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Abstract Consider the heterogeneity (e.g., heterogeneous social behaviour, heterogeneity
due to different geography, contrasting contact patterns and different numbers of sexual
partners etc.) of host population, in this paper, the authors propose an infection age multi-
group SEIR epidemic model. The model system also incorporates the feedback variables,
where the infectivity of infected individuals may depend on the infection age. In the
direction of mathematical analysis of model, the basic reproduction number R0 has been
computed. The global stability of disease-free equilibrium and endemic equilibrium have
been established in the term of R0. More precisely, for R0 ≤ 1, the disease-free equilibrium
is globally asymptotically stable and for R0 > 1, they establish global stability of endemic
equilibrium using some graph theoretic techniques to Lyapunov function method. By
considering a numerical example, they investigate the effects of infection age and feedback
on the prevalence of the disease. Their result shows that feedback parameters have different
and even opposite effects on different groups. However, by choosing an appropriate value
of feedback parameters, the disease could be eradicated or maintained at endemic level.
Besides, the infection age of infected individuals may also change the behaviour of the
disease, global stable to damped oscillations or damped oscillations to global stable.
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1 Introduction

Mathematical Modelling in Epidemiology: Over the past several years, human health have

continuously been threatened and thousands of people died of various infectious diseases ev-

ery year (see [1–3]). By the World Health Report 1996 (WHO for short) (see [4]): “Nearly
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50,000 men, women and children are dying every day from infectious diseases”. The report

warns that on one side, several highly infectious diseases (e.g., incurable diseases, like, Ebola

haemorrhagic fever, HIV/AIDS) are emerging to pose new threats; on the other hand, some

of major diseases, for example, treatable and preventable diseases: Tuberculosis, Malaria and

Cholera are making a deadly comeback in many parts of the world. Therefore, the study how

a particular infectious disease progresses to ensure the likely outcome of an epidemic and in-

formation related to public health interventions become major concerns of public health. From

last many decades, mathematical models are being used to understand the transmission dy-

namics, to predict the spreading patterns and future course of an outbreak and to evaluate

suitable feedback strategies for various infectious diseases via relating the important factors of

diseases to basic parameters of related models (see [5–7]). The Susceptible-Infected-Recovered

(SIR for short) epidemic model proposed by Kermack and McKendrick [8] in the year 1927,

is one of the very first compartmental models of infectious diseases. In which, they consider

three compartments of homogeneous population (susceptible, infected and recovered compart-

ments). The SIR epidemic model was very successful to capture too many observations of

recorded epidemic data and also in predicting the behaviour of an outbreak. Further introduc-

ing one more compartment (exposed compartment) in SIR epidemic model, it was extend to

Susceptible-Exposed-Infected-Recovered (SEIR for short) epidemic model (see [9]).

Multi-group Modelling: Heterogeneous Population: Although, while modelling simple SIR-

type models, we assume the homogeneity (each individual is supposed to be similarly having

random contacts) of population (see [10–13]). However, in general, during the modelling of an

epidemic system, one may easily encounter an important theme i.e., population heterogeneity

(in some sense, the individuals in the respective population are not similar to one another). In

various aspects of disease transmission processes, one may realize heterogeneity, for instance,

in case of sexually transmitted diseases, heterogeneous social behaviour, heterogeneity due

to different geography, contrasting contact patterns and different number of sexual partners,

different age groups with non-homogeneous susceptibility, heterogeneity in spatial distribution,

heterogeneity due to multi-hosts pathogens in many diseases like West Nile Virus, subtypes of

Influenza A, Plague (see [14–16]). Thus heterogeneity in host can come due to many population

factors and its impact on respective epidemic dynamics has been studied in references [17–

18]. To understand the transmission dynamics of infectious diseases (e.g., Mumps, HIV/AIDS,

Measles, Gonorrhea etc.) in an heterogeneous host population, the population may be divided

into various homogeneous groups depending on different types of heterogeneity, e.g., contact

patterns of individuals such as those among children and adults for Measles, or having distinct

number of sexual partners for HIV/ADIS and other sexually transmitted diseases (STDs for

short), age of host individuals, professions of hosts, modes of disease transmission or geographic

distribution of host population such as communities, cities and countries (as in the transmission

of cholera). In general, multi-group modelling in epidemiology is used to recognize the role of the

heterogeneity in population. This kind of multi-group modelling also helps to model the inter-

group interaction and interactions within the groups. To include irregularity of infectiousness
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of the disease agent, we divide the host population into various groups according to their

epidemiological characteristics. In the existing literature of epidemiological modelling, the

multi-group epidemic models have been used to investigate the transmission pattern and to

describe the transmission dynamics of many infectious diseases in heterogenous population such

as Cholera (see [19]), Measles, HIV/ADIS (see [20]) and Gonorrhea (see [18]). In particular, to

study the impact of variations in infectiousness of HIV, Hyman et al. [20] proposed two simple

models. In the first model, during the chronic phase of infection, they considered different levels

of virus between individuals. The second model was based on standard hypothesis depending

upon an individual current disease stage and his/her infectiousness, the infected individuals

progress via a series of infection phases. The Gonorroea multi-group model is one of the earliest

work in the area of multi-group epidemic modelling. This particular model was used to describe

the prevalence of Gonorroea and proposed by Lajmanovich and Yorke [18]. In this particular

n-group Susceptible-Infected-Susceptible (SIS for short) model, the authors discussed global

dynamics by establishing global stability of unique endemic equilibrium, using a quadratic global

Lyapunov function. Following the work of Lajmanovich and Yorke [18], Beretta and Capasso

[21] studied a multi-group SIR epidemic model assuming constant population in each group.

In references [18, 21], the authors discussed the global dynamics of the model by establishing

sufficient conditions for global stability of endemic equilibrium. A multi-group infectious disease

model with temporary immunity of recovered population was studied by Hethcote [22]. They

obtained threshold criterion to determine the immunization rates relating the eradication of

the disease. Afterwards, various forms of multi-group epidemic models have been discussed in

[23–26]. From the above critical review of epidemic modelling of heterogeneous population, it

may easily be observed that establishing the global stability of endemic equilibrium is one of

the main challenges while dealing the theoretical aspect of the model.

Age of Infection in an Epidemic Model: Most of the time, we assume the homogeneity of

infected individuals (i.e., all infected individuals in that class have the same epidemiological

parameters) after dividing a particular host population in different classes. However, it may

be a unrealistic assumption. In reality, as time progresses, the disease develops within the

host individuals with the different infectivity or many times one may easily observe different

infectiousness of an infected individual at different stages of infection (e.g., Cholera, Typhoid).

