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Abstract

The statistical description and modeling of volatility plays a prominent role in econo-
metrics, risk management and finance. GARCH and stochastic volatility models have
been extensively studied and are routinely fitted to market data, albeit providing a
phenomenological description only. In contrast, agent-based modeling starts from the
premise that modern economies consist of a vast number of individual actors with het-
erogeneous expectations and incentives. Observed market statistics then emerge from
the collective dynamics of many actors following heterogeneous, yet simple rules. On
the one hand, such models generate volatility dynamics, qualitatively matching several
stylized facts. On the other hand, they illustrate the possible role of different mech-
anisms, such as chartist trading and herding behavior. Yet, rigorous and quantitative
statistical fits are still mostly lacking. Here, we propose Hamiltonian Monte Carlo,
an efficient and scalable Markov chain Monte Carlo algorithm, as a general method
for Bayesian inference of agent-based models. In particular, we implement several
models by Vikram and Sinha, Franke and Westerhoff and Alfarano, Lux and Wagner
in Stan, an accessible probabilistic programming language for Bayesian modeling.
We also compare the performance of these models with standard econometric models
of the GARCH and stochastic volatility families. We find that the best agent-based
models are on par with stochastic volatility models in terms of predictive likelihood,
yet exhibit challenging posterior geometries requiring care in model comparison and
sophisticated sampling algorithms.
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I wonder who it was defined man as a rational animal. It was the most
premature definition ever given. Man is many things, but he is not rational.
Oscar Wilde, The Picture of Dorian Gray and Other Writings

1 Introduction

Financial markets exhibit some remarkable and often surprisingly stable statistical
signatures, often referred to as stylized facts (Cont 2001; Lux 2009). Most notable and
researched are the properties of asset price returns exhibiting fat-tailed distributions
and volatility clustering. Volatility in particular has received much attention in the
econophysics community for its autocorrelation decaying as a power law suggesting
a long-memory process. Volatility also plays a prominent role in econometrics, risk
management and finance. Correspondingly, phenomenological statistical models such
as GARCH (Bollerslev 1986) and stochastic volatility models (Kim et al. 1998) are
extensively studied and routinely fitted to market data.

Agent-based models consider the statistical signatures of financial markets as emer-
gent properties, i.e., arising from the collective actions of many interacting traders.
They provide a complement to standard economic models, which, presuming rational
actors, are often unable to explain the rapid changes in volatility between calm market
phases and highly volatile episodes. Shiller has coined the term excess volatility, hint-
ing at these shortcomings (Shiller 1980). In contrast, agent-based models allow for
bounded rational actors and can often reproduce the stylized facts presuming chartist
trading and/or herding behavior (Samanidou et al. 2007).

Agent-based models of speculative behavior in financial markets are nowadays
able to replicate many stylized facts simultaneously. They provide an alternative to
standard econometric models, offering behavioral explanations of observed market
statistics (Lux 2009; LeBaron 2000). Yet, estimation of such models is still challeng-
ing and has mostly resorted to simulation-based methods striving to match selected
moments of the data (Franke and Westerhoff 2011; Ghonghadze and Lux 2016). More
recently, direct comparisons between the probabilistic dynamics of simulated and
observed time series have been proposed. To this end, transition probabilities of return
time series, observed and simulated, are discretized and compared in terms of context-
tree weighted Markov approximations (Barde 2016, 2017) or JS divergence (Lamperti
2018). Alternatively, predictive likelihoods are estimated on the continuous time series
of returns via (Guerini and Moneta 2017) fitting a VAR model or (Kukacka and Barunik
2017) kernel density estimation and again compared and matched with model predic-
tions. These methods go beyond moment matching and allow to generate and evaluate
model predictions. They still fall short to recover latent dynamical states as estimates
are not conditional to data but merely matched to their probabilistic structure. In order
to recover latent dynamics, either maximum likelihood estimation or Bayesian meth-
ods are required. Estimating agent-based models in this fashion is challenging as their
dynamics are often highly nonlinear. Yet recently, sequential Monte Carlo methods
(Lux 2018) and the unscented Kalman filter (Majewski et al. 2018) have been suc-
cessfully used in this context.
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Here, we follow this line of research and utilize modern software tools from machine
learning and statistics to fit agent-based market models. In particular, we employ Stan
(2017), aprobabilistic programming language for Bayesian modeling, to fit several dif-
ferent agent-based models, namely from Vikram & Sinha (2011), Franke & Westerhoff
(2012) and Alfarano, Lux & Wagner (2008). We believe that Bayesian estimation has
many advantages as it allows to access parameter uncertainties as well as to generate
model predictions. Furthermore, being based on the full model probability, including
the likelihood, different models can be systematically compared, e.g., based on their
predictive likelihood on held-out data. Indeed, for similar reasons Bayesian estima-
tion is popular in macroeconomics for estimating classical DSGE (An and Schorfheide
2007) as well as agent-based models (Grazzini et al. 2017).

Overall, our contribution is threefold: First, we discuss several agent-based mod-
els and the behavioral assumptions they are based on. In particular, this includes the
model by Vikram & Sinha, which had not been fitted before, as well as a novel moving
average specification for the model of Franke & Westerhoff. Secondly, we imple-
ment all models in Szan, a modern probabilistic programming language for Bayesian
modeling. Thirdly, we provide a detailed pairwise comparison of all models based
on cross-validated predictive likelihoods. In particular, we find that the best agent-
based models are competitive with standard econometric models. While this has been
observed previously for the Franke & Westerhoff model (Barde 2016), we provide
evidence that other herding dynamics give comparable results provided that the model
allows for persistent mispricing between fundamental and observed prices.

Our presentation is structured as follows: In Sect.2, we introduce Bayesian data
modeling and Markov chain Monte Carlo (MCMC) algorithms. In particular, we
shortly explain Hamiltonian Monte Carlo (HMC) and how it is implemented in Stan.
Then, in Sect. 3 we introduce all considered models and express them as probabilistic
models for return data. Our results on simulated as well as actual S&P 500 stock return
data are summarized in Sect. 4. Finally, we conclude by discussing our main findings
in Sect. 5.

2 Stan and Hamiltonian MCMC
2.1 Bayesian modeling

In Bayesian modeling observed data,! x = (x1,...,xn) are related to unobserved
parameters/latent variables @ = (61, ..., Ok ) interms of a joint probability distribution
with density p(x, #). This density is usually factorized as p(x,0) = p(x|0)p(0),
i.e., into the parameter likelihood and prior density. Inference then rests on Bayes rule
to obtain the density of the posterior distribution

p(x|0)p(0)

0 =
p(0lx) ()

I Vectors are denoted with bold symbols throughout the text.
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where the normalization is given by p(x) = f p(x10)p(#)do. The posterior summa-
rizes the information obtained about the unobserved parameters # and combines the
a priori assessment of the modeler, p(@), with the information obtained from the data
p(x|0). Conceptually, Bayesian estimation boils down to a rather mechanical appli-
cation of Bayes rule, once the full model p(x, 6) is specified. Below, we will explain
how this applies to different agent-based models and discuss, in particular, the role of
prior choices in Bayesian modeling.

In practice, the normalization constant p(x) of the posterior density is often
intractable, involving an integral over the parameter space. Accordingly, many approxi-
mation methods have been proposed which either aim to approximate it with a tractable
density or allow to draw posterior samples from its unnormalized density. Hamilto-
nian Monte-Carlo (HMC) sampling is an example of the latter approach. As a Markov
chain Monte Carlo method, it produces a sequence of possibly correlated samples. A
comprehensive and readable introduction to HMC and its properties can be found in
Betancourt (2017). Here, a rather short overview of the method should suffice.

2.2 Markov chain Monte Carlo (MCMC()

Consider a target density p*(#), e.g., the posterior distribution p(#|x) from a Bayesian
model. MCMC aims to construct a transition density T (’|0) which leaves the target
density invariant, i.e.,

p*(6" =/T(0’|0)p*(0)do.

