PM
t

PM
t−1

− 1

)
(35)

and the one related to P as:

H1�M−1
t = θH1�M−1

t−1 + (1 − θ)
[
(1 + YTMM−1

t )
1

250 − (1 + YTM1
t )

1
250

]
. (36)

Parameter θ controls the time scale ∼ 1
1−θ

over which the momentum is estimated.
Equation (36) introduces the simple “rule of thumb” followed by the individual

chartists to compare the price returns of the isolated asset with the “term-spreads”
provided by P . As shown in Eq. (34), this spread is defined as the difference between
the yields tomaturity of the bonds situated at the extremities of the yield curve, fitted to
the “one-time-step” returns of the preferred stock. This spread moreover represents a
shorthand evaluation of the steepness of the yield curve giving insights about potential
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future returns obtained in excess of those given by the risk-free bond. Considering the
fact that YTM1

t = cst., the higher the yields of the longer-term bond, the more the
aggregated chartist is influenced to allocate her wealth in the fixed income asset class.

As exposed in Kaizoji et al. (2015), the herding propensity κt is introduced in
order to represent the noise traders’ susceptibility to herding and their propensity to
adhere to a momentum following strategy. This parameter is moreover defined to be
either constant or to follow a stochastic mean-reverting process. In the latter case, it
incorporates the alternating regimes of pessimistic mood and exuberance observed in
financial markets, as detailed in Shiller (2015) and in Sornette (2003). In the former
case, it steers themodel dynamics by accounting for stablemarket regimes. Section 2.6
provides a thorough definition of the two distinct processes ruling the dynamics of the
parameter. Given the aforementioned rationale for its introduction in the model, the
herding propensity is directly impacting the noise traders’ dynamics through the tran-
sition probabilities presented in Eq. 37 and involving the opinion index andmomentum
parameter.

By definition, the transition probabilities p+
t and p−

t are associated with the fol-
lowing actions: an individual noise trader holding the preferred stock AM at t shifts
her investment to P with a probability p+

t and another noise trader invested in P
at the same moment transits to AM with a probability p−

t . These probabilities are
consequently expressed as:

p±
t (sstep1t , H step1

t ) = 1

2
p± [

1 ∓ κt

(
sstep1t + H step1

t

)]
, (37)

where p+ = cst. and p− = cst. control the average holding time associated with each
group of assets. Setting p− > p+ implies that an up- or downward increment of either
of H step1

t or sstep1t is not engendering the same reaction of the agents. This is translated
by a favour given to AM to the detriment of P .

Introducing the Bernoulli random variables ξk(p) taking the value of 1 with a
probability of p and 0 otherwise, one can express the subsequent master equations:

⎧⎨
⎩

NM
t = ∑NM

t−1
k=1 [1 − ξk(p

+
t−1)] +∑N1�M−1

t−1
k=1 ξk(p

−
t−1),

N 1�M−1
t = ∑N1�M−1

t−1
k=1 [1 − ξk(p

−
t−1)] +∑NM

t−1
k=1 ξk(p

+
t−1).

(38)

The net number of agents transiting between both pools of assets at t is finally
estimated by the absolute value of the variable �N+→−

t defined as:

∣∣�N+→−
t

∣∣ =

∣∣∣∣∣∣∣

NM
t−1∑

k=1

ξk(p
+
t−1) −

N1�M−1
t−1∑
k=1

ξk(p
−
t−1)

∣∣∣∣∣∣∣
. (39)

Step 2: Aggregated chartist’s investments within P:
The second step of the allocation process tackles the allocations of the chartists

inside P . Their updates are achieved independently for each pair of neighbouring
assets (Ai , Ai+1) and (A1, AM−1). Again, both social imitation and adherence to a
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momentum-following strategy influence the outcome of these updates. The opinion
index associated with the pair (Ai , Ai+1) is defined below, fitting the variable to
the momenta introduced subsequently and introducing Ni

t as the number of chartists
invested in Ai at t :

sstep2t

∣∣∣
i,i+1

= 1

2

Ni+1
t − Ni

t

N i+1
t + Ni

t

. (40)

The momentum parameter associated with the same pair of assets is moreover
expressed as:

H step2
t

∣∣∣
i,i+1

= Hi+1
t − Hi

t , (41)

introducing the momentum parameters associated with each asset. These are further
expressed in terms of the sub-parameters accounting for the momenta observed in the
yields and in the prices:

Hi
t = αHi,price

t + (1 − α)Hi,yield
t , (42)

where α ∈ [0, 1]. In particular:

Hi,price
t =

⎧⎨
⎩

θHi,price
t−1 + (1 − θ)

(
Pi
t

Pi
auction

− 1

)
for i = 2, . . . , M − 1,

r f for i = 1.
(43)

Hi,yield
t = θHi,yield

t−1 + (1 − θ)
[
(1 + YTMi

t−1)
1

250 − (1 + YTMi
t )

1
250

]
, (44)

where the yields are fitted to the “one time step” periods over which the price returns
are determined. Equation (44) is moreover introducing the consideration of decreasing
yields by the chartists. This enforces the assessment of positive realized price returns
and contrasts with the previous step in which the agents valued higher yields imply-
ing higher potential price returns when looking at the overall market. Once invested
inside the fixed income asset class, these agents naturally favour decreasing yields
corresponding to positive realized price returns.

In accordance with the formulation of Eq. (37), the transition probabilities associ-
ated with each pair of consecutive assets are defined as:

pi,i+1
t

± = p±

2

[
1 ∓ κt

(
sstep2t

∣∣∣
i,i+1

+ H step2
t

∣∣∣
i,i+1

)]
, (45)

where pi,i+1
t

+
quantifies the probability to invest in Ai when starting from Ai+1.

Accordingly, pi,i+1
t

−
accounts for the probability to invest in Ai+1 when starting

from Ai .
The number of agents transiting between two neighbouring assets in either direction

is hence: ⎧
⎪⎨
⎪⎩

�Ni+1→i
t = ∑Ni+1

t−1
k=1 ξk

(
pi,i+1
t−1

+)
,

�Ni→i+1
t = ∑Ni

t−1
k=1 ξk

(
pi,i+1
t−1

−)
.

(46)
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Ultimately, the net number of agents leaving or entering each bond i is expressed
as:

�N step2
t

∣∣∣
i
= �Ni−1→i

t − �Ni→i−1
t + �Ni+1→i

t − �Ni→i+1
t . (47)

Step 3: Execution of the update of the aggregated chartist’s investments:
The last step executes the update of the investments on the aggregated level. The

following opinion index is first introduced for each of the M − 1 bonds of fixed
maturities:

sstep3t

∣∣∣
i
= (M − 1)Ni

t −∑M−1
k=1,k �=i N

k
t

(M − 1)Ni
t +∑M−1

k=1,k �=i N
k
t

. (48)

The performance indicators accounting for the popularity of each bond and for the
trend observed in their returns are defined as follows, considering the parameters Hi

t
introduced in Eq. (42):

Perfit = sstep3t

∣∣∣
i
+ Hi

t . (49)

Building on these parameters, the categorical probabilities are further defined as

pstep3t

∣∣∣
i
=

⎧⎪⎨
⎪⎩

Perfit−Perfworstt∑M−1
k=1 (Perfkt −Perfworstt )

if �N+→−
t > 0,

Perfbestt −Perfit∑M−1
k=1 (Perfbestt −Perfkt )

if �N+→−
t < 0,

(50)

wherePerfworstt andPerfbestt are, respectively,mini∈{1,...,M−1} Perfit andmaxi∈{1,...,M−1}
Perfit .

The weights ωi
t associated with each bond are finally defined as:

ωi
t =

Ni
t pstep3t

∣∣∣
i∑M−1

k=1 Nk
t pstep3t

∣∣∣
k

. (51)

As a matter of fact, ωi
t corresponds to the share of the expected value of the Bernoulli

trial associated with Ai and endowed with a probability of success of pstep3t

∣∣∣
i
over the

sum of each of the M − 1 expectations. These weights are introduced to adjust the
dispersion of the agents inside P as can be inferred from the expression of Eq. (52)
presented below.