In particular, there are diseases, whose transmissibility increases with age of infection, for ex-

ample, Ebola. On the other hand, there are diseases in which the infectiousness of infected

individuals increases upto a threshold level with age of infection and then starts decreasing,

like Influenza (see [27]). This suggests that infectivity of host might continuously change with

time and infection age may be one of the informative factor to model some of the infectious

diseases. Therefore, we may consider the infectivity as the function of infection age of infected

individuals. Some of the epidemic models incorporating an individual infection for some par-

ticular diseases are: Tubercolosis (see [28]), HIV/AIDS (see [29]), Chagas disease (see [30]), or

pandemic Influenza (see [31]). Feng et al. [28] studied the qualitative behaviour of system of

ordinary equations and system of integral-differential equations, where both models describe



836 V. P. Bajiya, J. P. Tripathi, V. Kakkar, J. S. Wang and G. Q. Sun

the dynamics of Tuberculosis (TB for short) disease. The authors found that the dynamical

behaviour of age structured TB model (model with variable latent period) is very similar to that

of TB model with ordinary differential equations. Thieme et al. [29] explored the dynamics of

HIV/AIDS model incorporating long and variable periods of infectiousness, variable infectivity.

They established the conditions under which the endemic equilibrium is locally stable. They

found that undamped oscillations may also occur if the variable infectivity is at a higher level at

certain incubation period. In particular, Rost et al. [32] studied an SEIR epidemic model with

varying infectivity by considering infection age of infected individuals. Recently, McCluskey [33]

proposed an SEIR epidemic model including infected individuals with infection-age structure

to allow the varying infectivity. Because in the varying infectivity, the incidence term has the

form βS(t)
∫∞

0
k(a)i(t, a)da, hence, Li et al. [34] extended the results of Rost et al. [32] and

McCluskey [33] to a multi-group SEIR epidemic model with distributed delays. The authors

discussed the global dynamics of extended model by using a graph-theoretical approach to the

method of Lyapunov functionals.

Feedback in Epidemic Model: In case of many epidemics, when complete eradication of

disease is not possible, then whether we may change the endemicity level of disease, becomes

an important question. This means we can maintain the endemic level below a threshold value

so that outbreak of disease can be avoided. In some cases, we may also want to change the

endemicity of the existing equilibrium maintaining its stability. On the other hand, in real

world, ecological systems are continuously disrupted by unpredictable disturbances persisting

for finite period of times. The presence of such unpredictable forces may also result in alteration

of various parameters like survival rate. In the language of control theory, these unpredictable

forces are called the feedback variables. By introducing feedback variables, we make improve-

ment in the associated epidemic model system which may provide us population stabilizing at

lower value of equilibrium. Sometimes, the disease can also be made endemic or extinct by

choosing suitable values of associated feedback variables. The understanding of the feedback

technique might be implemented by means of some biological and reasonable feedback or by

some harvesting mechanism (see [35]). In ecology, one important and practical issue related to

feedback variables is the “ecology balance”: Whether the considered ecosystem would be able

to persist in the presence of such unpredictable disturbances. Indeed, in the time period of

the last few decades, the dynamical behaviours of the population models with feedback have

been deliberated significantly (see [36–41]). Fan et al. [42] proposed a logistic model incorpo-

rating feedback variable. They established the global stability of positive equilibrium using a

new method combined with lower and upper solution technique. This method is much simple

and convenient than Lyapunov function method of global stability. Yang et al. [43] studied

an autonomous cooperative system with single feedback. They showed that the stable species

could become die out or change its position of stable state maintaining its stability by choosing

appropriate values of control parameters. An Susceptible-infected (SI for short) epidemic model

with feedbacks in a patchy environment was investigated in reference [44]. They obtained glob-

al stability criteria of the disease-free and endemic states. The authors determined the global
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stability of endemic state using some results of graph theory. The global stability of epidem-

ic models with feedback and the effects of feedback on the transmission dynamics of disease

have been investigated in [45–47]. Thus, we rarely find few studies on the effect of feedback in

multi-group epidemic models incorporating the effect of age of infection. Moreover, the impact

of the infection age on the susceptible individuals has not been addressed in the presence of

feedback variables. However, the study of the multi-group epidemic model with infection age

and feedback can significantly contribute to the control of infection in more realistic situations.

Motivated from above cited works, we propose a multi-group SEIR epidemic model system with

infectivity as a function of infection age and feedback with the following objectives:

1. To establish the global dynamics of the model system using graph theoretic results.

2. To improve the understanding how feedback and age of infection influence the transmis-

sion dynamics of infectious diseases.

Graph-Theoretic Approach to Multi-group Epidemic Model: To understand the dynamics

of model, basic reproduction number (R0) plays an important role. One tries to the study

the case R0 ≤ 1 and R0 > 1. For the case R0 ≤ 1, there exists only one (disease free)

equilibria and for the case R0 > 1, there exist at least two equilibrium, one is called disease

free equilibrium and the other one is known as endemic equilibrium. To study the global

stability of an equilibrium, one tries to construct a suitable Lyapunov function. In general, the

construction of a Lyapunov function is a difficult problem. In references [48–49], the authors

elaborated a graph theoretic technique to study the global dynamics of endemic equilibrium

by constructing a Lyapunov function. The method involves the complete description of the

complicated pattern to construct a Lyapunov function. There are a few multi-group epidemic

models (see [50–54]), in which this graph theoretic approach is used to determine the global

stability of endemic equilibria of models. This method has been used to determine the global

stability of unique endemic equilibrium of a multi-group SIR epidemic model which is described

by ordinary differential equations (see [48]).

For basic notions of the graph theory, we refer the interested readers to [55–56]. Now, we

mention some results to be used in the present paper.

Definition 1.1 (see [55]) Let B = (βkj)n×n be a real matrix. If βkj are nonnegative for

all k and j, then B is called non-negative matrix (i.e., B ≥ 0). If B and a F = (fkj)n×n are

both non-negative, then B − F ≥ 0 if and only if βkj ≥ fkj for all k and j.

Definition 1.2 (see [55]) Let B = (βkj)n×n be a non-negative matrix. If B satisfies one

of the following properties, then B is called reducible

1. n = 1 and B = 0,

2. n ≥ 2, there exits a permutation matrix P , such that

PBPT =

(

B1 0
B2 B3

)

,

where B1 and B2 are square matrices and PT is the transpose of matrix P . Otherwise, B is

called irreducible.
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We consider the linear system

Bv = 0 (1.1)

where

B =























∑

l6=1

β1l −β21 · · · −βn1

β12

∑

l6=2

β1l · · · −βn2

...
...