Such a transition density can then be utilized to draw a sequence of samples 01, 0, .. .
with p(0,,...1601) = ]_[loil T (0;+110;). The Metropolis—Hastings algorithm uses two
steps in order to compute a suitable transition starting at §; = 0:

1. Draw @’ from a proposal density? ¢(0’|0)

2. Either retain the current sample, i.e., ;| = @ or transition to ;| = 0’ with
acceptance probability

*(0')q(016'
P04 (0] )] )

agp =min | 1, —————
o [ p*(0)q(8'10)

This so-defined transition density not only leaves the target density invariant, but,
under suitable conditions, also ensures that the chain converges to its unique invariant
density starting from any initial condition 6 (Bishop 2011).

2.3 Hamiltonian Monte Carlo (HMC)

While, in theory, the Metropolis—Hastings algorithm can produce samples from the
desired target density, especially in high dimensions it can suffer from slow conver-

2 Choosing a suitable proposal density is a crucial step in the Metropolis—Hastings algorithm as it controls
how effectively the resulting transitions can move across the sampling space.
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gence. The underlying reason is that most of the probability mass is confined to a small
subspace, the so-called typical set. If the proposal density is not well matched to the
target density, many steps of the Markov chain are either rejected, e.g., when leaving
the typical set, or slowly and randomly move along the typical set. HMC utilizes gra-
dient information in order to generate long sweeps of the proposed states which are
nevertheless accepted. To this end, HMC constructs a gradient flow which follows the
typical set (Betancourt 2017).
Formally, HMC samples from an augmented state space (#, m) with density

p(@,m) = p(0)p(m|6)
— log p(®)+log p(m|f)

— o~ HOm)

The desired marginal density p(@) can then be obtained by dropping the m compo-
nent of each joint sample. In analogy with physical systems, m is considered as the
momentum of a particle at position . Intuitively, m controls the speed at which the
position is moved along the typical set. The gradient flow following the typical set is
obtained by integrating the Hamiltonian H(0, m) = — log p(@) — log p(m|@) as

. B d
0 = —H(,m)=———log p(m|)
om om

d 9 d
h=——H =—1 —1 .
m 50 6, m) 50 og p(60) + ) og p(m|0)

Hamiltonian dynamics have several well-known properties. In particular, they are
time-reversible and conserve volume and total probability p(@, m). Thus, no further
corrections are necessary when using the state (@', m’) obtained by integrating the
Hamiltonian for some time as a proposal. Due to time-symmetry and conservation of
probability, the acceptance probability in Eq. (1) reduces to 1, i.e., the new state is
always accepted.

HMC then proceeds in two steps. At each transition, a new momentum is sampled
according to p(m|@) which is commonly taken as a Gaussian distribution independent
of the current state @, i.e., m ~ N(0, I). Then, the position is moved from 6 with
initial speed m by following the gradient flow for some time. The final position (6’, m’)
is then accepted as the next sample. By conservation of total probability, it holds that
p(@,m) = p(#’, m’) potentially leading to a long sweep across the typical set along
a level contour of the probability density. Thus, at each step HMC first jumps to a
new probability level and then follows the gradient flow at this level, thereby allowing
for an efficient exploration of the typical set. In practice, the differential equation
describing the Hamiltonian dynamics needs to be integrated numerically and care has
to be taken that numerical errors do not accumulate. Fortunately, symplectic integrators
can efficiently integrate Hamiltonian systems as numerical errors cancel and simulated
trajectories closely approximate the theoretical dynamics. While time-symmetry and
volume preservation are retained by symplectic integrators, the total probability is only
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approximately conserved along numerical trajectories. Thus, in practice, HMC uses a
Metropolis—Hastings step to either accept or reject the final position of a trajectory.

Especially in high-dimensional models, i.e., with many parameters, the use of gra-
dient information to guide exploration is crucial to ensure efficient sampling. Note that
HMC is restricted to continuous parameter spaces # € RX, but could be combined
with other methods when discrete parameters are desired. Often, it is advantageous to
marginalize over discrete parameters as strong correlations between them can severely
hinder efficient sampling.? In theory, HMC is insensitive to strong correlations between
parameters 6. In practice, the symplectic integrator uses a finite step size to numer-
ically solve the Hamiltonian dynamics. In the case of posterior densities with high
curvature, this can prevent the sampler to reach certain parts of the state space. Fur-
thermore, it makes HMC sensitive to the scale of parameters as the step size would
need to be adjusted accordingly.* Fortunately, by reparameterizing the model it is often
possible to simplify the geometry of the posterior density. Ongoing research explores
the geometric aspects of HMC both from theoretical (Livingstone et al. 2019; Ma
et al. 2015) and from practical (Betancourt and Girolami 2015) perspectives. Also, a
range of novel convergence diagnostics, e.g., based on the stability of the numerical
trajectory, have been developed (Betancourt 2017).

Next, we turn to agent-based models for financial markets and show how these can
be expressed as statistical models. All models are then implemented and fitted models
with the probabilistic programming language Stan (2017). Appendix A provides a
short overview. The Stan code for all models is available in the online supplementary
material. Implementing agent-based models in a well-tested Bayesian framework has
several advantages. On the one hand, inference algorithms such as HMC supported
by Stan are well optimized and tested. On the other hand, model specifications can be
easily adapted and explored with small changes to their source code. Yet, Stan restricts
the user to models with continuous random variables only. While many models, such as
the ones presented below, can be approximated in this fashion in the limit of infinitely
many agents, more detailed simulations involving many discrete agents are currently
beyond the scope of existing toolboxes for probabilistic modeling. In this sense, our
approach can be seen as a proof of concept which nevertheless covers several models
of interest.

3 Market models

Here, we consider three models, in detail, namely by Vikram & Sinha (2011), Franke
& Westerhoff (2012) and Alfarano, Lux & Wagner (2008). In particular, we explain
how these models give rise to a latent state dynamics which can be simulated and
estimated with Bayesian methods.

3 This especially applies to Gibbs sampling. Despite its popularity, Gibbs sampling is severely hindered
by correlations in the posterior which can render it utterly useless in high-dimensional problems.

4 In contrast, Gibbs sampling is severely effected by strong dependencies but insensitive to the scale of
parameters.
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3.1 Model by Vikram & Sinha (VS)

The market in the VS model is populated by N traders. At each time step ¢, a trader i
eitherbuys (S; () = 1),sells (S;(t) = —1) orstaysinactive (S(¢) = 0). The normalized
net demand from all traders is then given as M; = % vaz 1 Si (#), and the price adjusts
as piy1 = }f—%; p:. An agent’s decision to buy/sell or staying out depends on the
perceived mispricing between the current price p; and its running average p; = (p;)¢
which is considered as a proxy for the fundamental price of the asset. The probability
of an agent to trade is then given by

pt—pf
r

P(S;()]) = exp

and a trading agent buys S;(#) = 1 or sells S;(¢#) = —1 at random with equal proba-
bility.

In order to obtain a statistical model of volatility, in particular with a continuous
latent state as required for HMC sampling, we have adapted the model as follows:

— For alarge number of agents N — o0, the net demand M; converges to a Gaussian
distribution with mean zero (as E[S; (1)] = 0) and variance P%.

— Here, we have used that agents trading decisions S;(¢) are independent and

1 1
ELS;i (0] = SP(Si (0] = D) - 1+ SP(Si@0)] = 1) - (=1)
+A=PUS;1)=1)-0=0
Var[Si ()] = B[S (1)*]

! 2, 1 2
= EP(ISI'(I)I =D 1"+ EP(|S1'(I)| =D (=D

+ 1 =P(S; (1) = 1) - 0%
=P(S; (1) = 1).

— Next, considering the number of agents as unknown we introduce a scal-
ing parameter o2, for the variance and model the demand as M, ~

N, o2, P(IS: ()] = 1)).

