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Abstract This study investigates whether and how central clearing influences the
overall liquidity needs in a network of financial obligations. Utilizing the approach of
flow network theory, we show that the effect of adding a central clearing counterparty
(CCP) is decomposed into two effects: central routing, and central netting effects. Each
effect can produce different liquidity needs according to different liquidity scenarios.
The analysis indicates that adding a CCP in times of financial distress successfully
reduces the overall liquidity needs if and only if the netting efficiency of the CCP is
sufficiently high. Furthermore, once the economy is no longer in financial distress,
higher netting efficiency of the CCP could conversely increase the overall liquidity
needs. The results have implications for the effectiveness of CCPs in mitigating sys-
temic risk in times of financial distress, and their operating costs once the distress has
passed.

1 Introduction

In the recent financial crisis, the collapse of financial institutions, such as Bear Stearns
and Lehman Brothers, demonstrated that the interconnected feature of bilateral expo-
sure among financial institutions could lead to market disruption. In order to cope
with this apparent vulnerability, the G20 leaders agreed at the 2009 Pittsburgh Sum-
mit that standardized over-the-counter (OTC) derivatives should be cleared through
central clearing counterparties (CCPs). Central clearing is expected to help mitigate
counterparty credit risk by removing the direct risk exposure between counterpar-
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10 H. Hayakawa

ties, thereby reducing the systemic risk of the “domino” of defaults and relevant
firesales.1

However, the success and relevant cost of central clearing is never evident. For
example, CCPs typically require margin themselves in order to bear the counterparty
risk arising from cleared derivative transactions. In times of financial distress, margin
requirements by CCPs could trigger firesales.2 Here, we should note that multilateral
netting by CCPs could have already reduced relevant exposure, and have contributed
to reduce the required margin compared to settlements without CCPs. The effect of
CCPs on overall liquidity needs is not apparent until the two aspects are investigated
in a consolidated manner.

We further argue about the operating cost of CCPs once the economy is no longer
in financial distress. CCPs could affect overall liquidity needs in times of non-distress,
and larger liquidity needs tend to imply larger costs, since liquidity is essentially
scarce resource. In times of non-distress, when financial institutions are not in a rush
to obtain liquidity, contracted trades would need less liquidity, or similarly, liquidity
would circulate more efficiently among relevant financial institutions even without
CCPs. Consequently, CCPs and their multilateral netting could have different effects
on overall liquidity needs compared with those in times of financial distress.

In order to assess the effects of CCPs and discuss further improvements of the clear-
ing mechanism, it is important to understand the essential nature of CCPs regarding
how they affect overall liquidity needs in times of both financial distress and non-
distress. This study develops a stylized model to probe this issue. Our focus is on
how the introduction of a CCP could alter the interconnected feature of the relevant
network of financial obligations, and how the change of network topology could affect
overall liquidity needs. From the perspective of network topology, the introduction of
a CCP serves as an additional entity itself in the relevant network, while its multilateral
offsetting serves to eliminate relevant obligations. We explicitly show that the effect
of a CCP is decomposed into two effects: the central routing effect, and the central
netting effect, such that the total effect is essentially the addition of the two effects.

The effect of a CCP is examined on the basis of two polar liquidity scenarios. One
is assumed as a situation in times of financial distress, by which liquidity circulates
least efficiently. The other is assumed as a benchmark situation in times of non-
distress, by which liquidity circulates most efficiently. We refer to the former situation
as the bad environment and the latter as the good environment. We show that in the
bad environment, the central routing effect is always negative, but the central netting
effect is always positive. A negative central routing effect means that adding a CCP
certainly increases the overall liquidity needs if there is no financial obligation to be
offset by the CCP. A positive central netting effect means that larger offset amounts
lead to smaller liquidity needs. This implies that the total effect of a CCP is positive

1 In this respect, Brunnermeier and Pedersen (2009) argue there is a spiral nature between funding liquidity
and market liquidity, whereby the initial loss could lead to firesales, which could further exacerbate the loss.
2 The possible procyclical feature associated with margin requirements of CCPs is pointed out in Domanski
et al. (2015). Rennison et al. (2016) report a real world case that suggests the procylicality; on the day after
Britain’s vote for Brexit, the five of the largest clearing houses demanded $27bn in additional collateral
across derivatives products.
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in the bad environment when the offset amount is sufficiently large. By contrast, we
show that it is possible for the central netting effect in the good environment to be
negative,whereby, although counterintuitive, a larger offset amount could lead to larger
liquidity needs. This is because eliminating financial obligations could effectively
separate a connected network into multiple disconnected networks, thereby inhibiting
the same liquidity from circulating through the whole network. We observe a trade-
off of multilateral offsetting regarding the overall liquidity needs. It is possible for a
CCP to reduce liquidity needs during times of financial distress, thereby reducing the
risk of firesales and relevant systemic risk of the “domino” of defaults. However, it
could conversely increase overall liquidity needs during times of non-distress. For our
benchmark situations, in order for the total effect of a CCP to be always positive in the
bad environment, more than two-thirds of the relevant trading needs to be offset. Since
the overall liquidity needs in the good environment could become larger in proportion
to the offset amount, the trade-off could become serious.

There are two policy implications of this research. First, when central clearing is
used, the expected offset efficiency for the relevant security should be examined with
sufficient care, since insufficient netting efficiency could have an adverse effect. Sec-
ond, possible severe trade-off associated withmultilateral netting suggests conditional
utilization of a CCP. Since our analysis shows that multilateral netting could be costly
at the time of non-distress but helps mitigate liquidity needs at the time of financial
distress, a CCP could be used as an emergency scheme. Although it is out of the scope
of this study to argue about the whole cost of such an emergency scheme, our analysis
indicates there is possible merit in resolving the underlying trade-off regarding overall
liquidity needs.

1.1 Relevant literature and contributions

The role of CCPs has been examined largely focusing on how much relevant expo-
sure is reduced through CCPs’ multilateral nettings, supposing that smaller amount
of exposure to each counterparty implies smaller counterparty risk. This study
departs from the literature by examining the roles of CCPs in overall liquidity
needs.

Focusing on the effect on exposure, Duffie and Zhu (2011) examine central clear-
ing in derivative markets and point out the possible disadvantage of central clearing
arrangements compared with bilateral clearing arrangements when central clearing is
provided only within each class of derivatives. The roles of CCPs in derivative markets
are debated in Bliss and Kaufman (2006), Bliss and Steigerwald (2006), and Pirrong
(2009). Jackson and Manning (2007) argue about the effects of CCPs in relation to
“tiering,” which refers to the ratio between the number of indirect and direct members
of CCPs. The authors argue there is incentive for a “tiered” structure. Galbiati and
Soramäki (2012) analyze the implications of “tiering” in terms of network topology.
In view of relevant network topologies, they examine the tree structure, while more
general structures matter in our liquidity context.

Several recent studies have examined the role of CCPs in affecting overall liquidity
needs, in the context of how CCPs set their margins. Murphy et al. (2014) investigate
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12 H. Hayakawa

the procyclical nature of various margin models, proposing quantitative measures
of procyclicality. Abruzzo and Park (2016) empirically analyze the margin-setting
behavior of CCPs, and find that margin-induced procyclicality is a concern during
recessions, but not during times of expansion. Miglietta et al. (2015) quantify the
impact on the cost of funding in repo markets of the initial margins applied by CCPs.
These studies have helped clarify the possible negative effects of CCPs on overall
liquidity needs, but they have not explicitly shown how the existence of CCPs could
have negative effects compared with cases without CCPs.

This study provides a stylized model that enables us to compare a situation with a
CCP with that without a CCP. Our focus is on the effects of CCPs on overall liquidity
needs by affecting the relevant network topology. For this purpose, we utilize liquidity
problems defined in the network, which are formally represented as problems of flow
network. The model and liquidity problems used in this study are based on Hayakawa
(2016), who investigates settlement efficiency of gross settlements in view of network
topology.3 The present study serves as an application of Hayakawa (2016) to examine
the role of CCPs, utilizing several basic results of the study.

Section 2 presents our model. Section 3 illustrates our analysis in a less formal
manner. Section 4 provides an overview of the results. Section 5 shows our formal
analysis. Section 6 concludes. The appendix includes proofs of the relevant results.

2 Model

There are a finite number of financial institutions that have obligations among them-
selves. Each obligation is formed by the trade of either of two types of securities.
One type is called the target security, and the other the non-target security. The target
security is traded either with a CCP or bilaterally, while the non-target security is
traded bilaterally. We incorporate obligations for the non-target security in order to
analyze externality of the CCP in the relevant settlements. As becomes clearer soon
in this section, both types of security are assumed to be of a bond or equity type in the
sense that the amount of obligation formed by each trade is fixed. The simplification
serves to clarify the nature of a CCP, and has implications for the debate about CCPs
in derivative contracts and relevant margin issues, which are discussed in Sect. 2.4,
and further in the analysis section.

We divide the process of settlements into four Stages as below.

• Stage 0: Trade formation
• Stage 1: CCP scheme/bilateral scheme
• Stage 2: Offsetting under the CCP scheme4

• Stage 3: Settlements of obligations

3 The original version of the models and liquidity problems are shown in Hayakawa (2014) with additional
results, which constitutes a chapter of his doctoral thesis accepted in 2011.
4 We interchangeably use the word “offsetting” and “netting.”
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Does a central clearing counterparty reduce liquidity… 13

2.1 Stage 0: Trade formation

AtStage 0, trades among the financial institutions are exogenously given. The contracts
of the trades specify that all relevant obligations are finally settled at Stage 3. We
express the obligations formed at Stage 0 utilizing a flow network representation.5

The obligations are expressed with a network N = 〈V, A, f 〉. V specifies a set
of vertices, which corresponds to |V | − 1 number of the financial institutions added
with one hypothetical entity. The role of the hypothetical entity is stated shortly in
this section. A = {(v, v′, n)|v, v′ ∈ V, n = 1, 2, . . .} specifies a set of arcs, where
each arc (v, v′, k) shows that v has some amount of obligation to v′, and k is used as
an index that distinguishes among multiple arcs for (v, v′). The indices are usually
not mentioned in order to avoid being notationally cumbersome. Then, f : A → R+
expresses the amount of the relevant obligations. We assume that all the obligations
for the trades of the target security are formed against the hypothetical entity. Using
the introduced notations, (N = 〈V, A, f 〉, v∗ ∈ V ) is exogenously given at Stage 0,
which we call a financial system with hypothetical entity v∗.