...

−β1n −βn2 · · ·
∑

l6=n

βnl























, βkj ≥ 0

is the Laplacian matrix of the directed graph G(B) associated to the matrix B.

Lemma 1.1 (see [57]) If B is non-negative and irreducible, then

(1) the spectral radius ρ(B) of B is a simple eigenvalue of B, and B has a positive eigenvector

c = (c1, c2, · · · , cn) corresponding to ρ(B).

(2) If B ≤ F , then ρ(B) ≤ ρ(F ) and furthermore, if B < F and B + F is irreducible, then

ρ(B) < ρ(F ).

(3) If F is a diagonal and positive (i.e., all entries of F are positive) matrix, then BF is

irreducible.

Lemma 1.2 (see [48]) If the matrix B is irreducible and n ≥ 2, then the following properties

hold.

(1) The solution of linear system (1.1) is the space of dimension 1, with a basis (v1, v2, · · · ,

vn) = (K11, K22, · · · , Knn), where Kii is the cofactor of the i-th diagonal entry of matrix B,

1 ≤ i ≤ n.

(2) For all 1 ≤ i ≤ n,

Kii =
∑

T∈Ti

∏

(k,j)∈E(T )

βkj and Kii > 0, (1.2)

where Ti is the set of all spanning subtrees of vertices of G(B) that are rooted at vertex i and

E(T ) is the set of all arcs of directed tree T.

The rest of the paper is organized as follows. In Section 2, we mathematically formulate

our problem considering some basic assumptions. In Section 3, we prove the well-posedness

(positivity and boundedness) of the proposed model system. In Section 4, we prove our main

results about the global asymptotic stability of the disease free equilibrium and the endemic

equilibrium of model system. In Section 5, numerical evaluations have been presented to support

our theoretical results by taking an example of 2-group populations. Finally, in Section 6, we

discuss our results including some ideas about future scope.

2 Mathematical Model Formulation



Global Dynamics of a Multi-group SEIR Epidemic Model with Infection Age 839

The heterogeneous host population is divided into n homogeneous groups of population ac-

cording to gender, age, profession, education levels and geographical distribution for their het-

erogeneity to disease transmission. Further, we divide any k-th group into four compartments

(Sk, Ek, Ik, Rk) to study our problem as compartmental model of epidemic, where 1 ≤ k ≤ n.

Let Sk be the susceptible individuals who are at risk of infection of disease, Ek be the individuals

of exposed class who are infected by disease but do not liable to spread disease, the infectious

individuals Ik who are infected by disease and they will influence susceptible individuals, the

recovered individuals Rk who are the recovered and have permanent immunity against the dis-

ease. We also assume that the susceptible individuals Sk, the exposed individuals Ek and the

recovered individuals are homogeneous at any time t in the k-th group and the infectious indi-

viduals Ik is structured by the infection age θ and ik(t, θ) is the density of infectious individuals

with infection age θ at the time t in k-th group. We assume that ik(t, θ) = 0 for all θ > θ∗

(finite), where θ∗ is the maximum infection age, for which the infectious individual can survive,

that means an individual can stay in infectious class for θ∗ unit time. Then Ik(t) =
∫∞

0
ik(t, θ)

is the total number of infectious individuals at time t. We make the following assumptions for

our model system:

(A1) In k-th group, new recruits in the total population take place at a rate Γk > 0 at any

moment of time. In which (1−pk) proportion of new recruits enter in the susceptible population

and remaining pk proportion enter in the recovered population. That means some proportion

of new recruiting population could not be susceptible to infection due to having permanent

immunity.

(A2) In k-th group, by using the vaccine against the virus/bacteria and provided immunity

against the various diseases, the susceptible individuals (Sk) enter to recovered class (Rk) at a

constant rate δk > 0.

(A3) For k-th group, Uk is feedback variable which satisfies certain differential equation and it

influences susceptible individuals by a rate bkUk, where bk is the feedback parameter.

(A4) In k-th group, after the latent period, the individuals of exposed class turn into infectious

individual class with a constant rate εk > 0.

(A5) The infected individuals in Ik class can recover (through treatment or automatically) and

get permanent immunity against disease, i.e., γk is the recovery rate of Ik.

(A6) Here, we consider the cross-infection from all groups of infectious individuals to a group

of susceptible individuals. Let hk(θ) be a bounded and non-negative continuous function of θ,

which represents the infectivity of infected individuals of θ infection age of k-th group.

(A7) In k-th group, the coefficient of infection transmission for susceptible individuals Sk

turning into exposed individuals Ek is βkj ≥ 0, in which a susceptible individual makes contact

with infectious individuals Ik of the j-th group. For any two distinct groups (k-th and j-th),

individuals of Ij can infect individuals of Sk in direct or indirect mode, i.e., βkj is irreducible

matrix.

Under the above assumptions and discussions, the proposed multi-group SEIR model system
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is

dSk

dt
= (1− pk)Γk − (dSk + δk)Sk −

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − bkUkSk,

Ek

dt
=

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − (dEk + εk)Ek,

( ∂

∂t
+

∂

∂θ

)

ik(t, θ) = −(dIk + γk)ik(t, θ), (2.1)

dUk

dt
= −fkUk + ekSk,

dRk

dt
= pkΓk + δkSk + γk

∫ ∞

0

ik(t, θ)dθ − dRk Rk,

where k = 1, 2, · · · , n and Uk is the k-th feedback variable.

The initial and boundary conditions of model system (2.1) are given by:

Sk(0) = φk1 ≥ 0, Ek(0) = φk2 ≥ 0, Rk(0) = φk3 ≥ 0, Uk(0) = φk4 ≥ 0,

ik(0, θ) = φ0k(θ) ∈ L+(0,∞) and ik(t, 0) = εkEk(t), (2.2)

where L+(0,∞) is the space of the non-negative functions.

In an age-structured infection age model, the variable ik(t, θ) has two interpretations. First-

ly, it can be interpreted as the density of infected individuals of infection age θ at time t (this

means the actual number of infected individuals at time t between two infection ages θ1 and

θ2 will be the integral of the density function ik(t, θ) over θ ∈ (θ1, θ2). Secondly, the density

function ik(t, θ) evaluated at (t, a) has the interpretation of being the rate at time t at which

individuals pass through age a. As a consequence, ih(t, 0) is the overall birth rate for infected

individuals (rate at which the exposed individuals become infected).

The total number of infected individuals is found by integrating the density ik(t, θ) over all

ages θ ∈ [0,∞) as follows:

Ik =

∫ ∞

0

ik(t, θ)dθ.