— Finally, we approximate the log-return by linearizing the price impact’

Pt+1
re1 = log 2L
Pt

14+ M,
1— M,
~ 2M;

= log

5 We have also fitted the exact model, i.e., putting a normal distribution on the transformed returns M; =
e+l 1
S+l 4]

without any noticeable difference.
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where we have used that log(1 + x) ~ x for x| < 1.

Overall, we arrive at the following model dynamics®

(pr)e = A —=D)pr + T{pr-1)e

PAS() = 1) = ¢ 1oE T
rev1 ~ N, arfm AP(IS(1)| = 1)). 2

Note that this is a state-space model with a continuous latent state driving the time-
varying volatility o,41 = \/al%ax -4P(|S(¢t)| = 1). Indeed, the famous GARCH(1, 1)
(generalized auto-regressive conditional heteroscedastic) model (Bollerslev 1986) is
of a similar form

0% = a0 +arrf + piof
rept ~ N, 02 ) )

The main difference between the VS (in our formulation) and the GARCH model is
that the volatility is a function of past prices in the former and past returns in the latter
model. Furthermore, due to being founded in an agent-based model all parameters of
the VS model are readily interpretable as the sensitivity p of the agents to mispricing
and the weighting 7 of the running price average. In contrast, parameters in the GARCH
model are motivated purely from statistical grounds and cannot easily be related to
agent behaviors.

From a Bayesian perspective, Eqs. (2) and (3) correspond to the likelihood p(x|0),
i.e., the conditional probability of the observed data given the model parameters.
To complete the model density p(x, @), we need to specify a prior distribution on
the parameters. The choice of a prior distribution is often considered as subjective
(whereas the likelihood has an aura of objectivism). Arguably, from the perspective
of modeling the observed data this distinction is of limited relevance. Instead, note
that fixing the prior implicitly fixes a distribution on the data space, i.e., obtained as
p(x) = [ p(x, #)df by marginalizing over the parameters. A model can be considered
as misspecified when it assigns very low probability to the actual observed data.
In contrast, a good model should be able to generate similar data with reasonable
probability. This viewpoint is in line with Gelman et al. (2017) who argue that the prior
can only be understood in the context of the likelihood. Indeed, prior and likelihood
act together in shaping the model and expressing our expectations of plausible data.

Here, we propose the use of (weakly) informative priors which take into account
our knowledge about the role played by the parameters when generating data from the
likelihood model. As an example, consider the parameter t € (0, 1) of Eq. (2). While
it might be natural to simply assign a uniform prior,” T controls the time constant of

6 Simulating this approximate model shows that it produces similar price series with strong volatility
clustering as the original model.

7 Note that uniform priors, especially on unbounded spaces, should not be considered as uninformative.
On the one hand, an improper uniform prior, i.e., when it cannot be normalized, expresses a strong belief
about extreme parameter values by assigning infinite probability mass to values above any finite threshold.
On the other hand, they are not invariant under model reparameterization as shown in the above example.
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the running price average, i.e.,

(Pr)e =0 —=O)pr +T{pr-1)
=(1-tp+t((A—=1)pr—1 +T(pPr—2)7)

o0
=(1=-0) " pis
k=0

as 78 — 0 for k — oco. Comparing this to an exponentially weighted average in

continuous time, i.e.,

o
(pr)p =/ pe " pr_sds
0

with time constant p~! and exponential weighting kernel k(s) = pe~?* of unit weight,

ie., fooo k(s)ds = 1, we match 7% with e=#%, thus interpreting ~Togz 2 the time
constant / of the running average. A Uniform(0, 1) prior on t then corresponds to
an Inv-Gamma(l, 1) on / = —; 01 — putting considerable probability mass on very
short time constants below 1 day. gIn order to obtain a more reasonable distribution,
we parameterize the model directly in terms of the time constant / and give it an
Inv-Gamma(2, 1000) prior with a mean of 1000 and unbounded variance. Similarly,
1 has been given a Gamma(3, 0.03) which assigns more than 95% of its probability
mass to the interval [20, 250]. Together, these priors inform the VS model to stay away
from the boundary u — 0 or T — 0 where it becomes trivial, i.e., P(|S;| = 1) = 1
and thus 0; = omax. Accordingly, it cannot be expected to generate data exhibiting
pronounced volatility clustering in this case, and indeed, in the original reference
Vikram and Sinha (2011), prices were averaged over 10* time steps, which are well
covered by the chosen prior. Implementing both models is straightforward in Stan,
and the full code is provided as supplementary material.

3.2 Model by Franke & Westerhoff (FW)

Franke & Westerhoff have developed a series of models and have estimated them
by moment matching (Franke and Westerhoff 2012, 2011). Here, we follow their
presentation and introduce the DCA-HPM model in their terminology.

In the FW model, the market is populated with two types of agents, namely fun-
damental and chartist traders. The fraction of fundamental traders at time step 7 is
denoted by n‘tf € [0, 1]. The corresponding fraction of chartist traders is then given
byni =1-— n,f . The log price, denoted by p;, adjusts to the average demand from
fundamental d/ and chartist d° traders as

Dt =Di—1+ 1 (n’,f_ld,’f_l + ”fqdchl) . @

The demand is composed of a deterministic and stochastic component. It is assumed
that fundamental traders react to mispricing, i.e., the difference between p; and the
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182 N. Bertschinger, |. Mozzhorin

(known) fundamental price p*, whereas chartist traders react to past price movement,
i.e., pr — pr—1. According to Franke and Westerhoff (2012), the demand dynamics is
modeled as

dzf=¢(l7*—l7t)+€lf 6[~N(0,U%>

dzc =&(p: —Pt71)+6,6 Ef NN(O,GE)

with parameters ¢, £ > 0 specifying the sensitivity to price differences for the fun-
damental and chartist traders. Note that these demands are unobserved as only their
weighted sum effects the price. While such a dynamics could be modeled by means
of a stochastic latent state, in the present case it is possible to marginalize out the
demand. As the sum of two normally distributed random variables is again normal,
the combined demand gives rise to a stochastic model for the log returnr, = p; — p;—1

r~N (M (n;f_lqﬁ(p* —pi—1) +n;_E(pi—1 — pz—z)) ,
2
u? ((n[f_l) a_}% + (nf_l)z 03)) . (5)

The volatility o; = u\/ (n{ll )201% + (n§_,)?02 now depends on the fraction of chartist
vs fundamental traders and changes over time. Franke & Westerhoff (2012) call this
structured stochastic volatility, in analogy with structural models in economics, as the
parameters of the agent-based model are grounded in behavioral terms and therefore
economically meaningful.

The model is then completed by an update equation for the fraction of traders in
each group. Here, we consider the DCA—HPM specification of Franke and Westerhoff
(2012) which is given by

f_
= (6)
ny=1- ntf

ar = ap +a,(n] —né) +a,(p* — p)’. )

The parameter a, denotes the relative attractiveness of the fundamental over the chartist
strategy. It includes a general predisposition oo and herding «,, > 0 as well as mis-
pricing ), > 0 effects. We chose this specification for two reasons:

1. The discrete choice approach (DCA) of Eq. (6) leads to a smoothly differentiable
model density. This eases the exploration of the posterior when sampling with the
HMC algorithm.

2. The herding + predisposition 4+ misalignment (HPM) specification for the attrac-
tiveness Eq. (7) can be computed without access to the actual demands dtf and
df . This is not true for the other specifications of Franke and Westerhoff (2012)
where the agent’s wealth depends on previous demands which, in turn, leads to a
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stochastic volatility model where (one of) the demands have to be modeled as a
stochastic latent variable. For simplicity, we have not considered this complication
in the present paper.

Overall, the model dynamics is fully specified by Eqs. (5), (6) and (7). The parameters
of the model are given by orv — (n,¢,07,& 0c, B, g, atn, @p, p*). Note that g
and p are redundant as they simply control the scale of g, o, &) and &, ¢, o, o,
respectively. Thus, throughout we fix them at 8 = 1 and u = 0.01 as in the simulation
exercise of Franke and Westerhoff (2012).