We confine ourselves to a balanced network throughout this study.We say a network
〈V, A, f 〉 is balancedwhen for each vertex v ∈ V , the total amount of obligations owed
by v and those owed to v are equal, that is,

∑
v′∈V f ((v′, v)) = ∑

v′∈V f ((v, v′)) for
every v ∈ V . This is explicitly stated as Assumption 1. The assumption of balanced
networks has dual roles. On the one hand, it implies market clearing regarding the
trades of the target security, since the total amount of obligations owed to and by the
hypothetical entity are supposed to be equal. On the other hand, a balanced network
at Stage 0 derives a balanced network at later stages. There, we examine relevant
liquidity needs based on each network, and the assumption of the balanced network
serves to simplify our analysis.6

Assumption 1 Given a financial system (N = 〈V, A, f 〉, v∗ ∈ V ), network N is
balanced.

We further assume that each of the obligations owed to and by the hypothetical
entity is the same amount, that is, the price of the target security is supposed to be
fixed, and each trade is made in the same unit. The assumption is formally stated as
follows.

Assumption 2 Given a financial system (N = 〈V, A, f 〉, v∗ ∈ V ), network N has
the common obligation value m > 0 regarding the hypothetical entity v∗ such that,

i) (obligations owed by v∗) f ((v∗, v)) = m, for every v ∈ V such that (v∗, v) ∈ A,
and

5 For basic terminologies of flow networks, we obey the textbook usages. See, for example, Ahuja et al.
(1993).
6 Our analysis on balanced networks could be extended to networks that are not balanced. For a non-
balanced network, we could derive a balanced network by “local changes,” such as adding arcs and/or
adjusting relevant weights. Conversely, we derive the original non-balanced network through the relevant
“reverse” local changes on the balancednetwork.The amount of liquidity needs for the original non-balanced
network could be derived by examining the effects of those “reverse” local changes on the balanced network.
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Fig. 1 Example financial system consistent with all the assumptions. Financial system (〈V, A, f 〉, vc):
V = {

va , vb, vc, vd , ve, v f
}
, A = {(va , vb), (vb, vc), (vc, va), (vc, ve), (ve, vd ), (vd , vc),

(vc, v f ), (v f , vc)}, f (a) = 10 for every a ∈ A
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Fig. 2 Example financial systems that do not satisfy one of the assumptions. In all three financial systems,
vc is assumed as the hypothetical entity. Each financial system violates one of the assumptions. The left
financial system violates Assumption 1, since va receives 10 in total, which is larger than the total amount
of its payment 5. The middle financial system violates Assumption 2, since f ((v f , vc)) �= f ((vb, vc)).
The right financial system violates Assumption 3, since it indicates no trade of the target security other than
those by v f

ii) (obligations owed to v∗) f ((v′, v∗)) = m, for every v′ ∈ V such that (v′, v∗) ∈ A.

Combined with Assumptions 1 and 2, the next assumption ensures there are some
feasible bilateral trades for the target security, that is, if one financial institution is to
buy (sell) a certain amount of the target security, at least the same amount of the target
security are sold (bought) by the other financial institutions.

Assumption 3 Given a financial system (N = 〈V, A, f 〉, v∗ ∈ V ),

i) for every v ∈ V \v∗, the number of “buys” of the target security by v is equal
to or less than the number of “sells” of the target security by the other financial
institutions. Formally, |{(v, v∗, k) ∈ A|k = 1, 2, .., }| ≤ |{(v∗, v′, k) ∈ A|k =
1, 2, .., v′ ∈ V, v′ �= v}|.

ii) for every v ∈ V \v∗, the number of “sells” of the target security by v is equal
to or less than the number of “buys” of the target security by the other financial
institutions. Formally, |{(v∗, v, k) ∈ A|k = 1, 2, .., }| ≤ |{(v′, v∗, k) ∈ A|k =
1, 2, . . . , v′ ∈ V, v′ �= v}|.
An example financial system that satisfies all Assumptions 1, 2, and 3 is shown in

Fig. 1, where vc corresponds to the hypothetical entity, and there are six obligations for
the target security. For presentational purposes, obligations for the target security are
shownwith thicker lines, while those for the non-target security are shownwith thinner
lines, and this applies throughout this article. For clarification of the assumptions, Fig. 2
shows three financial systems, in which each financial system is inconsistent with one
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Fig. 3 Bilateral networks for
the financial system shown in
Fig. 1
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of the assumptions. The left financial system does not satisfyAssumption 1, themiddle
financial system does not satisfy Assumption 2, and the right financial system does
not satisfy Assumption 3.

2.2 Stage 1: CCP scheme/bilateral scheme

At Stage 1, the hypothetical entity is materialized under either of the two schemes: the
CCP scheme and the bilateral scheme. For the CCP scheme, the hypothetical entity
is itself reinterpreted as a CCP for the target security. Thus, the network given at
Stage 0 is unchanged. When the given network as Stage 0 is that shown in Fig. 1 with
hypothetical entity vc, vc is reinterpreted simply as the CCP under the CCP scheme at
Stage 1. Note that the CCP does not offset obligations at Stage 1, but it will do so at
Stage 2. In order to simplify relevant statements, we refer to a network derived under
the CCP scheme at Stage 1 as a CCP network.

For the bilateral scheme, the hypothetical entity is made to vanish, and we examine
all the possible bilateral trades for the target security. We refer to networks that are
derived under the bilateral scheme as bilateral networks. Specifically, when the finan-
cial system shown in Fig. 1 is given at Stage 0 with hypothetical entity vc, we derive
four bilateral networks, as shown in Fig. 3. Observe that in each bilateral network,
each obligation (v, vc), v ∈ {vb, vd , v f } that is previously owed to the hypothetical
entity is paired with an obligation (vc, v

′), v′ ∈ {va, ve, v f } that is previously owed
by the hypothetical entity, and the pair of arcs is replaced with a new arc (v, v′).
For the network shown on the upper-left in Fig. 3, the relevant arcs are paired such
that {(vb, vc), (vc, v f )}, {(v f , vc), (vc, va)}, {(vd , vc), (vc, ve)}, and each of the pairs
is replaced by each of (vb, v f ), (v f , va), and (vd , ve).

In general, for a given financial system (N = 〈V, A, f 〉, v∗ ∈ V ), let Ato ⊂ A
denote a set of obligations owed to the hypothetical entity, and Aby ⊂ A denote a set
of obligations owed by the hypothetical entity. Note that |Ato| = |Aby |.7 Consider

7 For a network N shown in Fig. 1 with hypothetical entity vc , Ato = {(vb, vc), (vd , vc), (v f , vc)}, and
Aby = {(vc, va), (vc, ve), (vc, v f )}, with |Ato| = |Aby | = 3.
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Fig. 4 Networks that are not assumed as bilateral networks for the financial system shown in Fig. 1. For
the network shown Fig. 1, each of the networks shown in the figures is derived when the pair of arcs
{(vc, v f ), (v f , vc)} is replaced with the vertex v f . We do not assume these networks as relevant bilateral
networks since it effectively assumes offsetting of obligations under the bilateral scheme.

Fig. 5 The net-out CCP
network for the financial system
shown in Fig. 1. The pair of arcs
{(v f , vc), (vc, v f )} has been
removed from the network
shown in Fig. 1
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all the possible one-to-one matchings between Ato and Aby . For each matching, let
each pair of arcs {(v, v∗), (v∗, v′)}, v, v′ ∈ V be replaced with a new arc (v, v′).
Here, we exclude any matching that includes a pair of arcs regarding the same vertex
such that {(v, v∗), (v∗, v)}, v ∈ V .8 The reason for the exclusion of such matching is
that the pair of obligations {(v, v∗), (v∗, v)} needs be replaced with vertex v, which
effectively assumes offsetting between the paired obligations.We assume any bilateral
or multilateral offsetting is not executed under the bilateral scheme.

In examining bilateral networks, our later analysis examines all the possible match-
ings instead of focusing on any specific probable matching. In this sense, we do not
make any assumption about counterparty risks conceived among financial institutions,
or other factors that affect probable realization of matching.

2.3 Stage 2: Offsetting under the CCP scheme

Stage 2 is relevant only to networks derived under the CCP scheme. The CCP now
offsets obligations, and we derive an associated network. For example, when we see
the network in Fig. 1 as a CCP network with CCP vc, offsetting by the CCP derives
a network shown in Fig. 5, where the pair of obligations {(v f , vc), (vc, v f )} has been
offset. In general, for a CCP networkN = 〈V, A, f 〉with CCP v∗ ∈ V , remove all the
arcs that constitute a pair {(v, v∗), (v∗, v)}, for v ∈ V . We call the derived network the
net-out CCP network regarding v∗. Our aim is to compare the set of bilateral networks
and the net-out CCP network, given the same financial system. When the given finan-

8 For network N shown in Fig. 1 with hypothetical entity vc , we exclude one-to-one matchings in which
the pair of arcs {(v f , vc), (vc, v f )} is included. Those excluded matchings would yield networks shown in
Fig. 4.
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Fig. 6 Example sequence and relevant liquidity needs (1). s(va , vb) = 1, s(vb, vc) = 2, s(vc, ve) = 3,
s(ve, vd ) = 4, s(vd , vc) = 5, s(vc, va) = 1, pva (s) = 10, and pvb (s) = pvc (s) = pvd (s) = pve (s) =
pv f (s) = 0

cial system is a network shown in Fig. 1 with hypothetical entity vc, we compare the
set of bilateral networks shown in Fig. 3 with the net-out CCP network shown in Fig. 5.