The number of agents transiting either to or from each bond of P is subsequently

introduced as �N step3
t

∣∣∣
i
. By considering the result of the update achieved in the first

step of the allocation process, one can hence write:

�N step3
t

∣∣∣
i
= ⌊

ωi
t�N+→−

t

⌋
, (52)

where �.� represents the floor operator dropping the decimal part. With this variable,
one can execute the update of the individual investments considering the outcome of
the two previous steps:
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Ni
t = Ni

t−1 + �N step2
t

∣∣∣
i
+ �N step3

t

∣∣∣
i

≥ 0 ∀t . (53)

Accordingly, the updated number of agents invested in the preferred stock is given
by:

NM
t = NM

t−1 −
M−1∑
k=1

�N step3
t

∣∣∣
i
. (54)

As a result, the updated share of wealth of the aggregated chartist trader invested
in each asset Ai for i ∈ {1, . . . , M} is ultimately expressed as:

xct
∣∣
i = Nk

t∑M
k=1 N

k
t

. (55)

This concludes the presentation of the aggregated noise trader and leads to the
formulation of the market making process.

2.5 Market clearing process

The present section tackles the market clearing process executed at each time step by
the Walrasian auctioneer. First, the expressions of the excess demands formulated by
both aggregated traders are developed. The system of nonlinear equations resulting
from the satisfaction of theWalrasian equilibrium condition is provided subsequently.

On the one hand, the excess demand of the fundamentalist trader �D f ,i
t−1→t asso-

ciated with each asset Ai for i ∈ {2, . . . , M} is expressed at each t as:

�D f ,i
t−1→t = W f

t−1

(
Ai
t + Bi

t

Pi
t

)[(
1 −

M∑
k=2

x f ,k
t−1

)
(1 + r f ) +

M∑
k=2

x f ,k
t−1

(
Pk
t + dkt
Pk
t−1

)]

−x f ,i
t−1W

f
t−1

Pi
t

Pi
t−1

, (56)

where Ai
t and Bi

t are obtained from Eq. (31) presenting the expression of the wealth
fractions associated with each asset:

Ai
t = �i

t − r f
γ�i i

, (57)

Bi
t =

⎧
⎨
⎩

dit
γ�i i

for i = 2, . . . , M − 1,
dM
t (1+rd )

γ�MM
for i = M .

(58)

As a reminder and considering Eq. (29),�i
t for i ∈ {2, . . . , M−1} is further expressed

as:
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�i
t = ω1

1

2

{[
(1 + YTMi

0)
1

250 − 1
]

+
[
(1 + ISRi

0)
1

250 − 1
]}

+ω2

[
(1 + YTMi

t−1)
1

250 − 1
]

+ ω3

[
(1 + ISRi

t−1)
1

250 − 1
]
. (59)

And for i = M , �M
t is:

�M
t = (1 + YTMM

0 )
1

250 − 1. (60)

On the other hand, the excess demand of the aggregated chartist trader associated
with the same asset is expressed as:

�Dc,i
t−1→t = Wc

t−1x
c,i
t

[(
1 −

M∑
k=2

xc,kt−1

)
(1 + r f ) +

M∑
k=2

xc,kt−1

(
Pk
t + dkt
Pk
t−1

)]

−xc,it−1W
c
t−1

Pi
t

Pi
t−1

. (61)

As has been exposed in the second step of the allocation process of the chartist
trader presented in Sect. 2.4, the returns of the individualized bonds are evaluated
from the auction prices. These being further set to Pi

auction = 1, the return of each
bond realized at t is hence Pi

t /P
i
auction − 1 = Pi

t − 1. AM being further exempted
from any auction, its returns are directly evaluated by PM

t /PM
t−1. As a consequence,

the following rule is applied in Eq. (61):

Pi
t−1 =

{
1 for i ∈ {2, . . . , M − 2},
Pi
t−1 for i = M .

(62)

For all i ∈ {2, . . . , M}, the Walrasian equilibrium condition is finally expressed as:

�D f ,i
t−1→t + �Dc,i

t−1→t = 0. (63)

The system of nonlinear equations involving the unknown prices remaining to be
evaluated at each time step is finally obtained by insertingEqs. (56) and (61) inEq. (63).
The resulting system is presented below and the detailed developments leading to this
formulation are provided in Appendix A.3. The equation determining the prices reads

Pi
t
2
(αi i − βi ) + Pi

t (ζi + χi i ) +
M∑

k=2,k �=i

Pk
t P

i
t αik +

M∑
k=2,k �=i

Pk
t χik + λi = 0, (64)

whereα ∈ R
(M−1)×(M−1),β ∈ R

M−1, ζ ∈ R
M−1,χ ∈ R

(M−1)×(M−1) andλ ∈ R
M−1

are defined as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi j = x f , j
t−1W

f
t−1A

i
t+xc, jt−1W

c
t−1x

c,i
t−1

P j
t−1

,

βi = x f ,i
t−1W

f
t−1+xc,it−1W

c
t−1

Pi
t−1

,

ζi = W f
t−1A

i
t

(
1 −∑M

k=2 x
f ,k
t−1

)
(1 + r f ) + Wc

t−1x
c,i
t

(
1 −∑M

k=2 x
c,k
t−1

)
(1 + r f )

+∑M
k=2

[
dkt
Pk
t−1

(
x f ,k
t−1W

f
t−1A

i
t + xc,kt−1W

c
t−1x

c,i
t

)]
,

χi j = x f , j
t−1B

i
t

P j
t−1

,

λi = W f
t−1B

i
t

[(
1 −∑M

k=2 x
f ,k
t−1

)
(1 + r f ) +∑M

k=2 x
f ,k
t−1

dkt
Pk
t−1

]
.

(65)
Ultimately, this system of M − 1 equations can be synthesized hereafter by the

functions f i (t) ∈ R:

f i (P2
t , .., Pi

t , . . . , P
M−1
t ) = 0 for i ∈ {2, M − 1}. (66)

An initial guess of the solution is provided by the previously realized prices
(P2

t−1, . . . , P
i
t−1, . . . P

M−1
t−1 ) and is further refined by the following process intro-

ducing P, the vector notation of the prices of the coupon and dividend paying assets:

P → P′ = P − J −1f(P), (67)

where J is the Jacobian matrix defined by Ji j = ∂ f i/∂P j . This concludes the
presentation of the market clearing process.

2.6 Dynamics of the herding propensity �t

Recall that the herding propensity κt represents the noise traders’ susceptibility to
herding and their propensity to adhere to a momentum following strategy. It is defined
such as to have a direct impact on the transition probabilities p+

t and p−
t given by

expression (37) in Sect. 2.4. Following Kaizoji et al. (2015), we endow κt with a
dynamics capturing the changing nature of economic and social conditions that influ-
ence the behaviour of noise traders. As economic and social conditions are arguably
not systematically constant, it is reasonable to consider market regimes corresponding
to κ �= cst ., thereby introducing a source of stochastic variability inside the transition
probabilities through the varying herding propensity. On the other hand, economic
and social conditions happen to evolve relatively slowly during certain periods and
are characterized by tendencies, trends and variability that can be considered approx-
imately stationary. This scenario is accounted for by κ = cst ., where the influence
of the herding propensity on the transition probabilities remains steady. In fact, fixing
the herding propensity to a constant value is analogous to neutralizing the exogenous
influence of the social and economic conditions, thereby rendering the model a closed
autonomous system. Hence, we will mainly consider the case where κt follows a
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Table 2 Expectation and variance of the herding propensity κt

Statistics Instantaneous evaluation Long-run evaluation

E[κt ] μk − (μk − κ0)e
−ηk t limt→∞ E[κt ] = μk

Var[κt ] σ2
k

2ηk

(
1 − e−2ηk t

)
limt→∞ Var[κt ] = σ2

k
2ηk

stochastic mean-reverting process defined as

κt = κt−1 + ηk(μk − κt−1) + σkνt , (68)

where the initial condition is given by κ0 and where νt is an i.i.d. discrete-time white
noise process with a mean of 0 and a standard deviation of 1. The mean-reversion rate
is further represented by ηk , the mean value by μk and the diffusion associated with
the Wiener process νt by σk .

The instantaneous and long-run evaluations of the expectation and variance of the
herding propensity are successively given in Table 2 above. The process of concern
is hence found to be stationary and normally distributed in the long-run, such that the
following expression holds:

κt ∼ N
(

μk,
σ 2
k

2ηk

)
. (69)

The statistical estimation of the parameters of Eq. 68 is finally achieved as in Kaizoji
et al. (2015) via the following expressions:

ηk = 1

�T
log

(
0.2

1 − μk

)
, (70)

σk = 0.1
√
2ηk, (71)

where �T is the time frame during which κt is set to revert when being in the super-
critical regime identified by the bounds located two standard deviations away from
the mean.