When estimating the model on real stock returns below, we do not know the funda-
mental price. When simulating from the model or matching moments as in Franke and
Westerhoff (2012), the fundamental price can be considered as fixed. Yet, when fitting
the model to actual return data more flexibility in order to estimate reasonable values
for the unobserved fundamental price is needed. Here, we consider two specifications
of the model: First, as in the VS model presented above, the fundamental price is
derived as an average of past prices. Note that in order to be faithful and comparable
to the VS model, we compute a running average of past prices and not log prices.
Secondly, following Lux (2018), we assume that the log fundamental price is time
varying as a Brownian motion

This not only introduces another parameter o, but also turns the model into a stochastic
volatility model, i.e., the volatility o; now includes a stochastic component. To see
this, note that o; depends on a;_» via ntJ:] and the attractiveness in turn includes the
stochastic fundamental log price p} ,. Thus, the fundamental price plays a similar

role as the log volatility %, in a classical discrete time stochastic volatility (SV) model
(Kim et al. 1998)

hy ~ N+ ¢h—1 — w), op)
re ~ N(0, e"?) ®)

that we include as a benchmark alongside the GARCH(1, 1) model. Again, in con-
trast to the purely phenomenological dynamics in Eq. (8) the parameters of the FW
model are interpretable in terms of behavioral trades of agents. Furthermore, the model
specification combines aspects of local and stochastic volatility in that its volatility o;
depends on the random fundamental price as well as past prices via Eqs. (6) and (7).
Nevertheless, implementing the model in Stan is readily possible. As before, the
full code of the FW model—for both specifications—is provided as a supplementary
material. Interestingly, along the same lines a variant of the VS model with a random
walk specification for the fundamental price can be defined. For comparison, we have
also implemented this model using both specifications. Note that the time-varying log
fundamental prices p; do not appear as a T-dimensional vector (where T denotes
the number of observed time steps) in the parameter block. Instead, we have used a
non-centered parameterization, i.e., p_star is computed from epsilon_star as
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a transformed parameter. Formally, we can express this as follows:
Pl =pi, +owe where € ~N(0,1) 9)
instead of
P~ N(pj_y,00).

This is a standard example of a reparameterization which does not change the model,
but helps when HMC sampling as the innovation parameters €;* all have unit scale and
are a priori independent, no matter which variance o is currently sampled.

Again, we complete the model with weakly informative priors for all parameters.
As few insights are available about the proper choice of the attractiveness parameters
g, Ay, and ap, we assign weakly informative priors, e.g.,
alpha_0 ~ student_t(5, 0, 1), which restrict the scale of the parameter
yet, being heavy-tailed, allow substantially larger values.® In case of the standard devi-
ation parameters o s, 0. and o, we impose stronger priors and resort to the observed
data to set the proper scale. While not being purely Bayesian, this choice restricts the
model to reasonable scales accounting for the fact that volatility could be measured
in arbitrary units, e.g., percent per year. Figure 1 illustrates prior predictive checks,
i.e., sample data generated according to the model with parameters drawn from the
prior, for the FW model using a moving average specification for the fundamental
price.” While the scale of the data appears well matched, the model only occasion-
ally produces volatility clustering as pronounced as in the real data. Nevertheless,
we found these priors effective in simulation studies as well as when estimating the
model on stock data. Furthermore, Appendix C contains additional robustness checks
confirming the above rationality behind our choice of priors.

3.3 Model by Alfarano, Lux & Wagner (ALW)

Alfarano, Lux & Wagner model a financial market populated by N chartist traders
as well as additional fundamental traders. The excess demand from the population of
fundamental traders is given by

EDy=Ts(ps—p) (10)

with total trading volume Ty and log fundamental price ps. As in the FW model,
prices are exclusively considered in logarithmic terms, i.e., to simplify notation the
log price is denoted by p.

Chartists traders are either in an optimistic or pessimistic state. Optimists are
assumed to buy a certain amount 7, at each time step, while pessimists sell amount 7.

8 In contrast, a normal prior distribution would impose much more information as values larger than several
tens of standard deviations are essentially ruled out.

9 Prior predictive samples using the random walk specification appear very similar (not shown).
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Denoting the number of optimistic traders as n, the market sentiment x =25 — 1 €
[—1, 1] is defined and the excess demand from chartist traders given as

ED. = NT.x. (11)
Then, assuming a Walrasian pricing mechanism log market prices are adjusted as

dr _ B(EDs + ED,) (12)

dt
=B (Tr(ps.: — po) + NTex;) (13)

Note that the FW model assumed a very similar log price adjustment, albeit formulated
in discrete terms in Eq. (4).

Lux (2018) now assumes instantaneous price adjustment, i.e., 8 — 00, and the
market is cleared by matching fundamental and chartist demand. In this case, the
market price is found to be

T.
N Cx; (14)
Ty

Pt =Df1+
and the corresponding returns can be expressed as
NT, NT,
re=pfi— Pfi—1+ @ —x-1) =oref+ —— 0 —x-1)
Ty Ty

where the last line follows when assuming a Brownian motion for the log fundamental
price,i.e., pf; = pf—1+os€er witheg, ~ N (0, 1). From a statistical perspective,
market returns are distributed as

NT.
re ~N( T (x; —x,l),a}>. (15)

In contrast to the FW model, this model does not exhibit stochastic volatility. Further-
more, we do not need to model the fundamental price. Indeed, assuming instantaneous
price adjustment market prices cannot deviate persistently from the fundamental price
and it becomes essentially an observed quantity (compare Eq. 14).

Now, the market sentiment changes according to a herding process originally pro-
posed by Kirman. Here, each agent randomly switches from pessimistic to optimistic
or vice versa with transition rates 77 = a + bn and 7~ = a + b(N — n), respec-
tively. Parameter a expresses a general tendency to switch state, while » models the
herding with the switching probability increasing in the size of the contrarian popu-
lation. As detailed in Alfarano et al. (2008), these transition rates lead to a sentiment
dynamics with nonvanishing fluctuations even in the limit of an infinite population.
The sentiment dynamics is then governed by the following Langevin equation:

dX, = —2aX,dt + /2b(1 — X»)dW,. (16)
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In our implementation, the continuous time equation (Eq. (16)) has been Euler-

discretized with Ar = 1 day, ie., x, = —2ax,_ + /2b(1 — x?) €, where ¢ ~

N (0, 1), and then coupled to the observed returns via Eq. (15). As in Lux (2018),

we have fixed ]g‘ as one and assume weakly informative truncated standard normal

priors on the remaining parameters a, b and o . As illustrated in Fig. 1, the model
produces return time series similar to the FW model, albeit at a somewhat larger scale.
It appears that a prior favoring smaller values for « and 8 would be beneficial. The
prior chosen here provides a compromise between such an informative prior and the
uniform one suggested in Lux (2018) which with high probability exhibits almost
independent returns without clustering (not shown). Again, the full Stan code for the
ALW model is provided as a supplementary material.

4 Results

Here, we present estimation results of the above models, both on simulated and on
real price data.

4.1 Simulation studies

In order to check our model implementation, we simulated the FW model with param-
eters as given in table 1 of Franke and Westerhoff (2012),i.e., u =0.01,8=1,¢ =
012, =1.50, 09 = —0.327, o, = 1.79, ap = 18.43, 0y = 0.758, 0, = 2.087 and
p* being a moving average of past prices with a length scale of / = 300. Then, we
re-estimated the model parameters on the simulated price series of 7 = 2000 time
steps shown in Fig. 2.

The resulting samples from the posterior distribution are shown in Fig. 3. Overall,
we have run four chains starting from independent random initial conditions and drawn
400 samples from each, after discarding an initial transient of another 400 samples
as warm-up. Compared to other studies, the number of samples appears very low,
but the high quality of the samples is clearly visible in the trace plots. The model
appears to have converged after just about 50 samples, and all chains produce almost
uncorrelated samples from the same distribution. This is also confirmed by standard
convergence diagnostics such as Gelman & Rubin’s R, which compares the variance
between and within chains, or the number of effective samples, which is based on the
sample autocorrelation (not shown). If desired, more samples can easily be drawn as
the shown estimation runs in a few minutes on a standard laptop.

