
Journal of Economic Interaction and Coordination
https://doi.org/10.1007/s11403-021-00343-4

REGULAR ART ICLE

The complex nature of financial market microstructure:
the case of a stock market crash

Feng Shi1 · John Paul Broussard2,3 · G. Geoffrey Booth4,5

Received: 16 April 2021 / Accepted: 11 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper uses multivariate Hawkes processes to model the transactions behavior of
the US stock market as measured by the 30 Dow Jones Industrial Average individual
stocks before, during and after the 36-minMay 6, 2010, Flash Crash. The basis for our
analysis is the excitation matrix, which describes a complex network of interactions
among the stocks. Using high-frequency transactions data, we find strong evidence
of self- and asymmetrically cross-induced contagion and the presence of fragmented
trading venues. Our findings have implications for stock trading and corresponding
risk management strategies as well as stock market microstructure design.

Keywords Stock market · Contagion · Networks · Hawkes processes · Granger
causality · Adaptive learning · Behavioral finance

JEL Classification G12 · G14 · G23 · G41 · D47 · D80 · P1

1 Introduction

Stock markets are a key component of an economy based on the principles of capital-
ism. Their primary function is to provide a straightforward and convenient mechanism
to transfer ownership of an asset claim in a formal trading venue that is governed by
rules of trade. A trade is consummated when a price is agreed upon. Prices, however,

B John Paul Broussard
jpb@ou.edu

1 University of North Carolina, Chapel Hill, NC, USA

2 University of Oklahoma, Norman, OK, USA

3 Rutgers University, Camden, NJ, USA

4 The Citadel, Charleston, SC, USA

5 Michigan State University, East Lansing, MI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11403-021-00343-4&domain=pdf
http://orcid.org/0000-0002-5090-9947


F. Shi et al.

often exhibit rapid fluctuations that at times are characterized by large and often unex-
pected changes. Taken together, a sequence of price changes involving a broad group of
stocks in a relatively short time period that results in ameaningful cumulative decrease
in their paper values is referred to as a market crash. As Glasserman and Young (2016)
point out, interconnectedness is a defining characteristic of global and domestic mod-
ern financial systems. Although this phenomenon may provide transactional benefits,
it also enhances the fragility of the system through common risk exposure via the
ownership of similar assets, liquidity shocks, and macroeconomic shocks in general,
making these risks difficult to manage because of network complexity and market
crashes.

The purpose of this paper is (1) to model the price movements exhibited by individ-
ual stocks during the 2010 Flash Crash using a Hawkes process excitation matrix and
(2) to interpret its entries in the context of complex networks and crowd behavior from
the Granger causality and Adaptive Market Hypothesis perspectives. The analyses
provide insights into the development of market design initiatives, trading strategies,
and risk management methods that incorporate an intra-day, endogenous perspective.

Stock market crashes are not uncommon. In addition to the Flash Crash, recent
crashes include Black Monday (October 19, 1987), the Dotcom Bubble Burst (March
10, 2000), the 2008 Financial Crisis (September 29, 2008), and the 2020 Pandemic
(February 19, 2020). We explore the nature of the Flash Crash because its short
length (36 min from the start through recovery) severely limits the number and resul-
tant impacts of external factors, such as market intervention by government or stock
exchange regulators that might affect the behavior of the market during its drawdown
and subsequent recovery.

We focus on the 30 stocks that make up the Dow Jones Industrial Average (DJIA).
The DJIA companies are large, blue chip firms chosen to represent the bulk of US
economic activity. The Hawkes excitation matrix measures how the influence these 30
stocks have on each other and themselves and how these influences may evolve over
time as traders learn about and react to the ever-changing environment. We use indi-
vidual stock sub-second transactions data, which are the most granular data available
at the time of the crash. This granularity permits the analysis of sequential transactions
that often occur within milliseconds of each other, making it possible to construct a
complex system containing multiple feedback loops that depict the impacts of a stock
not only on itself but also on the other 29 stocks in the network. Thus, we provide a new
lens on the behavior of stocks during the Flash Crash, which will help to understand
the nature of other market crashes and other disruptions.

The Hawkes (2018) process is a stochastic model that describes the frequency
of events within a specific time interval, allowing the occurrence of one or more of
these events to increase the likelihood of triggering more or fewer events in the near
future. Because of this characteristic, Hawkes processes have been used to quantify
the endogenous and exogenous price effects in various asset trading markets. Our
main focus is on the endogenous effects measured by the excitation matrix, which is
a square matrix where its columns represent the stocks that are the influencers and
the rows indicate the stocks being influenced. A stock’s self-influence is measured
by the matrix’s principal diagonal. To provide a dynamic perspective, we estimate
the excitation matrix using a rolling sample. This approach allows us to examine
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how the excitation matrix evolves before, during and after the crash. Similar to any
other statistical model, however, the Hawkes process mines the statistical association
between the stocks but it cannot reconstruct the true causal relationship between them
in terms of specific types of human cognitive biases.

Nevertheless, Etesami et al. (2016) demonstrate that the specification of the linear
multivariate Hawkes model permits us to interpret the feedback relationships in the
Granger-cause sense (Granger 1969, 2004). We analyze these relationships from the
perspective of the Adaptive Market Hypothesis (Lo 2004), which uses the ideas and
concepts associated with behavioral finance to help understand why stock markets
behave as they do. The Adaptive Market Hypothesis recognizes that traders, being
human, are not perfectly rational, although at times they might act as they are, and
are subject to social and psychological biases. These biases may affect their assess-
ments of current and future stock prices and these assessments may change as trading
progresses.

We find that the influences between the 30 DJIA stocks increase on average during
the Flash Crash and then revert close to their pre-crash level. The level of influence,
however, varies greatly among stocks before, during and after the crash. Moreover,
stocks that are strongly (weakly) influenced by other stocks are only weakly (strongly)
influenced by their past behavior. Furthermore, although the industry sector of the 30
stocks does not seem to have an effect on the influences between them, the specific
tradingvenue inwhich the transaction occurs does have a noticeable impact, suggesting
that at times the ability to provide liquiditymay vary among venues,which supports the
notion of fragmented markets. These influence differences suggest the possibility that
there may be worthwhile dynamic diversification strategies and market microstructure
policies that have not yet been fully identified or exploited.

The remainder of the paper is divided into five sections. In Sect. 2, we present
background information related to the 2010 Flash Crash and discuss possible price
discovery network implications.We devote Sect. 3 to describing the role of complexity
in the stock market, including the specification of the multivariate Hawkes model and
how trader behavior can be thought to be embedded in a model’s excitation matrix.1

In Sect. 4, we discuss our data and their source, as well as provide several important
descriptive statistics and caveatswhere appropriate.Wealso illustrate the interpretation
of the excitation matrix and its corresponding network diagram for a subsample of
DJIA stocks. We present our empirical results in Sect. 5 in three parts: (1) the 30
DJIA as a group using a simple average, (2) the 30 individual stocks and (3) the 30
stocks divided into industry sector and trading venue communities. In the last section,
Sect. 6, we discuss our findings in a broader economic context, giving emphasis to
their potential usage in portfolio risk measurement and management, stock index
construction and the impact of various types of composition changes, and implications
for fragmented markets.

1 Traders can represent themselves, their firms, or individual institutional and private investors. We treat all
relations the same and, therefore, use the terms “trader(s)”, “investor(s)” and “stockholder(s)” interchange-
ably.
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2 Crashes and price discovery implications

Crashes and their recoveries may be long or short and may or may not be followed
by an economic recession or even a depression. Moreover, other than using arbitrary
rules of thumb, it is often difficult to determine precisely when crashes begin and
end. Numerous studies have been conducted to pin down the cause(s) of these crashes
and many possibilities have been suggested. The cause(s) may be large or small,
exogenous or endogenous, but, whatever the size or origination, the cause(s) must be
able to promote the strong need for many stockholders, with large or small positions,
to attempt to divest themselves of their holdings, at least temporarily. We focus on the
timelines, possible reasons for flash crashes that have been suggested in the related
literature, as well as implications for modeling crash behavior.

2.1 2010 Flash crash

The Flash Crash began on Thursday, May 6, 2010. US stock markets had been highly
volatile since their openings as a result of, some believe, the disappointing economic
news from Europe concerning its then-ongoing Greek debt crisis. As a result, O’Hara
(2015) points out, buy and sell orders were becoming increasingly unbalanced. The
Commodity Futures Trading Commission (CFTC) and the Securities Exchange Com-
mission (SEC) in joint reports (CFTC-SEC 2010a; b) indicate that the crash began
about 2:32 p.m. EST and lasted until 3:08 p.m. or 14:32 to 15:08 in 24-h clock time.
For the next 13 min or so after 14:32, stock prices continued to drop, with the largest
declines occurring in the last few minutes. At the nadir of the crash, roughly $1 tril-
lion in the paper value of market capitalization was lost. By 14:45 markets began to
stabilize, although there were still extreme movements in the prices of some stocks.
Between 15:00 and 15:08 (the generally agreed upon end of the recovery), markets
became noticeably less volatile as prices approached their pre-crash values and orderly
trading resumed, although it took four additional trading days to reachMay 10th’s high.
No external stimulus, government or otherwise, was involved and the decrease was
not quite large enough to enact the market-wide circuit breaker that was initiated as a
result of the 1987 Black Monday Crash. In the following days, stock market trading
and prices appear to have proceeded in a “normal” manner and an economic depres-
sion or even a recession did not follow the day’s seemingly unexpected and unsettling
intraday event.

The cause(s) of the Flash Crash is unclear. The (CFTC-SEC 2010a; b) attributes the
start of the crash to a large fundamental trader placing an order for 75,000 ($4.1 billion)
E-mini S&P 500 futures contracts to hedge against an existing equity position. Aldrich
et al. (2017), however, suggest that the flash crash was the result of the continued
presence of many large sell orders and the corresponding widespread withdrawal of
liquidity, i.e., the decrease in the number of contracts quoted close to the best price.
Similarly, Easley et al. (2012) posits that this decrease may have been the result of the
inability of cross-arbitragers tomake a profit on their transactions and, hence,withdrew
from themarket. They also indicate that the Volume-Weighted Probability of Informed
Trading Index (VPIN), a statistical measure of market toxicity, increased about 60 min
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prior to the start of the crash, thereby signaling a possible short-term liquidity crisis.
Menkveld and Yueshen (2019) highlight the impacts of a fragmented marketplace on
the flash crash from a cross-arbitrage perspective using E-mini contracts that trade on
the Chicago Mercantile Exchange and S&P 500 ETF Trust (SPY) positions that are
tradable on eight different exchanges. They suggest that liquidity differences among
the various SPY trading venues may have contributed to the crash, although Kirilenko
et al. (2017) document that the trading pattern of high-frequency traders did not change
during the crash.

2.2 Price discovery hypotheses and stockmarkets crashes

The function of a stock market is to bring various traders who want to buy or sell stock
together so that they can jointly determine the value of a specific stock. Bid prices and
ask prices are made by buyers and sellers, respectively. When they are equivalent in
price, a transaction occurs. A market for a stock is considered liquid if there are many
posted bid and asked prices that are very close to each other. An illiquid market is one
in which there are only a very small number of bid prices and ask prices quoted and
these quotes are far apart. In this type of market, a transaction will not be made unless
there are major price concessions by one or both of the two parties. This buyer–seller
interaction, whether or not there is a transaction, is typically referred to as the price
discovery process. There are three main hypotheses concerning the way that investors
engage in determining what they believe to be the true price of a stock: (1) the Efficient
Market Hypothesis, (2) the Fractal Market Hypothesis, and (3) the Adaptive Market
Hypothesis.

The Efficient Market Hypothesis (EMH) is the foundation of much of current
finance theory and its relevant applications. It maintains that stock market partici-
pants make transaction decisions based on rational expectations created by rational
individuals using all relevant and available information. The EMH is validated, at
least on average, by the actual prices and how fast the information is incorporated
in the price. For example, for the weak version of this hypothesis (the information
set contains only market generated information), validation occurs when daily stock
prices are characterized by a random walk, which in economic parlance means that
the stock market is “efficient.”2 Market efficiency implies that each transaction price
is an equilibrium price because it considers all necessary information. Thus, Fama
(1998) maintains that instances in which the random walk hypothesis does not appear
to explain the behavior of stock returns, such as stock market crashes, should be con-
sidered anomalies, i.e., situations that occur by chance and should be discarded. After
all, he (1998, p. 291) opines “…a model should be judged … on how it explains the
big picture.”