3 Model dynamics

3.1 Parameter selection

The initialization of the parameters introduced in the market model is subsequently
exposed hereafter. The analyses of the time series generated in typical simulations
ensue.

The wealth fractions of the aggregated traders are first initialized below, starting
with the fundamentalist trader. Given the initial wealth fraction x f ,M

0 , the constant
variance σ 2

M and the initial expectation of the future returnμM
0 = EM

r ,t +d0(1+rd)/P0
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associated with AM , the constant risk aversion parameter γ is defined a priori by the
following expression:

γ = μM
0 − r f

x f ,M
0 σ 2

M

. (72)

The expressions of the initial wealth fractions associated with the coupon paying
bonds Ai for i ∈ {2, . . . , M − 1} are obtained accordingly:

x f ,i
0 = μi

0 − r f
γ σ 2

i

, (73)

by ensuring that the following condition is satisfied:

0 ≤
M∑
k=2

x f ,i
t ≤ 1 for t = 0. (74)

The expectations of the future returnsμi
0 associatedwith these assets are defined below

and the constant values of the variances σ 2
i are provided in Table 3.

On the other hand, the initial wealth fractions of the aggregated chartist are obtained
from the value of xc,M0 through the following expression:

xc,i0 |i �=1,M = 1 − xc,M0

M − 1
. (75)

Considering the floor operator �.� introduced earlier and the total amount of chartists
N , the amount of individual agents initially invested in the coupon and dividend paying
assets is hence given by:

Ni
0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −∑M
k=2 N

k
0 for i = 1,⌊

N
1−xc,M0
M−1

⌋
for i ∈ {2, . . . , M − 1},

⌊
Nxc,i0

⌋
for i = M .

(76)

This further enables to initialize the opinion indices involved in the allocation process
governing the aggregated chartist’s investments:

sstep10 = 1 − 2xc,M0 , (77)

sstep20 |i,i+1 = 1

2

Ni+1
0 − Ni

0

Ni+1
0 + Ni

0

, (78)

sstep30 |i = (M − 1)Ni
0 −∑M−1

k=1,k �=i N
k
0

(M − 1)Ni
0 +∑M−1

k=1,k �=i N
k
0

. (79)
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Table 3 Set of constant parameters and initialization of the variables involved in the market model

Entity Parameter Parameter value Equation

Assets Number of assets M = 8

Risk-free rate r f = 8 × 10−5 (3)

Face values FV = (1.06667, 1.14286, 1.23077,
1.33333, 1.45455, 1.60000, n.a.)

(1) (2)

Dividend growth rate rd = 1.2 × 10−4 (13)

Standard deviation of the
dividend processes

σd = 1.6 × 10−5 (13)

Initial prices P0 = (1, 1, 1, 1, 1, 1, 1) (4) (5)

Initial coupons or dividend d0 = (5, 5, 5, 5, 5, 5, 12) × 10−5 (13)

Maturities N = (1, 5, 10, 15, 20, 25, 30,∞) (1)

Fundamentalist
trader

Initial fraction of wealth
invested in AM

x f ,M
0 = 0.3 (72)

Initial wealth W f
0 = 106 (12)

Standard deviations of the
assets’ returns

σ 2 ≈ (3, 3, 3, 3, 3, 3, 4) × 10−5 (31)

Weights involved in the
expected returns

(ω1, ω2, ω3) = (0.9, 0.05, 0.05) (29)

Noise traders Initial fraction of wealth
invested in AM

xc,M0 = 0.3 (75)

Initial wealth Wc
0 = 106 (12)

Number of chartists N1�M−1
0 + NM

0 = 1500 (76)

Initial momentum of AM HM
0 = rd (35)

Initial term spread H1�M−1
0 = (1 + YTMM−1

0 )
1

250

− (1 + YTM1
0)

1
250

(36)

Memory parameter θ = 0.95 (35) (36)

(43) (44)

Initial price and yield
momenta of the bonds of P

(H
i,price
0 , H

i,yield
0 ) = (0.0, 0.0) (42)

Weight associated with the
latter momenta

α = 0.5 (42)

Constants involved in the
transition probabilities

(p+, p−) = (0.19995, 0.20026) (45) (37)

Herding
propensity

Initial value κ0 = μk (68)

Long-run average μk = 0.98 (68)

Mean-reversion rate ηk = 0.05 (68)

Diffusion of the associated
Wiener process

σk ≈ 3 × 10−2 (68)
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Table 3 lists the parameters and initial values of the variables involved in the market
model. The values included in parentheses, respectively, correspond to each of the
assets in terms of increasing order of maturities. The initialization of the herding
propensity is achieved as in Kaizoji et al. (2015).

The annualized yields to maturity are successively initialized as follows:

YTMi
0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2×250×r f
2+250×r f

for i = 1

di0×250+ FVi−Pi0
N

Pi0+FVi

2

for i ∈ {2, . . . , M − 1},
dM
0 ×250

PM
0

for i = M .

(80)

One can hence observe that the initial yield curve is flat as each yield initially equals
2.5%, with the exception of the yield of the perpetual bond initialized as YTMM

0 =
3%. This precise set-up is justified by the need to analyse the impacts of the agents’
investments on a neutral configuration of the yield curve. This further explains the
selection of the face values of the corresponding assets.

Building on these developments, the evaluations of the initial artificial changes
of the market values, modified and Macaulay durations, convexities, discount factors
and implied spot rates of each coupon-paying bond are straightforward. The according
values are presented in Table 4 of Appendix A.4.

Finally, given the previous developments, the expectations of the future returns are
initialized as:

μi
0 =

⎧
⎪⎨
⎪⎩

1
2

{[
(1 + YTMi

0)
1

250 − 1
]

+
[
(1 + ISRi

0)
1

250 − 1
]}

+ di0
Pi
0
for i ∈ {2, . . . , M − 1},

[
(1 + YTMi

0)
1

250 −1
]

+ dM
0

PM
0

for i = M .

(81)
This concludes the presentation of the initialization of the constant parameters and

variables defined previously and leads to the subsequent analyses of the phenomena
emerging from numerical simulations of the market model.

3.2 Time series analyses

The following section specifies the dynamics emerging in typical simulations. Figures
2 and 3 show representative time series of the endogenous prices Pi

t , yields to matu-

rity YTMi
t , wealth fractions x f ,i

t and xc,it , transition probabilities p±
t (sstep1t , H step1

t ),

momentum H step1
t , and three representative opinion indices sstep2t |i,i+1 created with

a constant and a mean-reverting herding propensity. The herding propensity κt corre-
sponds to the inverse temperature of the underlying Ising-structure of the noise traders’
decision process. In the simulations involving a constant κ andwhere κ < κc, the noise
traders are in the disordered regime. The stochastic mean reverting herding propensity
has the same mean value κμ = 0.98×κc as the constant one, but fluctuates transiently
above the critical value. This results in a polarization of the noise traders’ opinions
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Fig. 2 Time dependence of the variables associated with the market model. The simulation length is set to
Tsim = 5000 time steps and the herding propensity remains constant throughout the simulation

and can be observed through bubbles in the corresponding prices’ time series. These
two different types of simulations are analysed hereafter.

The time series of the asset prices Pi
t show the divergence of the preferred stock’s

prices from those of the bonds. This divergence is governed by the growth rate of rd .
The subcritical herding behaviour associated with the constant nature of the herding
propensity results solely in subtle deviations from the average trajectory given by the
previous rate. In contrast, the simulations for which the herding propensity varies are
found to generate transient regimes when the preferred stock prices undergo turbulent
patterns. Such periods are, e.g. observed for t ∈ [1300, 1700]. Analyses of the super-
exponential growth characterizing these bubbles are provided in Kaizoji et al. (2015),
among others. Besides their prices, the bonds are characterized by their yields to
maturity YTMi

t . In both simulations, the yields fluctuate around their initial values
with an amplitude related to the maturities of the bonds. These fluctuations reach
higher values for bonds of low maturities. This constitutes an emerging phenomenon
referred to as the humped “term structure of volatility”. Moreover, according to the
well-knownprice–yield relationship, the yields of the perpetual bond reach their lowest
values during the peak of the price bubbles, e.g. for t ∈ [1400, 1700] in Fig. 3. The
reverting of the prices of AM to levels directed by the growth rate of rd as shown
t ∈ [3000, 3100] symmetrically drives the yields back to their initial value of 3%.