Note that we assume that the disease confers permanent immunity in the above model.

This assumption makes the first four equations of model system (2.1) independent from Rk.

Therefore, the dynamics of our model is governed by the following reduced system:

dSk

dt
= (1− pk)Γk − (dSk + δk)Sk −

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − bkUkSk,

dEk

dt
=

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − (dEk + εk)Ek, (2.3)

( ∂

∂t
+

∂

∂θ

)

ik(t, θ) = −(dIk + γk)ik(t, θ),

dUk

dt
= −fkUk + ekSk.
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Now, let ψ(θ) = e−
∫

θ

0
(dI

j+γj)da. Then ψ(θ) is the probability of an infected individual in the

j-th group surviving to infection age θ. Integrating the third equation of model system (2.1)

and incorporating the initial conditions, we obtain

ik(t, θ) = εkEk(t− θ)e−(dI
k+γk)θ. (2.4)

Let fj(θ) = hj(θ)εje
−(dI

j+γj)θ be the general kernel function. Then by (2.3) and (2.4), we

obtain the following model system:

dSk

dt
= (1 − pk)Γk − (dSk + δk)Sk −

n
∑

j=1

βkjSk

∫ ∞

0

fj(θ)Ej(t− θ)dθ − bkUkSk,

dEk

dt
=

n
∑

j=1

βkjSk

∫ ∞

0

fj(θ)Ej(t− θ)dθ − (dEk + εk)Ek, (2.5)

dUk

dt
= −fkUk + ekSk.

Here the kernel function fk(θ)(≥ 0) is a continuous function of the infection age θ with
∫∞

θ=0
fk(θ)dθ = ak > 0. Our assumption on the kernel function fk(θ) is

∫∞

θ=0
fk(θ)e

λkθdθ < ∞,

where λk is a positive number, k = 1, 2, · · · , n . System (2.5) can be interpreted as a multigroup

(say n-group) epidemic model for an infectious disease whose latent period θ in the host is

obtained from the general age of infection model (2.1). Here, we also realize that the model

system (2.5) is an epidemic model with distributed time delay.

If we take
∫∞

0
ij(t, θ)dθ = Ij and hj(θ) = 1, then model system (2.1) changes into associated

ODE system of the following form:

dSk

dt
= (1− pk)Γk − (dSk + δk)Sk −

n
∑

j=1

βkjSkIj − bkUkSk,

dEk

dt
=

n
∑

j=1

βkjSkIj − (dEk + εk)Ek,

dIk
dt

= εkEk − (dIk + γk)Ik, (2.6)

dUk

dt
= −fkUk + ekSk,

dRk

dt
= pkΓk + δkSk + γkIk − dRkRk.

The dynamical behaviour of model system (2.3) is equivalent to that of system (2.5). Once

we determine the solution of system (2.5), we can calculate ik(t, θ) from (2.4). So, the stability

of equilibria of model system (2.1) is the same as that of system (2.5). From here onward, we

shall focus on the model system (2.5).

3 The Well-Posedness of Model

Due to infinite delay, it is necessary to determine the suitable phase space of state varibales.

Therefore, we define the following Banach space of fading memory type (see [58]) for any
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λk ∈ (0, dIk + γk),

Ck =
{

Ψ ∈ C((−∞, 0],R) | Ψ(r)eλkr is uniformly continuous on

(0,−∞] with sup
r≤0

|Ψ(r)|eλkr <∞
}

and norm defined by ‖Ψ‖k = sup
r≤0

|Ψ(r)|eλkr. Now for Ψ ∈ Ck, let Ψt ∈ Ck be defined by Ψt(r) =

Ψ(t + r), r ∈ (−∞, 0]. Let Sk,0, Uk,0 ∈ R+ and Ψk ∈ Ck such that Ψk(r) ≥ 0, r ∈ (−∞, 0].

For our case Ψ = Ek. Thus, Ek(t − θ) = Ekt(θ), θ ∈ [0,∞). Now we consider the solution

(S1(t), E1t, U1(t), S2(t), E2t, U2(t), · · · , Sn(t), Ent, Un(t)) of model system (2.5) with the initial

conditions

Sk(0) = Sk,0, Ek0 = Ψk, Uk(0) = Uk,0, k = 1, 2, · · · , n. (3.1)

Then, by standard theory of functional differential equations (see [59]), we have Ekt ∈ Ck.

Therefore, we consider model system (2.5) in the phase space

∆ =

n
∏

k=1

(R× Ck × R).

Considering the biological meaning, we are only interested in the solutions which are non-

negative and bounded. Now, we show that all the solutions of model system (2.5) with initial

conditions (3.1) are non-negative, i.e., Sk(t) ≥ 0, Ek(t) ≥ 0, Uk(t) ≥ 0 for all t ≥ 0 and

k ∈ {1, 2, · · · , n}. Let Sk(t) > 0 with initial value Sk(0) > 0 for all k ∈ {1, 2, · · · , n}. We

suppose that it is not correct, then there exist a positive number t1 and some k1 ∈ {1, 2, · · · , n}

such that

Sk1
(t) > 0, Sk1

(t1) = 0, 0 ≤ t < t1.

It follows from the first equation of model system (2.5)

Ṡk1
(t) > Sk1

(

− (dsk1
+ δk1

)−

n
∑

j=1

βk1j

∫ ∞

0

fj(θ)Ej(t− θ)dθ − bk1
Uk1

)

, 0 ≤ t < t1.

Using the comparison theorem (see [60]) and taking the limit as t→ t1, we obtain

Sk1
(t1) > Sk1

(0) exp

∫ t1

0

(

− (dsk1
+ δk1

)−

n
∑

j=1

βk1j

∫ ∞

0

fj(θ)Ej(r − θ)dθ − bk1
Uk1

(r)
)

dr > 0,

which contradicts our supposition that Sk1
(t1) = 0. Therefore, we conclude that if Sk(0) > 0

then Sk(t) > 0 for all t ≥ 0 and k ∈ {1, 2, · · · , n}. From the continuity of solution of system

(2.5) around the initial condition, we have that if Sk(0) ≥ 0, then Sk(t) ≥ 0 for all t ≥ 0 and

k ∈ {1, 2, · · · , n}.