2 Bachelier et al. (2007) is often thought of the founder of the notion that stock prices follow a random
walk. Fama (1965, 1970), however, is largely responsible for introducing, developing and championing this
concept, which supports the theory of efficient markets, to the academic and professional communities.
Subsequently, Makiel (1973) popularized the notion and implications of market efficiency to the general
public.
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The Fractal Market Hypothesis (FMH) developed by Peters (1991, 1994) relies on
Mandelbrot’s (1963) concepts that are embedded in fractal geometry.3 In the stock
market context, the geometric shape is usually thought of as a triangle with its left
(right) side depicting a positive (negative) price change and its base measured in
units of time, which, in a general sense is referred to as scale (Mandelbrot 1963,
2001; Mandelbrot and Hudson 2004). Triangles with different scales are combined
to create patterns that resemble stock movements over time and are characterized
by the presence of continuous discontinuities. The FMH posits that a stock market
consists of many types of investors who have different investment horizons (scales)
with correspondently different information needs, although all investors may be aware
of all available information.4 For instance, fundamental investors may consider their
time frame to be the business cycle while short-term traders may focus only on the
day in which they are trading. Any significant change in trading horizons by either
group may result in an overall shift of demand and supply of various stocks and this
shift is reflected in stock price turbulence, which, among other factors, may reflect a
lack of liquidity. As a result, the FMH is consistent with the notion that market crashes
are not anomalies. Nevertheless, it is silent on the way that traders make the transition
from one investment horizon to another.5

The Adaptive Market Hypothesis (AMH), which is largely attributed to Lo (2004),
rests firmly on the notion that traders are human, have various cognitive biases, and
do not operate in isolation but instead engage in various types of crowd behavior.
In doing so, they not only gather objective information but also learn from others
and other traders learn from them ad infinitum. Lo (2004) mentions that these biases
include, but are not limited to, overconfidence, overreaction, loss aversion, herding
(a.k.a. flocking), mental accounting, and regret.6 Bouchard (2010) emphasizes that
herding is an important, persistent bias and typically is a result of traders imitating each
other, a behavior that reflects the concern of traders believing that other traders may
be smarter or have better information. Burztyn et al. (2014) maintain that the learning
channel between traders is more effective when those who are less informed observe

3 “Fractal” is derived from the Latin word “fractured”, which in Mandelbrot’s lexicon refers to disconti-
nuities at all scales. From Mandelbrot’s (1963, 1982, 2001) perspective, fractals are complex patterns that
are identical, infinite, and self-similar regardless of scale and are found in nature (e.g., shore lines and ice
crystals) and the behavior of stock prices. Shenker (1994) does not agree with the accuracy of Mandelbrot’s
claim but indicates that fractals may be approximate estimations of the observed patterns.
4 The HomogeneousMarket Hypotheses (HMH) developed byMüller et al. (1990) andMüller et al. (1995)
is a special case of the FMH. As Weron and Weron (2000) explain, the HMH involves future expectations
compared to what has been experienced. If future expectations differ from those that have been experienced,
the change in homogeneity has the potential to disturb the market as investors attempt to change their
portfolios accordingly.
5 Sohn and Sornette (2017) integrate the economic notions of the FMH and EMH. They posit that all time
scales are not necessarily efficient. Thus, if a substantial portion of the market changes slowly its investment
time scale from one that is efficient to one that is not and in doing so requires a different type of information,
a bubble may be the result.
6 See Lo (1997, 2002, 2017), Lo and MacKinlay (1999) and Lo and Repin (2002) for detailed discussions
on AMH and its dynamics.
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the behavior of traders who are thought to be more sophisticated (successful).7,8

Moreover, Park and Sabourian (2011) show that traders herd when information is
widely dispersed and, consequently, believe that extreme outcomes are likely. In this
case, herding is a rational response in the “bounded” sense that tends to result in more
volatile stock prices and lower liquidity and, thereby, is self-reinforcing.9 In summary,
traders’ beliefs concerning stock prices may contain biases and these beliefs may
evolve over time as trading progresses.

From a philosophical point of view, hypotheses are formal conjectures that are
made to explain what is observed. Before a conjecture is accepted as potential truth,
it should be based on logical reasoning and subject to rigorous testing. As more data
become available and new tests are devised, existing hypotheses that previously could
not be rejected are found to be acceptable under certain conditions or rejected in
their entirety. Thus, a hypothesis, unless it is shown to be true by irrefutable evidence
available now or in the future, such as a mathematical proof, can never be considered
true in an absolute sense (Popper 1959/2002).

Howdo the EMH, FMH, andAMH farewith respect to Popper’s (1959/2002) philo-
sophic view?Despite his defense of the EMH, Fama (1998) characterizes stockmarket
crashes as anomalies. Kuhn (1970), however, believes evidence that is not consistent
with the current paradigm should cause the emergence of new paradigms. Christensen
and Raynor (2003, p. 27) agree with this sentiment and believe that instead we should
do “…anomaly-seeking (italics theirs) research, not anomaly-avoiding research.” In
contrast, the FMH tackles the issue of crashes by stating that they are not anomalies
but are a result of investors moving from one fractal scale to a fractal with a smaller
scale and eventually returning to their original scale. At the present time, there does not
appear to be an in-depth analysis of the ways in which investors obtain the information
relevant to changing fractal scales nor how they accomplish this change over time. The
AMH differs from both the EMH and the FMH because it involves sequential investor
learning not only from outside sources but also the behavior of other investors through
feedback loops and cognitive biases.10

7 In the context of a housing market bubble, Bayer et al. (2021) show that the less informed investors
typically underperform the more informed investors. They often refer to the less informed investors as
being “infected”, meaning that they cannot miss out on the possibility of making a profit and, accordingly,
follow the behavior of the crowd of more informed investors.
8 An unusually clear example of herding occurred in the spring of 2021. Investing in stocks became a game,
according to Zweig (2021). Following 12 months of general price increases in U.S. stocks, individuals,
mostly millennials, who openly admitted that they had no knowledge of stocks or stock markets began to
trade using Robinhood and similar on-line stock buying apps and provided related comments on TikTok and
WallStreetBets. One of these millennial traders garnered about half a million followers on TicToc. Some
have referred to this behavior as gambling-style entertainment.
9 Simon (1979) points out that individuals, who need to make a decision are sometimes confronted with
information that they do not understand, seek out alternatives to assist them in understanding the conse-
quences and resolving uncertainties prior to making the decision. Since the requisite information may not
be obtainable and action must be taken, the goal for the decision is not to yield the best possible result but,
instead, a satisfactory one. Thus, the decision-maker makes a bounded rational decision.
10 Frankfurter and McGoun (2001) maintain that the AMH is not just a minor adjustment to the EMH; it
is an alternate hypothesis that provides a reasonable rationale for many, if not all, the anomalies mentioned
by Fama (1998), including stock market crashes.
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AMH’s perspective on human behavior is compatible with the econophysic view
that stock markets are complex systems. For instance, Sornette (2003/2017, p. 280)
maintains that a stockmarket is a complex system and similar to other complex systems
“…has an endogenous origin and exogenous shocks only serve as triggering or tipping
point factors.” The endogenous origin refers to the cooperative behavior of market’s
participants, and the exogenous shocks to events that occur external to the market.
Arthur (1999) opines that the notion of complex systems applied to a stock market
contradicts the EMHbecause complexity in this context involves cooperative behavior
of the market’s participants.

3 Stockmarket complexity, modeling, and human behavior

In this section, we discuss market complexity in terms of a network, its relationship
to the concepts of endogenous and exogenous, and how we statistically measure and
interpret these results from the perspective of the AMH.

3.1 Complex networks

Much of the literature on complex systems focuses on physical or biological topics.11

Ladyman et al. (2012), however, maintain that important complex features are also
found in social systems, including stock markets. They indicate that these markets
are highly complex because there are numerous potential buyers and sellers who
often randomly interact with one another, thereby providing ongoing feedback to each
other and themselves. Buyers and sellers need not be human; transactions can be
undertaken by algorithms developed by humans or by artificial intelligence.It is the
feedback process that creates the endogeny present in the stock market. This process,
however, is dynamic and traders may face Knightian uncertainty, i.e., the probability
of stock price moves or the factors that might cause these changes are unknown. As a
result, these traders learn about and adapt to the changing market environment, which
is sometimes made more difficult in a changing technological environment.12

According to Kuhlmann (2014), crashes can occur endogenously or exogenously.
Endogeny results in a market where traders search for an equilibrium in a stock’s price
but never attain it. As a result, extreme events like crashes can occur when some of the
traders in the system adapt to or adopt the behaviors of other traders. In this regard,
Ladyman et al. (2012) maintain that, although traders may interact with each other
in a way that is disordered, their actions as a group are organized because the traders
not only communicate information to each other, but they do so by using a defined

11 Examples of early research in applying the concept of complexity to economics and finance in particular
are given in Anderson et al. (1988) and Arthur et al. (1997). For a discussion of the philosophical role of
complexity in science and its impact see Ladyman et al. (2012).
12 Arthur (1999) suggests that instead of the term “complex” system a more descriptive name might be
“adaptive nonlinear network” and attributes this term to J. H. Holland. Ladyman et al. (2012) indicate that
the network in the case of the stock market can be considered linear since the interactions among traders
can be represented by a standard matrix. Easley and Kleinberg (2012) offer a tour de force of networks and
their concepts applied to markets.
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set of formal and informal rules. Frank et al. (2019) provide evidence that in upstairs
markets traders interact with each other and sometimes appear to engage in reciprocal
agreements, especially if the traders belong to the same investment house.

Any specific exogenous event can be relatively large or small. Yet, regardless of
the event type, it acts as a trigger that initiates a crash with a significant number of
stockholders trying to sell all or a significant number of their stock holdings, thereby
driving stock prices down. Fleeing from the market is an example of what psycholo-
gists have dubbed as “fight or flight” behavior, which are two physiological responses
by humans facing real or perceived danger (Canon 1929).13 In this context, the act
of fleeing (selling) is, according to Goldstein and Kopin (2007), ingrained behavior
triggered by a person’s sympathetic nervous system. This behavior does not depend
on whether the event or events occur; it can also exist if there is a fear (or an anxi-
ety) that they will occur. From this perspective, market recoveries occur in the same
manner. Previous stockholders seek to regain their earlier exposure to equities or new
stockholders enter the market because they fear missing the possibility of significant
profits in the future.14

Some types of events can be either endogenous or exogenous, and their designation
depends on the context in which they occur. For example, the lack of liquidity is
often proffered as a potential cause of a market crash. Liquidity could be exogenously
decreased by a halt in trading as a result of a circuit breaker being activated. It could also
be endogenously lessened by market-makers reducing their market presence because
of dwindling trading profits. The first reason is the result of market microstructure
rules and the second by market toxicity, i.e., an imbalance between buyers and sellers.
With respect to toxicity, Liu et al. (2021) provide empirical evidence that there is a
strong negative relationship between herding and liquidity.

How does this behavior manifest itself in a stock market context? We address
this issue in the next section, which focuses on the ways in which individual stocks
are connected in complex networks and how these connections exhibit their strength.
According toKuhlmann (2014, p. 1124), these networks seem to be able to “…identify
the common underlying structural mechanism.”

3.2 Statistical methods and approaches

Weuse themultivariateHawkes process tomodel the complexmicrostructure behavior
of the DJIA 30 stocks. Hawkes (2018) provides a brief summary of his process and
gives a useful and extensive bibliography pertaining to the model’s development and

13 Bracha et al. (2004) update Canon’s (1929) concept to “freeze, flight, and fight.” The adding of “freeze”
and the reordering of “fight” and “flight” seem even more applicable to a crash situation. “Freeze” suggest
that the stockholder delays the decision to transact before acting. It also suggests that “fighting”may indicate
that a stockholder must fight the urge to sell and stay in the market.
14 Another twist to this idea is the fear of missing out (FOMO), i.e., individuals doing something different
than their peers. In a rational general equilibrium setting, Demarzo et al. (2008) show that investors are
greatly influenced by the wealth of their social cohort. In rising markets investors want to keep up with their
peers, and in a declining market losing together is more palatable than losing alone. In addition, a larger
loss may signal that the investor has more wealth than his contemporaries and a smaller loss may suggest
that the investor is smarter.
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finance applications, with a special mention of Bacry et al. (2015) for high-frequency
applications.15 Previous applied research on this area that is particularly relevant to our
study are Filimonov and Sornette (2012) and A|t-Sahalia et al. (2015). Filimonov and
Sornette (2012) examine the behavior of the E-mini S&P 500 contract, which is traded
on the Chicago exchange, from 1998 to 2010. They report that from 1998 to 2010 the
portion of the price changes attributed to the endogeny of this financial instrument
increased dramatically and reached almost 100% during the Flash Crash. A|t-Sahalia
et al. (2015) extend this approach by combining Hawkes and diffusion processes to
model the joint time series behavior of the S&P 500 (U.S.), FTSE 100 (U.K.), Nikkei
225 (Japan), Hang Seng (Hong Kong), and IPC (Mexico) stock indexes.16 They use
daily open and close data for various sub-periods (because of lack of data for some
indexes) within the overall time span beginning January 2, 1980, and ending April 30,
2013. They present significant evidence of endogenous behavior within each market
and similar relationships between various market pairs, with the latter phenomenon
suggesting the presence of contagion among the markets examined.