The noise traders switch their investments between the different assets with a prob-
ability expressed in terms of the momentum of the prices of the preferred stock and of
the opinion of others. The dynamics of the momentum HM

t of the preferred stock, of

the probabilities p±
t (sstep1t , H step1

t ) governing the rebalancing between the stock and
the fixed income portfolio as well as of three opinion indices sstep2t |i,i+1 are detailed
in the following. Overall, the momentum parameter H step1

t evaluated in terms of the
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Fig. 3 Time dependence of the variables associated with the market model. The simulation length is set to
Tsim = 5000 time steps and the herding propensity follows a stochastic mean-reverting process

two sub-parameters HM
t and H step1

t replicates the main trends of the preferred stock’s
prices. This is due to the high amplitudes of the exponentially weighted moving aver-
age of the returns of AM in comparison with the stable spreads proposed by the yield
curve during the simulations. The latter amplitudes are nevertheless found to be of
approximately an order of magnitude lower than those associated with the opinion
index sstep1t . This explains the strong in influence given to the latter variable in the
outcome of the Bernoulli trials. The transition probabilities fluctuate symmetrically
around (p+ + p−)/2 and are bounded in [0,≈ 0.15] for the simulation governed by
a constant herding propensity. The smooth fluctuations observed in this simulation
further explain the lack of abrupt changes in the preferred stock’s price dynamics, as
can be expected from the outcome of the Bernoulli trials involving these probabil-
ities and generating no significant rebalancing of the aggregated chartist’s portfolio
between the two pools of assets. In contrast, the transition probabilities observed in
the simulation involving the stochastic herding propensity increase sharply during the
emergence or burst of the bubbles. The noise traders’ opinion formation is illustrated
by the following pairs of assets selected to avoid any redundancy in the analyses and
to assess the integration of A1 in P: (A1, A2), (A7,A1) and (A3,A4). All three indices
are found to fluctuate around a long-run average of zero with the same amplitudes,
indicating an equilibrated dispersion of the agents in P . The risk-free asset is hence
not introducing any bias in the allocation process. This statement is emphasized by the
fact that the trends in the fluctuations of the indices sstep2t |1,2 and sstep2t |7,1 replicate
each other and are approximately symmetrically mirrored by those of sstep2t |3,4. The
emphasis is furthermore directed towards the ascertainment of the abrupt saturation
of the opinion indices observed during periods of herding towards the preferred stock
proposed by the simulation involving a varying herding propensity. Considering the
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fact that a bad performing bond is penalized twice: the first time by the loss of agents
transiting to the neighbouring bonds and the second time by the outflow of agents
towards AM , it appears that a very small amount of agents remain invested in the
bonds during the culmination of the preferred stock’s price bubbles. As a result, the
opinion indices become very sensitive to the transition of agents as dictated by the
outcome of the Bernoulli trials, explaining their abrupt variations at the corresponding
time steps.

The transition probabilities define the aggregated noise trader’s investment deci-
sions as they determinate the update of the number of traders invested each asset.
The resulting time series of the wealth fraction xct invested in each asset are analysed
subsequently. A particular mention tackles the transient dynamics of xc,Mt occurring
in the simulation involving the varying κt . For t ∈ [2200, 2400], sstep1t is found to be
entirely polarized at the culmination of the corresponding price bubble. The lock-in
effect occurring at this moment is straightforwardly accompanied by the following
observations: xc,Mt = 1 and p+

t (sstep1t , H step1
t ) = 0. In this case, the reaching of a

threshold value by the herding propensity satisfies the statement proposed in Sornette
(1994) and granting the responsibility of the “sweeping of an instability” of the latter
parameter to instigate a self-reinforcing loop leading to a gradual feedback between
HM
t and sstep1t provoking an outflow of agents from P to AM . At the apogee of this

phenomenon, no agent is spurred to transit to the fixed income portfolio. This situa-
tion is, however, unsustainable and the flux of agents between the two asset classes
is reversed as soon as p+

t > 0, leading to the inevitable burst of the bubble. The
market model is moreover found to be subjected to an initial phase of auto-regulation
occurring at the beginning of each simulation. The quintessence of this observation
lies in the increase of xc,M from 30% to a stable level of ≈ 50% on the long-run. As
a consequence of the resulting increase of the preferred stock’s price level, x f ,M is
further reduced at the benefit of x f ,1. This is due to the counter-cyclical reaction of
the fundamentalist trader to the evolution of the market. More generally, this “price
taker” characteristic is found to be revealed in the time series of the corresponding
wealth fractions mirroring the fluctuations of the prices of AM .

Figures 4 and 5 provide a comparison of the fundamentalist’s and aggregated
chartist’s portfolio statistics for simulations, respectively, involving a constant and
a mean-reverting herding propensity. They show the evolution of the average port-
folio yields AvgYieldMVi

t and AvgYieldBPVi
t , aggregate wealth levels Wi

t as
well as approximated portfolio modified durations ApproxModDurit , convexities
ApproxConvit and dispersions AvgDispit .

First, the average market-value-weighted and basis-point-value-weighted portfolio
yields to maturity (AvgYieldMVi

t and AvgYieldBPVi
t ) are analysed. The portfolio

yields computed from the two different approaches provide different assessments of
the attractivity of each investment strategy. The MV-weighted yields tend to replicate
the patterns of the yields of the preferred stock less than is achieved by the BPV-
weighted yields. This is striking for the fundamentalist trader who constrains her
endowments to AM during the simulations. The BPV-weighted yields contrast with
the other yields in accordance to the expression of Eq. (113). In particular, as the
perpetual bond is granted a much higher duration than the other bonds, its prices are
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Fig. 4 Time dependence of the variables associated with the market model. The simulation length is set to
Tsim = 5000 time steps and the herding propensity remains constant throughout the simulation

Fig. 5 Time dependence of the variables associated with the market model. The simulation length is set to
Tsim = 5000 time steps and the herding propensity follows a stochastic mean-reverting process throughout
the simulation

muchmore sensitive to variations of its yields, explainingwhy AM takes a significantly
greater share in the sum of the absolute price variations in the determination of the
yields of concern.

The average portfoliomodified durationsAvgModDurit tend to replicate the dynam-
ics of the modified durations associated with the traders’ predominant investment. The
fundamentalist is hence found to have an almost stable portfolio modified duration
over time with only few exceptions arising during the transient market unfolding. As
a result, the latter variable is hence fluctuating between 20 and 30 years during peri-
ods of quietude. The portfolio modified duration of the fundamentalist is also more
sensitive to increases of the perpetual bond’s duration than to the according decrease
of x f ,M

t . This is illustrated by the humps in the time series of the corresponding vari-
able generated in the simulation involving the varying herding propensity. The present
market model moreover provides a striking observation during periods of extreme
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transient phenomena and unveiling the limitation of the well-known fixed income
pricing formula expressed in Eq. (102). In fact, the relationship implying, among oth-
ers, that simultaneous increases of the duration and decreases of the yields lead to an
increase in the corresponding asset’s market value is found not to hold in turbulent
periods for the portfolio of the fundamentalist trader. As one can observe during any
of the price bubbles associated with AM , the wealth of the fundamentalist decreases
despite the fact that the portfolio modified duration increases and that the portfolio
yield decreases. The convexity is besides found to increase, adding no interference to
the previous statement. This sheds lights into the boundedness of the earlier mentioned
pricing formula and explains why one might loose commonly used landmarks when
managing a fundamentalist portfolio during periods of market unrest. Consequently,
surfing partly on the price bubble might help the fundamentalist to contain the losses
caused by the massive exodus of the chartists from the other assets to the perpetual
bond subjected to the bubbles of concern. Following the tendencies observed for the
portfolio modified durations, the average portfolio convexities AvgConvit and disper-
sions AvgDispit propose patterns strikingly sensitive to the dynamics of the perpetual
bond’s prices. One can again observe the fact that the rebalancing executed by the
fundamentalist as a reaction to the price deviations of AM is not sufficient to counter-
act the overall tendencies of the parameters of concern to follow the dynamics of the
latter asset.