2.4 Stage 3: Settlement of obligations

At Stage 3, the remaining obligations are settled on a gross basis.9 Specifically, we
define a gross settlement for a network N = 〈V, A, f 〉 with one-to-one mapping
(sequence) s : A → {1, 2, .., |A||} and a set of values {pv(s) ≥ 0}v∈V , in which the
former shows the relative order of the settlements, while the latter shows the liquidity
needs for each v ∈ V under the order. For a network shown in Fig. 5, an example
sequence s : A → {1, 2, . . . , 6} is shown on the left side of Fig. 6, in which s(a)

is written on the upper-right of the value f (a) for each a ∈ A. The right side of the
figure shows the same network to which is added the corresponding pv(s) for each
v ∈ V , where each value is shown in boldface. Under the specified order, the financial
institution expressed asva needs to input 10 funds, since it has not received any liquidity
before. For each of the rest of the institutions, including the CCP, the liquidity needs
are shown as zero, since each has received sufficient amount of liquidity when each
settles its obligation. Thus, we set {pv(s)}v∈V so that pv(s) is neither redundant nor
short of the settlements for each v ∈ V under given sequence s. Formally, we explicitly
set {pv(s)}v∈V in the following procedure.

• Procedure to set {pv(s)}v∈V
·Let 〈V, A, f 〉 and s : A → {1, 2, .., |A|} be given.
·Let k = 0, 1, 2, . . . , show the current order for the relevant settlements.
·Let phv (k) indicate the current liquidity holding.
·Let pdv (k) indicate the current liquidity needs.

• Initialization
· Set phv (0) = 0 and pdv (0) = 0, for every v ∈ V .
· Set k = 1.

9 TheWorldBank (2013) reports thatmore than80%of the surveyedpayment systemshad adopted real-time
gross settlement (RTGS) systems. Several interbank payment systems incorporate offsetting mechanisms
into their RTGS systems, which are referred to as the liquidity saving mechanism. From this perspective,
this study assumes that settlements at Stage 3 are under an RTGS system without any liquidity saving
mechanism.
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• Main Procedure
· Take a = (v, v′) ∈ A such that s(a) = k.
i) For the payer v, set pdv (k) and phv (k) as follows.

· pdv (k) = max( f (a) − phv (k − 1), 0),
· phv (k) = max(phv (k − 1) − f (a), 0).

ii) For the receiver v′, set pd
v′(k) and ph

v′(k) as follows.
· pd

v′(k) = 0,
· ph

v′(k) = ph
v′(k − 1) + f (a).

iii) For the other v′′ ∈ V \{v, v′}, set pd
v′′(k) = 0 and ph

v′′(k) = ph
v′′(k − 1).

· Update the current order as k := k + 1.
· If k > |A|, proceed to the finalization; otherwise, repeat the main
procedure with the updated k.

• Finalization
· For each v ∈ V , set pv(s) = ∑|A|

k=1 p
d
v (k).

For given network 〈V, A, f 〉 and sequence s : A → {1, 2, . . . , |A|}, we examine
total liquidity needs

∑
v∈V pv(s) for our analysis. Note that we refer to liquidity needs

as the amount of liquidity necessary for the relevant settlements, but not the amount
of liquidity that is prepared by financial institutions from an ex-ante perspective.The
purpose is to clarify liquidity needs in relation to the overall financial state, independent
of expectations held by the relevant financial institutions that could depend on each
individual context. The overall financial state is expressed with each of our liquidity
scenarios.

2.4.1 Liquidity scenarios

We focus on two polar types of scenario for our analysis; one is a scenario in the good
environment, and the other in the bad environment. The good environment refers to
the financial state in which settlements are executed under the best coordination, and
the overall liquidity needs is the minimum possible. By contrast, the bad environment
refers to the state in which settlements are executed under the worst coordination, and
liquidity needs are the maximum possible. The bad environment is meant to express
liquidity needs during times of financial distress, while the good environment is used
as a benchmark state in times of non-distress. Given a net-out CCP network in Fig. 5,
Fig. 6 shows a settlement in the good environment, and Fig. 7 shows a settlement in
the bad environment for the same network.

Formally, the total liquidity needs in each environment is derived by each of the
following minimization and maximization problems.

(Liquidity problem for the good environment)10

Given network 〈V, A, f 〉, take one-to-one mapping s : A → {1, 2, . . . , |A|} and
associated {pv(s)}v∈V such that

mins
∑

v∈V pv(s).

10 The presented minimization and maximization problems are formally introduced in Hayakawa (2016),
Hayakawa (2014), and originally in his doctoral thesis. In arguing the computational aspect, the problems
are specifically referred to as the (minimum/maximum) settlement fund circulation problem.
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Fig. 7 Example sequence and relevant liquidity needs (2) s(va , vb) = 1, s(vb, vc) = 2, s(vc, ve) = 3,
s(ve, vd ) = 4, s(vd , vc) = 5, s(vc, va) = 1, pva (s) = 10, and pvb (s) = pvc (s) = pvd (s) = pve (s) =
pv f (s) = 0

Fig. 8 Settlements in the good
environment
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(Liquidity problem for the bad environment)
Given network 〈V, A, f 〉, take one-to-one mapping s : A → {1, 2, . . . , |A|} and

associated {pv(s)}v∈V such that
maxs

∑
v∈V pv(s).

In other words, the liquidity problem for the good (bad) environment derives the
minimum (maximum) total liquidity needs with respect to every possible order of
settlements. For clarity of the problems, take the networks shown in Fig. 3 as inputs
for each of the minimization and maximization problems. Then, Fig. 8 shows relevant
settlements in the good environment, and Fig. 9 shows those in the bad environment.

The bad environment could be interpreted as a panic situation that is typical in times
of financial distress,wherebyfinancial institutions try to receive their payments as early
as possible, or require margin for their relevant exposure. Notice that in our model,
we do not allowmultiple settlements to be made simultaneously, since we assume that
each different order needs to be set for each arc. That means not all the obligations are
settled with additional liquidity input, as confirmed in Fig. 7, where pvc = 0 instead
of 20. In other words, a certain positive amount of liquidity is economized even under
the bad environment. This is because when the first payment is made, there is at least
one institution that receives liquidity before it makes any payment. This captures the
essential nature of the circulation of liquidity such that liquidity can be used once it is
obtained. The good environment is treated as an ideally efficient situation in terms of
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Fig. 9 Settlements in the bad
environment
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liquidity input, in which the liquidity inputs, and associated costs, are economized as
much as possible.

3 Illustrative examples

We argue that the effect of a CCP needs be examined carefully in each liquidity
scenario. We show that in the bad environment, a CCP increases overall liquidity
needs if the netting efficiency is not sufficiently high. Still, higher netting efficiency
contributes to decrease liquidity needs in the bad environment, and sufficiently high
netting efficiency ensures that the CCP decreases the total liquidity needs compared to
the corresponding bilateral settlements. However, whenwe consider the good environ-
ment, higher netting efficiency does not necessarily serve to decrease overall liquidity
needs. Actually, it is possible that higher netting efficiency leads to larger overall liq-
uidity needs. Thus, there is a possible trade-off regarding the netting service provided
by the CCP.

In order to illustrate the trade-off and our relevant analysis in a less formal manner,
here, we examine three example financial systems (A), (B), and (C), shown in Fig. 10.
Hypothetical entity is vc in each financial system. As easily confirmed, the amount of
obligations offset by the CCP is the largest for (C), and zero for (A).

Figure 11 shows settlements for networks generated by financial system (A).
Although we have more than one bilateral network, for illustrative purposes, we focus
on one bilateral network shown in the figure. In the analysis section, we show results
considering all possible bilateral networks for each given financial system. Figure 11
shows an example order of settlements and the relevant liquidity needs for each of the
two networks (a net-out CCP network and a bilateral network) in each environment.
Observe that in the bad environment, the total liquidity needs are larger for the CCP
scheme, while it is the same in the good environment. In the same manner, Fig. 12
shows relevant settlements for financial system (B), and Fig. 13 shows those for finan-
cial system (C). Notice that the offsetting amount increases when we move from (A)
to (B) and from (B) to (C). Thus, we observe that as the offsetting amount increases,
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Fig. 10 Example financial systems. In each financial system (A), (B), and (C), vc is assumed as the
hypothetical entity
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Fig. 11 Financial system (A): relevant settlements. For each network, relevant order is presented for each
arc and the corresponding liquidity needs are presented for each vertex. We omit the relevant amount of
obligations, which is 10 for all the arcs, in this figure

the total liquidity needs under the CCP scheme become relatively smaller in the bad
environment, but relatively larger in the good environment. This shows the possible
trade-off of the multilateral offsetting by the CCP.
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Fig. 12 Financial system (B): relevant settlements
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Fig. 13 Financial system (C): relevant settlements

The trade-off of the multilateral offsetting by the CCP is better understood by
decomposing the total effect of the CCP into two types. One type is referred to as the
central routing effect, and the other as the central netting effect. The base result
shown in the analysis section is summarized as follows.
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Fig. 14 Financial system (A): relevant settlements (2)

(Total effect) = (Central netting effect) + (Central routing effect).

The base result essentially states that the total effect is quantitatively decomposed
into the two effects, such that the two effects are additive with each other.

3.1 Central routing effect

For financial system (A), there is no offsetting under the CCP scheme, which lets the
net-out CCP network be equal to the CCP network. Thus, the total effect of the CCP for
financial system (A) equals the central routing effect. Furthermore, the central routing
effect of the CCP for each financial system (B) and (C) is equal to that for financial
system (A), from the observation that each net-out CCP network for financial system
(B) and (C) is essentially the same as the CCP network for financial system (A). This
is formally shown in the analysis section.

For financial system (A) and relevant networks, as shown in Fig. 11, the liquid-
ity needs in the bad environment are larger for the net-out CCP network than the
shown bilateral network. This also holds when we compare the net-out CCP network
to another bilateral network, as shown in Fig. 14. In general, we show that the central
routing effect in the bad environment is strictly negative. By comparison, as indicated
by the two figures, the liquidity needs for the net-out CCP network in the good environ-
ment is either equal to or smaller than that for each of the relevant bilateral networks.
In general, we show that the central routing effect in the good environment is weakly
positive in that sense.