In contrast to the above studies, we model the activity level of each individual
stock and the timing of its activities. For each stock, we study its price-changing
events: a price-changing event is a transaction at a price different from that of its
immediately previous transaction.Without ambiguity, we refer to such price-changing
events simply as events. These events act as a proxy for a change in the traders’ view
of the paper value of the stock in question as a result of their on-going learning
experiences. O’Hara (2015) maintains that positive price changes signal a mixture of
good news and negative changes are consistent with bad news, with both types of price
changes containing some noise. Passive trades are transactions not associated with a
price change. Because there are multiple stocks considered, price-changing events
from each stock are treated as unique.

3.2.1 The Hawkes model17

Mathematically, let t si denote the time of the ith event of stock s with the stocks indexed
from 1 to 30, i.e., s ∈ {1, 2, . . . , 30}. The Hawkes process assumes that at any time
t, the probability Ps that an event of stock s will occur in the next dt time units is
determined by the instantaneous rate: λs(t): Ps ≈ λs(t) · dt .The rate of events λs(t)
is modeled as a function of the occurrences of previous events from all the stocks
(including itself):

15 In addition to finance related applications, the Hawkes process has been applied to model and analyze
network systems in many areas such as bioinformatics, seismology, criminology, terrorism, and social
networks in general (Zadah and Shards 2015).
16 A similar approach has been used in other seemingly discontinuous stock return data. Instead of a
Hawkes process a Poisson process is used. A Poisson process is similar in concept to a Hawkes process
but the occurrence of a jump is not influenced by past observations and, therefore, does not address the
concept of learning and adapting. Merton (1976) is the first to model financial asset price behavior using
a mixture of diffusion and Poisson processes. His modeling approach was subsequently adopted by many
researchers, e.g., Akigray and Booth (1988), Andersen et al. (2002), and Cai and Kou (2011).
17 Additional details on the Hawkes process may be found in numerous sources but Liniger (2009),
Embrechts et al. (2011), Rizoiu, et al. (2017) and Hawkes (2018) are particularly helpful.

123



The complex nature of financial market microstructure: the…

λs(t) = μs +
30∑

s′=1

∑

i :t s′i <t

ass′g
(
t − t s

′
i

)
, (1)

where (i : t s′i < t) corresponds to all the events of stock s′ that occurred before time
t; ass′ captures the impact of stock s′ on stock s; μs is the baseline rate of events of

stock s that is independent of previous events; and g
(
t − t s

′
i

)
is the memory kernel

that models how the effect from each previous event decays over time. More detailed
descriptions of the variables are given in Table 1.

The above model for λs(t) applies to each stock s, and models for different stocks
are coupled together as the events of stock s explicitly depend on the events of other
stocks s′. We can rewrite Eq. (1) compactly with matrices. Let λ(t), μ(t), A, and g(t)

Table 1 Hawkes model symbols and definitions

Symbol Definition

tsi Time of the ith event of stock s

λs (t) Rate of events associated with stock s at time t

λ(t) Vector of rates of events associated with all stocks:λ(t) = (λ1(t), . . . , λ30(t))
T

μs Baseline rate of events of stock s independent of previous events. Since our focus is on
the 30 DJIA stocks, it represents all exogenous effects to the market such as news and
effects emanating from all the stocks not included in the DJIA

μ(t) Vector of baseline rates of events:μ(t) = (μ1(t), . . . , μ30(t))
T

ass′ Influence of stock s′ on stock s. It is the expected number of events of stock s preceded

by an event of stock s′. There are 30 × 30 such parameters:

ass′ , s = 1, . . . , 30, s′ = 1, . . . , 30. All ass′ > 0

A Excitation matrix for all stocks:A = [
ass′

]
s=1,...,30;s′=1,..,30

g
(
t − ts

′
i

)
Memory kernel. The kernel models how the effect from each previous event decays over
time because more recent events are generally regarded to have larger influences on
the current event; hence, it is typically a decreasing but positive function. We adopt the
logistic-normal density as in Linderman and Adams (2014). We pick this function
because it is a probability density function and it integrates to one, which endows ass′
with the units of the “expected number of events” and allows a comparison of the
strengths of interactions. Moreover, it has bounded support and naturally models the

domain of g
(
t − ts

′
i

)
. Since we only consider impact from past events, t − ti > 0, the

domain of (t − ti ) is bound below by zero. Typically events occurring earlier than a
certain threshold are not considered and hence the domain of g(t − ti ) is bounded
above, i.e., t − ti < �tmax

g(t) Vector of memory kernels for all stocks:

g(t) =
⎛

⎝ ∑

i :t1i <t

g
(
t − t1i

)
, . . . ,

∑

i :t30i <t

g
(
t − t30i

)
⎞

⎠
T
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represent the combined matrices for λs , μs , ass′ , and
∑

i :t s′i <t

g
(
t − t s

′
i

)
, respectively.

Eq. (1) then becomes:

λ(t) = μ(t) + A · g(t). (2)

Equation (2) highlights the important role that excitation matrix A plays in the Hawkes
process. It is the crux of our analysis because it captures the interactions between all
of the stocks. Etasami et al. (2016) point out that the excitation matrix is equivalent to
a minimal generative model and this type of model, according to Quinn et al. (2011),
measures directed information that can be interpreted as Granger causality (Granger
1969, 2004). Thus, A’s columns depict the stocks that trigger the effects, and its rows
denote the stocks that are affected. Consequently, the principal diagonal represents
the self-induced impact (self-influence) on each of the 30 stocks, and the other 870
cells in the matrix represent the impact of an individual stock on another individual
stock (cross-influence). The number contained in each of the matrix’s 900 cells is
approximately the average number of events of the corresponding row stock triggered
by one event of the corresponding column stock.

3.2.2 Model estimation

The model is estimated using the Bayesian method as adopted by Linderman and
Adams (2014) and their Python package “pyhawkes” (https://github.com/slinderman/
pyhawkes), which has been found efficient and reliable in discovering latent network
structure in both synthetic and real data. Belowwe briefly describe the intuition behind
their Bayesian inference method. (See Linderman and Adams (2014) for details.)

Let p(
{
t si

}|μ, A, g) be the likelihood function of observing the sequences of events
{
t si

}30
s=1 given the parametersμ, A, g,which is well-defined as a result of the assump-

tions of the Hawkes model. A traditional approach to estimating the parameters is
to compute their maximum likelihood estimate by maximizing this likelihood func-
tion. Because of the complex structure of the likelihood function, however, there is no
closed-form solution nor is there a straightforward approach to optimize it. Neverthe-
less, Linderman and Adams (2014) develop a novel and efficient Bayesian inference
algorithm by taking advantage of the superposition property of the Hawkes model,
which simply states that the total response equals the sum of the individual responses.

Before introducing the Bayesian inference method, we note one extra step in Lin-
derman and Adams (2014) and decompose the excitation matrix A into two parts:
A = A′ × W , where A′ is a binary matrix modeling the structure of the network
(A

′
i j = 1 if there is an edge between nodes i and j and A

′
i j = 0 otherwise), andW is a

non-negative weight matrix that models the strength of the edges between nodes. The
advantage of this separation is that recent advances in random graph models can be
used to describe the network structure and impose separate beliefs about the strength
and the structure of the network as Bayesian priors.

Given the likelihood function p(
{
t si

}|μ, A′,W , g), the Bayesian inference method
proceeds as follows, which is an example of Gibbs sampling (a procedure
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that uses a Markov Chain—Monte Carlo algorithm) with modifications (Linder-
man and Adams 2015). In particular, assuming �(μ) is a prior distribution of
μ, by Bayes’ rule, the posterior distribution of μ is: p(μ|{t si

}
, A′,W , g) =

p(
{
t si

}|μ, A′,W , g)�(μ)/p
({
t si

}
, A′,W , g

)
. We sample μ from this posterior as its

estimate. Similarly, we derive the posterior distributions of other parameters A′,W , g,
respectively, and sample from their posteriors. This process is then repeated multiple
times and the average of the samples is used as the estimate for each parameter.

Linderman and Adams (2014) show that their method achieves better results in
discovering network structures than standard estimation methods on both synthetic
and real data. One contributing factor to their success is the direct modeling of network
structure. Another advantage of their Bayesian method is the capacity to impose prior
distributions on the parameters, which to some extent regulates noise in the interactions
between the stocks. In addition, the Bayesian approach is the equivalent of updating
its parameters, including the components of the excitation matrix, from samples of
past values. Conceptually, this is similar to the approach exhibited by human behavior
underlying theAMH.Both involving learning from the past and adapting their behavior
to attempt to optimize their behavior.

4 Data and descriptive information

In this section, we describe the sample stocks and their sources as well as demonstrate
with actual data how to use and interpret the excitation matrix. We also divide the
Flash Crash timeline into five economic periods, provide some important statistics on
price changes, and discuss the issues using statistics based on large samples.

4.1 Data source and composition

To explore the viability of the Hawkes processes to model the pre-crash, crash, and
post- crash stock price behavior, we focus on the 30 stocks that comprised the Dow
Jones Industrial Average (DJIA) at the time of the crash.These companies, which are
shown in Table 2, are very large, publicly traded, US-based, and most were origi-
nally listed on the New York Stock (NYSE) with the remainder on Nasdaq exchange
(NQNM).18 Their stocks can be traded on their original listing exchange as well as
at eight other exchanges as long as they have a dual listing with them. These venues

18 The DJIA is a price-weighted index that began on May 26, 1896 with 12 stocks and was calculated
as a simple average of the 12 component stocks. The number of stocks was increased to 20 in 1916 and
then to 30 (its current number) in 1928. To keep the average to be time-compatible it had to be adjusted
to account for the stock additions and deletions from the index as well as adjusted for stock dividends,
splits, spinoffs, mergers, acquisitions and so forth. The adjustment is handled by the Dow Divisor, which
was initially 12 but at the time of the flash crash its value had declined to approximately 0.132. In addition,
The DJIA is routinely edited by The Wall Street Journal to ensure that the stocks in the index fairly reflect
the overall U.S. economy, making “Industrial” a misnomer. Since May 6, 2010, Alcoa (AA), American
Telephone & Telegraph (T), Bank of America (BAC), DuPont (DD), ExxonMobil (XOM), General Electric
(GE), Hewlett-Packard (HPQ), Kraft Foods (KFT), Pfizer (HC) and United Technologies (UTX) have
been replaced on or before August 31, 2020. As of this date the replacement stocks are Apple (AAPL),
Amgen (AMGN), Dow (DOW), Goldman Sachs (GS), Honeywell International (HON), Nike (NIKE),
Salesforce.com (CRM), United Health Group (UHG), Visa (V), and Walgreens Boots Alliance (WBA).
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Table 2 The 30 Dow Jones Industrial Average (DJIA) Stocks onMay 6, 2010, with selected industrial sector
and price information

Company Sector Symbol Open Close Low Low time

3M I MMM 86.06 84.24 67.98 14:46:05.7

Alcoa IM AA 12.34 11.92 11.25 14:47:35.1

American Express F AXP 44.41 42.39 40.16 14:45:52.4

AT&T T T 25.68 25.11 24.04 14:46:03.7

Bank of America F BAC 17.48 16.26 15.50 14:46:36.2

Boeing I BA 70.66 67.90 62.00 14:45:41.8

Caterpillar I CAT 65.85 63.49 58.00 14:45:33.1

Chevron E CVX 79.42 77.41 71.50 14:47:03.4

Cisco Systems IT CSCO 26.41 25.48 23.23 14:45:32.6

Coca-Cola CS KO 53.67 52.23 51.21 14:47:23.0

DuPont IM DD 37.70 36.69 33.66 14:46:29.3

ExxonMobil E XOM 65.79 63.72 58.46 14:46:52.0

General Electric I GE 18.00 17.33 15.00 14:46:11.0

Hewlett-Packard IT HPQ 50.53 48.32 41.94 14:46:13.3

Home Depot CD HD 34.92 33.92 32.07 14:45:56.7

IBM IT IBM 126.29 123.86 116.00 14:46:32.9

Intel IT INTC 22.15 21.51 19.90 14:47:30.1

Johnson & Johnson HC JNJ 65.04 63.39 60.03 14:46:09.7

JP Morgan Chase F JPM 42.63 40.78 39.29 14:45:45.5

Kraft Foods CS KFT 29.63 29.20 27.49 14:47:58.8

McDonalds CD MCD 70.45 69.30 67.49 14:47:52.7

Merck & Company HC MRK 35.43 34.21 30.70 14:46:10.7

Microsoft IT MSFT 29.60 28.97 27.91 14:46:39.0

Pfizer HC PFE 17.16 16.72 15.85 14:46:06.2

Procter & Gamble CS PG 61.91 60.71 39.37 14:47:15.3

Travelers F TRV 50.58 49.76 48.53 14:45:46.0

United Technologies I UTX 73.04 71.14 65.17 14:46:38.0

Verizon T VZ 28.61 28.00 26.49 14:45:47.9

Walmart CS WMT 54.35 53.21 51.53 14:45:29.2

Walt Disney CD DIS 35.15 33.94 31.00 14:45:44.8

For each company, columns two through seven provide (1) the stock’s sector code, (2) the stock’s ticker
symbol, (3) the price at market opening, (4) the price at closing, (5) the lowest price of the day, and (6)
the time (hour-minute-second) that the lowest price was recorded. International Classification Benchmark
(ICB) sectors (codes) are Consumer Staples (CS), Industrial Materials (IM), Industrials (I), Financials (F),
Telecommunications (T), Energy (E), Consumer Discretionary (CD), Information Technology (IT), and
Health Care (HC)
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include either NYSE or NQNMand seven smaller exchanges. Trades can also bemade
off-exchange but these transactions must be reported to a separate unit overseen by
the industry. The behavior of stocks not in the DJIA and all other financial instruments
related to any stock or group of stocks is considered exogenous and their impacts are
treated accordingly.