The comparison of the normalized wealth levelsW f
t of the fundamentalist andWc

t
of the aggregated chartist reveals the fact that the fundamentalist’s strategy outperforms
the chartist’s one irrespectively of the process governing the evolution of the herding
propensity. The notion of opportunity costs is however crucial to evaluate the reversal
of the latter trends on the short-term during turbulent periods. As a matter of fact, such
costs appear to be incurred by the fundamentalist during the build-up of the bubbles
of the prices of AM . Nevertheless, the subsequent bursts instigated by the flee of
individual chartists towards P bringing the variable xc,Mt to anterior levels happen to
cancel all the gains of the aggregated chartist, while the fundamentalist kept benefiting
from the constant price return of the risk-free asset. As a result, the decreases of W f

observed during the build-up of the price bubbles are adjusted by the still invariable
price returns granted by A1 left unimpaired by the variations of x f ,1

t and xc,1t . This
explains the slight increase of the difference of the wealth levels of the aggregated
traders after each burst of a bubble.

4 Analyses

4.1 Application of the Vasicekmodel of interest rates

The previous developments introduced a constant risk-free rate provided by the zero-
coupon bond of one-year maturity. As a matter of fact, the rates provided by such
risk-free assets are not constant in reality. The solution of the Vasicek model of inter-
est rates developed by the eponym author in Vasicek (1977) is applied in the market
model to provide a varying exogenous arbitrage-free risk-free rate. As a result, the
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comparison of the emerging dynamics associated with this new set-up with those of
the one considering r f = cst. shall demonstrate the capacity of the new model to
reproduce strikingly similar autocorrelations of the volatilities of the yields to matu-
rity in comparison with those observed in the US Treasury market. The statistical
estimation of the parameters involved in the expression of the varying risk-free rate
is first achieved below, before the presentation of the emerging dynamics arising in
typical simulations. The analyses of the autocorrelations are presented in Sect. 4.2.2.

The “one time step” rates are determined from the following closed-form expres-
sion:

r f ,t = r f ,t−1e
−λ + θ(1 − e−λ) + νt

√
σ 2
r (1 − e−2λ)

2λ
, (82)

where νt ∼ N (0, 1) is an i.i.d random variable and λ, θ and σr are estimated in the
same way as achieved for the herding propensity. The long-run average of the risk-free
rate is equal to the constant value of the rate applied earlier, namely with θ = 8×10−5.
The mean-reversion strength is subsequently estimated according to:

λ = 1

�T
log10

( rmax − θ

rcri tic − θ

)
, (83)

where rmax = 1 × 10−4 and rcritic = 9.5 × 10−5. The value attributed to θ is known
and �T = 60 time steps. One can hence evaluate the mean-reversion strength as
λ ≈ 2 × 10−3. Finally, σr is obtained as a function of the mean-reversion rate as

σr = 2λVarr f ,t , (84)

where the variance of the risk-free rate is such that Varrt = 2× 10−5, twice as low as
the variance of the perpetual bond’s returns. The initial value of the risk-free rate is
finally set to r f ,0 = θ .

Figure 6 presents the time series generated by a typical simulation involving a
varying herding propensity as well as the stochastic process governing the evolution
of r f ,t . The evolution of the risk-free rate has a strong reflection on x f ,1, while the
preferred stock’s prices show a clear symmetric pattern of its dynamics. The evolution
of the wealth levels further illustrates the indirect impact of the varying risk-free
rate. The reason for the high sensitivity of the fundamentalist’s wealth fractions to
the variations of r f ,t is straightforward when considering Eqs. (30) and (31). In this
regard, the fundamentalists’ investments are hence found to have a major impact on
the assets’ prices, being mainly driven by the evolution of the risk-free rate and having
a significant impact on the wealth levels of both aggregated traders. There is, however,
no form of self-reinforcing feedback arising between the fundamentalist’s investments
and the corresponding impacts on the assets’ prices, the latter agent having no incentive
to follow series of positive returns and being predominantly reacting to the stochastic
variations of the risk-free rate. This further explains why one cannot find clear trends
in the evolution of the difference of both agent’s normalized wealth levels, especially
after the periods of extreme transient phenomena, where the earlier mention about the
opportunity costs is not holding anymore as one is not guaranteed to obtain a stable
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Fig. 6 Time dependence of the variables associated with the market model. Tsim = 5000 time steps and
the herding propensity follows a stochastic mean-reverting process. The evolution of the risk-free rate r f ,t
is governed by the Vasicek model of interest rates

Fig. 7 Surface generated from the time dependencies of the yields tomaturity of the bonds of finite maturity.
The yields of the perpetual bond are identified separately. The l.h.s. (respectively, r.h.s.) is associated with
the simulation involving a constant herding propensity (respectively, mean-reverting)

return in the money market instrument during the culmination of the preferred stock’s
price bubbles.

4.2 Dynamics of the fixed income parameters

The following developments focus on the emerging dynamics of the yields tomaturity,
implied spot rates and discount factors. For the sake of clarity, the l.h.s. (respectively,
r.h.s.) of each illustration is associated with the simulation involving the constant
herding propensity (respectively, varying).
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Fig. 8 Surface of the implied spot rates of the bonds of finite maturity. The l.h.s. (respectively, r.h.s.) is
obtained from a constant herding propensity (respectively, mean-reverting)

Fig. 9 Surface of the discount factors of the bonds of finite maturity. The l.h.s. (respectively, r.h.s.) is
obtained from a constant herding propensity (respectively, mean-reverting)

4.2.1 Time dependencies of the fixed income parameters

Figures 7, 8 and 9 present the surfaces generated from the time series associated
with the yields to maturity, implied spot rates and discount factors obtained from the
two typical simulations presented in Sect. 3.2. The yields of the perpetual bond are
represented separately in Fig. 7. Their distinction from the other yields is achieved
for the sake of clarity as the corresponding asset is omitted in the computation of
the yield curves. An ensemble of Tsim = 5000 yield curves is generated in each
simulation, i.e. one yield curve per time step. The impacts of the aggregated agents’
investments are straightforward considering the initial flat and neutral configuration
of the yield curve. The increasing volatile character of the yields to maturity in terms
of decreasing maturities is striking in both simulations and further reveals the aptitude
of the present market model to produce a humped term structure of volatility. This
paradigm is subsequently tackled in Sect. 4.2.2.

The implied spot rates defined according to Eq. (97) provide accurate approxima-
tions of the yields to maturity. As a result, the surfaces presented in Fig. 8 are very
similar to those of Fig. 7. The spikes appearing at t ∈ [2300, 2600] in the former very
accurately replicate those emerging at the same period in the latter illustration. Fig-
ure 9 finally shows the surfaces generated by the linear interpolations of the discount
factors associated with each of the bonds of fixed maturities. As one can observe, the
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Fig. 10 Surface of volatilities of the yields tomaturity in ourABM.The l.h.s. (respectively, r.h.s.) is obtained
from a constant κt (respectively, mean-reverting)

disruptions caused by the aggregated chartist’s investments on the assets’ prices have
non-negligible effects on these factors for bonds of high maturities.

This concludes the presentation of the evolution of the yields to maturity, implied
spot rates and discount factors.

4.2.2 Volatilities of the yields to maturity

Figure 10 presents the surfaces of volatilities of the yields to maturity. The volatilities
are computed over moving windows of 125 time steps in both simulations. They are
evaluated at each time step from the following definition,

σYTMi ,t =
√〈

(YTMi
k − 〈YTMi

k〉)2
〉∣∣∣∣
t

k=t−τ

, (85)

where the sample average operator is represented by 〈.〉 and the selected moving
window by τ = 125.

Figure 11 shows the realized volatilities of the yields of US Treasury bonds eval-
uated between the 18th of November 1993 and the 6th of June 2020, considering
moving windows of 250 business days. The selection of this moving window is jus-
tified by the need to amplify the trends of the fluctuations of the realized volatilities.
Notwithstanding the fact that the volatilities of the yields of the US Treasury bonds are
subjected to the exogenous policies of the Federal Reserve, the comparison between
those realized endogenously in the present model with those of the US Treasury mar-
ket enables to assess the capacity of the present market model to account for the main
trends observed in reality.