The intuition for the results presented above is as follows. In the good environment,
the CCP tends to provide additional routes for liquidity to circulate more efficiently.
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This is well illustrated in Fig. 14. For the bilateral network shown on the right of the
figure, there are four mutually isolated cycles of obligations. When we turn to the
net-out CCP network shown on the left, we observe that the CCP serves to connect
two of the previous isolated cycles to let them form one cycle. The same liquidity
can now circulate throughout the united cycle. By contrast, in the bad environment,
the CCP provides an additional stop for liquidity, which always increases the total
liquidity needs. This is easier to observe in Fig. 11. Each of the bilateral and net-out
CCP networks consists of three mutually isolated cycles. The difference is that for the
net-out CCP network, there is one additional vertex for one of the cycles (the cycle at
the center). This actually increases the liquidity needs for the relevant cycle from 30
to 40.

The central routing effect clarifies a negative aspect of adding a CCP during times
of financial distress. For the case of derivative contracts, the CCP tends to demand
liquidity in the form ofmargin. Suppose that the relevant derivatives are tradedwithout
any CCP; then, it is possible that the direct counterparty instead of the CCP demands
margin, intending to ensure counterparty risk. Suppose that for some derivative trade,
the margin demanded by the CCP is the same level as that demanded by the direct
counterparty; then, there is no change in the amount of the required margin for the
trade itself. However, during times of financial distress when margin requirement is
prevalent regardless of the types of derivatives, adding a CCP indicates that the number
of institutions that require margin effectively increases in total. This is interpreted as
a negative externality of adding a CCP, which is well demonstrated by the central
routing effect.

3.2 Central netting effect

In order to observe the central netting effect for a given financial system, we take
a corresponding financial network as the standard for comparison. Specifically, for
each financial system (B) and (C) shown in Fig. 10, the standard financial system is
financial system (A). In general, for a given financial system, we take the standard
financial system by offsetting all the obligations regarding the hypothetical entity. For
financial systems (B) and (C), the hypothetical entity is vc, and offsetting the relevant
obligations yields financial system (A). Our view is that the central routing effect
for a given financial system is the same as that for its standard financial system, and
the central netting effect is captured by comparing the bilateral networks for the two
financial systems. For example, a bilateral network for financial system (B) shown
on the right of Fig. 15 is compared with a bilateral network for financial system (A)
shown on the left of the same figure. The way to correspond the relevant bilateral
networks is shown in the analysis section. We observe there are two mutually isolated
cycles in the bilateral network for financial system (B), while there are three for
(A).11 We consider that the original larger cycle in (B) is separated into two cycles
(one with three vertices and one with four vertices) in (A). In the bad environment,
the separation tends to decrease the number of stops for liquidity, and accordingly

11 Note that we refer to a cycle even when it consists of multiple cycles that are mutually connected.
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Fig. 15 Financial systems (A) and (B): networks under the bilateral scheme

decreases the liquidity needs. In general, we show that the central netting effect is
weakly positive in the bad environment. By contrast, in the good environment, the
separation now could increase liquidity needs. This is because the same liquidity can
circulate only within each of the separated cycles. Figure 16 compares a bilateral
network for financial system (C) shown on the right and that for financial system
(A) shown on the left, for which we confirm the central netting effect in the same
manner.

Although we observe a negative aspect of the central netting effect in Figs. 15
and 16, it could conversely have a positive effect.We illustrate this point using financial
systems (D) and (E), shown in Fig. 17. Note that (D) is the standard financial system
for (E). Thus, the central routing effect for (E) is captured through (D). Figure 18
shows example bilateral networks for our examination of the central netting effect.
We observe that the central netting effect is positive in the good environment. We
observe three mutually separated cycles for (E) and two for (D). The liquidity needs
are reduced by reducing one cycle.

Suppose each of isolated vertices v f and vg in (E) forms a cycle with additional
vertices and arcs through the trades of the non-target security, as is the case for financial
system (C). Then, whether the central netting effect in the good environment is positive
or negative depends on the amount of obligations for the non-target security. Actually,
we show that it is positive when the amount of obligations for the non-target security
is sufficiently small (financial system (E) is understood as an extreme case such that
there is no relevant trade of the non-target security.).
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Fig. 16 Financial systems (A) and (C): networks under the bilateral scheme
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Fig. 17 Financial systems (D) and (E)

On the contrary, we show that the central netting effect is negative in the good
environment if the amount of each obligation for the target security is relatively
small compared to that for the non-target security. This has a political implication
in that the operating cost of CCPs in terms of the overall liquidity needs should not
be evaluated solely from the activities of the CCPs themselves, but their external-
ities on the efficiency of liquidity circulation should be considered with sufficient
care.

4 Overview of the results

We briefly overview the analysis and relevant results presented in the next section. In
the analysis, first, the decomposition of the total effect of adding a CCP is formally
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Fig. 18 Financial systems (D) and (E): networks under the bilateral scheme

presented. Although we illustrate the decomposition in Sect. 3 using example bilateral
networks for given financial system, Theorem 1 ensures that the decomposition is
well defined in the sense that the decomposition is applied to all the possible bilateral
networks consistently. The decomposition serves as the analytical basis for showing
our relevant results.

Theorem 2 shows the general results for the central routing effect both in the good
and bad environment, and Theorem 4 shows the general results for the central netting
effect in the bad environment. When we focus on the results in the bad environment,
the combination of Theorems 2 and 4 implies that in order for a CCP to have a positive
total effect during times of financial distress, it needs to provide sufficiently high
netting efficiency.

For the quantitative aspect regarding how much netting efficiency is needed for a
CCP to have a positive effect in the bad environment, we introduce a specific class
of financial systems to capture the interconnected feature of real world networks of
financial obligations. For the specific class, Theorem 3 shows the quantitative aspect
of the central routing effect, while Theorem 5 shows the quantitative aspect of the
central netting effect. The results for the combined total effect are summarized in
Theorem 6. The theorem shows that the required netting efficiency is 66.6% for the
specific class of financial systems, in order to ensure the total effect of a CCP to be
positive in the bad environment . The theorem further explicitly shows the trade-off of
multilateral netting by a CCP in that higher netting efficiency leads to a larger negative
effect in the good environment when each obligation settled by the CCP is relatively
small.
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Fig. 19 A schematic illustration of the decomposition of the effect of a CCP. There are two types of arrows
shown in the figure: thinner arrows and thicker arrows. Each thinner arrow starts from either of the financial
systems, which shows the possible network under each scheme. The three thicker arrows are to illustrate
the decomposition

5 Analysis

5.1 Decomposition of the effect of a CCP

We formally show the decomposition of the effect of aCCP. In order to clarify the state-
ment and relevant notations, Fig. 19 provides a corresponding schematic illustration.

Given financial system (N , v∗) ( 1©), denote the network derived under the CCP
scheme as N net ( 2©), which is referred to as the net-out CCP network for (N , v∗).
In an informal description,N net is derived from (N , v∗) by offsetting all obligations
regarding v∗. Then, for the original financial system (N , v∗), take the corresponding
financial system (N net , v∗) ( 3©), which is referred to as a net-out financial system.
Note that the net-out CCP network for the obtained net-out financial system (N net , v∗)
is the same N net ( 2©).12

Then, for each bilateral networkN B ( 4©) for the original financial system (N , v∗)
( 1©), we take its corresponding bilateral networkN Bnet ( 5©) for the obtained financial
system (N net , v∗) ( 3©). The procedure for taking correspondingN Bnet is specified by
(P1) provided below.

For our formal expression regarding the total liquidity needs in each environment,
let xmin(〈V, A, f 〉) (xmax (〈V, A, f 〉)) denote the total liquidity needs in the good
(bad) environment for given network 〈V, A, f 〉. Specifically, xmin(〈V, A, f 〉) =
mins

∑
v∈V pv(s), and xmax (〈V, A, f 〉) = mins

∑
v∈V pv(s), using the notations

defined in Sect. 2.4.
The total effect of aCCP in the good environment is examined through a set of values

{xmin(N B) − xmin(N net )} with respect to every possible N B , and the effect in the
bad environment is examined in exactly the same manner. For now, suppose we have

12 The dotted line in Fig. 19 shows thatN net is the same for 2© and 3©.
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somehow derived a corresponding N Bnet for each N B . We show our decomposition
below, which states that for each N B , the total effect a CCP is decomposed into two
effects based on each corresponding N Bnet .

Decomposition of the effect of a CCP

(Total effect) = (Central Netting effect) + (Central Routing effect).
·xmin(NB) − xmin(N net ) = (xmin(N B) − xmin(N Bnet )) + (xmin(N Bnet ) −
xmin(N net )).
·xmax (NB) − xmax (N net ) = (xmax (N B) − xmax (N Bnet )) + (xmax (N Bnet ) −
xmax (N net )).

The (P1) procedure below explicitly shows the way to take corresponding N Bnet

for each N B .

5.1.1 (P1) procedure and decomposition

We prepare for the statement of the (P1) procedure. For a financial system (N =
〈V, A, f 〉, v∗ ∈ V ), take a bilateral networkN B . We denote a set of obligations owed
to the hypothetical entity as Ato ⊂ A, and a set of obligations owed by the hypothetical
entity as Aby ⊂ A. Furthermore, we say {(v, v∗), (v∗, v)} as an offsettable pair with
respect to v. Let M : Ato → Aby denote a one-to-one matching that yields the
bilateral network N B . When {(v, v∗), (v∗, v′)} are matched in some matching, then
we say (v, v′) is an arc derived by the matching. Given financial system (N , v∗)
and bilateral network N B derived by one-to-one matching M, the following (P1)
procedure yields the corresponding bilateral network N Bnet .

(P1) procedure

· For financial system (N , v∗), let f m denote the unit price of the target security.

Initialization

· For N Bnet = 〈V Bnet , ABnet , f Bnet 〉, set N Bnet = N B .

Main Procedure

· Take an offsettable pair {(v, v∗), (v∗, v)} for (N , v∗). Let (v, v′) and (v′′, v) be
arcs derived bymatchingM, in which (v, v∗) is matched with (v∗, v′), and (v∗, v)

is matched with (v′′, v∗).
1. Remove the pair of arcs {(v, v′), (v′′, v)} from ABnet .
2. Then, if v′ �= v′′, add a new arc (v′′, v′) to ABnet , and let f Bnet ((v′′, v′)) = f m .
· Repeat the main procedure until there is no offsettable pair.