Virtually all of the 30 companies are household names and represent almost all
of the major sectors in the US economy, i.e., consumer staples, industrial materials,
financials, telecommunications, energy, consumer discretionary, information technol-
ogy, and heath care. Of the major sectors only transportation and utilities are not
represented by a stock in the index. As a group, the 30 DJIA companies accounted for
approximately 22% of the market value of all traded US stock around the time of the
flash crash.

Our data were obtained from Nanex, which provides real-time option and stock
price data via its NxCore product. Data are archived by Nanex as transactions and
quotes arrive from the various exchanges and are time-stamped at millisecond time
intervals. When the data were collected, Nanex’s timestamp was the most granular
available. Nanex’s data are generated by activity from all US exchanges where a given
stock is traded, which is not necessarily where it was originally listed. The primary
data extracted from the Nanex feed used in our analysis are transaction prices and their
time stamps.

For each of the DJIA 30 stocks listed in Table 2, we provide its open, close, and
low prices onMay 6. The time each stock reached its lowest price is also included. We
also plot the transaction price standardized by its open price for each of the 30 stocks
in Fig. 1. For comparison, we include the standardized price series on the day (May
6, Fig. 1-middle) of the flash crash as well as the standardized prices from one day
before (May 5, Fig. 1-left) and one day after (May 7, Fig. 1-right). There are noticeable
breaks in the price series between the days. This is the result of the markets closing at
the end of the trading day, thereby enabling the effects of news and overnight trading
to be acted on by the market at its opening the next day.

The price series behavior on May 6 is markedly different from the adjacent two
days, with large abrupt drops occurring around 14:30. Before and after the flash crash
and its recovery, prices tend to move up and down in small increments and do not
seem to follow a trend. Statistically, this pattern has been often modeled using a
continuous-time Markov process with Brownian motion after converting the price
series to continuous returns by taking the first difference of the natural logarithm of
prices. Economically, this type of pattern is typically attributed to normal transactions
activity such as not wanting to buy or sell an unusually large position in a short period
of time.

To see clearly the timing and the magnitude of the price drops of each of the 30
DJIA stocks on May 6th, we show the lowest standardized price for each stock (y-
axis) and the time each stock reaches its nadir (x-axis) in Fig. 2. The time points for
these prices are clustered between 14:45 and 14:48 with Walmart (WMT) being the
first stock (14:45:29.2) to reach its lowest price and Kraft Foods (KFT) to be the last

Footnote 18 continued
In this study, General Electric is the sole surviving member of the original 12 companies. Santilli (2020)
provides a graphic history of the DJIA stocks with respect to the dates of their entry to and exit from the
index.
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Fig. 1 Prices for the DJIA 30 stocks on 5/5/2010 (Left), 5/6/2010 (Middle), and 5/7/2010 (Right) from 9:30
to 16:00 (x-axis) each day. The price series of each stock is standardized by its opening price in order to
fit all the series in the same plot. Subtracting 1.0 from the result of this standardization procedure creates a
measure of return based on the stock’s price at the beginning of the standardization period

Fig. 2 Time (x-axis) each stock reached its lowest price onMay6, 2010. Stockprices (y-axis) are standardized
by their corresponding opening prices. Stock names corresponding to the stock symbols in the figure are
given in Table 2

(14:47:58.8). Although most stocks dropped about 10%, 3 M (MMM) dropped 20%
and Procter & Gamble (PG) dropped more than 35%. The observations in Figs. 1 and
2 are consistent with the reports from the CFTC-SEC (2010a; b) and also reveal the
distinguishing feature of a flash crash, i.e., large cumulative declines in a very short
time period and a corresponding rapid recovery.

4.2 Modeling excitationmatrix dynamics

Because the behaviors of stocks may vary over time, especially during the flash crash,
we do not fit the Hawkes model to all the data combined as this would mask the
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Fig. 3 The excitation matrix for five randomly picked stocks during the 13:00:00–13:05:00 window (left)
and the corresponding influence network (right). Directional arrows indicate source and recipient of the
influence, and their thickness represents the strength of influence. Stock names corresponding to the stock
symbols in the figure are given in Table 2. As indicated by the principal diagonal of the matrix, all stocks
exhibit self-influence with BAC having the highest value and MSFT having the lowest. Arrows in the
diagram that indicate self-influence are not provided for visual simplicity

dynamics of the stocks over time. Instead, we divide the data into overlapping time
windows. The length of the rolling window is five minutes, and the window moves
five seconds at each step. In total, there are 2,160 instances of the moving window
between 13:00 and 16:00 plus one startup window immediately prior to 13:00. Thus,
each five-minute moving window, on average, lengthens the rolling sample by 1.67%
to accommodate new observations and shortens the sample by the same percent by
deleting the oldest observations. The Hawkes model is then fitted in every window to
the DJIA 30 stock data.

For the visualizations that follow, the parameter estimates from each window are
plotted against the right boundary of the window. From the 5-min history before each
time point, we estimate the Hawkes model and use it to characterize the stocks at that
time point. Accordingly, there will be one collection of parameters (e.g., baseline rate
μs and excitation matrix A) estimated from each window. Since the parameters at each
time point are estimated using information from the 5-min time window prior to it,
their calculated effects reflect a moving average and are not instantaneous and better
reflect the investor learning process.19

An example of the excitation matrix for five randomly picked stocks during the
13:00:00–13:05:00 window is shown in Fig. 3, together with its network represen-
tation. Column names denote the stock that influences, and row names indicate the
stocks being influenced.We use Bank of America (BAC) and Travelers (TRV) to illus-
trate the interpretation of this matrix. BAC positively influences itself (0.44) and to
a much lesser extent TRV (0.03). In contrast, TRV’s influence on itself is relatively

19 A window spanning five minutes is used to ensure that there are adequate observations to estimate
Eq. (1). In doing so, we implicitly assume that there is no big shift in the dynamics in the window and,
thus, choosing short window is desirable. Permitting the window to move in five second intervals permits
a smooth transition from one set of parameter estimations to the next. We also use a 10-min window, and
the empirical results are qualitatively the same but are not reported.
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small (0.10) and it has no effect on BAC (0.00). These relations graphically depicted
in the network diagram with arrow heads showing the direction of influence and the
thickness of the arrow shaft indicating the relative size of the influence. That TRV
has no effect on BAC is shown by the lack of an arrow. Self-influence is not shown
in the network diagram because it would only add unnecessary detail. Nevertheless,
the excitation matrix entries show that BAC exhibits the most self-influence and is
substantially higher than the other three stocks in our example.

To extend this example consider two distinct scenarios: (1) none of the five stocks
influenced themselves or each other, and (2) each of the five stocks only influenced
themselves. In the first case, the excitation matrix would only contain zero entries.
In the second situation, the principal diagonal cells of the matrix would have non-
zero values, but all the other entries would be zero. Including noise to the example
makes the scenarios a bit more difficult to picture because non-zero values would be
added to the excitation matrix’s entries. Nevertheless, because excitation matrices are
calculated using a rolling sample approach in conjunction with a Bayesian algorithm,
the impact of noise on the matrices should be mitigated.

We explain the impact of each of the excitation matrices using the following sum-
mary measures. First, we consider the density of the influence network between the
stocks, which is the number of links in the network.20 Next, we consider the influ-
ence strengths. Following the extant convention, for a specific window we define the
self-reflexivity of the market during that period as the average of the diagonal entries
of the excitation matrix A. In a similar manner, we label the average network link
strength (i.e., the mean of the nonzero off-diagonal entries of the excitation matrix A)
as cross-reflexivity (sometimes referred to asmutual-reflexivity),which can alternately
be thought of as the average interaction strength of the market.

We also construct threemeasures for individual stocks: self-influence, out-influence
and in-influence. The self-influence of a stock is the impact of the stock on itself
and is the value indicated by the stock’s position on the excitation matrix’s principal
diagonal, i.e., the intersection of the stock’s row and column entries. In contrast, the
out-influence of a stock is the impact of this stock on the 29 other DJIA stocks or
the weighted out-degree of this stock in the influence network. Mathematically, this
quantity is the sum of the corresponding column in the matrix A less the value of its
diagonal entry. Correspondingly, the in-influence of a stock is the impact of the 29
other stocks on it and is measured by the stock’s row sum less the self-influence of the
stock being measured. Thus, all the information contained in the excitation matrix is
used by these three influence measures.

The excitation matrix is similar to the variance–covariance matrix that is often used
to measure the risk associated with stock portfolios as it measures how the stocks are
related to each other. However, the excitation matrix differs in three important ways.
First, it does not require the time series to be synchronized, which high-frequency
trading data are typically not. Second, the excitationmatrix is asymmetric (or directed)
so that a stock can have a specific impact on another stock, but the reverse need not be
the case as the impacts may be asymmetric. Finally, it does not suffer from the Epps

20 Network density is typically defined as the number of links divided by the number of possible links.
However, since our network size as well as the number of possible links are fixed, our network density is
equivalent to the number of links.
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(1979) effect, which typically renders the variance–covariance matrix unreliable for
high-frequency data.21

4.3 Economic periods and sample size implications

All the figures and tables that follow are split into five economic periods: pre-crash,
crash, nadir, recovery, and post-recovery. These periods are determined ex post and are
defined in Table 3. The time period spanned by the crash, nadir and recovery periods
corresponds to the SEC’s (2010a; b) crash period. Our nadir period is structured so
that it contains the lowest price observation for each of the 30 stocks as depicted in
Fig. 2. Table 3 also contains information about the number of transactions in each of
the five periods and these periods in aggregate. The table also provides the frequency
of transactions (the average number of milliseconds between transactions) and the
proportion of transactions associated with price increases (the complement to this
proportion is associated with price decreases.)

As displayed in Table 3 price-changing trades, often referred to as active trades,
never exceed 50% of total trades. In the pre-crash stage, they account for only 8.49%
of the total number of trades. The percentage monotonically increases to 44.62 in the
nadir period and decreases to 19.31% in the post-recovery stage. The total number of
active trades across the five economic periods combined is slightly over one million,
which translates to one transaction occurring every 10.1ms, on average. The frequency
of trades monotonically increases from one every 22.1 ms in the pre-crash period to
one every 2.8 ms in the nadir period and then monotonically decreases to one every
7.8 ms in the post-recovery period.22 This U-shape pattern is roughly echoed by the
proportion of trades that are associated with positive price increases. This proportion
drops from 49.1% in the pre-crash period to 48.3% in crash period and rises to 50.4%
in the nadir period and subsequently becomes relativity flat for the remaining two
periods.

Recall that our Hawkes model specification requires that a price change signals
the existence of an event despite the price change being negative or positive. Because
our event measure is a binary variable and transaction profits can be made on price
changes regardless of direction, we would expect that each type of price change would

21 Epps (1979) points out that the covariance between two individual time series approaches zero as the
observation frequency increases. Grossmass (2014), among others, suggests that this effect is a result of
non-synchronous and asynchronous trading as well as microstructure noise. Nevertheless, the correlation
timeframe depends on the trading (planning) horizon of the trader. Thus, flash crashes may not be of great
interest to, say, the buy-and-hold investor whose planning horizon may be months or even years unless
the flash crash is some sort of understandable and credible signal that indicates major market negative
disruptions sometime in the future.
22 To put these time intervals into perspective, consider the following comparisons to the latency of humans
and computers. It is generally accepted that the typical human reaction time (or latency) to visual signals
is between 200 and 250 ms. Saariluoma (1995) indicates that a chess grandmaster’s latency to recognize
that his king is endangered by an opponent’s move is 650 ms. Computer latency is the time it takes to
deliver a message from one computer to the other and is a function of distance and power of the computer
system used. Kay (2009) suggests that at the time of his study that the computer technology at that time
was around 70% the speed of light or about 130 miles per millisecond. Thus, minimum one-way latencies
for information from stock trading centers in New York to San Francisco and Chicago are approximately
19.1 and 5.5 ms, respectively.