The model produces a humped term structure of volatility in both simulations.
The term structure of volatility is further decreasing when considering the bonds of
maturities larger than one year. Such phenomena are found episodically in the US
Treasury market, e.g. between 2004 and 2008, corresponding to t ∈ [3200, 3950] in
Fig. 11. On the other hand, the exogenous imposition of low discount rates by the
Federal Reserve are commonly known to be reflected on the yields of the US Treasury
bonds of short maturities, explaining the boundedness of their volatilities during the
corresponding time frames (t ∈ [4000, 5500]). The increases of these bounds hence
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Fig. 11 Surface of volatilities of the yields to maturity of the corresponding US Treasury bonds realized
between the 18nth of November 1993 and the 6th of June 2020

result in increasing volatilities of the yields of bonds of short maturities. As revealed
in Cieslak and Povala (2016) and Bertocchi et al. (2005), the volatilities of the US
Treasury yield curve are found to be following such a hump-like shape on average,
comforting the assertion of the capacity of the present market model to account for
the main trends observed for the volatilities of the yields of US Treasury bonds.

4.2.3 Autocorrelations of the volatilities of the yields to maturity

Figures 12 and 13 present the surfaces generated from the coefficients of autocorrela-
tion of the volatilities of the yields to maturity computed for each bond, excluding the
risk-free one and including the perpetual one. The former and the latter, respectively,
consider the simulations involving a constant and a varying risk-free rate. The surfaces
are generated by computing the average of the coefficients of autocorrelations from a
set of 300 simulations. The first 500 steps of each simulation are furthermore omitted
in the computations due to the auto-regulation phenomenon commented in Sect. 3.2.
The above-mentioned coefficients are determined for each simulation from Eq. (86),
considering the volatilities σYTMi ,t determined earlier and the lags l ∈ [0, 500]:

ACFl
(
σYTMi

) = Cov
[
σYTMi ,tσYTMi ,t−l

]
√
Var

[
σYTMi,t

]
Var

[
σYTMi,t−l

] ,

=
〈
σYTMi ,tσYTMi ,t−l

〉−
〈
σ 2
YTMi ,t

〉
〈
σ 2
YTMi ,t

〉
− 〈

σYTMi ,t

〉2 .

(86)

The comparison between Figs. 12 and 13 reveals the fact that the surfaces associated
with the market model involving a varying risk-free rate decay much faster than the
others in terms of increasing lags. This emerging phenomenon is hence attributed to
the stochastic character of the evolution of the risk-free rate. There is moreover no
difference on the aggregated level for different selections of the processes governing
the evolution of the herding propensity.
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Fig. 12 Surface of autocorrelation associated with the simulation involving a constant risk-free rate and a
constant κt on the l.h.s. (respectively, mean-reverting κt on the r.h.s.)

Fig. 13 Surface of autocorrelation associated with the simulation involving a mean-reverting risk-free rate
and a constant κt on the l.h.s. (respectively, mean-reverting κt on the r.h.s.)

Fig. 14 Surface of autocorrelation computed on the volatilities of the realized US Treasury yields between
the 18nth of November 1993 and the 6th of June 2020

The comparison of the surfaces presented in Figs. 12 and 13 with the surface
of autocorrelation associated with the US Treasury market provided in Fig. 14 and
computed from the earlier-mentioned volatilities further enables to distinguish the
capacity of the simulations involving the varying risk-free rates to replicate the same
emerging phenomena as they reproduce similar autocorrelation coefficients at the
corresponding lags. More precisely, the latter simulations are capable to replicate the
steeper gradients of the autocorrelation surfaces until the 250th lag as well as the
milder ones for higher lags directing the surfaces towards null autocorrelations at the
500th lag.
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Equation 86 defining the autocorrelations of the volatilities of the yields to maturity
aims to uncover persistent dynamics revealing a self-dependency of the observed vari-
able. For example, high autocorrelation values indicate that periods of high volatility
induce high volatilities at a later point of time. As one can expect, letting the risk-free
rate follow an independent stochastic process affects the dynamics of the yields to
maturity through the transmission channel of the noise trader’s investments presented
in step 2 of Sect. 2.4. As a result, the residual self-dependencies of the aforemen-
tioned variable are found to diminish at a higher pace when increasing the lags, as one
can expect the autocorrelations to be dampened. This is consistent with the empirical
observations provided in Fig. 14. However, the latter illustration reveals the fact that
the yield volatilities of the bonds of shorter maturities exhibit larger auto-correlations
than those of longer maturities. This stylized fact is not reproduced by the present
model, as one would need to consider the classical theories of the term structure of
interest rates in the traders’ investment processes. According to these theories, fixed
income investors choose maturities based on their expectations of future short-term
interest rates in order to maximize their overall horizon yield. The relative merits of
expectations theory, segmented market theory or liquidity preference theory remains
to be decided, as none of these theories have yet gained the upper hand, as exposed in
Smith (2014).

5 Conclusion

The agent-based market model proposed in this research has extended the model pro-
posed in Kaizoji et al. (2015) by introducing several bonds of fixed maturities. The
inclusion of the various fixed income parameters allowed us to describe the investment
processes of both aggregated traders to the peculiarities of the market in which they
evolve. The market set-up initialized by a flat yield curve demonstrated its capacity to
reproduce several stylized facts of the US Treasury market. The simulations involv-
ing a varying herding propensity showed that the well-known bond-pricing formula
involving the durations, convexities and shifts in yields to maturity does not hold at
the fundamentalist’s portfolio level during periods of market unrest. Subsequently, the
implementation of Vasicek’s model of interest rates to simulate the evolution of the
risk-free rate was found to allow for the linearly dependent fundamentalist’s wealth
fractions to replicate its dynamics and have a significant impact on the asset prices.
The analyses of the volatilities of the yields to maturity further enabled to assess the
capacity of the market model to produce a humped term structure of volatility as is
observed on average in the US Treasury market. Finally, the market model introducing
the mean-reverting process governing the dynamics of the risk-free rate also proved
superior to the one involving r f = cst. with regards to its capacity to reproduce the
main characteristics of the surface of autocorrelation of the volatilities of the yields to
maturity of the US Treasury bonds for selected the time-frame.
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A Appendix

A.1 Parameters of the fixed incomemarket model

• Security level

The following developments introduce the parameters mentioned in Sect. 2.1. First
and foremost, the famous relationship between an asset’s no-arbitrage price PV, face
value FV, coupon payments C, time to maturity N and yield to maturity YTM is
expressed as:

PV = C

YTM

[
1 − 1

(1 + YTM)N

]
+ FV

(1 + YTM)N
. (87)

Representing the discount factor associatedwith the payments occurring atmaturity
by δ(N ), the no-arbitrage price can be further expressed as:

PV = C

YTM
(1 − δ(N )) + δ(N )FV, (88)

exacerbating the expression of the bonds’ dirty prices in terms of those of a perpetuity
and of a zero-coupon bond as follows:

PV = PVperpetuity(1 − δ(N )) + δ(N )PVzero-coupon bond. (89)

Yields to maturity Considering the fact that each asset Ai for i ∈ {2, . . . , M} pays
a coupon or a dividend of dt at each time step and consisting of the accrued interest
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associated with dt = 1, the corresponding yields to maturity are evaluated as:

YTMi
t ≈

250 × dit +
(
FVi−PVi

t
N i

)

FVi+PVi
t

2

, (90)

where the day-count convention defines a year as consisting of 250 trading days. The
accrued interests AIit of each asset Ai are further determined at each time step t by:

AIit = FVi × Ci

FVi
× dt

Tyear
, (91)

where Tyear = 250. Accordingly, the running yield of the preferred stock AM is given
by:

YTMM
t ≈ 2 × 250 × dM

t

FVM + PVM
t

. (92)

Discount factors The discount factors provide a practical bootstrapping technique
upon which the spot rates are determined. The methodology applied to determine the
discount factors is detailed hereafter:

1. Start by determining the discount factor of the risk-free bond:

DF1t = PV1
t

FV1 . (93)

Setting PV1 = 1 and FV1 = 1 + 250 × r f , one obtains:

DF1t = 1

1 + 250 × r f
= cst. ∀t . (94)

2. Determinate the remaining DFit in an increasing order of maturities:

DFit = PVi
t − 250 × dit

∑i−1
k=1 DF

k
t

250 × dit + FVi
. (95)

As one can observe from Eq. (95), discount factors can only be assigned to bonds of
fixed maturities. These factors are further related to the implied spot rates ISRi

t by:

DFit = 1(
1 + ISRi

t
PER

)N×PER , (96)

where the periodicity accounting for semiannual coupon payments is set to PER = 2.
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Implied spot rates The implied spot rates are accordingly isolated by the subse-
quent expression:

ISRi
t =

[(
1

DFit

) 1
Ni×PER − 1

]
× PER. (97)

Variations of market values Assuming that the prices of each bond are continuous
and twice differentiable w.r.t. to the yields to maturity, we have

�MVi
t ≈ ∂MVi

t

∂YTMi
t

dYTMi
t + 1

2

∂2MVi
t

∂YTMi
t
2 (dYTMi

t )
2, (98)

from which the following parameters are introduced, considering only flat variations
of the yield curve.