Figure 20 explicitly shows how the (P1) procedure works, in which given financial
system (N , vc) is shown in the upper-right in the box, and the relevant networkN B is
shown in the lower-right in the box. The procedure yieldsN Bnet shown in the lower-left
in the box, through the temporary network shown at the bottom of the figure.

For this specific example, the derived N Bnet is easily confirmed as a bilateral net-
work for (N net , vc), whereN net is the net-out CCP network for the original financial
system (N , vc). The first part of the following Theorem 1 ensures that this observation
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Fig. 20 Example for the (P1) procedure. There is only one offsettable pair for (N , vc), which is
{(v f , vc), (vc, v f )}.Under thematching that yieldsN B , (v f , vc) ismatchedwith (vc, va),while (vc, v f ) is
matchedwith (vd , vc). Thus, the (P1) procedure removes the correspondingpair of arcs {(vd , v f ), (v f , va)},
and then, adds a new arc (vd , va) with f ((vd , va)) = 10

holds for each given bilateral network. The second part of the theorem shows consis-
tency of the decomposition for the given financial system. The theorem shows that the
decomposition is well-defined.

Theorem 1 Well-defined feature of the decomposition
Given financial system (N , v∗), denote its net-out CCP network asN net . We obtain

another financial system (N net , v∗).
(i) Take arbitrary bilateral networkN B for financial system (N , v∗). The (P1) pro-

cedure forN B uniquely yields a bilateral network for financial system (N net , v∗).
(ii) For anybilateral networkN Bnet for (N net , v∗), there is always abilateral network

N B for (N , v∗) such that the (P1) procedure for N B yields N Bnet .

Proof See Appendix 7.2. �
Regarding part (ii) of Theorem 1, observe that for net-out financial system

(N net , vc) shown in Fig. 20, there is another bilateral network. Figure 21 confirms that
the (P1) procedure actually yields the network, from some different bilateral network
N B for the original financial system (N , vc).
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Fig. 21 Another Example for the (P1) procedure. There is only one offsettable pair for (N , vc), which
is {(v f , vc), (vc, v f )}. Under the matching that yields N B , (v f , vc) is matched with (vc, va), while
(vc, v f ) is now matched with (vb, vc). Thus, the (P1) procedure removes the corresponding pair of arcs
{(vb, v f ), (v f , va)}, and then, adds a new arc (vb, va) with f ((vb, va)) = 10

5.2 Central routing effect

Theorem 2 Central routing effect

(i) The central routing effect is always strictly negative in the bad environment.
(ii) The central routing effect is always weakly positive in the good environment.

Formally, given net-out financial system (N net , v∗), for any bilateral networkN Bnet ,
we obtain

(i) xmax (N Bnet ) − xmax (N net ) < 0.
(ii) xmin(N Bnet ) − xmin(N net ) ≥ 0.

Proof See Appendix 7.3. �
The theorem shows that the central routing effect works in different directions

between the good and bad environments. In the good environment, additional CCP
tends to provide additional routes for liquidity to circulatemore efficiently. By contrast,
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Fig. 22 Illustration of the central routing effect (1)

in the bad environment, additional CCP serves as an additional stop for liquidity, which
always increases liquidity needs.

We illustrate the intuition for the proof using Figs. 22 and 23.Given financial system
(N net , vc), which is shown in the upper part of the box in each figure, the same Nnet

shows the net-out CCP network. In each of the two figures, bilateral networkN Bnet is
shown in the lower part in the box. In the proof, we define a procedure to deriveN net

fromarbitraryN Bnet . Theprocedure consists of twooperations on the relevant network.
As illustrated in the figures, the operations are referred to as arc separation and vertex
contraction, for which the relevant concrete operations are described in each figure,
and the definitions are formally stated in the appendix. In the relevant procedure, the
arc separation serves to add additional vertices, while the vertex contraction reduces
the added vertices by merging them into one vertex.

As formally shown in the appendix, in the bad environment, the arc separation
always increases the total liquidity needs in proportion to the number of added vertices.
Although the proceeding vertex contraction serves to reduce the total liquidity needs
by reducing the number of vertices, the effect by the preceding arc separation is always
larger. In the good environment, the arc separation has no effect on the total liquidity
needs. The vertex contraction always serve toweakly decrease the total liquidity needs,
by enlarging the possible route for each liquidity to circulate. Observe that in Fig. 22,
the vertex contraction fails to enlarge the relevant route, while in Fig. 23, the vertex
contraction successfully enlarges the route by connecting the two cycles.

In order to observe the quantitative aspect of the central routing effect, we define
a class of basic net-out financial systems, which includes financial systems shown in
the upper row in Fig. 24. We let a triangle refer to a cycle that is expressed with three
different vertices {va, vb, vc} and three arcs {(va, vb), (vb, vc), (vc, va)}.
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Fig. 23 Illustration of the central routing effect (2)

Basic net-out Financial systems

Networks under the Bilateral Schemes

Fig. 24 Examples of basic net-out financial systems. Weights on the arcs are not shown. The upper row
shows three basic net-out financial systems in which the center vertex is the hypothetical entity for each. In
the middle and lower rows for each column, we show the relevant bilateral networks
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Definition 1 Basic net-out financial system
A financial system (N , v∗) is a basic net-out financial system, when

(i) it consists of triangles, and
(ii) v∗ is included in every triangle, and every triangle is connected with each other

only with vertex v∗.

Theorem 3 The central routing effect: Basic net-out financial system
Given basic net-out financial system (N net , v∗) with J ≥ 2 triangles, let f m

denote the unit price of the target security. For arbitrary bilateral network N Bnet for
(N net , v∗), we obtain
(i) −J f m ≤ xmax (N Bnet ) − xmax (N net ) ≤ − f m.
(ii) 0 ≤ xmin(N Bnet ) − xmin(N net ) ≤ (J − 1) f m.

Proof See Appendix 7.4. �
Figure 24 easily confirms each of the lower bound and upper bound of the above-

mentioned results. Observe that each network shown in the middle row in the figure
consists of one cycle, while each network in the bottom row consists of J number
of cycles with J as the number of the relevant triangles. In the bad environment, the
smallest negative effect of the central routing effect is attained by networks in the
middle row, while the largest negative effect is attained by those in the bottom row.
This is because for each cycle, exactly one vertex is exempt from inputting additional
liquidity in the bad environment, and thus, a larger number of cycles means that more
vertices are exempt, given a fixed number of vertices in total. In the good environment,
themiddle rowshowsno effect of the central routing effect,while the bottom rowshows
the largest positive effect. It is easy to observe that a larger number of cycles means
less efficient circulation of liquidity, since at least one vertex in each cycle needs to
input liquidity.

Focusing on the bad environment, part (i) of Theorem 3 quantifies the range of
the negative effect of the central routing effect for the relevant class. In Sect. 5.4, we
argue about howmuch netting efficiency is required in order to cancel out the negative
effect.

5.3 Central netting effect

The central netting effect is also clarified through the operations of arc separation and
vertex contraction. We first illustrate this point using Fig. 25. The upper part of the box
shown in the figure is the same as that in Fig. 20, which illustrates the (P1) procedure.
Figure 25 illustrates that the (P1) procedure is replicated with the operations of the
reverse of arc separation and the reverse of vertex contraction. From the opposite
view, suppose that the (P1) procedure is derivedN Bnet fromN B , as shown in Fig. 20.
Then, Fig. 25 illustrates that we conversely deriveN B fromN Bnet by applying vertex
contraction and arc separation in this sequence. The effect of the combination of arc
separation and vertex contraction is already examined in Sect. 5.2.

One difference from the central routing effect is that another operation is relevant
for the case of the central netting effect, which is illustrated in Fig. 26. The figure
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Fig. 25 Illustration of the central netting effect (1)

shows two financial systems (A) and (C) and each relevant bilateral network. When
we examine the effect in the direction from N Bnet to N B , the operation is referred to
as cycle addition, for which the concrete operation is described in the figure and the
definition is formally stated in the appendix.

The central netting effect is not essentially as simple as the central routing effect
is, since cycle addition is also relevant. Still, the next theorem shows that the central
netting effect is rather simply stated in the bad environment.

Theorem 4 Central netting effect in the bad environment
The central netting effect is always strictly positive in the bad environment.

Formally, given financial system (N , v∗), for any bilateral networkN B, by taking
corresponding bilateral network N Bnet through the (P1) procedure, we obtain

xmax (N B) − xmax (N Bnet ) > 0.

Proof See Appendix 7.5. �
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Fig. 26 Illustration of the central netting effect (2)

The intuition of the proof is simple. Regarding the combination of the operations
of arc separation and vertex contraction, we have already confirmed that it strictly
increases the total liquidity needs in the bad environment. In addition, cycle addition
serves to generate additional liquidity needs, and thus, the total liquidity needs also
strictly increase in the bad environment. Since the central netting effect is examined
in the opposite direction, the central netting effect serves to strictly decrease the total
liquidity needs in the bad environment.

So far, we have confirmed that, in the bad environment, the central routing effect
is negative (part (i) of Theorem 2 in Sect. 5.2), while the central netting effect is
positive (Theorem 4). According to this, larger netting efficiency tends to improve the
total effect, but insufficient netting efficiency leads to a negative effect in total. In the
next subsection, we argue the quantitative aspect with respect to the extent of netting
efficiency required to cancel out the negative effect caused by the central routing effect.