123



F. Shi et al.

Ta
bl
e
3
E
co
no

m
ic
cr
as
h
an
d
re
co
ve
ry

pe
ri
od

s
an
d
se
le
ct
ed

tr
ad
e
in
fo
rm

at
io
n
on

M
ay

6,
20

10

Pr
e-
C
ra
sh

C
ra
sh

N
ad
ir

R
ec
ov
er
y

Po
st
-R
ec
ov
er
y

To
ta
l

C
lo
ck

ti
m
e

St
ar
t

13
:0
0:
00

.0
14

:3
2:
00

.0
14

:4
5.
29

.2
14

:4
7:
58

.9
15

:0
8:
00

.1
13

:0
0.
00

.0

St
op

14
:3
1:
59

.9
14

:4
5:
29

.1
14

:4
7:
58

.8
15

:0
8:
00

.0
16

:0
0.
00

.0
16

:0
0:
00

.0

To
ta
lt
ra
de
s

2,
96

0,
42

9
49

9,
52

8
12

0,
27

0
59

1,
97

7
1,
34

8,
49

2
5,
52

0,
69

3

P
ri
ce
-c
ha
ng
in
g
tr
ad
es

(a
ct
iv
e)

N
um

be
r

25
0,
10

1
15

0,
81

9
53

,8
84

21
0,
93

3
40

0,
60

4
1,
06

6,
14

1

Pe
rc
en
to

ft
ot
al

T
ra
de
s

8.
49

30
.1
9

44
.6
2

35
.6
3

29
.7
1

19
.3
1

Fr
eq
ue
nc
y

22
.0
7

5.
36

5
2.
78

0
5.
69

4
7.
78

8
10

.1
3

P
ri
ce

in
cr
ea
se

%
of

to
ta
l

49
.0
7

48
.2
6

50
.3
5

50
.4
1

50
.2
4

49
.7
3

Z
-s
co
re

−
9.
30

2
−

13
.5
2

1.
65

3
3.
76

6
3.
03

8
−

5.
57

6

p
va
lu
e

Tw
o-
ta
il

<
10

–2
0

<
10

–4
1

.1
04

0
.0
00

2
.0
02

3
<
10

–8

O
ne
-t
ai
l

<
10

–2
1

<
10

–4
2

.0
52

1
.0
00

1
.0
01

2
<
10

–8

T
he

tim
e
pe
ri
od

s
ar
e
ex
pr
es
se
d
in
24

-h
cl
oc
k
tim

e
an
d
ar
e
re
co
rd
ed

in
ho

ur
s,
m
in
ut
es

an
d
se
co
nd

s,
w
hi
ch

ar
e
se
pa
ra
te
d
by

co
lo
ns
.T

he
SE

C
(2
01

0a
,2
01

0b
)c
on

si
de
rs
th
e
cr
as
h

pe
ri
od

to
be
gi
n
at
14
:3
2:
00
.0
an
d
en
d
at
15
:0
8:
00
.0
.T

ot
al
tr
ad
es

ar
e
th
e
su
m

of
ac
tiv

e
an
d
pa
ss
iv
e
tr
ad
es
.P

as
si
ve

tr
ad
es

ar
e
tr
ad
es

th
at
ar
e
no
ta
ss
oc
ia
te
d
w
ith

a
pr
ic
e
ch
an
ge
.

Pr
ic
e-
ch
an
gi
ng

tr
ad
es

ar
e
ac
tiv

e
tr
ad
es
.F

re
qu
en
cy

is
th
e
av
er
ag
e
nu
m
be
r
of

m
ill
is
ec
on
ds

be
tw
ee
n
ac
tiv

e
tr
ad
es
.P

ri
ce

In
cr
ea
se

is
th
e
pe
rc
en
to

f
ac
tiv

e
tr
ad
es

ch
ar
ac
te
ri
ze
d
by

an
in
cr
ea
se

in
pr
ic
e;
its

co
m
pl
em

en
ti
s
th
e
pe
rc
en
to

f
pr
ic
e
de
cr
ea
se
s.
T
he

Z
-s
co
re
’s
tw
o-
ta
ile
d
p
va
lu
e
te
st
s
th
e
nu

ll
hy
po

th
es
is
th
at
th
e
po

rt
io
n
of

th
e
to
ta
ln

um
be
r
of

tr
ad
es

as
so
ci
at
ed

w
ith

pr
ic
e
in
cr
ea
se
s
an
d
de
cr
ea
se
s
ar
e
bo
th

50
%

of
th
e
ac
tiv

e
tr
ad
es
.T

he
on
e-
ta
ile
d
p
va
lu
e
te
st
s
th
e
nu
ll
hy
po
th
es
is
th
at
th
e
po
rt
io
n
of

pr
ic
e
in
cr
ea
se
s
(d
ec
re
as
es
)

is
50
%

or
le
ss

(g
re
at
er
).
T
he

pr
ic
e
in
cr
ea
se

pe
rc
en
t,
Z
-s
co
re
,a
nd

tw
o-
ta
ile
d
p
va
lu
e
fo
r
th
e
du
ra
tio

n
of

th
e
of
fic
ia
l
cr
as
h,

i.e
.,
cr
as
h,

na
di
r,
an
d
re
co
ve
ry
,a
re
,r
es
pe
ct
iv
el
y,

49
.6
2,

−
4.
90

0,
an
d
<
10

–7
.A

dd
in
g
th
e
po
st
-r
ec
ov
er
y
pe
ri
od

to
th
e
of
fic
ia
l
cr
as
h
pe
ri
od

re
su
lts

in
a
49
.9
2%

of
pr
ic
e
in
cr
ea
se

w
ith

a
Z
-t
es
t
of

−
1.
44
6
w
ith

a
tw
o-
ta
ile
d
p

va
lu
e
of

.1
48

2.

123



The complex nature of financial market microstructure: the…

usually account for 50% of the total. Z-scores for the trade proportion for each of the
five economic periods and the five periods combined are provided in Table 3. We use
a two-tailed Z-score to test the null hypothesis that the positive and negative price-
change trades each account for 50% of the active trades. A one-tailed Z-score is used
to test the hypothesis that a positive (negative) price change is less (more) than or
equal to 50%.

Turning first to the two-tail Z-scores, we find that values for all periods combined,
and four of the five sub-periods are statistically significant using any standard critical p
value, indicating that the null hypothesis that the negative andpositive price changes are
equally balanced is rejected. The exception is the nadir period, which is insignificant
using the traditional 0.10 critical value. The one-tail Z-scores help to pinpoint the
source of the imbalances. Negative price changes in the pre-crash and crash periods
statistically dominate the positive price changes and the reverse is the case for the
recovery and post-crash periods. Over the entire test period the number of negative
price changes dominate.

Thus, from the above statistics, it would seem that in all of the above cases we
should reject the null hypothesis that the behavior of the two types of price changes
are the same even if the actual numbers are slightly different from the hypothesized
values. This conclusion, however, is an example of the “Large Sample Fallacy (LSF).”
In the case of the Z-test and similar statistical tests, the LSF is the result of dividing
the statistic’s denominator by the square root of the sample size so that as the sample
becomes larger the Z-test value becomes larger and the p value of the test becomes
smaller. As a result, the size of the universe from which the sample was extracted is
not considered so that in relative standards a large sample may be only a small fraction
of the total population.

As pointed out by Lin et al. (2013), among others, several approaches have been
suggested to mitigate this problem, which is becoming increasingly important in the
era of “Big Data.” The two most popular appear to be (1) decreasing the acceptable p
value and (2) focusing on whether the actual finding is meaningful in the context of
the phenomenon under investigation. Of course, the two approaches are not mutually
exclusive but de facto they often are. The first approach minimizes Type 1 error, which
makes the null hypothesis more difficult to reject, and requires the p value signaling
statistical significance tobe specified aheadof time.23 The second involves determining
whether the difference between the null hypotheses andwhat is observed is substantive
or, in our case, economically meaningful. As argued and demonstrated by Ziliak and
McCloskey (2008), failing to address the latter may result in dire consequences. We
adopt the second approach and advance two arguments supporting the position that
positive and negative price changes should be considered the same since the purpose
of the price change variables is only to count howmany trades occurred that contained
new information.

23 This is clearly an ad hoc approach, but then so is the use of the standard use of 0.10. 0.05, and 0.01 as
often used p-values for small samples, a practice that dates back to the 1930s. Often many p-values were
not recorded numerically but instead were simply signified by asterisks, i.e., *, **, and ***, for the above
standard p-values. Many researchers in the past have used this technique. Although the above three p-values
are ad hoc, they do have the advantage of not conveying unwarranted precision.
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First, a popular view of a crash is that some major negative information is noted
by the market participants, and as stock prices begin to fall, some sort of market
contagion takes effect and prices drop in unison. The reverse holds true during a
recovery. Our results do not support this view, which may be exacerbated by media
hype and the fact that the public does not have access to nor is aware of high frequency
data. For example, as displayed in Table 2, 48.26% of the price-changing events
are positive during the crash period, and 50.41% are positive during the recovery
period. For the official crash period, which includes the previous two periods plus
the nadir period, the positive events account for 49.62% of the total. Numerically,
these are very close to the 50% neutral value and indicate that market participants
engage in price discovery, so that they tend to find and exploit profit opportunities
regardless of the direction of the market’s general movement to learn the true value
of the market after the shock. Frank et al. (2019) suggest that traders who engage in
this process together are an example of Adam Smith’s (1776/2020) well known and
often mentioned “invisible hand” metaphor at work, which in our case is moving price
toward a moving equilibrium value.

Second, market regulators throughout the world are concerned about the effective-
ness of the price discovery process. A majority of them, including those in the USA,
have adopted some sort of circuit breaker, which temporarily stops trading for a short
period of time, despite the fact that theoretical and empirical research is mixed con-
cerning its usefulness (see, e.g., Ackert (2012) and Sifat andMohamad (2018)). Circuit
breakers can be market-wide or focused on individual securities. Typically, they are
concerned with falling prices. Thus, the main argument favoring this approach is that
it provides a cooling off period. This delay gives traders an opportunity to come to
grips with their cognitive biases and, as a result, to better evaluate the reasons for the
price drop in an effort to make better trading decisions, or to adjust parameters in
their algorithms. The contrary view is that the delay only postpones trading and may
exacerbate the price decline when traders try to change their trading strategies in an
attempt to game the system as the circuit breaker trigger price approaches.24

On June 19, 2010, approximately one month after the May 6 flash crash, US reg-
ulators established a single stock circuit breaker to guard against falling prices. On
April 5, 2011, the Financial Industry Regulatory Authority (FINRA), along with sev-
eral security exchanges, suggested replacing the single stock circuit breaker with a
“limit up-limit down” (LULD) circuit breaker. The main reason for the replacement
was that this type of mechanism would not only handle downside volatility but also
upside volatility. OnMay 31, 2012, the Securities Exchange Commission approved the
proposal for a trial run, and on April 11, 2019, it gave the LULD permanent status.25

24 Whatever type of regulation is imposed, it must be able to promote fair competition among all parties
involved. This is especially important when advance computer technology permits stock market access to
both small and large as well as new investors to trade on intraday basis. Doing so requires an understanding
of the endogenous nature of the market and the various cognitive biases of its participants.
25 Conceptually, the LULD is a straightforward reference price constructed by calculating a simple average
of the transaction prices during the previous five minutes. The market opening is an exception since there
are no data to average; in this case the opening price is used as the reference price. Then the upper and lower
price bands are determined by multiplying the reference price by one plus or minus the preset percentage
parameter, respectively. This calculation is done every 30 s and is updated if the new reference price is
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Fig. 4 Network density (blue), i.e., number of links in the influence network (Top) and cross-reflexivity
(blue), i.e., average of the cross-influences between the 30 stocks (Bottom), and the average standardized
price of all DJIA 30 stocks (orange) from 13:00 to 16:00 (market close) (color figure online)

5 Empirical findings

We first present the empirical results for the 30 DJIA as a group then focus on the
30 stock’s impact upon themselves and upon each other. We also report the possible
presence of subgroups based on industry sector and trading venue. For convenience we
refer to the 30 stocks taken together as the “market,” individually as simply “stock,”
by company name or stock symbol, and in subgroups as communities. All results are
based on excitation matrices calculated using the five-minute rolling window.