Figure 4 shows the resulting posterior distributions together with the true parameters
that generated the data. We found that about at least 1000 observed prices are necessary
for the posterior to reliably cover the true parameters. Interestingly, preliminary runs on
considerably longer time series of 5000 observations suggest that posterior uncertainty
reduces only slightly. This suggests that the model is rather flexible with different
parameter settings giving rise to similar return dynamics. Accordingly, the information
that observed returns provide about the underlying parameters is limited. Appendix B
provides further discussion of this point in the context of the GARCH model.
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Fig. 3 Trace plot for model parameters ¢, &, ag, an, ap, o f and o.. Note that all chains appear to have
converged to the same posterior distribution after just about 50 samples

Indeed, for the even more flexible models where the fundamental price is assumed
to follow an (unobserved) random walk, some parameters could not be recovered
at all from simulated data. Figure5 shows the actual and inferred latent sentiment
dynamics on data simulated from the ALW model. Estimates are shown as the posterior
mean together with the 95% credibility bands around it. Here, only one chain has
successfully recovered the actual sentiment time series, whereas another chain exhibits
short excursions away from the actual sentiment. As the probability of both chains
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Fig.5 Plot of market sentiment x; over time. Chain 1 recovers the true sentiment dynamics of the simulated
data, whereas chain 2 shows temporary deviations away from the true dynamics. Note that the likelihoods
of these two posterior modes are markedly different

is vastly different, with the correct one being substantially higher, this appears to be
a problem of the sampling algorithm which is getting stuck in a local mode of the
posterior. It might well be that other algorithms, such as the sequential Monte Carlo
methods employed by Lux (2018), are less susceptible to this problem. On the other
hand, HMC is highly effective in sampling the global parameters of the model which
is a major bottleneck for sequential Monte Carlo methods (Livingstone et al. 2019;
Monnahan et al. 2017).

Furthermore, the FW model with the random walk specification for the fundamental
price shows an even deeper non-identifiability. The top panel of Fig.6 compares the
estimated fraction of fundamental traders for two different chains of samples to the
actual simulated time series. While one chain stays close to the actual values, the
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Fig. 6 Fraction of fundamental traders n'tf (upper panel) and volatility estimates o; over time. Chain 1
recovers the true fraction of fundamental traders of the simulated data, whereas chain 2 shows a mirror
image flipping the role of fundamental and chartist traders. Note that the likelihoods and estimated volatilities
of these two posterior modes are essentially identical

other estimate appears to be a mirror image. Interestingly, in this case, the likelihood
of both chains is almost identical. Indeed, the lower panel of Fig. 6 shows that the
estimated volatilities are almost identical as well and correspondingly both estimates
assign very similar probability to the observed returns. This suggests a multimodal
posterior where each chain samples from a well-defined, yet different, mode of the
distribution. Furthermore, in at least one of the modes we find that o, < 07!
Accordingly, the model offers two very different explanations for the observed
volatility dynamics. In the first scenario, the number of chartists is usually low and
rises sharply in volatile market phases (as intended by the model). In contrast, in the
second scenario the number of chartists is usually high and drops in volatile mar-
ket phases. Volatility is then driven by the high demand uncertainty of fundamental
traders. Interestingly, both scenarios lead to very similar estimates and predictions for
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the volatility o;. The model accomplishes this by assuming a very different trajectory
for the unobserved Brownian motion of the fundamental price leading in turn to very
different mispricings and demands of the fundamental traders. Thus, the seemingly
innocuous assumption that the fundamental price follows a Brownian motion appar-
ently introduces a symmetry into the model. This not only makes the unobserved
latent states of the model unidentifiable, but also reveals that our understanding of
agent-based models and their generated time series dynamics is far from complete. In
particular, we cannot use the model in order to unambiguously uncover the fundamen-
tal price as in Majewski et al. (2018) where the Kalman filter computes a uni-modal
posterior approximation. Furthermore, the herding parameters are hard to interpret as
they act differently in different modes. Further work is needed in order to characterize
and ideally remove this unidentifiability.

Thus, currently identification of some of the models discussed here is plaqued by
two major issues: on the one hand, of algorithmic nature with the sampler getting stuck
in poor local optima of the posterior density; on the other hand, multimodality of the
model likelihood leading to several posterior modes with vastly different interpreta-
tion for the model parameters. Here, we leave such investigations for future studies
and instead focus on model predictions. In particular, a detailed comparison of the
efficiency, e.g., in terms of effective sample size per wall clock time, and reliability
of different algorithms for volatility models with complicated posterior geometries is
beyond the scope of this paper. Instead, we focus on the models itself and continue
with a principled model comparison in the next section.

4.2 Cross-validation and handling of missing data

To circumvent these identification issues, we now focus on predictions where identifi-
ability is of no concern. In order to also circumvent the problem of the sampler getting
stuck in a local minimum, we run several Markov chains for each model and only
use the chain with the highest in-sample likelihood for predicting. Then, we compare
models based on their probability assigned to held-out data. In the context of time
series, models are commonly compared based on rolling look-ahead predictions, i.e.,
using the predictive distribution for future returns rr4. or volatilities o7, based on
the T previous time points. Time is then rolled forward, and the model is evaluated
again. In general, this approach requires refitting the model for each prediction.

Here, for computational reasons, we instead resort to leave-one-out (LOO) predic-
tions, i.e., predicting current returns in the context of past and future returns, excluding
the current one. With the method of Pareto smoothed importance sampling (PSIS),
the corresponding predictive likelihoods

prilr1, oo i1, Fig1, oo, FT)

can be estimated from posterior samples (Vehtari et al. 2017). Note that in contrast to
the full posterior, the LOO likelihood is conditioned on all but the ith data point. In
order to estimate the LOO likelihood from posterior samples, the ith data points need
to be effectively removed before evaluating the prediction. In general, this is far from
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Fig. 7 Schematic of K-fold cross-validation for time series data (K = 3). Here, each model is fitted K
times on the observed data points (bold) and evaluated in terms of predictions on the held-out set containing
every Kth data point (italic)

trivial and we refer the reader to Vehtari et al. (2017) for details about how PSIS esti-
mates LOO likelihood. Here, we just note that the method smoothens the estimate by
fitting a generalized Pareto distribution to the tail of observed log likelihoods. Thereby,
a more stable estimate as well as a useful diagnostics is obtained. In particular, large
tail exponents in the Pareto distribution suggest that estimates could have unbounded
variance and should not be trusted. Indeed, this happens especially for influential data
points and no reliable estimate can be obtained in this case.

At least for such data points, results need to be validated by direct estimation of the
predictive likelihood, i.e., refitting the model on some of the data points and predicting
the held-out ones. To this end, we also implemented a direct variant of K-fold cross-
validation where the data are partitioned into K parts. LOO then corresponds to N-fold
cross-validation which would require fitting the model N times on all but one data
point and predict the left-out one. Here for computational reasons, we have chosen to
hold out every 20th data point instead. The model is then fitted 20 times, on all but
the remaining data points and asked to predict the unobserved ones. (Figure 7 shows
the resulting schema for K = 3.) The choice K = 20, i.e., to hold out every 20th
data point, provides a good compromise between computational performance (low
K) and almost independent predictions (high K). Using information theory, it has
been shown that volatility is only weakly dependent across a wide range of stochastic
volatility models (Pfante and Bertschinger 2019). Thus, we can reasonably expect
that volatilities are nearly independent after a couple of weeks. Numerical results in
the next section confirm this assumption with estimates based on LOO and 20-fold
cross-validation being statistically indistinguishable.