In the good environment, it is possible for the central netting effect to be positive
or negative, as illustrated in the previous section. Remember that the combination
of the operations of arc separation and vertex contraction weakly decreases the total
liquidity needs in the good environment, as mentioned in the central routing effect.
However, both directions of the effect of cycle addition are possible. For the specific
example shown in Fig. 26, cycle addition decreases the total liquidity needs in the
good environment. The intuition is that the added cycle serves to connect the separated
cycles, and thus, serves to enlarge the route for liquidity to circulate. Specifically for
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Fig. 27 Illustration of the central netting effect (3)

the example, we obtain xmin(N B) − xmin(N Bnet ) = 10 ∗ 3 − 10 ∗ 4 = −10 < 0.
An opposite effect of cycle addition is illustrated in Fig. 27, in which financial system
(C’) is different from (C) in that the weights of the arcs for the two cycles placed
on the left and right are 4 instead of 10. The corresponding bilateral network shown
on the lower-right is derived from the bilateral network shown on the lower-left by
adding a cycle with the weight 10. Although adding the cycle still serves to enlarge the
route for liquidity to circulate, additional liquidity is now required for the added cycle.
Thus, cycle addition in this example increases the total liquidity needs in the good
environment, which means that the central netting effect is positive. Specifically for
this example, we obtain xmin(N B)−xmin(N Bnet ) = 10∗3−(10∗2+4∗2) = 2 > 0.
This indicates that the central netting effect tends to be negative when each obligation
settled by the CCP is relatively small compared to each obligation settled without the
CCP.

For our formal statements of the relevant results, we prepare the terminology of
isolated cycles. Given financial system (N , v∗) with network N = 〈V, A, f 〉, an
isolated cycle is a cycle with a set of vertices V ′ ⊂ V \v∗ such that V ′ constitute a
cycle in which each vertex v ∈ V ′ is not included in more than two arcs within A,
thereby an isolated cycle consists of no more than one cycle, there is no more than
one arc for any pair of vertices within V ′, and there is no other vertex v′ ∈ V \V ′ that
constitutes an arc with a vertex v ∈ V ′. For a given balanced network, we refer to the
weight of each isolated cycle as the weight of an arbitrary arc in each cycle, since any
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arc in the same isolated cycle has the same weight. Specifically, for financial system
(N net , vc) shown on the upper-left in Fig. 26, there are two isolated cycles, one with
vertices {v f , vg, vh}, and the other with {vi , v j , vk}, in which the weight of each cycle
is 10.

We compare a financial system that includes isolated cycles, with its corresponding
financial system in which the isolated cycles are connected to the hypothetical entity.
An example is shown in Fig. 26, in which each of the two isolated cycles in (N net , vc)

is connected to the hypothetical entity vc in (N , vc). Specifically, let v∗ denote the
hypothetical entity, and take arbitrary vertex v for an isolated cycle. Then, add a pair
of arcs {(v, v∗), (v∗, v)}. Add a pair of arcs for every isolated cycle in this manner.
The weight of each added arc is endowed by the given unit price of the target-security.

The next theorem shows the central netting effect for a class of financial systems
that include connected isolated cycles. The theorem reveals the quantitative aspect
of the central netting effect both in the good and bad environment, which is further
examined in combination with the central routing effect in the next subsection.

Theorem 5 Central netting effect: quantitative aspect
Given net-out financial system (N net , v∗) in which there exist 2K number of iso-

lated cycles {V1, V2, .., V2K } with integer K ≥ 1, and there is at least a pair of arcs
{(v, v∗), (v∗, v′)} such that v �= v′ and v, v′ /∈ {Vk}k=1,2,...,2K , take another financial
system (N , v∗) by connecting every isolated cycle to the hypothetical entity v∗. Denote
the unit price of the target security as f m, and denote the weight of each cycle indexed
with k = 1, 2, .., 2K as f k .

Then, for arbitrary bilateral networkN B of the financial system (N , v∗), by taking
corresponding net-out bilateral networkN Bnet through the (P1) procedure, we obtain

(i) K f m ≤ xmax (N B) − xmax (N Bnet ) ≤ 2K f m, and
(ii) −�2K

1 min( f k, f m) ≤ xmin(N B) − xmin(N Bnet ).

Furthermore, when f m is sufficiently small such that f m ≤ f k for every k =
1, 2, . . . , 2K, we obtain

(ii’) −2K f m ≤ xmin(N B) − xmin(N Bnet ) ≤ −K f m.

Proof See Appendix 7.6. �
The top row in Fig. 28 shows a financial system with four isolated cycles and a

corresponding financial systemwith connected isolated cycles. Themiddle and bottom
rows show relevant bilateral networks such that each network on the left is derived by
the (P1) procedure for the network on the right in the same row.

Observe that for the bilateral networks in the middle row, cycle addition is not
relevant for the relevant (P1) procedure, while only cycle addition is relevant for those
in the bottom row. For result (i) of Theorem5,we observe that the largest positive effect
in the bad environment is attained for the bilateral networks shown in the middle row,
while the smallest positive effect is attained for the bilateral networks in the bottom
row. The intuition is that in the relevant (P1) procedure, liquidity needs reduced by the
reverse of cycle addition is smaller than those reduced by corresponding combination
of reverse vertex contraction and reverse arc separation.
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(N , vc)(N net, vc)

NBNBnet

NBNBnet

Fig. 28 Illustration of the central netting effect (4). We do not show relevant weights for the arcs. Each
weight can be supposed as 10, or other values that satisfy our assumptions. For financial system (N , vc)

shown on the upper right, the corresponding financial system (N net , vc) is shown on the upper left. For
each financial system, the lower part of the figure shows two bilateral networks. For each network denoted
as N B , the left network denoted as N Bnet on the same height is derived by the (P1) procedure

For result (ii), the largest negative effect in the good environment is attained for the
bilateral networks shown in themiddle row. For the intuition, in the good environment,
the total liquidity needs become larger as the number of cycles increases. Actually,
for networks shown in the middle row, the number of cycles increases by 4 (from 1 to
5), while for networks in the bottom row, the number increases by 2 (from 4 to 6).

For result (ii’), the smallest possible negative effect is attained for networks shown
in the bottom of the figure. There, effectively two cycles are eliminated, and this has a
negative effect when the weights of the cycles are sufficiently small, which is ensured
by the added condition for the result.

5.4 Netting efficiency of a CCP and total effect

To examine the total effect of a CCP, we examine a specific class of financial systems,
in which a basic net-out financial system (defined in Sect. 5.2) is combined with
isolated cycles connected to the hypothetical entity. For example, financial system (C)
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in Fig. 26, (C’) in Fig. 27, and a financial system shown on the upper right in Fig. 28 are
within the class. We refer to a financial system within the class as a (J, 2K ) financial
system with integers J ≥ 2 and K ≥ 1, in which J triangles constitute a basic net-out
financial system, and 2K isolated cycles are connected to the hypothetical entity. Both
financial systems (C) and (C’) are (2, 2) financial systems, while the financial system
shown on the upper right in Fig. 28 is a (2, 4) financial system.

We refer to netting efficiency for a given financial system, as the ratio of the amount
of obligations that are eventually offset to the total amount of obligations with respect
to the hypothetical entity. Netting efficiency for a (J, 2K ) financial system is derived
as 2K

J+2K . Thus, note that netting efficiency for the financial system shown on the upper
right in Fig. 28 is two-thirds, which is shown as the threshold value for the direction
of the total effect of adding a CCP in the bad environment.

According to part (i) of the following Theorem 6, for the specified class, the netting
efficiency of a CCP must be larger than two-thirds in order for the total effect of a
CCP to be always positive in the bad environment.

According to part (ii), the worst of the total effect of adding a CCP in the good
environment is always negative, while it is possible for the best of the total effect to
be positive. Furthermore, according to part (ii’), when netting efficiency is larger than
two-thirds and each obligation settled by the added CCP is relatively small, then the
total effect of adding the CCP in the good environment is always negative.

Theorem 6 For given (J, 2K ) financial system (N , v∗) with isolated cycles {V1, V2,
. . . , V2K }, denote the unit price of the target security as f m, and denote the weight
of cycle Vk as f k for k = 1, 2, . . . , 2K. Then, for arbitrary bilateral network N B of
financial system (N , v∗), we obtain

(i) xmax (N B) − xmax (N net ) ≥ 0 if and only if J ≤ K, and
(ii) −�2K

1 min( f k, f m) ≤ xmin(N B) − xmin(N net ).

Furthermore, suppose J ≤ K. When f m is sufficiently small such that f m ≤ f k for
every k = 1, 2, . . . , 2K, then, we obtain

(ii’) xmin(N B) − xmin(N net ) ≤ − f m.

Proof See Appendix 7.7. �
The results are rather simply understood in light of our decomposition.We illustrate

the intuition using Fig. 28. For financial system (N , vc) shown on the top-right of the
figure, observe that in the bad environment, the smallest positive central netting effect
is attained for bilateral networks shown in the bottom row. Then, the largest negative
central routing effect in the bad environment is attained for the bilateral networks
between the bottom-left network and the net-out CCP network shown on the top-left.
Thus, for result (i), the largest negative total effect in the bad environment is derived
by adding the relevant effects, in which the relevant values are explicitly shown in part
(i) of Theorem 3 and part (i) of Theorem 5.

For result (ii) regarding the lower bound of the total effect (largest possible negative
effect), in the good environment, the largest negative central netting effect is attained
for the bilateral networks shown in the middle row, and the smallest positive central
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routing effect, which is zero, is again attained for the bilateral networks between the
bottom-left network and the net-out CCP network shown on the top-left. The relevant
values are derived by combining part (ii) of Theorem 3 and part (ii) of Theorem 5.

For result (ii’) regarding the upper bound of the total effect, under the added condi-
tions, the smallest negative central netting effect is attained for the bilateral networks
shown in the bottom row, and the largest positive central routing effect is attained
between the bottom-left network and the net-out CCP network. The relevant values
are derived by combining part (ii) of Theorem 3 and part (ii’) of Theorem 5.

5.5 Policy implications

Our analysis shows that even during times of financial distress, utilization of a CCP
is not unconditionally successful in reducing overall liquidity needs. This is because
the added CCP itself tends to demand liquidity, typically in the form of margin for
derivative trades. Still, multilateral netting provided by the CCP tends to decrease
the overall liquidity needs. Thus, adding a CCP reduces the liquidity needs in total
as long as the netting efficiency is sufficiently large. Conversely, this indicates that
a CCP should not be used if netting efficiency is expected to be sufficiently small.
Although the threshold netting efficiency depends on each network topology, our
analysis indicates that the threshold is not trivially low, suggesting two-thirds as one
benchmark value for a relevant policy.