Durations and convexity
The Macaulay duration is first expressed as:

MacDurit = − ∂MVi
t

∂YTMi
t

1 + YTMi
t

MVi
t

, (99)

followed by the definition of the modified duration:

ModDurit = − ∂MVi
t

∂YTMi
t

1

MVi
t

= MacDurit
1 + YTMi

t

. (100)

The convexity is finally formulated as:

Convit = ∂2MVi
t

∂YTMi
t
2

1

MVi
t

, (101)

allowing to express Eq. (98) in terms of the above-introduced parameters:

dMVi
t

MVi
t

≈ −(ModDurit × dYTMi
t ) + 1

2
(Convit × (dYTMi

t )
2). (102)

These parameters are further evaluated from the approximations provided in Smith
(2014) and are first applied to individual securities before being associated with the
aggregated traders’ portfolios.
The modified duration is approximated by:

ApproxModDurit =
�MVi

t |YTMi
t↓ − �MVi

t |YTMi
t↑

2 × �YTMi
t × MVi

t

, (103)

where �MVi
t |YTMi

t↓(↑) represents the variation of the bond’s market value resulting
from an artificial decrease (increase) of the yield by −(+)0.001.
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The convexity is furthermore approximated by:

ApproxConvit =
�MVi

t |YTMi
t↓ + �MVi

t |YTMi
t↑ − 2 × MVi

t

�YTMi
t
2 × MVi

t

. (104)

In particular, considering the absence of arbitrage, the assets’ market values and
their corresponding variations arising from artificial shifts of the yields are determined
according to:

MVi
t = 250 × dit

YTMi
t

(
1 − 1

(1 + YTMi
t )
N

)
+ FVi

(1 + YTMi
t )
N

, (105)

MVi
t |YTMi

t↓ = 250 × dit
YTMi

t − 0.001

(
1 − 1

(1 + YTMi
t − 0.001)N

)

+ FVi

(1 + YTMi
t − 0.001)N

, (106)

MVi
t |YTMi

t↑ = 250 × dit
YTMi

t + 0.001

(
1 − 1

(1 + YTMi
t + 0.001)N

)

+ FVi

(1 + YTMi
t + 0.001)N

. (107)

The Macaulay duration is finally approximated by:

ApproxMacDurit = ApproxModDurit (1 + YTMi
t ). (108)

• Portfolio level

Durations and convexity The market-value-weighted (MV-weighted) average
modified portfolio durations are successively expressed as:

AvgModDurit =
M∑
k=1

xi,kt × ModDurkt

≈
M∑
k=1

xi,kt × ApproxModDurkt ,

(109)

where i ∈ { f , c} depicts the trader of concern. Similarly, the market-value-weighted
average Macaulay portfolio durations are introduced as:

AvgMacDurit =
M∑
k=1

xi,kt × MacDurkt

≈
M∑
k=1

xi,kt × ApproxMacDurkt .

(110)
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The average portfolios convexities are further determined as:

AvgConvit =
M∑
k=1

xi,kt × Convkt

≈
M∑
k=1

xi,kt × ApproxConvkt .

(111)

Yields to maturity The market-value-weighted average portfolio yields are evalu-
ated by:

AvgYieldMVi
t =

M∑
k=1

xi,kt × YTMk
t . (112)

The basis point values (BPVs) of each asset Ak are determined by each trader i as:

BPVi,k
t = ModDurkt × xi,kt × Wi

t × 0.0001

≈ ApproxModDurkt × xi,kt × Wi
t × 0.0001.

(113)

Hence, the average basis point value-weighted (BPV-weighted) yields of each trader
are evaluated as:

AvgYieldBPVi
t =

∑M
k=1 BPV

i,k
t × YTMk

t∑M
k=1 BPV

i,k
t

. (114)

Dispersion Ultimately, the average portfolios dispersions are introduced as:

AvgDispit = AvgConvit (1 + AvgYieldBPVi
t )
2 − AvgMacDurit

2 − AvgMacDurit .
(115)

A.2 Solution of the generalizedmean-variance optimization problem

The stochastic optimal control problem assigned to the fundamentalist trader is tackled
in the following text. The optimal feedback solution is derived after the formulation of
the well-known Hamilton–Jacobi–Bellman (HJB) equation associated with the prob-
lem of concern. The solution is furthermore given by the optimal control trajectory

x̂ : [0, T ] �→ R
M−1 at the origin of the optimal state trajectory Ŵ f : [0, T ] �→ R.

The former is expressed as:

x̂(t) = x̃(̂W f (t),∇W f J (̂W f (t), t), t) for t ∈ [0, T ]. (116)

In a nutshell, the control x = x(W f ,JW f ,JW f W f , t) which maximizes the r.h.s.
of the HJB Eq. (117) involving the cost-to-go function J (W f , t) defined in Eq. (24)
is first sought for. The resulting expression of the control law is then inserted back
into the HJB equation before the resulting PDE expressed in terms of the cost-to-go
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function is solved. The expression of J (W f , t) is finally replaced in the expression
of the control parameter x, unveiling the formulation of the optimal control law.

The HJB equation associated with the present framework is expressed in Eq. (117).
For a detailed derivation of theHJBequation throughBellman’sdynamic programming
approach and to better grasp its application to the present framework, the reader is
invited to refer to Yong and Zhou (1999) or Fleming and Rishel (1975).

−Jt = max
x∈RM−1

{
JW f W f

[
r f + x	(μ − er f )

]
+ 1

2
JW f W f W f 2x	σσ	x

}
. (117)

Recalling the fact that the covariance matrix associated with the SDE of the wealth
update is expressed as � = σσ	, Eq. (117) can be reduced to:

d

dx

{
JW f W f

[
r f + x	(μ − er f )

]
+ 1

2
JW f W f W f 2x	�x

}
= 0, (118)

which further yields the following expression:

(μ − er f )W f JW f + JW f W f W f 2�x = 0. (119)

Considering the latter Eq. (119), one can obtain the formulation of the optimal control
law expressed in terms of the first- and second-order derivatives of the cost-to-go
function w.r.t. W f :

x̂ = − JW f

W f JW f W f
�−1(μ − er f ). (120)

Inserting the expression of Eq. (120) into the HJB Eq. (117), one obtains the fol-
lowing PDE expressed in terms of the cost-to-go function:

Jt + W f r f JW f − JW f
2

2JW f W f
(μ − er f )	�−1(μ − er f ) = 0. (121)

The following Ansatz introduces the scalar function h(t) : R �→ R subjected to the
terminal condition given by h(T ) = 1:

J (W f , t) = h(t)
W f 1−γ

1 − γ
. (122)

The relevant derivatives of the value function are consequently obtained as:

⎧⎪⎪⎨
⎪⎪⎩

Jt (W f , t) = ḣ(t)W
f 1−γ

1−γ
,

JW f (W f , t) = h(t)W f −γ
,

JW f W f (W f , t) = −γ h(t)W f −(γ+1)
,

(123)
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allowing to express the solution of the optimization problem ruling the investments of
the fundamentalist trader as:

x̂ = 1

γ
�−1(μ − er f ) (124)

This expression solves the generalized wealth allocation problems faced by any
trader subjected to the necessity to maximize an expected CRRA utility function w.r.t.
her investments in M − 1 coupon and dividend paying assets. The rest is allocated in
the risk-free asset according to the boundary condition expressed in Eq. (74).