Accordingly, we have implemented all models in a way that allows for unobserved
or missing returns. To this end, we pass in all returns rq, ..., r7, observed and unob-
served, together with a binary vector miss_mask indicating at each time whether
the return is considered missing or not. From a Bayesian perspective, missing data
points are simply unobserved latent variables that can be inferred together with other
latent variables/parameters. Thus, for each missing return a corresponding parameter
€miss 15 introduced and sampled alongside the other model parameters. To enhance
sampling efficiency, the missing returns are represented in terms of innovations which
are then transformed to actual returns via r;, = i; 4+ 0r€miss akin to the non-centered
parameterization explained in Eq. (9). As the model density is defined on 7; and not the
underlying parameters €piss, We need to account for the resulting change of measure

by multiplying the density with the absolute Jacobian afn:’iss of the transformation.
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Fig. 8 GARCH model fit on the S&P 500

4.3 Fitting the S&P 500

Finally, we have fitted all models on price data from the S&P 500 stock market index.
As a benchmark, a standard GARCH(1, 1) and SV model have been included for
comparison. The corresponding fits from January 2009 to December 2014 and January
2000 to December 2010 are shown in Figs. §, 9, 10, 11 and 12. The estimated model
volatility is overlaid on the actual market returns.

Volatility estimates are shown as the posterior mean together with the 95% cred-
ibility bands around it. The posterior of the volatility o; at time step ¢ is based on
data points from returns r; observed over all T data points, i.e., p(o;|ry, ..., rr) for
t =1,...,T.In the terminology of time series models, this is known as the smooth-
ing distribution. Comparing the volatility estimates and predictions of the different
models, a few remarks are in order:
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Fig.9 SV model fit on the S&P 500

— The stochastic volatility models SV and VS, FW in random walk specification
exhibit higher uncertainty in their volatility estimates as compared to models
assuming a deterministic volatility dynamics, e.g., GARCH. Note that this does
not imply that predictions are worse, but just reflects the intrinsic difficulty and
imprecision of volatility estimation.

— The ALW model most closely matches the actual returns, exhibiting highly variable
volatility estimates. Thereby, the model appears to overfit the actual return data.

— The fits of the VS and FW model with the moving average specification improves
when some returns are unobserved, i.e., missing. We will discuss this issue in more
detail below.

Having compared the models graphically, we proceed with a more principled
assessment of model fit. In particular, Table 1 contains the predictive log likelihoods
estimated using LOO and 20-fold cross-validation, respectively. As explained above,
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Fig. 10 VS model fit with : Wit missing ois
moving average (top) and e
random walk (bottom)
specification for the fundamental
price on the S&P 500. Volatility
estimates are shown with and
without missing data. Note that
the estimate with missing data is
markedly better for the moving
average specification for the

Logarithmic returns and volatility, %

fundamental price, whereas no - oo o Fim = e
Date

difference is visible for the
random walk specification

—— With missing points
—— No missing points

Logarithmic returns and volatility, %

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

—— With missing points
—— No missing points

JMM A LWW'
A/ w/\v/u"\ﬂ/"’/ L“\_,WNAA//\.MW AL

Logarithmic returns and volatility, %
1 :

2010 2011 2012 2013 2014
Date

—— With missing points
—— No missing points

. M”

WWUWVWNMMAWW M‘mMﬂm

Logarithmic returns and volatility, %

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

each model has been fitted using 8 randomly initialized chains and predictions are
based on the best chain only. As expected, for the GARCH and SV model the
estimates of predictive likelihood based on LOO and 20-fold CV are statistically
indistinguishable. Similarly, the estimates for the VS and FW model using a random
walk specification for the fundamental price are very similar.

For the other models, the situation is slightly different for several reasons:
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Fig. 11 FW model fit with
moving average (top) and
random walk (bottom)
specification for the fundamental
price on the S&P 500. Volatility
estimates are shown with and
without missing data. Note that
the estimate with missing data is
markedly better for the moving
average specification for the
fundamental price, whereas no
difference is visible for the
random walk specification
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— VS_ma, FW_ma: The models using the moving average specification for the
fundamental price show better predictive log likelihoods when estimated with
cross-validation as compared to LOO. This is somewhat surprising, as the LOO
estimate is based on fitting all returns and then correcting the likelihood via PSIS
which should lead to an overestimation, if anything.

The solution is already shown in Figs. 10 and 11 which show that the models with
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Fig. 12 ALW model fit on the S&P 500

Table 1 Model comparison based on leave-one-out (LOO) and cross-validation (CV) best chains predictive
likelihoods

Model Jan. 2009-Dec. 2014 Jan. 2000-Dec. 2010

LOO CvV LOO CvV
GARCH 4867 + 37 4871 + 37 8573 £53 8577 £ 53
SV 4917 + 36 4910 £+ 37 8647 £ 48 8643 £ 48
VS_ma 4844 + 40 4904 + 35 8115 £ 69 8654 + 46
VS_walk 4929 + 37 4925 4+ 36 8678 + 48 8649 + 48
FW_ma 4827 + 40 4901 + 35 8409 £ 56 8634 £ 47
FW_walk 4928 + 36 4927 + 36 8663 + 48 8661 + 48
ALW_walk 5561 +20 4930 + 36 9936 + 26 8067 £+ 122
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missing data are fitting the data better. Thus, it appears that the added flexibility
when filling in missing data points is used in order to improve the model fits. From
this perspective, the volatility dynamics of these models appears to be misspecified
for the actual returns.

Note that no such difference is visible for the models with the random walk spec-
ification for the fundamental price.

— ALW_walk: In this case, the LOO estimates are not reliable and the PSIS method
for LOO estimates warns about that accordingly. Thus, almost all data points
are very influential as shown in Fig. 12, and the model fit would be substantially
different if even a single data point were changed. Accordingly, the LOO estimates
strongly overstate the actual cross-validation results and should not be trusted.

As the LOO estimates are unreliable in some case, we focus on the cross-validation
results in the following. Tables 2 and 3 provide a more detailed pairwise comparisons
between all models. Here, for each model combination the difference in total predic-
tive log likelihood and the standard deviation of this difference is given. Note that
mean differences are consistent with Table 1, but the standard deviations are com-
puted specifically for each pairwise comparison. To this end, model predictions are
compared pointwise for each data point predicted by both models to obtain mean and
standard deviation of likelihood differences directly. For visual convenience, each col-
umn shows the advantage of the column model over the row model. The only models
which are never significantly worse than any other model, i.e., with a likelihood dif-
ference of two standard deviations below zero, across both considered data periods
are FW_walk and VS_walk. All other models are significantly outperformed by some
model over some time period. In particular, the GARCH model is outperformed by
every other model except for the ALW model on data including the crisis year of
2008. Thus, the best agent-based models beat this standard benchmark model and are
on par with a simple SV model. This is encouraging as such models are routinely
fitted to volatility data and shows that agent-based models provide viable alternatives
with several advantages. First, in contrast to purely phenomenological SV models they
have interpretable parameters related to trader behavior, allowing to uncover market
sentiment or trader strategies over time. Secondly, they not only model the conditional
volatility dynamics, but also provide non-trivial predictions for conditional returns.
(Compare the return distributions of Egs. (3) and (5) for instance.) We leave inves-
tigations to which extent conditional predictions of such models are able to identify
trends and rallies in stock prices to future work.