5.1 DJIAmarket

We first examine the density of the influence network (i.e., number of edges in the
network) between the stocks, which is shown in Fig. 4-top. Recalling that the Hawkes
process only uses information about the stocks’ trading events, it is notable that the
two time series—average market price and network density—almost collapse on each
other.26 Specifically, the two series drop down simultaneously when the crash starts,
reach their bottoms at the same time, and recover concurrently. While the network
density follows closely with the market price, the influence strength shows a differ-
ent pattern. The cross-reflexivity of the market (i.e., average of the cross-influences
between the 30 stocks) is shown in Fig. 4-bottom. The abrupt increase of cross-
reflexivity around 14:32 reflects the beginning of the sudden decline in stock prices.

Footnote 25 continued
at least one percentage point away from the current posted reference price. (See www.luldplan.com for
details.).
26 The average price in Fig. 4 is the simple mean of the normalized prices of the 30 stocks in the DJIA. It
is not the official DJIA, which is also an average. See fn. 18 for details on the difference between these two
averages.
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Fig. 5 Proportions of exogenous effect (blue), self-reflexivity (orange), and cross-reflexivity (green) from
13:00 to 16:00 (market close). The sum of the three influences at each time point equals one (color figure
online)

The two plots together suggest that, when the crash starts, network density decreases,
but the interaction strength for the remaining links increases dramatically, indicat-
ing that although market activity increases, it is concentrated between fewer stocks.
The average cross-reflexivity reaches its highest point several minutes after the aver-
age price reaches its lowest value, possibly because traders are unable to determine
exactly when the market reached its lowest point while the activity level of the market
is still high.After reaching their extreme points, price and cross-reflexivity both tend
to return to their approximate pre-crash levels, although price is not quite as high nor
is cross-reflexivity quite as low.

Recalling that our model includes three types of effects—the exogenous effect (the
average baseline rate (μs)), the self-reflexivity, and the cross-reflexivity—we further
examine the relative strengths of these three effects over time. Figure 5 shows the
proportion of each type of effect to their sum. The exogenous effect, which includes
stocks not included in the DJIA and exogenous information to the market, is small
(blue curve), taking a proportion of less than 1% most of the time. The self-reflexivity
(orange curve) takes a larger proportion than the cross-reflexivity (green curve), but
the former starts to decay and the latter to grow when the crash starts (around 14:32),
and the two become closer during the crash. They roughly return to pre-crash levels
after the crash. The overall pattern of the cross-reflexivity is similar to that of the
exogenous effect, which suggests that the latter effect may be dominated by stocks
that are not part of the DJIA.

5.2 DJIA stocks

To determine the major influencers in the market, for each company we calculate
the average out-influence, which is the impact of a particular stock on the other 29
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stocks, in the pre-crash through post-recovery periods (see Table 3 for specific dates).
As we show in Table 4, the pattern of out-influence varies among the stocks, and it
varies among the five economic periods. In addition to the average out-influence for
each stock in each economic period, we provide the stock’s average ranking of out-
influence. As indicated in Table 4, the three strongest out-influence stocks over time
are Bank of America (BAC), ExxonMobil (XOM), and JPMorgan Chase (JPM), and
the three weakest are 3 M (MMM), Dupont (DD) and Travelers (TRV).

In a format similar to Tables 4 and 5, Table 6 reports the self-influence data for
each of the 30 DJIA stocks. As shown in this table the three strongest stocks with
respect to self-influence are Bank of America (BAC), Microsoft (MFST), and Exxon-
Mobil (XOM) and the three weakest stocks are Chevron (CVX), United Technologies
(UTX), and DuPont (DD). Two observations merit special mention. First, Exxon-
Mobil is one of the strongest stocks with respect to out-influence (rank: 01) and
self-influence (rank: 03) but is one of the weakest stocks with respect to in-influence
(rank: 30). Second, although Chevron is not in either the strong or weak category with
respect to out-influence (rank: 10) or in-influence (rank: 10), it is clearly in the weak-
est self-influence category (rank: 28). Taken together these observations suggest that
ExxonMobil exhibits more market power, but this market power may not be related
to industry sector since both ExxonMobil and Chevron are in the energy sector and
they are the only two DJIA stocks that are in this category (see Table 2).27

Out-influences and in-influences are much larger than self-influences, although
the averages of all three influences changed size as the market moved through the
pre-crash, crash, nadir, recovery, and post-recovery periods. As shown in Table 7,
self-influence and out-influence are positively correlated in all periods. In contrast,
in-influence is always negatively correlated with self-influence and out-influencemea-
sures. In absolute terms, the correlations of the three pairs of influences in the crash
period are smaller than those experienced in the pre-crash period. Beginning in the
recovery period, these correlations tend to move toward their pre-crash levels.

To further investigate the behavior of the three different types of influence, we
calculate the means of the out-influence, in-influence, and self-influence for the 30
Dow Jones stocks when the environment changes from pre-crash to crash, crash to
nadir, and so forth.We conjecture that the sequential means may be dependent in some
way to the previous mean, e.g., the mean in the nadir period is dependent on the mean
in the crash period. Thus, we use a paired t-test to examine the way in which the means
evolve over time. The results of these tests are given in Table 8. We cannot reject the
null hypothesis that the mean out-influence and the mean in-influence do not change
between the sample periods. This is not the case for self-influence. All of the paired
t-tests are statistically significant. The mean self-influence decreases during the crash
and increases as the market recovers.

27 Matthews et al. (2021) report that in late 2020 the top executives of Chevron and ExxonMobil discussed
the possibility of the merger of their companies as a result of the financial stress to their firms brought
about by the Covid 19 pandemic that began in early 2020. If such a merger occurs, it would reunite the
new companies that were part of the Standard Oil monopoly prior to its break-up in 1911 by U.S. Supreme
Court as a result of its finding that the monopoly violated the Sherman Antitrust Act of 1890.
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Table 4 Average out-influences and corresponding ranks for each of the 30 Dow Jones Industrial Average
(DJIA) Stocks on May 6, 2010

Company Pre-crash Crash Nadir Recovery Post-recovery R

3M 1.18 (26) 1.11 (27) 1.00 (27) 1.05 (27) 1.23 (26) 28

Alcoa 1.21 (25) 1.13 (26) 1.04 (26) 1.20 (23) 1.08 (29) 26

American Express 1.42 (13) 1.54 (11) 1.44 (17) 1.39 (16) 1.55 (11) 13

AT&T 1.38 (14) 1.38 (15) 1.56 (10) 1.61 (11) 1.32 (23) 14

Bank of America 3.26 (01) 2.63 (03) 2.45 (03) 2.87 (02) 2.59 (02) 02

- Boeing 1.33 (17) 1.37 (16) 0.91 (29) 1.19 (24) 1.44 (17) 22

Caterpillar 1.57 (08) 1.81 (05) 1.37 (20) 1.38 (18) 1.48 (15) 12

Chevron 1.64 (07) 1.75 (06) 1.40 (18) 1.31 (20) 1.57 (09) 10

Cisco Systems 1.52 (10) 1.61 (07) 2.22 (04) 1.76 (06) 1.49 (14) 07

Coca-Cola 1.26 (21) 1.39 (14) 1.29 (22) 1.30 (21) 1.63 (06) 19

DuPont 1.14 (29) 1.11 (27) 1.07 (25) 1.00 (28) 1.09 (28) 29

ExxonMobil 2.09 (02) 2.67 (01) 2.96 (01) 3.08 (01) 2.70 (01) 01

General Electric 1.89 (04) 2.65 (02) 2.04 (06) 2.32 (04) 2.45 (03) 04

Hewlett-Packard 1.82 (05) 1.56 (09) 1.59 (09) 1.63 (10) 1.59 (07) 06

Home Depot 1.23 (23) 1.23 (24) 1.45 (15) 1.22 (22) 1.44 (17) 21

IBM 1.47 (12) 1.48 (12) 1.25 (23) 1.35 (19) 1.59 (07) 14

Intel 1.71 (06) 1.58 (08) 2.16 (05) 1.67 (09) 1.56 (10) 05

Johnson & Johnson 1.29 (20) 1.31 (21) 1.61 (08) 1.48 (14) 1.53 (12) 16

JPMorgan Chase 2.04 (03) 2.18 (04) 2.53 (02) 2.36 (03) 2.25 (04) 03

Kraft Foods 1.15 (28) 1.08 (29) 1.13 (24) 1.39 (16) 1.36 (21) 25

McDonalds 1.36 (16) 1.27 (22) 1.34 (21) 1.15 (25) 1.23 (26) 23

Merck & Company 1.31 (18) 1.35 (19) 1.53 (14) 1.51 (13) 1.47 (16) 18

Microsoft 1.55 (09) 1.56 (09) 1.84 (07) 1.75 (07) 1.53 (12) 08

Pfizer 1.52 (10) 1.48 (12) 1.54 (12) 1.57 (12) 1.42 (19) 11

Procter & Gamble 1.38 (14) 1.37 (16) 1.44 (17) 1.82 (05) 1.78 (05) 09

Travelers 0.94 (30) 1.00 (30) 0.79 (30) 0.79 (30) 0.99 (30) 30

United Technologies 1.22 (24) 1.23 (24) 0.97 (28) 0.95 (29) 1.25 (25) 27

Verizon 1.31 (18) 1.27 (22) 1.39 (19) 1.69 (08) 1.38 (20) 17

Walmart 1.25 (22) 1.36 (18) 1.55 (11) 1.43 (15) 1.33 (22) 20

Walt Disney 1.17 (27) 1.34 (20) 1.53 (14) 1.15 (25) 1.27 (24) 23

In each of the first five statistical columns, average out-influence is listed first and average rank of the
influences follows in parentheses. The sixth statistical column provides the rank (R) of the five combined
ranks. The three highest combined ranks are signaled by boldface and the three lowest are designated by
boldface italics
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Table 5 Average in-influences and corresponding ranks for each of the 30 Dow Jones Industrial Average
(DJIA) Stocks on May 6, 2010

Company Pre-crash Crash Nadir Recovery Post-recovery R

3 M 1.77 (02) 1.95 (01) 1.95 (04) 1.95 (01) 1.82 (02) 02

Alcoa 1.78 (01) 1.88 (02) 2.06 (01) 1.87 (03) 1.97 (01) 01

American Express 1.69 (03) 1.80 (03) 1.98 (03) 1.90 (02) 1.78 (04) 03

AT&T 1.63 (06) 1.71 (05) 1.68 (07) 1.75 (07) 1.82 (02) 05

Bank of America 1.10 (30) 1.41 (23) 1.53 (14) 1.47 (16) 1.53 (14) 18

Boeing 1.62 (08) 1.74 (04) 2.05 (02) 1.82 (05) 1.74 (06) 04

Caterpillar 1.64 (07) 1.70 (06) 1.86 (06) 1.80 (06) 1.78 (04) 06

Chevron 1.53 (13) 1.58 (10) 1.68 (07) 1.71 (09) 1.65 (08) 10

Cisco Systems 1.42 (21) 1.43 (21) 1.34 (25) 1.42 (20) 1.56 (12) 20

Coca-Cola 1.61 (09) 1.61 (08) 1.89 (05) 1.60 (10) 1.59 (10) 08

DuPont 1.66 (04) 1.69 (07) 1.62 (10) 1.83 (04) 1.74 (06) 07

ExxonMobil 1.37 (23) 1.34 (28) 1.18 (30) 1.20 (30) 1.24 (30) 30

General Electric 1.35 (24) 1.14 (30) 1.40 (21) 1.42 (20) 1.39 (26) 26

Hewlett-Packard 1.34 (26) 1.56 (12) 1.44 (17) 1.44 (19) 1.46 (22) 17

Home Depot 1.45 (15) 1.57 (11) 1.41 (19) 1.51 (15) 1.55 (13) 14

IBM 1.61 (09) 1.53 (14) 1.39 (22) 1.58 (14) 1.53 (14) 14

Intel 1.31 (28) 1.42 (22) 1.27 (27) 1.38 (25) 1.46 (22) 27

Johnson & Johnson 1.55 (11) 1.44 (19) 1.43 (18) 1.45 (18) 1.47 (21) 16

JPMorgan Chase 1.32 (27) 1.28 (29) 1.37 (23) 1.27 (27) 1.30 (28) 28

Kraft Foods 1.45 (15) 1.38 (26) 1.54 (13) 1.59 (11) 1.51 (16) 13

McDonalds 1.44 (19) 1.55 (13) 1.58 (11) 1.59 (11) 1.51 (16) 12

Merck & Company 1.46 (14) 1.48 (16) 1.21 (29) 1.37 (26) 1.41 (25) 24

Microsoft 1.24 (29) 1.35 (27) 1.24 (28) 1.25 (28) 1.34 (27) 29

Pfizer 1.35 (24) 1.48 (16) 1.45 (16) 1.40 (23) 1.48 (20) 20

Procter & Gamble 1.45 (15) 1.46 (18) 1.41 (19) 1.21 (29) 1.30 (28) 24

Travelers 1.65 (05) 1.51 (15) 1.68 (07) 1.74 (08) 1.60 (09) 09

United Technologies 1.55 (11) 1.60 (09) 1.58 (11) 1.59 (11) 1.59 (10) 11

Verizon 1.43 (20) 1.44 (19) 1.31 (26) 1.39 (24) 1.49 (19) 23

Walmart 1.45 (15) 1.40 (24) 1.35 (24) 1.42 (20) 1.51 (16) 20

Walt Disney 1.40 (22) 1.40 (24) 1.49 (15) 1.47 (16) 1.46 (22) 19

In each of the first five statistical columns, average in-influence is listed first and average rank of the
influences follows in parentheses. The sixth statistical column provides the rank (R) of the five combined
ranks. The three highest combined ranks are signaled by boldface and the three lowest are designated by
boldface italics
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Table 6 Average self-influences and corresponding ranks for each of the 30 Dow Jones Industrial Average
(DJIA) Stocks on May 6, 2010