A.3 Market clearing process of the extendedmarket model

The developments provided below shed lights into the market clearing process
achieved at each time step by the Walrasian auctioneer. As has been expressed in
Sect. 2.5, Eq. (63) is the condition at the origin of the updates of the assets’ prices. The
expressions of the excess demands for each asset Ai with i ∈ {2, . . . , M}, respectively,
formulated by the fundamentalist and chartist traders are:

�D f ,i
t−1→t = W f

t−1

(
Ai
t + Bi

t

Pi
t

)[(
1 −

M∑
k=2

x f ,k
t−1

)
(1 + r f ) +

M∑
k=2

x f ,k
t−1

(
Pk
t + dkt
Pk
t−1

)]

−x f ,i
t−1W

f
t−1

Pi
t

Pi
t−1

, (125)

�Dc,i
t−1→t = Wc

t−1x
c,i
t

[(
1 −

M∑
k=2

xc,kt−1

)
(1 + r f ) +

M∑
k=2

xc,kt−1

(
Pk
t + dkt
Pk
t−1

)]

−xc,it−1W
c
t−1

Pi
t

Pi
t−1

, (126)

where both Ai
t and Bi

t are defined according to Eqs. (57) and (58). For the sake

of clarity, let
(
1 −∑M

k=2 x
f ,k
t−1

)
(1 + r f ) be represented by �t−1 and �t−1 account

for
(
1 −∑M

k=2 x
c,k
t−1

)
(1 + r f ). The condition of the Walrasian auctioneer is refined

hereafter, considering Eqs. (125) and (126):

W f
t−1

(
Ai
t + Bi

t

Pi
t

)[
�t−1 +

M∑
k=2

x f ,k
t−1

(
Pk
t + dkt
Pk
t−1

)]
− x f ,i

t−1W
f
t−1

Pi
t

Pi
t−1

+Wc
t−1x

c,i
t

[
�t−1 +

M∑
k=2

xc,kt−1

(
Pk
t + dkt
Pk
t−1

)]
− xc,it−1W

c
t−1

Pi
t

Pi
t−1

= 0.

(127)
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One can further factorize the terms accounting for the ratios of the prices evaluated at
t and t − 1 by isolating Pt as follows:

W f
t−1

(
Ai
t + Bi

t

Pi
t

)[
�t−1 +

M∑
k=2

x f ,k
t−1

(
Pk
t + dkt
Pk
t−1

)]

+Wc
t−1x

c,i
t

[
�t−1 +

M∑
k=2

xc,kt−1

(
Pk
t + dkt
Pk
t−1

)]

−Pi
t

(
xc,it−1W

c
t−1 + x f ,i

t−1W
f
t−1

Pi
t−1

)
= 0. (128)

Let the parameter βi associated with asset Ai be introduced as:

βi = xc,it−1W
c
t−1 + x f ,i

t−1W
f
t−1

Pi
t−1

, (129)

Equation (128) can be consequently expressed as:

W f
t−1

(
Pi
t A

i
t + Bi

t

)[
�t−1 +

M∑
k=2

x f ,k
t−1

(
Pk
t + dkt
Pk
t−1

)]

+Pi
t W

c
t−1x

c,i
t

[
�t−1 +

M∑
k=2

xc,kt−1

(
Pk
t + dkt
Pk
t−1

)]

−Pi
t
2
βi = 0, (130)

before being arranged in the following form:

Pi
t

⎡
⎣W f

t−1A
i
t�t−1 + Wc

t−1x
c,i
t �t−1 + W f

t−1A
i
t

M∑
k=2

x f ,k
t−1

(
dkt
Pk
t−1

)

+Wc
t−1x

c,i
t

M∑
k=2

xc,kt−1

(
dkt
Pk
t−1

)
+

M∑
k=2

Pk
t

Pk
t−1

(
x f ,k
t−1W

f
t−1A

i
t + xc,kt−1W

c
t−1x

c,i
t

)
⎤
⎦

+W f
t−1B

i
t �t−1 + W f

t−1B
i
t

M∑
k=2

x f ,k
t−1

(
Pk
t

Pk
t−1

)
+ W f

t−1B
i
t

M∑
k=2

x f ,k
t−1

(
dkt
Pk
t−1

)
− Pi

t
2
βi = 0.

(131)

The parameter αi j associated with the pair of assets i and j is introduced as follows:

αi j = x f , j
t−1W

f
t−1A

i
t + xc, jt−1W

c
t−1x

c,i
t

P j
t−1

(132)
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and the parameter ζi is defined such that:

ζi = W f
t−1A

i
t�t−1 + Wc

t−1x
c,i
t �t−1 + W f

t−1A
i
t

M∑
k=2

x f ,k
t−1

(
dkt
Pk
t−1

)

+ Wc
t−1x

c,i
t

M∑
k=2

xc,kt−1

(
dkt
Pk
t−1

)

= W f
t−1A

i
t

(
1 −

M∑
k=2

x f ,k
t−1

)
(1 + r f ) + Wc

t−1x
c,i
t

(
1 −

M∑
k=2

xc,kt−1

)
(1 + r f )

+
M∑
k=2

[
dkt
Pk
t−1

(
x f ,k
t−1W

f
t−1A

i
t + xc,kt−1W

c
t−1x

c,i
t

)]
. (133)

Equation (131) can hence be written in the following compact form:

Pi
t

(
ζi +

M∑
k=2

Pk
t αik

)
+

M∑
k=2

Pk
t

Pk
t−1

W f
t−1B

i
t x

f ,k
t−1

+W f
t−1B

i
t �t−1 + W f

t−1B
i
t

M∑
k=2

x f ,k
t−1

(
dkt
Pk
t−1

)

−Pi
t
2
βi = 0. (134)

Successively, let χi j be defined as follows:

χi j = W f
t−1B

i
t x

f ,k
t−1

Pk
t−1

(135)

and λi be introduced by the subsequent expression:

λi = W f
t−1B

i
t �t−1 + W f

t−1B
i
t

M∑
k=2

x f ,k
t−1

(
dkt
Pk
t−1

)

= W f
t−1B

i
t

[(
1 −

M∑
k=2

x f ,k
t−1

)
(1 + r f ) +

M∑
k=2

x f ,k
t−1

dkt
Pk
t−1

]
. (136)

Inserting these latter parameters in Eq. (134) further enables to obtain the following
expression:

Pi
t ζi + Pi

t

M∑
k=2

Pk
t αik +

M∑
k=2

Pk
t χik − Pi

t
2
βi + λi = 0. (137)
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Table 4 Initialization of the parameters of the fixed income market. The values correspond, respectively,
to each asset in terms of increasing maturities, starting with the one-year zero-coupon risk-free bond and
ending with the perpetual bond

Parameter Initial value associated with each asset

YTM0 (0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.03)

MV0 (1.00019, 1.00085, 1.00220, 1.000457, 1.00856, 1.01487, 1.02442, 1)

MV0|YTM↑ (0.999214, 0.996099, 0.992972, 0.991099, 0.991015, 0.993365, 0.998971, 0.967742)

MV0|YTM↓ (1.00118, 1.00563, 1.01152, 1.01825, 1.02645, 1.03691, 1.05061, 1.03448)

ApproxModDur0 (0.980583, 4.76207, 9.25537, 13.5134, 17.5685, 21.4533, 25.2023, 33.3704)

ApproxMacDur0 (1, 4.88112, 9.48676, 13.8513, 18.0078, 21.9896, 25.8324, 34.3715)

ApproxConv0 (1.92309, 27.6518, 97.5912, 205.408, 347.599, 521.555, 725.624, 2224.69)

DF0 0.980392, 0.915282, 0.845022, 0.776775, 0.710366, 0.645617, 0.582376, n.a.)

ISR0 0.0199010, 0.0177832, 0.0169104, 0.0169114, 0.0171721, 0.0175788, 0.0181027, n.a.)

By isolating the nonzero terms when inserting the Kronecker delta in the summations,
one can finally express Equation (137) as:

Pi
t
2
(αi i − βi ) + Pi

t (ζi + χi i )

M∑
k=2,k �=i

Pk
t P

i
t αik +

M∑
k=2,k �=i

Pk
t χik + λi = 0. (138)

This concludes the presentation of the solvable set of M − 1 nonlinear equations
expressed in terms of the M − 1 asset prices remaining to be evaluated at each time
step of the simulations of the model.

A.4 Initialization of the parameters of the fixed incomeMarket

Table 4 below introduces the initial values of the parameters associated with the fixed
income market framework. As one could anticipate, the initial values of the modified
and Macaulay durations approximate the maturities of the bonds.
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