Furthermore, our analysis indicates that operating a CCP after an economy is no
longer in financial distress could be costly from the perspective of overall liquidity
needs. Especially when an economy is far from financial distress, and liquidity could
be circulated in a highly efficient manner, multilateral netting by the CCP could hinder
the efficient circulation of liquidity. A negative effect of a CCP is more likely when
each contracted amount for trades settled by the CCP is relatively small. Thus, our
analysis indicates that operating a CCP that settles trades in relatively small amounts
is rather costly even when the expected netting efficiency is sufficiently high.

In total, the analysis indicates the possible merit in the flexible utilization of a CCP
only during times of financial distress. For trades that are settled by a CCP with high
netting efficiency but each trade amount is relatively small, flexible utilization has an
advantage over inflexible utilization of a CCP, in that the CCP operates regardless of
the state of the economy. Nevertheless, this needs to be examined in combination with
other relevant costs, which are not considered in this study.

5.6 Remark: specification of a CCP

In our analysis, we assume there is no difference between a CCP and other financial
institutions regarding the manner in which liquidity is demanded. However, this is not
necessarily the case in reality. Here, we take up two types of CCP specifications and
argue about the implications for our results. Each specification can be expressed by
adding constraints to our liquidity problems.

The first specification requires that the CCP never inputs its own liquidity to settle
its obligations. This is a probable setting to reduce the liquidity cost born by the CCP.
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We call such aCCP “passive.” For a given financial system, for theCCP to be “passive”
in the relevant settlements, the liquidity problems introduced in Sect. 2.4 are altered
as follows.

(Liquidity problems with passive CCP)
Given network 〈V, A, f 〉 with CCP v∗ ∈ V , take one-to-one mapping s : A →

{1, 2, . . . , |A|} and associated {pv(s)}v∈V \v∗ such that,

min(max)s
∑

v∈V
pv(s),

s.t., pv∗(s) = 0 for any s : A → {1, 2, . . . , |A|}.

The last line is the added constraint. It is clear that the alteredminimization problem
yields the same value for the original minimization problem. To observe this, note that
there are at least two vertices for each cycle, and only one vertex is sufficient to input
liquidity for each cycle. Although it ismore delicate, the alteredmaximization problem
also yields the same value as the original maximization problem. Observe that, for the
case of maximization, at least one vertex is exempt from inputting liquidity for each
cycle. Since only one CCP is assumed for the relevant network, it is always possible
to allow the CCP be such a vertex.13

Next, we further assume that CCPs must receive all the relevant payments before
making any payments. Thiswould be a reasonable specification to guarantee that CCPs
are passive. We say that such a CCP is both passive and synchronous. For the CCP
to be passive and synchronous in the relevant settlements, our liquidity problems are
now altered as follows.

(Liquidity problems with passive and synchronous CCP)
Given network 〈V, A, f 〉 with CCP v∗ ∈ V , take one-to-one mapping s : A →

{1, 2, . . . , |A|} and associated {pv(s)}v∈V such that,

min(max)s
∑

v∈V
pv(s),

s.t., max
(v′,v∗)∈A

s((v′, v∗)) < min
(v∗,v′′)∈A

s((v∗, v′′)).

The added condition is restrictive in which the CCPmakes any of its payments after
it has received all the payments. It is clear that the altered minimization problem tends
to yield larger value compared to the value for the original minimization problem.
This is because the synchronous aspect of the CCP tends to hinder efficient possible
liquidity circulation. By contrast, the altered maximization problem yields the same
value for the original maximization problem. This is because the maximum value for

13 Note thatwhen there ismore than one “passive”CCP, the overall required liquidity in the bad environment
tends to be smaller. This means that adding more CCPs tends to have a smaller negative effect per CCP.
Still, the smaller effect is not probable when the added CCP is not sufficiently close to the existent CCPs in
the relevant network.
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the original problem is attained in such order as specified by synchronous supposition,
and thus, the condition does not effectively serve as any additional constraint.

We confirm that passive and synchronous CCP ends up exacerbating the negative
effect in the good environment. This merely strengthens our relevant results regarding
the disadvantage of adding a CCP, and accordingly suggests even larger merit of
flexible utilization of a CCP.

Note that it is possible for the specifications of the CCP to affect the central routing
effect but they never affect the central netting effect. This is generally true for arbi-
trary specification of the CCP, since the CCP is not explicitly relevant for the central
netting effect. This observation shows another aspect of the analytical usefulness of
our decomposition of the effect.

6 Concluding remarks

Utilization of CCPs for derivative trades has become a trend after the recent financial
crisis. The possible disadvantages of CCPs need to be examined carefully in com-
bination with their advantages. The existent literature has well clarified how CCPs
possibly increase counterparty risk, by affecting relevant exposure. However, there
has been little investigation on how CCPs possibly affect the overall liquidity needs.
Such investigation is crucial, since significant liquidity needs could lead to liquidity
shortage in times of financial distress, which could cause firesales and even “dominos”
of bankruptcy. The difficulty of such investigation has its root in the dynamic nature of
liquidity needs, which is essentially different from the static nature of corresponding
exposure or obligations.

The presented model captures the static nature of the formed obligations through
the concept of network. Then, the model captures the dynamic nature of liquidity
needs through the relative order of payments regarding each network. This approach
enables us to differentiate economic states regarding how much liquidity tends to be
needed. We especially argue about liquidity needs during times of financial distress
and when an economy is far from such distress. The effect of adding a CCP to the
overall liquidity needs is shown to be decomposed into two effects: the central routing
effect and the central netting effect. The decomposition is captured with respect to
network topology, specifically through several operations in each network.

Our analysis primarily reveals the qualitative nature of each decomposed effect.
Observing that the quantitative nature of the effect essentially depends on each network
topology, the analysis also provides quantitative results for a specific class of networks.
Further investigation into the quantitative aspects remains for future research.

Beyond the specific topic of CCPs, our analytical approach sheds new light on
relevant liquidity issues. For example, liquidity is crucial in the debate about the
propagation of loss of a financial institution through an interconnected network of
contracts. However, most existent literature focuses on the effects on balance sheets of
the relevant institutions, ignoring howmuch liquidity is available at eachmoment. This
necessarily ignores bankruptcy arising from the liquidity problem, which is important
in reality.Ourmodel and analysis sets a foundation for examining dynamics of liquidity
transfers, and have wide potential in the relevant applications.
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7 Appendix

7.1 Relevant definitions and preliminary results

The following definitions and results are from Hayakawa (2014).
For network 〈V, A, f 〉, we define arc separation on (v, v′) ∈ A as the following

operations to yield another network 〈V ′, A′, f ′〈: (i) remove the arc (v, v′), then, (ii)
add newvertex v′′ and two arcs (v, v′′), (v′′, v′) such that f ′((v, v′′)) = f ′((v′′, v′)) =
f ((v, v′)).
In addition, we define vertex contraction on v, v′ ∈ V as the operation to merge v

and v′ into v, or in other words, to replace v′ with v for the relevant arcs. Furthermore,
we define cycle addition as the operation to add new arcs A′ either with or without
new vertices, so that A′ constitutes a cycle.

Lemma 1 Arc separation
Given balanced network N = 〈V, A, f 〉, let N ′ denote a network derived by arc

separation on arbitrary a ∈ A. Then, we obtain

xmin(N ′) = xmin(N ) and

xmax (N ′) = xmax (N ) + f (a).

Lemma 2 Vertex contraction

(i) Given balanced network N = 〈V, A, f 〉, let N ′ denote a network derived by
vertex contraction on two arbitrary vertices v, v′ ∈ V . Then, we obtain

xmin(N ′) ≤ xmin(N ) and

xmax (N ′) ≤ xmax (N ).

(ii) Furthermore, take K isolated cycles, and call each cycle k = 1, 2, . . . , K.
Let f k denote the weight of cycle k, for k = 1, 2, .., K. Let cycle 1 include
L > K number of vertices, and arbitrarily denote the vertices as v1, v2, .., vL .
For k = 2, 3, . . . , K, adopt vertex contraction between one vertex of cycle k and
vertex vk of cycle 1. We derive a network such that cycle 1 is now connected to
every other cycle k > 1with each different vertex vk . Denote the derived network
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as N ′. Then, we obtain

xmin(N ′) = xmin(N ) −
K∑

k=2

min( f 1, f k) and

xmax (N ′) = xmax (N ).

(iii) Alternatively, take one isolated cycle with weight f m, in which there are more
than four vertices included. Take two vertices v, v′ included in the cycle such
that there is no arc between them. Let N ′ denote a network derived by vertex
contraction on v, v′. Then, we obtain

xmin(N ′) = xmin(N ) and

xmax (N ′) = xmax (N ) − f m .

For part (ii) in Lemma 2, an example network is shown on the middle-right in
Fig. 28, where the center cycle with 8 vertices is interpreted as cycle 1, which is
connected to each of the other 4 cycles.

Lemma 3 Cycle addition

(i) Given balanced network N = 〈V, A, f 〉, let N ′ denote a network derived by
cycle addition with arbitrary cycle A′. Then, we obtain

xmax (N ′) > xmax (N ).

(ii) Furthermore, take K isolated cycles, each with weight f 1 ≤ f 2 ≤, · · · ,≤
f K . Arbitrarily take one vertex vk for each cycle k = 1, 2, . . . , K. Add a
cycle {(v1, v2), (v2, v3), . . . , (vK , v1)} with the same weight f ((v1, v2)) =
f ((v2, v3)) = · · · = f ((vK , v1)) = f m.Wederive a network such that the added
cycle is connected to every existent cycles with each different vertex. Denote the
derived network as N ′. This yields

xmin(N ′) = xmin(N ) + f m −
(

K∑

k=1

min( f k, f m)

)

,

and thus, xmin(N ′) > xmin(N ) iff f m >

K∑

k=1

f k .

xmax (N ′) = xmax (N ) + (K − 1) f m .