To get an even better understanding of the relative performance between several
models, Figs. 13 and 14 provide a running comparison between the best agent-based
model, FW_walk and the SV as well as the ALW model, both within sample and

on predicted data points. The top panel of Fig. 13 shows the cumulative advantage

cum_adv}zw/ SV of the FW_walk model over the SV model within sample log like-

lihood, i.e.,
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Table 2 Pairwise model comparison on 2009-2014 data: the advantage of the column model over the row
model in cross-validation predictive likelihood with a standard error

SV VS_ma VS_walk FW_ma FW_walk ALW_walk
GARCH 39+13 324+12 53+12 29+12 56+12 58+21
SV —6+11 1443 —-9+12 16+4 19+17
VS_ma 2010 —-3+46 23+9 25417
VS_walk —234+11 244 4417
FW_ma 26+9 28+ 17
FW_walk 2116

ALW_walk

Bold marks correspond to a significant advantage (difference more than two standard
errors above zero) and italic marks to a significant disadvantage (difference more than
two standard errors below zero)

Table 3 Pairwise model comparison on 2000-2010 data: the advantage of the column model over the row
model in cross-validation predictive likelihood with a standard error

SV VS _ma VS_walk FW_ma FW_walk ALW_walk
GARCH 66+17 76+18 71+18 56+17 83+16 —509+ 107
SV 1013 5+6 —94+13 175 —576 £ 106
VS_ma —4+12 —-19+£7 7T7£10 —586+ 107
VS_walk —14+14 1247 —581+106
FW_ma 26+10 —566 + 107
FW_walk —593+107

ALW_walk

Bold marks correspond to a significant advantage (difference more than two standard
errors above zero) and italic marks to a significant disadvantage (difference more than
two standard errors below zero)

t
cum_adva/SV = ZlogpFW(r,-|r1, eo L FT) — logpSV(ri|r1, oL FT).

i=1

The lower panel shows the corresponding cumulative log likelihood difference on
predicted data points. The estimates of predictive log likelihood are obtained by com-
bining data from all 20 folds, i.e., predictive likelihoods of time points 1, 21, ...are
obtained from fold 1 which held out the corresponding returns, predictive likelihoods
of time points 2, 22, ...are obtained from fold 2 and so on. As before, the mean differ-
ence is shown alongside with the 95% credibility band around it. The last value of the
lower panel at time T corresponds to the total predictive log likelihood difference and
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Fig. 13 Comparison between the FW model and the SV model in terms of the difference in cumulative
log likelihood on observed (top) and held-out (bottom) returns. While the SV model is better in-sample, its
out-of-sample predictions are actually worse than the FW model. Note that the final difference of 17 £5 in
predictive log likelihood after all data points is reported in Table 3

is recorded in Table 3. Interestingly, the SV model is better in-sample with a negative
cumulative advantage of the FW model of about —20 % 5. Out-of-sample, i.e., on the
predicted data points, the situation is reversed with the FW model now being better
for a total cumulative advantage of 17 &+ 5. Thus, the FW model is less flexible in
fitting each data point in sample, yet providing better predictions. By Occam’s razor,
such a model should be preferred being both simpler—in statistical terms of effective
parameters—yet more reasonable in terms of predicting the actual dynamics.

Figure 14 shows the corresponding comparison between the FW and the ALW
model. Here, the strong overfitting of the ALW model is apparent with a huge advantage
in-sample (upper panel), but much weaker predictions (lower panel). Interestingly,
most of the predictive performance is lost during the year 2008 of the financial crisis.
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Fig. 14 Comparison between the FW model and the ALW model in terms of the difference in cumulative
log likelihood on observed (top) and held-out (bottom) returns. The ALW models strongly overfits being
much better in-sample and much worse out-of-sample. Particularly, during the crisis unfolding in 2008 the
predictions of the FW model are substantially better. Again, the final difference of 593 £ 107 in predictive
log likelihood is reported in Table 3

This suggests that the ALW model is unable to accurately reflect the unusual return
dynamics unfolding during the financial crisis. Indeed, on the data sample from 2009
to 2014 excluding the critical year its predictive performance is on par with the other
models as noted in the last column of Table 2. We take this as strong evidence that the
assumption of instantaneous price adjustment is problematic and especially during the
crisis persistent mispricing has to be assumed.
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5 Concluding discussion

We have fitted a range of different agent-based models on actual return data from
the S&P 500 stock index. To this end, we have formulated all models in statistical
terms as continuous state-space time series models.'” Then, we have implemented
several models in Stan, a modern probabilistic programming language for Bayesian
modeling. The build in HMC sampling algorithms appears well suited to explore the
posterior distributions arising in these agent-based models. Overall, HMC tends to
mix rapidly and reveals much of the complicated posterior structure arising in some of
the models, e.g., multimodality arising from non-identifiable latent state dynamics of
the FW model with random walk specification for the fundamental price. Yet, further
work on these identification issues is certainly required: on the one hand, too advance
theoretical understanding of the approximate symmetry in the model likelihood leading
to several modes with vastly different interpretation for the model parameters; on the
other hand, to reliably detect and overcome algorithmic challenges when sampling
from complicated multimodal posterior distributions.

Here, in order to circumvent these issues we focused on predictions instead. In
particular, using cross-validation—LOO as well as 20-fold—we provided a systematic
quantitative comparison of all models in terms of predictive log likelihoods. Our main
findings are:

1. First, agent-based models are a viable alternative to more classical purely phe-
nomenological econometric models. In particular, the best of the models tested
clearly outperform a GARCH benchmark and are on par with a simple SV model.

2. Secondly, by comparing several models with different dynamics and assumptions
we provide strong evidence that the fundamental price is more likely modeled as
a random walk than a moving average. Furthermore, price adjustment needs to
allow for persistent mispricing which is especially important in order to predict
return dynamics during the latest financial crisis.

3. Model differences arising from different herding mechanisms appear minor com-
pared to assumptions regarding the fundamental price dynamics and adjustment. In
particular, we find no significant differences between predictions of the VS and FW
model when using a random walk specification for the fundamental price. Thus,
revealing the exact mechanism driving market sentiment or traders’ expectations
on empirical grounds alone appears difficult at best.'!

Compared to standard econometric models, agent-based models provide several
advantages. They not only allow to estimate market sentiment or preferences in trading
strategies alongside with fundamental prices, but also often include conditional price
predictions as the FW and ALW model in this study. In the future, we plan to explore
predictions from agent-based models in more detail, hoping that this provides the

10 Continuous state spaces are required for HMC sampling. Other algorithms, such as Gibbs sampling or
particle filters, are not restricted in this respect. Yet, sampling from discrete spaces can mix prohibitively
slow as commonly observed in mixture models.

T This is somewhat unfortunate but should be expected given the intrinsic uncertainty of volatility
estimation (Pfante and Bertschinger 2019). Indeed, in econometric comparisons of stochastic volatility
specifications, the best performing model often depends on the specific time period or stock ticker used for
estimation.
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information needed in order to infer the nature of the herding mechanism by empirical
means.
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A The Stan language

The probabilistic programming language Stan (2017) allows the user to describe the
joint probability p(x, @) of a model in a high-level programming language. In turn,
the program is then compiled to C++ and several inference algorithms, including
Hamiltonian Monte Carlo, are built-in. The required gradients are computed via a
C++ library for automatic differentiation (Carpenter et al. 2015), thus freeing the user
from manually implementing and debugging gradient calculations.

Stan comes with an extensive documentation which includes many example models
and useful tricks for efficiently implementing them (Stan Development Team 2017).
A minimal Stan program consists of three blocks

1. a data block which declares variables corresponding to observed quantities x,

2. aparameters block which declares variables corresponding to unobserved param-
eters § and

3. amodel block which contains statements computing the log density of the model,
ie., logp(x,0).

For instance, the following Stan program estimates the mean of Gaussian observations
with a known standard deviation:

data {

> int<lower=0> N; // number of data points
3 vector [N] x; // observed data points

4
5

6

}
parameters {
real mu; // unobserved mean

}

model {

mu ~ normal (0, 10); // computes log prior density log p(mu
)

x ~ normal (mu, 1) ; // computes log likelihood log p(x \
mu )

// total log density is log p(mu) + log p(x | mu)

}
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The ~ statements in the model block relate a variable with a density and are short-
hand notation for the more basic statements summing up log density contributions,
e.g., target += normal_lpdf(x | mu, 1).

As shown in the example, all variables are typed and need to be declared before use.
A particularly convenient feature of Stan is that variables can be given constraint types,
e.g., a standard deviation parameter could be declared as real<lower=0> sigma.
Internally, the variable is then automatically transformed to an unbounded space and
the log density is adjusted for the resulting change of measure. Due to this method,
many different data types including vectors, matrices, but also constraint spaces such
as simplices or covariance matrices are readily supported.