Similarly, let Ek(t) > 0 with initial value Ek(0) > 0 for all k ∈ {1, 2, · · · , n}. We assume

that it is not correct and there exist a positive number t2 and k2 ∈ {1, 2, · · · , n} such that

Ek2
(t) > 0, Ek2

(t2) = 0, 0 ≤ t < t2.
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, here, 0 < t2−θ < t2. Hence, we have Ek2
(t2−θ) > 0. Then from the second equation of model

system (2.5), we obtain
dEk2

(t2)

dt > 0 and Ek2
(t) > 0 for all t > t2. This is a contradiction to

our assumption. Therefore, from continuity of solution of system (2.5) around the initial value,

we conclude that Ek(0) ≥ 0. Thus Ek(t) ≥ 0 for all t ≥ 0 and k ∈ {1, 2, · · · , n}, we have

Now, from the last equation of system (2.5):

dUk(t)

dt
≥ −fkUk(t) for all k ∈ {1, 2, · · · , n}.

By the comparison theorem (see [60]), we obtain

Uk(t) ≥ Uk(0) exp(−fkt) > 0 for all k ∈ {1, 2, · · · , n}.

Thus, we conclude that if Uk(0) ≥ 0, then Uk(t) ≥ 0 for all t ≥ 0 and k ∈ {1, 2, · · · , n}.

Now, we show that solutions of system (2.5) with initial and boundary conditions (3.1) are

bounded. For this, we have Sk(t) > 0 for t > 0. Thus, from the first equation of system (2.5),

we obtain S′
k(t) ≤ (1− pk)Γk − (dsk + δk)Sk(t). Hence,

lim sup
t→∞

Sk(t) ≤
(1− pk)Γk

dsk + δ
.

By adding all the equations of system (2.5) for each k, we obtain

(Sk(t) + Ekt(0) + Uk(t))
′ = (1 − pk)Γk − (dsk + δk)Sk − bkUkSk − (dEk + εk)Ek − fkUk + ekSk

≤ (1 − pk)Γk − d∗k(Sk(t) + Ekt(0) + Uk(t)),

where d∗k = min{(dsk + δk − ek), (d
E
k + εk), fk} and (dsk + δk − ek) > 0.

Thus, we obtain

lim sup
t→∞

(Sk(t) + Ekt(0) + Uk(t)) ≤
(1 − pk)Γk

d∗k
.

Therefore, the following region is positively invariant for system (2.5)

ξ =
{

(S1, E1(·), U1, · · · , Sn, En(·), Un) ∈ ∆
∣

∣

∣
0 ≤ Sk ≤

(1− pk)Γk

dsk + δ
,

0 ≤ (Sk(t) + Ekt(0) + Uk(t)) ≤
(1− pk)Γk

d∗k
, Ek(r) ≥ 0, r ∈ (−∞, 0]

}

,

and

ξ =
{

(S1, E1(·), U1, · · · , Sn, En(·), Un) ∈ ∆
∣

∣

∣
0 < Sk <

(1 − pk)Γk

dsk + δ
,

0 < (Sk(t) + Ekt(0) + Uk(t)) <
(1− pk)Γk

d∗k
, Ek(r) ≥ 0, r ∈ (−∞, 0]

}

is interior set of ξ. Therefore ξ is also positively invariant for system (2.5).
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4 Equilibria and Their Global Stability

System (2.5) always has a disease free equilibrium P0 = (S0
1 , 0, U

0
1 , S

0
2 , 0, U

0
2 , · · · , S

0
n, 0, U

0
n)

∈ R
3n
+ , where

S0
k =

−fk(d
S
k + δk) +

√

(fk(dSk + δk))2 + 4bkek(1− pk)Γkfk

2bkek
, U0

k =
ekS

0
k

fk
.

The endemic equilibrium of system (2.5) is given by

P ∗ = (S∗
1 , E

∗
1 , U

∗
1 , S

∗
2 , E

∗
2 , U

∗
2 · · · , S∗

n, E
∗
n, U

∗
n) ∈ Ξ

and it is calculated by solving the following system of equations

0 = (1− pk)Γk − (dSk + δk)S
∗
k −

n
∑

j=1

βkjajS
∗
kE

∗
j − bkU

∗
kS

∗
k ,

0 =

n
∑

j=1

βkjajS
∗
kE

∗
j − (dEk + εk)E

∗
k , (4.1)

0 = −fkU
∗
k + ekS

∗
k ,

where aj =
∫∞

0
fj(θ)dθ. In epidemiology, the basic reproduction number R0 is defined as

the total expected number of secondary cases produced by an infected individual during its

total infectious period, in an entirely susceptible population (see [61]). The basic reproduction

number R0 is determined by the spectral radius of a matrix Q0 defined as Q0 = qkj , where

qkj =
(βkjS

0

kaj

dE
k
+εk

)

n×n
.

Therefore

R0 = ρ(Q0),

where ρ(Q0) denotes the spectral radius of matrix Q0. In epidemiology, R0 plays a major role

to determine the dynamical behavior of system and it acts as threshold. We shall determine

the dynamical behavior of system (2.5) completely in terms of R0.

4.1 Global stability of disease free equilibrium (DFE for short)

Let S = (S1, S2, · · · , Sn) and S
0 = (S0

1 , S
0
2 , · · · , S

0
n). Then Q0 = Q(S0). Since 0 ≤ Sk ≤ S0

k

for all k, hence, we have 0 ≤ Q(S) ≤ Q(S0) = M0. If S 6= S0, then Q(S) < Q0. Since B = βkj

is an irreducible matrix, Q(S) and Q(S0) are irreducible matrices. Then by Lemma 1.1, Q(S)

+Q(S0) is also an irreducible matrix and ρ(Q(S)) < ρ(Q0) provided S 6= S0. Now we prove

the following theorem.

Theorem 4.1 Assume that B = (βkj)n×n is irreducible. If R0 ≤ 1, then DFE of system

(2.5) is globally asymptotically stable. Moreover, if R0 > 1, then DFE is unstable.

Proof We know that matrix Q = Q0 =
(βkjS

0

kaj

dE
k
+εk

)

n×n
is irreducible. Therefore, by Lemma

1.1, the matrix Q has a positive left eigenvector (w1,w2,· · · ,wn) corresponding to the spectral
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radius of matrix (ρ(Q) > 0). In particular, ρ(Q) = ρ(Q0) = R0 ≤ 1. Let ck = wk

dE
k
+εk

> 0 and

ak(θ) =
∫∞

σ=θ
fk(σ)dσ. Thus, ak(0) =

∫∞

σ=0 fk(σ)dσ = ak.

