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Abstract Microscopicmodels describing awhole of economic interactions in a closed
society are considered. The presence of a tax system combined with a redistribution
process is taken into account, as well as the occurrence of tax evasion. In particular,
the existence is postulated, in relation to the level of evasion, of different individual
taxpayer behaviors. The effects of the mentioned different behaviors on shape and
features of the emerging income distribution profile are investigated qualitatively and
quantitatively. Numerical solutions show that the Gini inequality index of the total
population increases when the evasion level is higher, but does not depend signif-
icantly on the evasion spread. For fixed spread, the relative difference between the
average incomes of the worst evaders and honest taxpayers increases approximately
as a quadratic function of the evasion level.

Keywords Complex systems · Microscopic models · Tax evasion · Income
distribution
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1 Introduction

The phenomenon of tax evasion represents a serious problem for several countries.
Having as a main consequence a reduction of the tax revenue, it negatively affects a
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correct functioning of the public sector: it hurts the supply of education, health care
and services in general. In turn, this contributes, together with other factors, to an
increase of economic inequality.

In this paper,we try and look at someaspects of the problem through amathematical-
modelling approach. Specifically, we discuss a kinetic-type model for economic
exchanges in a closed society in the presence of taxation and redistribution, within
which occurrence of tax evasion to various extents is assumed: we admit the possibility
that different citizens pay different percentages of the taxes they should pay.

We emphasize that the illegal practice under consideration involves in fact a large
number of interacting agents. These include clearly the evaders themselves, but in
addition also all other citizens who, by the situation, are deprived of the access to the
benefits deriving from the revenue redistribution. In view of this and of the various
levels at which it can take place, tax evasion can be thought of as an example of
complex system. With this denomination, systems composed by a high number of
heterogeneous units are meant, whose collective and macroscopic behavior is not
derivable from the simple summation of the single units properties, but inherently
depends on their nonlinear interplay. An interaction-based approach seems to be quite
a natural one in the study of economic questions, but it was only during the last decades,
especially thanks to the new opportunities offered by the increased computer power,
that it started to be pursued. Arguments in favour and related work can be found e.g.
in Aoki (2002), Arthur et al. (1997), Gallegati and Kirman (2012), Kirman (2006,
2010), Landini et al. (2015) and Tesfatsion and Judd (2006). The technical tools more
frequently employed in connection with this approach are agent-based computational
algorithms and simulations, possibly combined with complex networks theory. Also,
starting in the mid-1990s an interdisciplinary research field called econophysics has
been growing, which explores the dynamical behaviour of economic and financial
markets by means of methods taken from statistical mechanics and gas kinetic theory,
see e.g. Chakrabarti and Chakrabarti (2009), Chatterjee et al. (2005), Heinsalu and
Patriarca (2014) and Yakovenko and Barkley Rosser (2009).

Adopting here a mathematics-supported complex system perspective, we aim at
deriving and explaining the emergence of a population’s aggregate feature like the
income distribution, as a result of the whole of economic exchanges and interactions
which take place between the individuals. More specifically, our focus here is on the
effects that the heterogeneity of taxpayer behaviors has on the income distribution
profiles of the categories of individuals evading to different degrees. To this end we
build on our previous work, incorporating suitable additional facets into the models
discussed in Bertotti (2010) and Bertotti and Modanese (2011, 2012, 2014a, b). We
also emphasize that our goal here is mainly a methodological one: more than perfectly
representing real world features, we aim at constructing a tool endowed with explo-
rative ability. Our model in fact has this character. Indeed, the possibility of finding
numerical solutions which evolve from differently chosen “initial conditions” and in
the presence of differently tuned parameters amounts to the ability to forecast the
emergence of different scenarios. In turn, this can give insights as to which policies
could be adopted to favour or prevent desired and undesired trends.