Company Pre-crash Crash Nadir Recovery Post-recovery R

3M 0.15 (26) 0.10 (29) 0.11 (17) 0.15 (20) 0.16 (13) 25

Alcoa 0.15 (26) 0.14 (20) 0.09 (27) 0.17 (11) 0.13 (23) 27

American Express 0.18 (14) 0.17 (11) 0.12 (13) 0.15 (20) 0.15 (19) 18

AT&T 0.18 (14) 0.17 (11) 0.11 (17) 0.16 (14) 0.16 (13) 16

Bank of America 0.31 (01) 0.24 (02) 0.16 (04) 0.19 (06) 0.19 (04) 01

Boeing 0.18 (14) 0.15 (18) 0.09 (27) 0.14 (25) 0.16 (13) 23

Caterpillar 0.18 (14) 0.13 (23) 0.11 (17) 0.12 (28) 0.13 (23) 25

Chevron 0.16 (24) 0.14 (20) 0.09 (27) 0.14 (25) 0.13 (23) 28

Cisco Systems 0.22 (06) 0.21 (06) 0.12 (13) 0.20 (03) 0.17 (09) 05

Coca-Cola 0.17 (20) 0.15 (18) 0.11 (17) 0.15 (20) 0.16 (13) 21

DuPont 0.12 (29) 0.12 (27) 0.11 (17) 0.12 (28) 0.12 (28) 30

ExxonMobil 0.20 (10) 0.16 (16) 0.18 (02) 0.22 (02) 0.21 (01) 03

General Electric 0.22 (06) 0.27 (01) 0.14 (09) 0.16 (14) 0.20 (02) 04

Hewlett-Packard 0.22 (06) 0.13 (23) 0.11 (17) 0.18 (10) 0.18 (07) 14

Home Depot 0.21 (09) 0.13 (23) 0.13 (11) 0.16 (14) 0.13 (23) 19

IBM 0.17 (20) 0.17 (11) 0.20 (01) 0.17 (11) 0.16 (13) 11

Intel 0.23 (05) 0.17 (11) 0.13 (11) 0.20 (03) 0.17 (09) 06

Johnson & Johnson 0.16 (24) 0.16 (16) 0.14 (09) 0.20 (03) 0.17 (09) 13

JPMorgan Chase 0.19 (12) 0.22 (04) 0.11 (17) 0.19 (06) 0.18 (07) 08

Kraft Foods 0.26 (02) 0.24 (02) 0.15 (07) 0.15 (20) 0.15 (19) 10

McDonalds 0.19 (12) 0.13 (23) 0.11 (17) 0.17 (11) 0.15 (19) 20

Merck & Company 0.18 (14) 0.17 (11) 0.16 (04) 0.19 (06) 0.19 (04) 06

Microsoft 0.24 (03) 0.22 (04) 0.12 (13) 0.19 (06) 0.19 (04) 02

Pfizer 0.24 (03) 0.18 (09) 0.08 (30) 0.16 (14) 0.17 (09) 15

Procter & Gamble 0.17 (20) 0.14 (20) 0.11 (17) 0.23 (01) 0.20 (02) 12

Travelers 0.12 (29) 0.18 (09) 0.15 (07) 0.12 (28) 0.12 (28) 24

United Technologies 0.13 (28) 0.10 (29) 0.11 (17) 0.14 (25) 0.12 (28) 29

Verizon 0.20 (10) 0.19 (07) 0.17 (03) 0.16 (14) 0.16 (13) 09

Walmart 0.17 (20) 0.12 (28) 0.16 (04) 0.15 (20) 0.14 (22) 22

Walt Disney 0.18 (14) 0.19 (07) 0.12 (13) 0.16 (14) 0.13 (23) 17

In each of the first five statistical columns, average self-influence is listed first and average rank of the
influences follows in parentheses. The sixth statistical column provides the rank (R) of the five combined
ranks. The three highest combined ranks are signaled by boldface and the three lowest are designated by
boldface italics
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Table 7 Correlations among out-influence, in-influence and self-influence ranks for the 30Dow Jones Indus-
trial Average (DJIA) Stocks on May 6, 2010 by Economic Period

Influence Pre-crash Crash Nadir Recovery Post-recovery Combined

In versus out − 0.63 − 0.37 − 0.67 − 0.75 − 0.53 − 0.64

(< .0001) (.0206) (< .0001) (< .0001) (.0025) (.0001)

In versus self − 0.77 − 0.60 − 0.59 − 0.74 − 0.66 − 0.79

(< .0001) (.0002) (.0003) (< .0001) (.0001) (< .0001)

Out versus self 0.58 0.35 0.29 0.72 0.72 0.72

(.0003) (.0282) (.0627) (< .0001) (< .0001) (< .0001)

Out-influence, in-influence, and self-influence values for each stock are contained in Tables 3, 4, and 5,
respectively. R in each of these three tables denotes the rank for the combined ranks (last column). p values
the one-sided t-test testing the null hypothesis that the correlation coefficient is zero are in parentheses

Table 8 Out-influence, in-influence, and self-influence changes for the 30 Dow Jones Industrial Average
(DJIA) Stocks on May 6, 2010 by Economic Period

Influence Pre-crash to crash Crash to nadir Nadir to
recovery

Recovery to
post-recovery

In-influence mean
difference

0.04 0.02 0.00 0.01

(.0508) (.5150) (.9754) (.6597)

Out-influence mean
difference

0.04 0.02 0.00 0.01

(.3557) (.7123) (.9871) (.8581)

Self-influence mean
difference

− 0.02 − 0.04 0.04 − 0.01

(.0012) (< .0001) (< .0001) (.0401)

In-influence, out-influence, and self-influence values for each stock are contained in Tables 3, 4, and 5,
respectively. p values of the two-sided paired t-test with the null hypothesis that the difference between two
dependent means is zero are in parentheses

5.3 DJIA communities

As previously mentioned, the stock market can be thought of as a dynamic network
with its nodes being the individual stocks and the movements being the number of
price-changing trades associated with these stocks. A useful descriptor of large-scale
structures of a network is modularity.28 Modularity quantifies the degree to which a
network can be partitioned into communities, or, in our case, groups or clusters of
stocks that may be related to one another in some fashion. Networks with high mod-
ularity have dense connections between nodes within same communities but sparse

28 For a description of modularity and its applications to a variety of networks, including club membership,
scholarly citations, and fictional characters in Les Misérables by Victor Hugo, see Newman and Girvan
(2004) and Leicht and Newman (2008).
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Fig. 6 Networkmodularity (blue) and average standardized price for all DJIA 30 stocks (orange) from 13:00
to 16:00 (market close) (color figure online)

connections between nodes contained in different communities.29 Thus, modularity
is different for different network partitions, but typically, in applications, modular-
ity refers to the maximum modularity according to the best partition and we do as
well. To find the best partitions and the corresponding modularity scores, we use the
Python package leidenalg (https://github.com/vtraag/leidenalg) by Traag et al. (2019).
For completely random networks, modularity will be close to zero, and the larger the
modularity, the more fragmented is the network.

Similar to some of our earlier analyses, the modularity of our stock network is
plotted in Fig. 6 along with the stock price series from the pre-crash period to the post-
recovery period. As shown in Fig. 6, the modularity increases during the crash, then
peaks during the nadir period (i.e., the network is the most fragmented) and decreases
in the recovery period. Compared to these three middle periods, the pre-crash and
post-recovery periods are both more homogeneous and less fragmented as indicated
by their very low modularity value.

Numerous previous studies, e.g., King (1966), Cavaglia et al. (2000), and Fan et al.
(2016), suggest the presence of an industry effect such that the prices of stocks in
the same industry move together because they face the same production and demand
issues. Other studies, e.g., O’Hara and Ye (2011), Menkveldt and Yueshen (2019),
and Tivan et al. (2020), argue that stock markets may be fragmented, i.e., there are
many markets that serve the same general purpose, but, at times, they may not be well
connected to each other and, thus, have the potential to create current or latent liquidity
problems.

We explore these two topics in more detail by examining the existence of indus-
try sector and stock trading venue communities using modularity and the normalized

29 Mathematically, modularity is a function of the excitation matrix A and a partition C of nodes (where
Ci = k indicates that node i belongs to community or cluster k):

modulari t y = 1

M

∑

i j

⎛

⎝Ai j −
douti dinj

M

⎞

⎠δ
(
Ci ,C j

)
,

where douti is the weighted out-degree (out-influence) of node i, dinj is the weighted in-degree (in-influence)

of node j,M is a normalizing constant, and δ(Ci ,C j ) is a delta function such that δ
(
Ci ,C j

) = 1 ifCi = C j
and δ

(
Ci ,C j

) = 0 otherwise.
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Fig. 7 Normalized mutual information (NMI) statistics between identified stock communities and by indus-
try sectors (blue) and the average standardized price for all DJIA 30 stocks (orange) from 13:00 to 16:00
(market close) (color figure online)

mutual information (NMI) statistic.30 In our case, the NMImeasures the similarity that
exists between any two partitions of the same set of objects (i.e., the 30 DJIA stocks).
If the NMI value is one, the partitions completely overlap each other, indicating that
there is no difference between them. However, if the NMI value is zero, then the parti-
tions do not overlap, signaling that there is no similarity between them. Newman and
Girvan (2004) report that in their studies typical values range from 0.30 to 0.70, with
values above 0.70 being quite rare. Accordingly, for each excitation matrix we cluster
the stocks using the modularity method and compute the NMI statistic between the
identified stock communities and the industry sectors. We make the same calculation
for trading venues and stock trade reporting units.

The calculated NMI values between the nine industry sectors (see Table 2 for
their names and symbols) and the corresponding identified communities are plotted in
Fig. 7. A review of Fig. 7 indicates that the NMI does not have any significant trend
and its value remains relatively small, i.e., about 0.30, throughout the time period
under examination. This finding in conjunction with the modularity results depicted
in Fig. 6 suggests that the network becomes more clustered during the crash, but these
clusters do not appear to materially overlap with industry sectors. In other words, the
impact of the crash is more likely to spread among the different industry sectors than
within the industry sectors.

Another possible candidate for understanding the network modularity pattern is the
trading venue. As mentioned on Sect. 4.1, the DJIA stocks are traded on 10 different
trading venues, nine of which are stock exchanges. Each of the exchanges is responsi-
ble for accounting for all of the information corresponding to each trade. To be able to
be traded on any of the exchanges, the stockmust be listed on the exchange in question.