Now, we consider the following Lyapunov function:

V =

n
∑

k=1

ck

(

Sk − S0
k − S0

k log
Sk

S0
k

+ Ek

+

n
∑

j=1

βkjS
0
k

∫ ∞

0

aj(θ)Ej(t− θ)dθ +
bk

2ek
(Uk − U0

k )
2
)

. (4.2)

Note that Sk

S0

k

+
S0

k

Sk
≥ 2 and equality holds if and only if Sk = S0

k. Now, by differentiating V

with respect to solutions of model system (2.5), we obtain

V ′ =

n
∑

k=1

ck

[(

1−
S0
k

Sk

)

S′
k + E′

k +

n
∑

j=1

βkjS
0
k

∫ ∞

0

aj(θ)
∂Ej(t− θ)

∂t
dθ +

bk

ek
(Uk − U0

k )U
′
k

]

=

n
∑

k=1

ck

(

(1− pk)Γk − (dsk + δk)Sk − bkUkSk − (1− pk)Γk

S0
k

Sk

+

n
∑

j=1

βkjS
0
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ + (dsk + δk)S
0
k + bkUkS

0
k

− (dEk + εk)Ek +

n
∑

j=1

βkjS
0
k

∫ ∞

0

aj(θ)
∂Ej(t− θ)

∂t
dθ

+
bk

ek
(Uk − U0

k )(ekSk − fkUk)
)

.

Now, by using the disease free stationary state and integration by parts, we obtain

V ′ =

n
∑

k=1

ck(d
s
k + δk + bkU

0
kS

0
K)

(

2−
Sk

S0
k

−
S0
k

Sk

)

−
bk

ek
fk(Uk − U0

k )
2

+
n
∑

j=1

βkjS
0
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ − (d0k + εk)Ek +
n
∑

j=1

βkjS
0
k

∫ ∞

0

aj(θ)
∂Ej(t− θ)

∂t
dθ

≤
n
∑

k=1

ck

[

n
∑

j=1

βkjS
0
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ − (d0k + εk)Ek +
n
∑

j=1

βkjS
0
k

∫ ∞

0

aj(θ)
∂Ej(t− θ)

∂t
dθ

]

=

n
∑

k=1

ck

[

n
∑

j=1

βkjS
0
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ − (d0k + εk)Ek

+

n
∑

j=1

βkjS
0
k

(

ajEj −

∫ ∞

0

fj(θ)Ej(t− θ)dθ
)]

=

n
∑

k=1

wk

[

n
∑

j=1

βkjajS
0
kEj

dEk + εk
− Ek

]

= (w1, w2, · · · , wk)(QE − E)

= (ρ(Q0)− 1)(w1, w2, · · · , wk)E = (R0 − 1)(w1, w2, · · · , wk)E

≤ 0, if R0 ≤ 1, (4.3)

where E(t) = (E1(t), E2(t), · · · , En(t))
T.
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Let Y = {(S1, E1(·), U1, · · · , Sn, En(·), U1) ∈ ξ V ′ = 0} and Z be the largest compact

invariant subset of Y. Now, we prove that Z = {P0}. From inequality (4.3) and assumption

ck > 0, if L′ = 0 then
(

2 − Sk

S0

k

−
S0

k

Sk

)

= 0 and (Uk − U0
k )

2 = 0. Therefore, Sk(t) = S0
k 6= 0 and

Uk = U0
k 6= 0. Hence, from the first equation of system (2.5), we have

n
∑

j=1

βkj

∫ ∞

0

fj(θ)Ej(t− θ)dθ = 0,

and thus

βkj

∫ ∞

0

fj(θ)Ej(t− θ)dθ = 0 for all 1 ≤ k, j ≤ n.

Note that B = (βkj)n×n is irreducible. So, for each 1 ≤ j ≤ n and k 6= j, we have βkj 6= 0.

Therefore, we obtain
∫ ∞

0

fj(θ)Ej(t− θ)dθ = 0,

which gives Ejt(r) = 0, r ∈ (−∞, 0], j = 1, 2, · · · , n. Therefore, Z = {P0}.

Now, using the LaSalle-Lyapunov invariance principle (see [62]), P0 is globally stable in ξ,

if R0 ≤ 1.

4.2 Global stability of endemic equilibrium

In this section, we consider that R0 > 1. In this case, it follows from Theorem 4.1 that DFE

P0 is unstable. Form the uniform persistence results of [63] and similar argument as in the

proof of [64, Proposition 3.3], we conclude that instability of P0 implies the uniform persistence

of system (2.5) in positively invariant set ξ. This means that, there exists a constant c (> 0)

such that

min
(

lim inf
x→0

Sk(t), lim inf
x→0

Ekt(θ), lim inf
x→0

Uk(t)
)

≥ c for allk ∈ N,

provided that (S1(0), E10(θ), U1(0), · · · , Sn(0), En0(θ), Un(0)) ∈ ξ.

The uniform persistence of model system (2.5) along with boundedness of the solutions in

ξ, implies existence of an endemic equilibrium P ∗ in ξ, which is summarized in the following

proposition.

Proposition 4.1 If R0 > 1, then system (2.5) is uniformly persistent and there exists at

least one endemic equilibrium P ∗ in ξ.

Now, we prove our one main result using Proposition 4.1.

Theorem 4.2 Assume that B = (βkj) is irreducible. If R0 > 1, then system (2.5) has a

globally asymptotically stable endemic equilibrium P ∗ in Ξ.

Proof Let P ∗ = (S∗
1 , E

∗
1 , U

∗
1 , S

∗
2 , E

∗
2 , U

∗
2 , · · · , S

∗
n, E

∗
n, U

∗
n),where S

∗
k , E

∗
k , U

∗
k > 0 denote the

endemic equilibrium of system (2.5). Let βkj = βkjajS
∗
kE

∗
j and B be given by (1.1). Note

that B is the Laplacian matrix of (βkj). Since B is irreducible, B is also irreducible. Let

{v1, v2, · · · , vn}(vk > 0, 1 ≤ k ≤ n) be a basis for linear system (1.1) as discussed in Lemma
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1.2. Now, we consider the Lyapunov function to establish the following global stability of

endemic equilibrium:

L(t) = L1(t) + L2(t), (4.4)

where

L1(t) =

n
∑

k=1

vk

[

S∗
k

(Sk

S∗
k

− 1− ln
Sk

S∗
k

)

+ E∗
k

(Ek

E∗
k

− 1− ln
Ek

E∗
k

)

+
bk

2ek
(Uk − U∗

k )
2
]

,

L2(t) =

n
∑

k,j=1

vkβkjS
∗
k

∫ ∞

0

aj(θ)E
∗
j

(EJ (t− θ)

E∗
j

− 1− ln
EJ(t− θ)

E∗
j

)

dθ

and

aj(θ) =

∫ ∞

σ=θ

fj(σ)dσ.