The tax evasion process is the object of a large amount of literature. Works among
those which involve agent based modeling and simulations include e.g. Bloomquist
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(2006), Crokidakis (2014), Hokamp and Seibold (2014), and Zaklan et al. (2009),
to name but a few. Specific aspects therein investigated concern the occurrence of
behavioral changes of agent types with diverse moral attitude, due to imitation or also
to some audit procedure. In particular, in Hokamp and Seibold (2014) and Zaklan
et al. (2009) a variant of the Ising model originally developed within the theory of
magnetism is considered. In that context, each spin represents a citizen, which can be
either in the tax compliant state +1 or in the tax evader state −1. Citizens undergo
transitions from +1 to −1 caused by imitation of their nearest neighbours, and from
−1 to +1 induced by tax audits. Indeed, the consequence of an audit on an evader is
assumed to be the fact that she/he will remain honest for a certain number of steps.
This approach is helpful for the analysis of evasion phenomena in relation to local
interaction and external controls, but not for studying the effect of evasion on the
income distribution as we do here.

The paper is organised as follows. In Sect. 2 we describe the model and some of its
analytical properties. In Sect. 3 we report and discuss results from a set of numerical
solutions. Section 4 contains our conclusions.

2 The model

This section is devoted to a short description of the model proposed. More details
on the primary mechanism underlying it can be found in our papers (Bertotti 2010;
Bertotti and Modanese 2011, 2012, 2014a, b). We point out however that in Bertotti
(2010), Bertotti and Modanese (2011, 2012) the phenomenon of tax evasion was not
taken into account, whereas in Bertotti and Modanese (2014a, b) all individuals were
assumed to engage to the same degree in a kind of evasion different from that dealt with
here.1 The main novelty here is given by the assumption of the existence of different
degrees of evasion.

The totality of individuals (supposed to remain constant in time, in fact during
the time period under consideration) is divided into a number n of classes, each one
characterized by its average income, the average incomes being the positive numbers
r1 < r2 < · · · < rn , and, in turn, every income class is divided into a number m of
sectors characterized by possible evasion behaviors.

We denote by xα
j the fraction of individuals belonging to the j-th income class

and to the α-th evasion behavior sector. We will say for brevity that xα
j is the fraction

of individuals of type ( j, α), also called ( j, α)-individuals, the number of different
groups being n × m.

We suppose here that the evasion behavior of each individual remains constant in
time. In contrast, individuals may move through different income classes. The model
is formulated by a system of n × m ordinary differential equations describing the
variation in time of xα

j for j = 1, . . . , n and α = 1, . . . ,m. Such a variation is the
result of direct economic interactions, in which pairs of individuals exchange some

1 In Bertotti and Modanese (2014a, b) a kind of evasion was considered, which provides advantage to both
the participants in a transaction, as it sometimes happens in relation to value added taxes. Here, we consider
evasion of individuals who under-declare their income.
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money. And is affected as well by the payment of taxes (in some cases, the due
taxes and in other cases, partial quotes of them) and by the revenue redistribution,
represented in the real world by healthcare, education and services in general. More
specifically, the dynamic process is as follows: a whole of interactions between pairs
of individuals occur simultaneously: for any h and k in {1, . . . , n}, for any β and γ in
{1, . . . ,m} individuals belonging to the h-th income class and the β-th evasion sector
meet individuals of the k-th income class and the γ -th evasion sector and some money
exchange between such pairs takes place. How many of these economic exchanges
do we have? If at the considered time the fraction of (h, β)-individuals is xβ

h and the
fraction of (k, γ )-individuals is xγ

k , the number of encounters of these two categories

of individuals is the product xβ
h x

γ

k . And any single encounter contributes, albeit to a
very small extent, to a change of the fraction of individuals in some income classes. The
differential equations contain several parameters, which express for example transition
probabilities, the probability that in an encounter between two individuals of different
classes the one or the other is paying, the tax rates relative to the different income
classes and the percentages of evasion.

They take the form

dxα
j

dt
=

n∑

h,k=1

m∑

β,γ=1

(
C ( j,α)

(h,β);(k,γ )
+ T ( j,α)

[(h,β);(k,γ )](x)
)
xβ
h x

γ

k − xα
j

n∑

k=1

m∑

γ=1

xγ

k , (1)

for j = 1, . . . , n and α = 1, . . . ,m, where

• for any h, k, j = 1, . . . , n and any α, β, γ = 1, . . . ,m, the coefficient

C ( j,α)

(h,β);(k,γ )
∈ [0,+∞)

expresses the probability that an (h, β)-individual will belong to the group ( j, α)

as a consequence of a direct interaction with an (k, γ )-individual.
These coefficients satisfy

∑n
j=1

∑m
α C ( j,α)

(h,β);(k,γ )
= 1 for any fixed (h, β), (k, γ );

• for any h, k, j = 1, . . . , n and any α, β, γ = 1, . . . ,m, the function

T ( j,α)

[(h,β);(k,γ )](x) : Rn×m → R

expresses the variation in the group ( j, α) due to the taxation and redistribution
process associated to an interaction between an (h, β)-individual with an (k, γ )-
individual.
These functions are continuous and satisfy

∑n
j=1

∑m
α T ( j,α)

[(h,β);(k,γ )](x) = 0 for any

fixed (h, β), (k, γ ) and x ∈ Rn×m .