Stan supports several inference algorithms, namely gradient descent optimizers for
maximum a posteriori estimation, HMC sampling and stochastic gradient variational
Bayes. While HMC is the least efficient of these algorithms, it usually provides the
closest approximation to the true posterior distribution. Furthermore, during warm-up,
also known as burn-in, Stan adapts several parameters of the algorithm such that the
algorithm appears essentially parameter-free to the user. This is especially effective for
the No U-Turn Sampler (NUTS) which automatically adjusts the length of simulated
trajectories. In a nutshell, NUTS integrates the Hamiltonian dynamics until it starts
turning back toward itself which is locally decided based on the gradient direction.
Care needs to be taken to ensure that the resulting transitions leave the target density
invariant. To this end, trajectories are expanded in a treelike fashion by successively
doubling their length forward and backward in time. The next state is then sampled
uniformly from the resulting overall trajectory. For further details about the Stan
programming language and the NUTS algorithm, we refer the interested reader to the
Stan manual (Stan Development Team 2017) and Betancourt (2017), respectively.

B Parameter recovery in the GARCH model

Here, we provide additional recovery experiments for the GARCH model. We have
chosen this model as it is well understood and posterior sampling poses no problems
for Stan. Indeed, all chains quickly and reliably converge such that the samples drawn
faithfully represent the true posterior distribution. Furthermore, as improper flat priors
are used on o, 1 and B their posterior just reflects the shape of the likelihood func-
tion. Furthermore, the standard normal priors on u and o are only weakly informative
considering the used parameter values.

For the experiment shown in Fig. 16, we have simulated the GARCH model with
parameters © = %,ao = %,al = 0.1, 81 = 0.9 and gy = 0.1 for 5000 time
steps, i.e., trading days. We have then refitted the model on the first 2000 time steps
as well as the last 2000 time points. Figure 15 shows the corresponding return series.
In Fig. 16, the posterior densities together with the true parameters that generated the
data and the posterior means are shown.

In all cases, the parameters are recovered in the sense that the true parameters fall
well within a region of high posterior density. Yet, depending on the particular data set
the posterior mean can substantially deviate from the true parameter. As the posterior
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Fig. 15 Simulated returns from GARCH model with parameters © = %, oy = 0,052 a; =0.1,8) =
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0.9 and o = 0.1. The simulated returns exhibit clear volatility clustering as well as realistic magnitudes
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Fig. 16 Posterior distributions for the GARCH model fitted on the first 2000, last 2000 and all 5000
simulated returns of Fig. 15. Note that the true value is well covered by the posterior distribution even

though the posterior mean can be substantially different

mean is known to minimize the expected squared distance from the true parameters,
this implies that parameter estimates exhibit rather high variance in frequentist terms.
It also shows that return data provide only limited amount about the underlying model
parameters. For instance, especially the average return p is known to exhibit high
uncertainty and also in our example the interval [—0.00065, 0.001] containing 95% of
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Table 4 Model comparison for

different priors based on Model LOO cv

leave-one-out (LOO) and

cross-validation (CV) best SV (original) 4917 £+ 36 4910 £ 37

chains predictive likelihoods SV (flat) 4917 + 36 4910 + 37
FW_ma (original) 4827 £+ 40 4901 £+ 35
FW_ma (flat) 4761 + 40 4830 £ 41
FW_ma (mixed) 4829 + 39 4874 £ 36
FW_walk (original) 4928 + 36 4927 + 36
FW_walk (flat) 4981 + 41 4885 +41

the posterior mass when estimated on all 5000 data points is not significantly different
from zero. Furthermore, noting that the data were generated with p corresponding to
an average return of 6% per year, it corresponds to an estimated average yearly return
between —16% and 25%.

C Prior robustness checks

Here, we investigate the robustness of model fits with respect to prior choices. As a
benchmark, we refitted the SV model with improper uniform priors'> on all parame-
ters. Table 4 shows the LOO and CV predictive likelihoods on the S&P 500 returns
between 2009 and 2014. There is no difference between the SV model with the weakly
informative (original) and improper (flat) priors.

The corresponding results are also shown for the FW model, in the random walk and
the moving average specification. In this case, the FW_walk model slightly overfits
when using improper flat priors. This is also visible in Fig. 17 as the estimated volatility
more closely tracks the return data under the flat prior. Table 4 confirms that the model
predictions are still competitive with the SV model, but the LOO estimate becomes
unreliable and deviates clearly from the CV estimate. Overall, the prior suggested in
the main text has a weakly regularizing effect and smoothens the model estimates and
predictions.

This effect is even more pronounced in the FW_ma model. In this case, the volatility
estimate resulting from improper uniform priors is mostly constant and substantially
worse (see Fig. 18 and Table 4). Indeed, we found that the informed priors on oy and
o, as well as the boundary avoiding prior on the time constant / of the moving average
are crucial. When these are combined with improper priors on all other parameters
(mixed), volatility estimates and model predictions are similar to the results arising
from priors (original) as suggested in the main text. When weakening any of the three

12 Note that Stan transforms constrained parameters, e.g., o, > 0, to an unconstrained space. Thus, the
improper uniform prior is imposed on log ¢}, corresponding to p(oy) o % which is the Jeffreys prior for
the standard deviation of a normal distribution with fixed mean. Furthermore, this prior is invariant with

respect to multiplication with positive reals and thus imposes no information on the scale of oy,.
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Fig. 17 FW_walk model fit on the S&P 500 (2009-2014) with different priors
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Fig. 18 FW_ma model fit on the S&P 500 (2009-2014) with different priors

priors to an improper one, the model essentially behaves as the one with flat priors on
all parameters (not shown).

Overall, these experiments confirm the intuition that went into the choice of priors
as explained in Sect. 3. In addition, a weakly regularizing effect is found in all cases
and provides further justification for the use of Bayesian methods for model fitting, in
particular leading to improved stability of volatility estimates and model predictions.
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D Identifiability of the FW model

In Sect.4.1, we observed two modes in the posterior of the FW model which lead to
very similar predictions. Here, we show that under certain conditions this is indeed
approximately the case.

In particular, we construct two sets of parameters o s, 0¢, ®g, ®n, &p and G 7, O,
@o, Gp, &p such that 6y = o, 6. = oy and the model volatilities are exactly equal,
ie.,

(n]_ %0} + (nf_ )0l = ] )?63 + (i8_)*67.

By 6 = o, 6. = oy this implies that ﬁtf_l =n;_,ny_| = ntf_1 corresponding to
the observed flip in the fraction of chartist and fundamental traders.
From Eq. (6), we have

f 1
1 + e—Bar-1
g

1—il

e~ Par

1 + e_ﬂdt—l
1
1 + eﬂar—l :

Thus, we need to choose parameters such that ;| = —a;_1.
Assuming that the fundamental price is always correct,!3 ie., p; = p:, we have

ar = ao + an(n] —nf) + o, (pf — po)?
= o + (i — ii])
= oo — & (] — 7if)
= — (a0 + an (il =) +ap(pf = p0)?)

= _at

when choosing &g = —ap, &, = o, and &y = ap.
Note that the mean return

n! d(pF — pio1) +nS [ E(pio1 — pia)

can usually not be matched exactly in this fashion except when ¢ and & vanish. On
the other hand, in stochastic volatility models the likelihood is commonly dominated

13 The actual symmetry observed in Sect.4.1 is more complex with substantially different fundamental
prices between the two modes. Our theoretical understanding is at best incomplete at this point.
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by the volatility with only a weak effect of the mean return. Indeed, assuming a
mean return of zero usually leads to almost identical fits and predictions of volatility
compared with more elaborate models for the mean return. Numerically, we observe
a similar result in the two posterior modes of the FW model, where the likelihood
is almost identical, despite slightly different dynamics of the mean return in the two
modes.
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