7.2 Proof of Theorem 1

Proof of (i)
The (P1) procedure yields a unique network, since the order of taking offsettable

pairs does not change the derived network. It is evident that each derived network is
a bilateral network of (N net , v∗).
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Proof of (ii)
For financial system (N = 〈V, A, f 〉, v∗), take arcs owed to v∗ and owed by

v∗, which are each denoted as Ato, Aby . We derive A′
to, A

′
by by removing arcs that

constitute any offsettable pair from each of Ato, Aby . Observe that arbitrary one-to-one
matching between Ato and Aby yields a set of paths from A′

to to A′
by , and cycles formed

by offsettable pairs. Remove all those cycles, and then, for each of the remained path,
let the starting arc be matched with the ending arc. This yields a one-to-one matching
between A′

to, A
′
by , and this is exactly what the (P1) procedure does. Thus, it is evident

that every possible one-to-one matching between A′
to and A′

by is derived by the (P1)
procedure.

7.3 Proof of Theorem 2

Given net-out financial system (N net = 〈V, A, f 〉, v∗), the net-out CCP network for
(N net , v∗) is N net . Take one-to-one matching M : Ato → Aby that yields bilateral
network N Bnet , and denote the set of arcs derived by M as Ader . We can recover the
net-out CCP network N net from arbitrary N Bnet by undertaking arc separation on
each arc a ∈ Ader with an additional set of vertices Vadd , and then, by undertaking
vertex contraction on all the vertices in Vadd to have one vertex, which is interpreted
as the CCP.
Proof of (i)

For givenN Bnet = 〈V ′, A′, f ′〉, take twomatched arcsa, a′ ∈ A′ .Note that f (a) =
f (a′). Adopt arc separation for each a, a′ by adding new vertices v, v′. According to
Lemma 1, this increases the total liquidity needs in the bad environment by 2 f (a).
Then, adopt vertex contraction on v, v′. According to Lemma 2, this decreases the
total liquidity needs in the bad environment by at most f (a). Thus, the combination
of arc separation and vertex contraction regarding the two arcs strictly increases the
total liquidity needs in the bad environment. Observe that this applies for two arbitrary
matched arcs.
Proof of (ii)

The result is immediately apparent from Lemmas 1 and 2, which state that both
arc separation and vertex contraction never strictly increase the total liquidity needs
in the good environment.

7.4 Proof of Theorem 3

Given basic net-out financial system (N net = 〈V, A, f 〉, v∗) with J ≥ 2 triangles,
denote each triangle with j = 1, 2, . . . , J . Then, from Lemmas 1 and 2, we obtain

(i’) xmax (N net ) = 2J f m and
(ii’) xmin(N net ) = f m .

Take an arbitrary bilateral network N B for (N net , v∗). Observe that N B consists of
X number of mutually isolated cycles with 1 ≤ X ≤ J . Denote a bilateral network
with X cycles as N Bnet

X , for which we explicitly derive liquidity needs as follows.
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(i”) xmax (N Bnet
X ) = (2J − X) f m and

(ii”) xmin(N Bnet
X ) = X f m .

Part (i”) is evident when we observe that exactly one vertex in each cycle is exempt
from inputting f m while the total number of the vertices is 2J . For part (ii”), we
observe that exactly one vertex in each cycle is inputted in f m . Combining the results
completes our proof.

7.5 Proof of Theorem 4

For a given financial system, take arbitrary bilateral networkN B . We derive a network
N Bnet fromN B by the (P1) procedure. Then, we deriveN B fromN Bnet by applying a
combination of arc separation and vertex contraction, and cycle addition. As the proof
of Theorem 2 shows, the combination of arc separation and vertex contraction strictly
increases the liquidity needs in the bad environment. In addition, Lemma 3 shows that
cycle addition strictly increases the liquidity needs in the bad environment. Since the
central netting effect is viewed in the reverse direction, the central netting effect is
strictly positive in the bad environment.

7.6 Proof of Theorem 5

Consider a one-to-one matching that derives a bilateral network for given (N , v∗).
Let an arc (v, v′) is derived by the matching, from a pair of vertices {(v, v∗), (v∗, v′)}.
When each of (v, v∗) and (v∗, v′) is included in some offsettable pair, we call (v, v′)
an offsettable arc, otherwise, we call a non-offsettable arc.
Proof of (i)

For each Vk , k = 1, 2, . . . , 2K , let vk ∈ Vk denote a vertex that is connected to
hypothetical entity v∗, which we call a bridge vertex. For example, for N Bnet and
N B shown in Fig. 26, vertex vi is a bridge vertex. Each vk is included in an isolated
cycle in N Bnet , but has an additional pair of arcs with each weight f m in N B . It
means that in the bad environment, the liquidity needs decrease by at most f m from
N B to N Bnet with respect to each vk , k = 1, 2, . . . , 2K . In total, the liquidity needs
decrease by at most 2K f m . The value is actually attained for a following bilateral
network. For given (N , v∗), take a bilateral network such that the relevant one-to-one
matching generates a cycle in which all bridge vertices {vk}k=1,2,...,2K and at least one
vertex v /∈ {vk}k=1,2,...,2K are included. An example bilateral network is shown on the
middle-right in Fig. 28. For such a bilateral network, it is immediately apparent that
the liquidity needs decrease by 2K f m in the bad environment.

Regarding the opposite bound, the liquidity needs decrease by at least K f m in the
bad environment, which is attained by a bilateral network, whereby each two isolated
cycles in N Bnet are connected with each other in the corresponding N B , as shown
in the lower row in Fig. 28. The statement is verified as follows. Consider a bilateral
network for (N , v∗), in which there is no cycle that includes both an offsettable
and non-offsettable arc. Take a cycle with k′ number of arcs, in which every arc is
an offsettable arc. In the corresponding bilateral network N Bnet for N B , the (P1)
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procedure removes a cycle so that each of the bridge vertices is now included only in a
separated cycle. This reduces the relevant liquidity needs in the amount of (k′ −1) f m .
When there are 2K isolated cycles (equivalently, 2K bridge vertices), and k′′ number
of cycles in which every arc is an offsettable arc, then the total liquidity needs decrease
by (2K − k′′) f m . It is immediate that the smallest possible value of (2K − k′′) f m
is attained when k′′ = K . Next, consider a bilateral network for (N , v∗), in which
there is at least one non-offsettable arc, and there are k′′′ number of bridge vertices.
In the corresponding bilateral network N Bnet for N B , the (P1) procedure let each of
the bridge vertices be disconnected from the relevant cycle. This reduces the relevant
liquidity needs in the amount of k′′′ f m . Thus, the total liquidity needs decrease by at
least more than K f m .
Proof of (ii)

Consider a bilateral network N B for (N , v∗), for which cycle addition is not
relevant for the corresponding (P1) procedure. For such N B , there is no cycle in
which every arc is an offsettable arc. Each step of the (P1) procedure effectively lets
each isolated cycle be disconnected from some other cycle. Thus, for corresponding
N Bnet , we obtain xmin(N B) − xmin(N Bnet ) = −�2K

1 min( f k, f m) from part (ii) of
Lemma 2.

Then, consider a bilateral network N B for (N , v∗), for which cycle addition is
relevant for the corresponding (P1) procedure. For suchN B , there is at least one cycle
in which every arc is an offsettable arc. Take such a cycle, which we denote as cycle c.
Take another cycle c′ that includes a non-offsettable arc. For N B , we obtain another
bilateral networkN B′

by adopting cycle merge on c and c′. Concretely, take arbitrary
arc (va, vb) of cycle c, and a non-offsettable arc (vc, vd) of cycle c′. Note that the
weight for each of (va, vb) and (vc, vd) is f m . Let {(va, vb), (vc, vd)} be replaced
with a pair of arcs {(va, vd), (vc, vb)}, for which each weight is set as f m . The derived
network is apparently a bilateral network for (N , v∗). Observe that the (P1) procedure
forN B′

yieldsN B
net , which is the same network derived by the (P1) procedure forN B .

Thus, we are suffice to compare xmin(N B) to xmin(N B′
). It is immediately apparent

that xmin(N B) > xmin(N B′
), since the relevant operation effectively connects cycles.

Observe that we can repeatedly adopt cyclemerge until there is no cycle inwhich every
arc is an offsettable arc. This proves that the maximum negative effect is attained as
−�2K

1 min( f k, f m).
Proof of (ii’)

From the argument in the proof of (ii), we are suffice to focus on bilateral networks
for (N , v∗), in which there is no cycle that includes both an offsettable and non-
offsettable arc. For such a bilateral network, consider the relevant (P1) procedure.
Suppose the relevant reverse of cycle addition removes a cycle to form k′ number of
isolated cycles. Then, the relevant liquidity needs increase by (k′ −1) f m , according to
Lemma 3. Since there are 2K number of isolated cycles for arbitrary bilateral network
for given (N net , v∗), the total liquidity needs increase by at least K f m , whereby the
value is attained with bilateral networks for (N , v∗), in which every isolated cycle is
connected to another isolated cycle.
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7.7 Proof of Theorem 6

Proof of (i)
The result is immediately apparent by combining part (i) of Theorem 3 and part (i)

of Theorem 5.
Proof of (ii)

First, we examine the central netting effect. Part (ii) of Theorem 5 ensures that the
lower bound of the central netting effect for the class specified in the current theorem
is also −�2K

1 min( f k, f m). The proof shows that the value is attained in a bilateral
network, such that all the obligations relevant to the hypothetical entity form a cycle,
in which every isolated cycle is connected to the cycle. Furthermore, according to part
(ii) of Theorem 3, the lower bound of the central routing effect is zero. The proof
shows that the value is attained between a bilateral network examined above and the
corresponding net-out CCP network.
Proof of (ii’)

Again, we first examine the central netting effect. According to part (ii’) of The-
orem 5, the smallest negative effect for the class specified in the current theorem is
also K f m . The proof shows that the value is attained in a bilateral network such that
every isolated cycle is paired to another isolated cycle, and each triangle turns out to
be a pair of obligations between the relevant two vertices. Then, for the central routing
effect, according to part (ii) of Theorem 3, the largest positive effect is (J − 1) f m ,
and the proof shows that the value is attained between a bilateral network examined
above and the corresponding net-out CCP network. Since it is assumed that J ≤ K ,
the smallest possible negative total effect is derived as − f m .
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