A particular choice of the C ( j,α)

(h,β);(k,γ )
’s and the T ( j,α)

[(h,β);(k,γ )](x)’s will be proposed
below. Before doing it, we need to introduce and motivate some further terms.

Similarly as in Bertotti andModanese (2014a, b) we first define for h, k = 1, . . . , n
certain coefficients ph,k , aimed to specify the probability that in an encounter between

123



Mathematical models describing the effects of different... 355

an individual of the h-th income class and one of the k-th class, the one who pays is
the former. We take

ph,k = min{rh, rk}/4rn ,

with the exception of the terms p j, j = r j/2rn for j = 2, . . . , n − 1, ph,1 = r1/2rn
for h = 2, . . . , n, pn,k = rk/2rn for k = 1, . . . , n − 1, p1,k = 0 for k = 1, . . . , n and
ph,n = 0 for h = 1, . . . , n. The introduction of these coefficients implies that, with
only reference here to the income class (and independently of the evasion sector), for
each h − k pair there is

– a probability denoted by ph,k ∈ [0, 1] that the h-individual will transfer some
money to the k-th one,

– a probability pk,h ∈ [0, 1] that the k-individual will transfer some money to the
h-th one,

– a probability 1 − ph,k − pk,h ∈ [0, 1] that the two do not exchange money.

Correspondingly, we are assuming that for any h ∈ {1, . . . , n} and any k ∈ {1, . . . , n}
the frequency of payment of individuals of the h-th income class to individuals of the
k-th income class is a fixed one. We could call this a compartmental representative
agent behavior [see in this connection (Bischi 1998; Tramontana and Gallegati 2010)].

Then, we introduce S (with S << (ri+1 − ri ) for all i = 1, . . . , n), the amount
of money that in each direct transaction one individual is supposed to pay to another.
The individual who receives the money is expected to pay a part of this as a tax to the
government. If this individual belongs to the k-th income class, we may for sake of
simplicity assume that he should pay an amount corresponding to S τk , τk being the
tax rate of his income class.

At this point we notice that in a tax compliance case the effect of a direct interaction
with an individual of the h-th income class paying S to one of the k-th class and this
paying the due tax would be equal to that of the first individual paying an amount
S (1 − τk) to the k-th income class one and paying as well a quantity S τk to the
government or equivalently, due to the redistribution, to the community of individuals.2

Being interested in a tax evasion case study, we now introduce, beside the tax rates
τk , some other parameters. For any α = 1, . . . ,m let

θev(α) ∈ [0, 1]

denote the percentage of the due taxes payed by individuals characterized by an evasion
behavior index α. Then, we define for any k = 1, . . . , n and α = 1, . . . ,m,

θk,α = θev(α) τk . (2)

The quantity θk,α in (2) expresses the fraction a (k, α)-individual actually pays as a
tax; this percentage depends both on the income class represented by the index k and
on the evasion index α.

2 Actually, in this model all individuals, but those of the n-th income class benefit from the redistribution.
Differently, also individuals of the n-th class could advance to a higher class, but this is no possible.
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Example 1 As an example to illustrate the situation, take m = 3 and consider three
evasion behaviors, described by

θev(1) = 1, θev(2) = 1/2, θev(3) = 1/4. (3)

In such a case one would have

– individuals in the first sector paying all they should and not evading at all,
– individuals in the second sector paying half of what they should,
– individuals in the third sector paying one quarter of what they should.