Since ψ(x) = x − 1 − lnx ≥ 0 for all x > 0. It is clear that L(t) is always bounded for all

t > 0. L(t) ≥ 0 and the equality holds if and only if Sk = S∗
k , E

∗
k = E(t − θ) = E∗

k , Uk = U∗
k .

Now, differentiating L1 along the solution of system (2.5), we obtain

L′
1 =

n
∑

k=1

vk

[

S′
k −

S∗
k

Sk

S′
k + E′

k −
E∗

k

Ek

E′
k +

bk

ek
(Uk − U∗

k )U
′
k

]

=

n
∑

k=1

vk

[

(1− pk)Γk − (dsk + δk)Sk − bkUkSk − (1 − pk)Γk

S∗
k

Sk

+ (dsk + δk)S
∗
k

+

n
∑

j=1

βkjS
∗
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ + bkUkS
∗
k − (dEk + εk)Ek

−
E∗

k

Ek

n
∑

j=1

βkjSk

∫ ∞

0

fj(θ)Ej(t− θ)dθ + (dEk + εk)E
∗
k

]

.

Using the equilibrium state equation of model system (2.5), we obtain

L′
1 =

n
∑

k=1

vk

[

(dsk + δk)
(

2−
Sk

S∗
k

−
S∗
k

Sk

)

+ bkU
∗
kS

∗
k

(

2−
Sk

S∗
k

−
S∗
k

Sk

)

−
bkfk

ek
(Uk − U∗

k )
2

+

n
∑

j=1

βkjS
∗
kajE

∗
j

(

2−
S∗
k

Sk

−
Ek

E∗
k

)

+

n
∑

j=1

βkjS
∗
k

∫ ∞

0

fj(θ)Ej(t− θ)dθ

−
E∗

k

Ek

n
∑

j=1

βkjSk

∫ ∞

0

fj(θ)Ej(t− θ)dθ
]

=
n
∑

k=1

vk

[

(dsk + δk + bkU
∗
kS

∗
k)
(

2−
Sk

S∗
k

−
S∗
k

Sk

)

−
bkfk

ek
(Uk − U∗

k )
2

+

n
∑

j=1

βkjS
∗
kE

∗
j

{

aj

(

2−
Sk

S∗
k

−
S∗
k

Sk

)

+
( 1

E∗
j

−
SkE

∗
k

S∗
kEkE

∗
j

)

∫ ∞

0

fj(θ)Ej(t− θ)dθ
}]

.
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Now, differentiating L2 along the solution of model system (2.5) and using the integration

by parts, we obtain

L′
2 =

n
∑

k,j=1

vkβkjS
∗
k

d

dt

∫ ∞

0

aj(θ)
(

Ej(t− θ)− E∗
j − E∗

j ln
Ej(t− θ)

E∗
j

)

dθ

=
n
∑

k,j=1

vkβkjS
∗
k

∫ ∞

0

aj(θ)
[

−
∂

∂θ

(

Ej(t− θ)− E∗
j − E∗

j ln
Ej(t− θ)

E∗
j

)]

dθ

=

n
∑

k,j=1

vkβkjS
∗
kE

∗
j

(ajEj

E∗
j

−
1

E∗
j

∫ ∞

0

fj(θ)Ej(t− θ)dθ −

∫ ∞

0

fj(θ) ln
Ej(t)

Ej(t− θ)
dθ

)

.

Now, we calculate L′(t) = L′
1 + L′

2,

L′ =

n
∑

k=1

vk

[

(dsk + δk + bkU
∗
kS

∗
k)
(

2−
Sk

S∗
k

−
S∗
k

Sk

)

−
bkfk

ek
(Uk − U∗

k )
2

+

n
∑

j=1

βkjS
∗
kE

∗
j

{

aj

(

2−
S∗
k

Sk

−
Ek

E∗
k

−
Ej

E∗
j

)

−

∫ ∞

0

fj(θ) ln
Ej(t)

Ej(t− θ)
dθ

−
SkE

∗
k

S∗
kEkE

∗
j

∫ ∞

0

fj(θ)Ej(t− θ)dθ
}]

≤

n
∑

k,j=1

vkβkjS
∗
kE

∗
j

[

aj

(

2−
S∗
k

Sk

−
Ek

E∗
k

−
Ej

E∗
j

)

−

∫ ∞

0

fj(θ) ln
Ej(t)

Ej(t− θ)
dθ

−
SkE

∗
k

S∗
kEkE

∗
j

∫ ∞

0

fj(θ)Ej(t− θ)dθ
]

=

n
∑

k,j=1

vkβkjS
∗
kE

∗
j

[

∫ ∞

0

fj(θ)
(

2−
S∗
k

Sk

−
Ek

E∗
k

−
Ej

E∗
j

)

−

∫ ∞

0

fj(θ) ln
Ej(t)

Ej(t− θ)
dθ

−
SkE

∗
k

S∗
kEkE

∗
j

∫ ∞

0

fj(θ)Ej(t− θ)dθ
]

=

n
∑

k,j=1

vkβkjS
∗
kE

∗
j

∫ ∞

0

fj(θ)
[

2−
S∗
k

Sk

−
Ek

E∗
k

−
Ej

E∗
j

− ln
Ej(t)

Ej(t− θ)
−

SkE
∗
k

S∗
kEkE

∗
j

Ej(t− θ)
]

=

n
∑

k,j=1

vkβkjS
∗
kE

∗
j

∫ ∞

0

fj(θ)
[(

1−
S∗
k

Sk

+ ln
S∗
k

Sk

)

+
(Ej

E∗
j

−
Ek

E∗
k

)

− ln
EjE

∗
k

E∗
jEk

+
(

1−
SkEjE

∗
kEj(t− θ)

S∗
kEkE

∗
j

+ ln
SkEjE

∗
kEj(t− θ)

S∗
kEkE

∗
j

)]

≤
n
∑

k,j=1

vkβkjS
∗
kE

∗
j

∫ ∞

0

fj(θ)
[(Ej

E∗
j

−
Ek

E∗
k

)

− ln
EjE

∗
k

E∗
jEk

]

=

n
∑

k,j=1

vkβkjS
∗
kE

∗
j aj

[(Ej

E∗
j

−
Ek

E∗
k

)

− ln
EjE

∗
k

E∗
jEk

]

=

n
∑

k,j=1

vkβkj

[(Ej

E∗
j

−
Ek

E∗
k

)

− ln
EjE

∗
k

E∗
jEk

]

. (4.5)
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Here, we use the following notation

Hn = Hn(E1, E2, · · · , En) =
n
∑

k,j=1

vkβkj

[(Ej

E∗
j

−
Ek

E∗
k

)

− ln
EjE

∗
k

E∗
jEk

]

.

