Skip to main content
Log in

Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Let M be an open Riemann surface and G: M → ℙn(ℂ) be a holomorphic map. Consider the conformal metric on M which is given by \({\rm{d}}{s^2} = ||\tilde G|{|^{2m}}|\omega {|^2}\), where \({\tilde G}\) is a reduced representation of G, ω is a holomorphic 1-form on M and m is a positive integer. Assume that ds2 is complete and G is k-nondegenerate(0 ≤ kn). If there are q hyperplanes H1, H2, ⋯, Hq ⊂ ℙn(ℂ) located in general position such that G is ramified over Hj with multiplicity at least γj(> k) for each j ∈ {1, 2, ⋯, q}, and it holds that

$$\sum\limits_{j = 1}^q {\left( {1 - {k \over {{\gamma _j}}}} \right) > (2n - k + 1)\left( {{{mk} \over 2} + 1} \right),} $$

then M is flat, or equivalently, G is a constant map. Moreover, one further give a curvature estimate on M without assuming the completeness of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bergweiler, W., The role of the Ahlfors five islands theorem in complex dynamics, Conform. Geom. Dyn., 4, 2000, 22–34.

    Article  MathSciNet  MATH  Google Scholar 

  2. Campana, F., Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, 54(3), 2004, 499–630.

    Article  MathSciNet  MATH  Google Scholar 

  3. Campana, F. and Winkelmann, J., A Brody theorem for orbifolds, Manuscripta Math., 128(2), 2009, 195–212.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Cartan Conjecture: Defect Relation for Merommorphic Maps from Parabolic Manifold to Projective Space, Thesis, University of Notre Dame, 1987.

  5. Chen, X. D., Li, Y. Z., Liu, Z. X. and Ru, M., Curvature estimate on an open Riemann surface with the induced metric, Math. Z., 298, 2021, 451–467.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern, S. S. and Osserman, R., Complete minimal surfaces in euclidean n-space, J. Anal. Math., 19, 1967, 15–34.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujimoto, H., On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Japan, 40(2), 1988, 235–247.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujimoto, H., Modified defect relations for the Gauss map of minimal surfaces. II, J. Differential Geom., 31(2) 1990, 365–385.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujimoto, H., On the Gauss curvature of minimal surfaces, J. Math. Soc. Japan, 44(3) 1992, 427–439.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujimoto, H., Value distribution theory of the Gauss map of minimal surface in ℝm, Aspects of Mathematics, E21, Friedr. Vieweg and Sohn, Braunschweig, 1993.

    Book  Google Scholar 

  11. Ha, P. H., An estimate for the Gaussian curvature of minimal surfaces in ℝm whose Gauss map is ramified over a set of hyperplanes, Differential Geom. Appl., 32, 2014, 130–138.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawakami, Y., On the maximal number of exceptional values of Gauss maps for various classes of surfaces, Math. Z., 274(3–4) 2013, 1249–1260.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kawakami, Y., Function-theoretic properties for the Gauss maps of various classes of surfaces, Canad. J. Math., 67(6) 2015, 1411–1434.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X. J. and Pang, X. C., Normal family theory and Gauss curvature estimate of minimal surfaces in ℝm, J. Differential Geom., 103(2), 2016, 297–318.

    Article  MathSciNet  MATH  Google Scholar 

  15. Nochka, E. I., On the theory of meromorphic functions, Dokl. Akad. Nauk SSSR, 269(3) 1983, 547–552.

    MathSciNet  MATH  Google Scholar 

  16. Osserman, R. and Ru, M., An estimate for the Gauss curvature of minimal surfaces in ℝm whose Gauss map omits a set of hyperplanes, J. Differential Geom., 45, 1997, 578–593.

    MathSciNet  MATH  Google Scholar 

  17. Ros, A., The Gauss map of minimal surfaces, Differential Geom., Valencia 2001, 2002, 235–252.

    MathSciNet  MATH  Google Scholar 

  18. Rousseau, E., Hyperbolicity of geometric orbifolds, Trans. Amer. Math. Soc., 362(7) 2010, 3799–3826.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ru, M., On the Gauss map of minimal surfaces immersed in ℝn, J. Differential Geom., 34(2), 1991, 411–423.

    Article  MathSciNet  MATH  Google Scholar 

  20. Ru, M., Gauss map of minimal surfaces with ramification, Trans. Amer. Math. Soc., 339(2) 1993, 751–764.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Min Ru for his constant encouragement and guidance. The authors also would like to thank the anonymous reviewers for their careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixue Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12101068, 12261106, 12171050).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, Y. Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification. Chin. Ann. Math. Ser. B 44, 533–548 (2023). https://doi.org/10.1007/s11401-023-0030-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-023-0030-0

Keywords

2000 MR Subject Classification

Navigation