The coefficients C ( j,α)

(h,β);(k,γ )
’s can now be defined: the only nonzero ones among

them are:

C ( j,α)

( j+1,α);(k,β)
= p j+1,k

S (1 − θk,β)

r j+1 − r j
, (4)

C ( j,α)

( j,α);(k,β)
= 1 − pk, j

S (1 − θ j,α)

r j+1 − r j
− p j,k

S (1 − θk,β)

r j − r j−1
, (5)

C ( j,α)

( j−1,α);(k,β)
= pk, j−1

S (1 − θ j−1,α)

r j − r j−1
. (6)

We point out that

– in (4), C ( j,α)

( j+1,α);(k,β)
is defined only for j ≤ n − 1 and k ≤ n − 1;

– in the expression of C ( j,α)

( j,α);(k,β)
in (5), the second addendum is present only for

j ≤ n − 1 and k ≥ 2, whereas the third addendum is present only for j ≥ 2 and
k ≤ n − 1;

– in (4), C ( j,α)

( j−1,α);(k,β)
is defined only for j ≥ 2 and k ≥ 2;

– in (4)–(6), the indices α and β take any value in {1, . . . ,m}.
We also emphasize that the coefficients ph,k enter in the formulae (4)–(6) in such

a way that their effect can be also interpreted as weighting the amount of money
exchanged. In other words, the situation is the same one would have assuming the
frequency of payment of individuals independent on the income class, but with the
amount of money paid in each transaction by individuals of the h-th income class to
individuals of the k-th income class equal to ph,k S instead of S. The specific choice
of ph,k adopted here is suggested by the phenomenological observation that typically
poor people pay and earn less than rich people.

We take the functions T ( j,α)

[(h,β);(k,γ )](x) as

T ( j,α)

[(h,β);(k,γ )](x) = ph,k S θk,γ∑n
i=1

∑m
λ=1 x

λ
i

( xα
j−1

(r j − r j−1)
− xα

j

(r j+1 − r j )

)

+ph,k S θk,γ

(
δh, j+1δα,β

rh − r j
− δh, jδα,β

rh − r j−1

) ∑n−1
i=1

∑m
λ=1 x

λ
i∑n

i=1
∑m

λ=1 x
λ
i

, (7)
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with δi, j denoting the Kronecker delta. In the r.h.s. of (7), h > 1 and the terms
involving the index j−1 [respectively, j+1] are effectively present only for j−1 ≥ 1
[respectively, j + 1 ≤ n]. The indices α, β and γ take any value in {1, . . . ,m}.
Remark 1 It may be helpful stressing here the fact that, even if the equations (1)
describe migrations of aggregate fractions of individuals, in fact a probabilistic micro-
interaction modelling underlies the dynamical process expressed by these equations.

The right hand sides of (1) contain quadratic (and other nonlinear) terms, exactly
because they give account of a large number of pairwise interactions (and, through the
taxation and redistribution process, also of interactions involving more individuals).
For example, the origin of the coefficients C ( j,α)

(h,β);(k,γ )
(which refer to direct money

exchange) is the following. The interaction between an (h, α)-individual and a (k, β)-
individual with the (h, α)-individual paying, produces the variation of the fraction of
individuals in some groups (in general, four). Indeed, the (h, α)-individual becomes a
little bit poorer, inducing a partialmigration from the h-th income class to the (h−1)-th
one and the (k, β)-individual) becomes a little bit richer, inducing a partial migration
from the k-th income class to the (k + 1)-th one. The mentioned variation in the four
groups is described through the coefficients:

b(h−1,α)
(h,α);(k,β)

= ph,k S (1 − θk,β)
1

rh − rh−1
,

b(h,α)
(h,α);(k,β)

= −ph,k S (1 − θk,β)
1

rh − rh−1
,

b(k+1,β)

(k,β);(h,α)
= ph,k S (1 − θk,β)

1

rk+1 − rk
,

b(k,β)

(k,β);(h,α)
= −ph,k S (1 − θk,β)

1

rk+1 − rk
. (8)

The coefficients in the formulae (4)–(6), namely those appearing in the equation (1)
and which refer to the ( j, α) group, are then obtained from these, observing that each
probability C ( j,α)

(h,β);(k,γ )
can be written as a sum

C ( j,α)

(h,β);(k,γ )
= a( j,α)

(h,β);(k,γ )
+ b( j,α)

(h,β);(k,γ )
,

where the “absence-of-variation term” a( j,α)

(h,β);(k,γ )
= 1 only if j = h and α = β,

independently of (k, γ ), and the b( j,α)