30 Normalized mutual information (NMI) measures the similarity between any two partitions. Math-
ematically, for any two partitions U and V of the same objects, NMI is defined as:NMI (U , V ) =

1
C(U ,V )

∑|U |
i=1

∑|V |
j=1

|Ui∩Vj |
N log

N |Ui∩Vj |
|Ui ||Vj | , whereUi , Vj are clustersU andV , respectively, and |Ui |, |Vi |

are their respective cluster sizes. N is the number objects in total, and C(U , V ) is a normalization factor
to force the NMI value into [0, 1]. The intuition behind this definition is to measure the overlap between
clusters in U and clusters in V. If none of the clusters in U overlap with any cluster in V, then NMI = 0,
suggesting that the two partitions are very different. If, however, the two partitions are the same, then NMI
= 1. (See Vinh et al. (2010) for additional details.) Because each stock is associated with only one industry,
we partition the 30 × 30 excitation matrix for our calculations. In contrast, the stocks may be traded on 10
different venues, which equates to 300 stock-venue categories and a 300 × 300 excitation matrix.
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Since the DJIA companies are large and well known, it is common for these compa-
nies to be listed on many exchanges. Although each listing must be purchased, most
chief financial officers believe that additional costs are worth the potential additional
liquidity. The tenth venue is the Nasdaq Trade Reporting Facility (NTRF), which is a
partnership between Nasdaq and Financial Industry Regulatory Authority (FINRA).
It is responsible for the collection of trade data for all of the internal trades, including
crossing networks and dark pools operated by broker-dealer firms as well as trading
desks that execute internal trades for large investment houses. In the 1980s, these ten
trading venues were linked together under the auspices of the National Market System
(NMS). To improve competition among these venues, the NMS creates a consolidated
tape, thereby permitting allmarket participants the opportunity to view the transactions
and quotes from each venue at the same time. This arrangement led O’Hara and Ye
(2011) to suggest that the USA does not have multiple markets but rather has a single
market that supplies its participants with multiple access points with each access point
being one of the ten trading venues.

The NMI between the identified stock communities and the ten trading venues
are plotted in Fig. 8. Unlike the NMI plot for industries, it contains patterns that are
significantwhen compared to the lower benchmark of 0.30. In particular, 30min before
the crash theNMI increases and becomes significant around 14:15 but it then decreases
and returns to insignificance a few minutes before the crash. At the beginning of the
crash (14:32) it again significantly increases throughout the entire crash period. It then
begins to decrease until 14:55 but it rises again until the end of the recovery period.
Except for a very few seconds all the NMI values are significant. Throughout the
post-recovery period, the NMI remains relatively steady and significant. Although not
a perfect match, NMI pattern for the trade venue community segmentation is clearly
reminiscent of the modularity pattern for the market as a whole (Fig. 6).

To probe more deeply into NMI fragmentation pattern, we examine the market
shares of each of the 10 venues. The names of these trading (and reporting) venues
are shown in Table 9, along with market share percentages for each of the five mar-
ket periods individually and their total. Nasdaq led the venues’ market share with
approximately 46%. The New York Stock Exchange (NYSE) and BATS Global Mar-
kets (BATS) are ranked second and third. Together the top three venues account for
slightly over 79% of the price-changing trades. On the low end of the market shares

Fig. 8 Normalized mutual information (NMI) statistics between identified stock communities defined and
trade reporting market venues (blue) and the average standardized price for all DJIA 30 stocks (orange)
from 13:00 to 16:00 (market close) (color figure online)

123



The complex nature of financial market microstructure: the…

Table 9 Percentage trade volume of trade reporting venue for the 30 Dow Jones Industrial Average (DJIA)
Stocks on May 6, 2010 by Economic Period

Trade reporting venue Pre-crash Crash Nadir Recovery Post-recovery Total

BATS Global Markets
(BATS)

11.73 13.70 11.68 12.35 12.94 12.58

Boston Stock Exchange
(BOST)

7.30 7.00 9.00 6.71 6.67 6.99

Cboe Global Markets
(CBOE)

0.03 0.07 0.00 0.02 0.03 0.03

Chicago Stock Exchange
(CHIC)

0.07 0.18 0.20 0.07 0.04 0.08

Cincinnati Stock
Exchange (CINC)

0.55 0.10 1.38 1.54 0.09 0.10

International Securities
Exchange (ISE)

1.09 2.09 3.75 2.42 1.73 1.87

Nasdaq Exchange
(NQEX)

53.40 46.53 42.25 42.85 43.31 45.99

Nasdaq Trade Reporting
Facility (NTRF)

3.44 1.60 0.68 1.12 1.77 1.96

New York Stock
Exchange (NYSE)

14.85 18.71 21.18 20.60 22.54 19.74

Pacific Stock Exchange
(PACF)

7.55 9.10 9.88 12.34 10.03 9.77

All Venues 100 100 100 100 100 100

The sum of each column (All Venues) may not equal 100 because of rounding

are the Cincinnati Stock Exchange (CINC), the Chicago Stock Exchange (CHIC), and
CBOE Global Markets (CBOE), which together amount to 0.21%. The venue compo-
sition of the three market share categories varies little over the five economic periods.
Although the differences in market share are relatively small, the Cincinnati Stock
Exchange (CINC) increased its market share in the nadir and recovery periods and
switched positions with the Nasdaq Trade Reporting Facility (NTRF), which dropped
market share in the same two periods.

There are, however, notable differences in venue trading activity between adja-
cent market periods. For example, the top three venues (NQEX, NYSE, and BATS)
accounted for nearly 80% of the trades in the pre-crash period, dropped to 79% during
the crash, and continued to fall to 75% at the market’s nadir for a market share drop of
approximately five percentage points. Together their market share began to increase
during the recovery period and continued to increase to approximately 79%. These
large market share venues did not, however, operate in tandem. From the pre-crash
period to the nadir periods NQEX market share dropped by 11.15 percentage points.
The corresponding changes for NYSE and BATS are an increase of 6.33 percentage
points and a decrease of 0.05 percentage points, respectively. As a result, almost five
percentage points were picked up by the seven other trading venues, although up and
down patterns are also exhibited by these smaller trading venues. These changes in
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market share strongly suggest that traders are willing to move from one venue to
another in an effort to find the best price for the size of their transactions.

Gomber et al. (2016) conclude their extensive survey on the nature of market frag-
mentation versus consolidation by suggesting that the economic welfare costs and
benefits of stock markets mostly depend on the way they handle issues of price dis-
covery and adequate liquidity. Although there are economies of scale that strongly
favor consolidation, they maintain that because of the differences in trader behavior
such as tradingmotives, order sizes as well as the need for quickness, it may be difficult
to design a single market that can satisfy the needs of all traders. Recent research by
Nicole et al. (2020), however, posit that the presence of heterogeneous agents may not
be a reason for the existence of multiple markets. Instead, their work on market frag-
mentation using agent-based modeling leads them to suggest that traders’ preference
for multiple markets may be the result of their adaptive behaviors.

The industry and trading venue community results differ greatly. We suggest that
this difference is the length of the crash as well as high-frequency trading. When the
crash and its recovery are very short as is the case of the Flash Crash, a large majority
of the trading is endogenous as a result of traders seeking the best deal regardless of
venue in order to gain profit or minimize loss. In contrast, industry information does
not change and, hence, is exogenous. For longer crash and recovery periods (months
or even years), we expect there would be an industry effect since industry information
would most likely be part of the price discovery process employed by the traders.

6 Discussion and concluding remarks

Our empirical findings indicate that the DJIA 30 stocks exhibit the characteristics of
self- and cross-reflexivity as well as out-influence and in-influence, suggesting that
past price movements in the prices of these stocks not only influence the future prices
of the stocks themselves, but also of other stocks that make up the index. The out- and
in-influence interactions between the stocks vary before, during and after the 2010
flash crash. Nevertheless, with respect to rank correlation, the behavior of stocks is
strongly negative for in-influence vs. out-influence or self-influence. Taken as a whole,
the self-influence of the 30 Dow Jones stocks declines from the pre-crash period to
the bottom (nadir) and then increases in the recovery period.

In addition, we find that the US trading venues are usefully viewed as a tightly
connected network that traders tend to use to their advantage. AsO’Hara andYe (2011)
suggest, the venues compete with each other to attract volume and, hopefully, increase
profits by offering lower transaction costs and faster execution speeds, although these
advantages may also be associated with greater volatility in the short run, which
may cause some traders, e.g., market-makers, to temporarily exit the market, possibly
resulting in the loss of liquidity. Traders have the ability to access all of the trading
venues and can quickly search for the best deal for them and their clients. For extremely
large buy or sell orders, fragmentation allows the traders to split their orders among
trading venues to try to lessen the impact of the transaction.

Our findings have implications for the performance of stocks in terms of risk and
return, market microstructure design, and stock index composition. Turning first to
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stock portfolio performance, modern risk management has focused on various mea-
sures of expected return and volatility. The initial basis for this approach was initiated
byMarkowitz (1952) using the statistical concepts of themean and variance of returns.
Relying on this development, Sharpe (1964, 1994) creates a risk-return performance
ratio (the Sharpe Ratio), which implicitly assumes that the relevant return distributions
are Gaussian.31 This assumption, however, is often not true. Recognizing that return
distributions are typically asymmetric and thick-tailed, Sortino (2001) designed a per-
formance measure that focuses on downside risk (the Sortino Ratio) that is concerned
only with the left tail of the return distribution.32 Applying either the Sharpe Ratio
or the Sortino Ratio to high-frequency data, however, is problematic because of the
Epps effect (see fn. 21). A|t-Sahalia and Hurd (2016), however, have developed a cap-
ital asset pricing model where the stocks being considered are described by mutually
exciting Hawkes processes. They show in a dynamic context that the optimal portfo-
lio composition changes in responses to changes in the jump intensities of individual
stocks. An important result of their model when applied to risky assets and a risk-free
asset is that because of the excitation relationship among stocks, a jump in one causes
the investor to sell all the stocks and invest the proceeds in the risk-free asset. This
behavior suggests, that in an environment that recognizes the possibility of contagion,
a very few or even a single stock could trigger a crash, flash, or otherwise.

Second, as we mention in Sect. 4.2, the Securities and Exchange Commission
(SEC) adopted the limit up-limit down (LULD) circuit breaker rule to mitigate the
possibility of a market crash. The idea was to try to constrain the volatility of a
specific stock in the hope that this would reduce the possibility of a market crash
induced by this stock. Our results, however, show that the contagion (or influence)
between stocks is not symmetric, i.e., in-influence and out-influence are not identical
and are negatively related. This finding suggests that a more refined microstructure
arrangement might have different LU and LD limits with the magnitude of these limits
determined by themagnitude of the two respective influences. If having different limits
is not administratively practical, an alternative to consider is to have symmetric limits
with the values being determined by the most out- and in-influencing stocks.

Third, the composition of stock indexes is routinely changed to reflect structural
changes in the economy. This is typically done by adding some stocks of strong
companies in growing industries and eliminating stocks in companies that have become
less strong in declining industries. Our results, however, indicate that industries may
not be the important factor in the construction of a high-frequency stock index. Instead,
what is important is the influence effect that stocks have on each other and themselves.
Moreover, although current daily indexes are designed to handle the effects of stock
price differences when their composition is beingmodified, there does not appear to be

31 The Sharpe ratio is the expected return in excess of the risk-free rate divided by the standard deviation
of return. Its theoretical basis is the Mean–Variance Capital Asset Pricing Model (CAPM), which was
developed and refined by Markowitz (1952, 1959), Sharpe (1964), Lintner (1965), and Mossin (1966).
32 The work of Roy (1952), Markowitz (1959), Hogan and Warren (1974), Bawa and Lindenberg (1977),
Harlow and Rao (1989), and others resulted in the Lower Partial-Moment Capital Asset Pricing Model
(LPMCAPM). Satchel (2001) points out that this asset pricing model is the foundation of the Sortino Ratio.
The numerator of this ratio is the expected return less an investor determined target rate and its denominator
is the square root of the second lower partial moment, which is also defined by the target rate.
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a rigorous quantitative assessment of the possible cross-influence differences between
the stocks being added and those being deleted. Not accounting for these differences
in some way (even qualitative) may render the index behavior before and after the
change as not comparable with respect to its dynamical behavior.

In sum, because of the high level of technology that is being used in the major stock
and similar markets worldwide and the likelihood of continued high-frequency and
algorithmic trading, additional work should be done exploring the implications of the
A|t-Sahalia and Hurd (2016) capital asset pricing model using real transactions data
with a focus on measuring portfolio performance and trading strategies. Work should
also be done on the implications of stock cross-influences and on the rules of trade and
their impact on prices and liquidity restrictions, as well as the design of stock indexes
that are not only used to monitor the overall performance of the market, but also as an
input to various asset pricing models. Additionally, efforts should be directed toward
the ways that market fragmentation affects the overall self-, in- and out-influences of
individual stocks. Finally, the Hawkes model quantitatively describes the behavior of
the stock market during the 2010 Flash Crash. Nevertheless, more intricate versions
of the process may be needed to better understand a market crash that may last weeks,
months, or even years. One possibility is to add higher-order nonlinear terms or jump
processes to the model, e.g., stochastic cusp catastrophe models.

We leave these and other similar interesting topics to future research. Nevertheless,
we note that Kuhlmann (2014) believes that social complexity in economics/finance is
not often explicitly included in its models or theory because its impact through institu-
tional arrangements and interaction are not sufficiently recognized.We concur with his
view and urge that financial research, especially that involving market microstructure
research, should be guided not only by statistical models and measures, but also by
the notion of the complex nature of human behavior and how this behavior is reflected
in the research scheme.
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