(h,β);(k,γ )
are as in (8) (see Bertotti (2010) for a

similar discussion in a simpler case).
We also observe that the structure of the C ( j,α)

(h,β);(k,γ )
and the T ( j,α)

[(h,β);(k,γ )](x) in
(4)–(7) is determined by the conservation requirements of the global mechanism. The
stochastic character they enjoy is due to the presence of the coefficients ph,k which
can be defined with some degrees of freedom. It is in view of the coefficients ph,k

that we call this a probabilistic micro-interaction modelling. We do not know who
exactly is going to interact with whom: we only know at a probabilistic level how
often individuals in a group interact with individuals of another group.
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Of course, assuming that each individual of the h-th income class has the same prob-
ability ph,k of paying in an encounter with an individual of the k-th class corresponds
to attribute the same behavior (intended as attitude to pay) to all pairs of individuals
of the same two specific classes. This reminds a mean-field approach, see e.g. Aoki
(2002) and Aoki and Yoshikawa (2007). But, in fact, the underlying modelling just
described provides our approach with a different characterization.3 �

By suitably adapting proofs, which are relative to a previous, less general, version
of the model and can be found in Bertotti (2010), one may check that the following
properties, amounting to conservation in time of both the number of individuals and
the global income as well, hold true.

Property 1 For any initial condition x0 = {xα
0 j

} j=1,...,n;α=1,...,m , for which xα
0 j

≥ 0

for any j = 1, . . . , n and α = 1, . . . ,m, and
∑n

j=1
∑m

α=1 x
α
0 j

= 1, a unique solution
x(t) = {xα

0 j
(t)} j=1,...,n;α=1,...,m of (1) exists, which is defined for all t ∈ [0,+∞),

satisfies x(0) = x0 and also

xα
j (t) ≥ 0 for j = 1, . . . , n and α = 1, . . . ,m

and
n∑

j=1

m∑

α=1

xα
j (t) = 1 for all t ≥ 0. (9)

As a consequence of this property, the expressions of the T ( j,α)

[(h,β);(k,γ )](x)’s in (7)
somehow simplify and the right hand sides of system (1) turn out to be in fact poly-
nomials of degree 3.

Property 2 The scalar function μ(x) = ∑n
j=1 r j

∑m
α=1 x

α
j remains constant along

each solution of system (1).
In addition, the running of several numerical solutions provides evidence of the

following fact.

Property 3 If the parameters of themodel (r1, . . . , rn , S, the τk’s, the θev(α)’s) and also
the fraction of individuals with different behavior4 are fixed, if μ ∈ [r1, rn] is fixed,

3 In the Boltzmann approach to statistical mechanics, to which our approach is inspired, the variables
are described by means of a probability distribution function. The Maxwell–Boltzmann statistics gives the
expected number of particles in a given volume of the phase space. Space and velocity are continuous
variables. The discretized Boltzmann approach is somewhat more manageable, because it groups together
particles with the same velocity or, in the socio-economic version, individuals in the same income class.
Integrals are then replaced by sums and the number of admissible velocities or classes can be increased as
needed to ensure the precision required in any specific case. In comparison to the discretized Boltzmann, the
mean-field approach entails a loss of information, since the evolution equation for each individual implies
that it interacts with an average value of all the others, and the whole evolution process is self-consistent. In
the discretized Boltzmann approach and in our model the interactions are microscopic and occur between
all individuals. Finally, if one compares a Boltzmann approach with an agent-based simulation, it is fair
to say that the Boltzmann agents have properties typical of deterministic particles, while the behavior of
simulated agents can be much more flexible. However, the Boltzmann approach offers the advantage of a
closed mathematical formulation, independent from the software.
4 The fraction of individuals with a specific evasion behavior is assumed here to be the same in each
income class.
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then the solutions x(t) = {xα
0 j

(t)} j=1,...,n;α=1,...,m evolving from initial conditions
x0 = {xα

0 j
} j=1,...,n;α=1,...,m , for which xα

0 j
≥ 0 for any j = 1, . . . , n and α =

1, . . . ,m, and which satisfy

n∑

j=1

m∑

α=1

xα
0 j

= 1 and
n∑

j=1

r j

m∑

α=1

xα
0 j

= μ

tend asymptotically to a same stationary distribution as t → +∞.

3 The evidence from numerical solutions

Our specific interest here is to analyze the income evolution in the long time limit of
groups of individuals characterized by different behaviors. In other words, whereas our
previous investigation in Bertotti and Modanese (2014a, b) was especially addressed
to detect the effects of (a different kind of) tax evasion on the population as a whole,
here we also focus on the evasion effects on the different mentioned groups.

Finding analytical solutions of the nonlinear differential equations (1) is of course
hopeless. However, numerical solutions provide sufficient information. In order to
obtain them, one has to first fix several parameters. We take here n = 9, m = 3,
S = 1, r j = 10 j for j = 1, . . . , n and assume tax rates increasing from a minimal
one, τmin , to a maximal one, τmax , according to a progressive taxation system, as given
by

τ j = τmin + j − 1

n − 1
(τmax − τmin) , for j = 1, . . . , n. (10)

Still, the values of τmin , τmax and θev(α) for α = 1, . . . ,m remain to be chosen.
Each time we explore aggregate effects in the asymptotic stationary income distri-

bution of the population and compare situations of tax compliance and tax evasion, we
find that evasion leads to an increment in the number of individuals in the poorest and
in the richest classes, at the detriment of the middle classes. Figure 1 illustrates the
typical situation. In Bertotti and Modanese (2014a, b) we have shown that tax evasion
has in general the effect to increase economic inequality, as measured for instance by
the Gini index. We have also studied situations in which evasion grows in response to
an increase of the tax rates, finding an optimal “compromise” characterized by mini-
mum inequality. These results were obtained in conditions of homogeneous evasion
rates.

Assume now, to fix ideas, that the evasion behaviors are as in (3) in Example 1
and that each of them is present in one third of the population.5 Accordingly, in each
income class one third of the individuals pays all due taxes, one third pays half of them
and one third pays one quarter of them. Not only can we obtain information on the
aggregate shape of the asymptotic income distribution. We also get a more detailed
picture of the effects of tax evasion within different behavioural sectors. Specifically,

5 The choice of this particular subdivision is motivated by the desire to derive a balanced comparison of
the evolution of the different groups.
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Fig. 1 Collective effect of tax evasion. The asymptotic income distribution on the left refers to a case with
tax evasion, the one in the middle refers to a tax compliance case with the same initial conditions and the
panel on the right displays the difference of the fraction of individuals in the various classes in the first and
second case. Note that the figures are scaled differently

Fig. 2 In the two rows the asymptotic income distribution referring to two different initial data are plotted.
The two panels on the left display the distributions by income classes. The histograms in the central panels
represent the sequence for each income class of three evasion behavior sectors with θev(1) = 1, 1/2, 1/4.
The panels on the right provide an alternative bi-dimensional representation, in which the sectors can also
be distinguished

it turns out that in low income classes the numbers of “honest individuals”, “half-
evaders” and “three-quarters evaders”, counted in this order, are decreasing from the
largest to the smallest, while the situation is reversed in the high income classes. A
graphic illustration of this is provided by the Fig. 2.

In order to understand which variations of the model parameters can best represent
some real situations, and what results we can expect, we can compare situations in
which evasion is widespread with situations in which it is confined only to a part
of the population, the total evasion level being the same. By total evasion level we
denote the total fraction of tax payments which is eluded, summed over all sectors of
the population. With three sectors, for instance, we can consider the two following
situations, which have both total evasion level 1/6, but exhibit respectively widespread
and concentrated evasion:

1. one sector is honest, with θ = θev = 1, i.e. 100% of taxes are paid, while the other
two sectors are slightly dishonest, with θ = 0.75, i.e. 75% of taxes are paid;

2. two sectors are honest and the third is quite dishonest, with θ = 0.5.

We wonder whether the Gini index is significantly different in the two cases, or
in other words, if evasion has a different impact on inequality when it is widespread
or confined to a part of the population. Furthermore, we might wonder whether the
partial Gini indices of the behavioral sectors are substantially different from that of the
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Table 1 Percentage gap d between the average income of the worst evaders and the average income of
honest taxpayers in dependence of the total evasion level η

Tot. % evasion level η % of due taxes paid in the three sectors % income gap d

5 100, 95, 90 3.5

10 100, 90, 80 6.8

15 100, 85, 70 10.8

20 100, 80, 60 14.6

25 100, 75, 50 18.1

30 100, 70, 40 21.5

40 100, 60, 20 31.8

50 100, 50, 0 41.8

A gradual spread of evasion in three behavioral sectors is assumed. For instance, when the total evasion
level is 10% (the first sector pays 100% of the due taxes, the second pays 90% and the third 80%), the
average income of the third sector is 6.8% larger than the income of the first sector. The applied tax rates
grow linearly with income between τmin = 10% and τmax = 45%. The dependence d(η) can be approx.
fitted as d(η) � 0.42η2 + 0.62η

total population, for instance in the sense that among evaders there is more inequality
than among honest taxpayers. The numerical solutions show, however, that in all these
cases the Gini index does not exhibit any significant variations, depending only on the
total evasion level.

The introduction of behavioral sectors into the model allows to observe another
important effect, namely the appearance of a clear difference between the average
incomes of honest taxpayers and tax evaders. It is already apparent from the income
histograms in Fig. 2 that, as expected, tax evaders tend to get richer than honest
taxpayers: the bars representing the lowest-income classes clearly show a larger share
of honest people, while the opposite happens for the highest-income classes, where
more evaders are found. It is interesting to give a quantitative estimate of this difference
and to study its dependence on the evasion level.

To this end, let us consider the relative difference d between the average income of
the worst evaders and the average income of the honest taxpayers: d = (μm −μ1)/μ1.
This relative difference is quite large, typically of the order of 10 to 20% in the
histograms of Figs. 1 and 2. In order to evaluate its dependence on the evasion level,
we need to choose a fixed and reasonable “evasion spread” pattern.

We can proceed as follows: suppose that the first sector is always honest (θ = 1),
the second sector has θ = 1− η (evasion level η), and the third sector has θ = 1− 2η
(evasion level 2η). The total evasion level is 3η/3 = η. Let us gradually increase η,
from 0 to 0.5, and compute d(η). Results are shown in Table 1.

The dependence is manifestly non-linear, showing that the phenomenon is com-
plex and its interpretation not simple. In fact, an increase in the evasion level affects
the income distribution in at least two ways: (a) through direct interactions, because
evaders gain systematicallymore fromany interaction; (b) through indirect interactions
(tax redistribution), because when tax evaders tend to outnumber honest taxpayers in
the higher-income classes, which should pay higher tax rates, the total tax collection is

123



362 M. L. Bertotti, G. Modanese

diminished. It is not obvious, however, that this diminution should further increase the
difference d(η) defined above, since in the present version of the model redistribution
is uniform. In the version with heterogeneous redistribution Bertotti and Modanese
(2015) we could take into account more subtle real effects: for instance, supposing
that welfare provisions are means-tested, we could assign them based on the tax paid,
instead than on the real income. This is known to give a further unjust and detestable
advantage to tax evaders. We plan to address these issues in future work.

4 Concluding remarks and further perspectives

In this paper, a kinetic-type model describing economic interactions, taxation and
redistribution in a closed society is discussed. The focus is on the effects produced by
tax evasion by individuals who under-declare their income in different measure.

The model suggests the following considerations. From the sound point of view of
individuals who care for society, tax compliance plays an important role towards the
overcoming of economic inequality. From the point of view of selfish individuals, the
probability of improving their own economic status is higher when evading. The result
is not surprising. Certainly, it has to be noticed that no audit actions or punishment
are taken here into consideration. Incorporating them in the model and investigating
possible impacts would be an interesting point to explore in future work.

Another, related, point which deserves further work is the necessity of inclusion
into the model of possible changes of the behavioral taxpayer attitudes. Of course,
in real life, the propensity of individuals to be compliant or non compliant does not
remain always constant in time: in particular, it can be influenced by the behavior
of others and by specific experiences (such as fines) with fiscal agencies. Combining
into the model the treatment of the money distributional aspect with behavioral and
psychological factors remains a major challenge to be faced in the future. As well, the
possibility of bankruptcy and production should be taken into account in an effort of
an improved realism.

In this connection and in conclusion, we like to emphasize that our goal here has
been mainly a methodological one. The interest of this model (possibly bound to
be further enhanced) lies in our opinion in its possible explorative use: simulations
corresponding to different conceivable parameters allow to understand and forecast
the emergence of different scenarios and could possibly suggest policies addressed to
favour desired trends or prevent undesired ones.
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