Now, we will show that L′ ≤ 0 and for this we need to show that Hn = 0. Here we consider

the cases n = 1 and n = 2 separately and finally n ≥ 3.

Case-1: If we take n = 1, then obviously H1 = 0. Then L′(t) ≤ 0 with equality satisfying

if and only if S1(t) = S∗
1 , E1(t) = E1(t− θ) = E∗

1 , U1(t) = U∗
1 for all t ≥ 0, θ ∈ [0, θ+].

Case-2: If we take n = 2, then H2 = H2(E1, E2) =
2
∑

k,j=1

vkβkj

[(Ej

E∗

j
− Ek

E∗

k

)

− ln
EjE

∗

k

E∗

j
Ek

]

.

Now, from Lemma 1.2, we obtain v1 = β21 and v2 = β12. By expanding H2, we have

H2 = v1β12

[(E2

E∗
2

−
E1

E∗
1

)

− ln
E1E

∗
2

E∗
1E2

]

+ v2β21

[(E1

E∗
1

−
E2

E∗
2

)

− ln
E1E

∗
2

E∗
1E2

]

= β21β12

[(E2

E∗
2

−
E1

E∗
1

)

− ln
E2E

∗
1

E∗
2E1

]

+ β12β21

[(E1

E∗
1

−
E2

E∗
2

)

− ln
E1E

∗
2

E∗
1E2

]

(by putting v1 = β21 and v2 = β12)

= β12β21

[

− ln
E2E

∗
1

E∗
2E1

− ln
E1E

∗
2

E∗
1E2

]

= 0. (4.6)

Hence, H2 = 0 and L′(t) ≤ 0. Equality satisfies if and only if Sk(t) = S∗
k , Ek(t) = Ek(t − θ) =

E∗
k , Uk(t) = U∗

k , for all t ≥ 0, θ ∈ [0, θ+], where k = 1, 2.

Case-3: Let n ≥ 3. The function Hn becomes complicated. It is difficult to solve it

manually. So we will use the graph theoretic technique. Let Hn = H1
n + H2

n, where H
1
n =

n
∑

k,j=1

vkβkj

(Ej

E∗

j
− Ek

E∗

k

)

and H2
n =

n
∑

k,j=1

vkβkj ln
EjE

∗

k

E∗

j
Ek
. In this case, we first prove that H1

n =

n
∑

k,j=1

vkβkj

(Ej

E∗

j
− Ek

E∗

k

)

= 0.

From (1.1), we have

vk

n
∑

j=1

βkj =

n
∑

j=1

βjkvj , k = 1, 2, · · · , n.

By putting βkj = βkjajS
∗
kE

∗
j , we obtain

vk

n
∑

j=1

βkjajS
∗
kE

∗
j =

n
∑

j=1

βjkakS
∗
jE

∗
kvj ; k = 1, 2, · · · , n. (4.7)

Using (4.7), we obtain

n
∑

k,j=1

vkβkj

Ej

E∗
j

=
n
∑

k,j=1

vkβkjajS
∗
kEj =

n
∑

k,j=1

vjβjkakS
∗
jEk
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=

n
∑

k,j=1

Ek

E∗
k

vkβkjajS
∗
kE

∗
j

=
n
∑

k,j=1

vkβkj

Ek

E∗
k

, where βkjajS
∗
kE

∗
j = βkj .

Therefore,

n
∑

k,j=1

vkβkj

(Ej

E∗
j

−
Ek

E∗
k

)

= 0 holds for E1, E2, · · · , En > 0.

Now, we show that H2
n = 0, i.e.,

n
∑

k,j=1

vkβkj ln
EjE

∗

k

E∗

j
Ek

= 0 holds for E1, E2, · · · , En > 0.

By Lemma 1.2, vk = Kkk is a sum of all rooted directed spanning subtrees T of G of root

at vertex k. If we add a directed arc (k, j) from root vertex k to another vertex j, then we get

a unicyclic subgraph X of G and each term vkβkj is the weight w(X) of unicyclic subgraph X.

Further, we observe that the arc (k, j) is an arc of the unique cycle CX of X. Moreover, we

can form the same unicylic X by adding each arc of CX to corresponding tree T . Thus, the

meaning of double sum (over k and j) in H2
n can be considered as a sum over all the arcs in

the cycle of all the unicyclic subgraph H containing vertices {1, 2, · · · , n} of graph G, that is

H2
n =

∑

X

H2
n,X =

∑

X

w(X).
∑

(k,j)∈E(CX)

ln
EjE

∗
k

E∗
jEk

=
∑

X

w(X) · ln
(

∏

(k,j)∈E(CX)

EjE
∗
k

E∗
jEk

)

,

where E(CX) is the set of all arcs of unique cycle CX . Then, we have

∏

(k,j)∈E(CX)

EjE
∗
k

E∗
jEk

= 1, therefore, ln
(

∏

(k,j)∈E(CX)

EjE
∗
k

E∗
jEk

)

= 0.

Thus H2
n,X = 0 for each unicylic subgraph X. For example, let n = 2. The unique cycle

CX has two vertices {1, 2} and makes a cycle 1 → 2 → 1. Here E(CX) = {(1, 2), (2, 1)} and

∏

(k,j)∈E(CX)

EjE
∗
k

E∗
jEk

=
E2E

∗
1

E∗
2E1

.
E1E

∗
2

E∗
1E2

= 1.

Then we have H2
n =

∑

X

H2
n,X = 0 holds for E1, E2, · · · , En > 0, which gives that Hn = 0 for

E1, E2, · · · , En > 0.

Therefore, L′ ≤ 0 for all (S1, E1, U1, · · · , Sn, En, Un) ∈ ξ and equality holds if and only if

Sk(t) = S∗
k, Ek(t) = Ek(t− θ) = E∗

k , Uk = U∗
k and Hn = 0. Hence, we conclude that the only

invariant set of system (2.5) in
{

(Sk, EK , Uk) ∈ ξ : dL
dt = 0

}

is the endemic equilibrium P ∗.

Thus, if R0 > 1, then P ∗ is globally asymptotically stable and unique in the ξ-region (LaSalle’s

Invariance Principle, see [62]).
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5 Numerical Simulations

In this section, we show the feasibility of our main theoretical results. We discuss the effects

of feedback variables and infection age on the transmission of the infectious disease. For the

simplicity of our model, we consider an example with n = 2 for numerical simulation to support

our main results.

dSk

dt
= (1 − pk)Γk − (dSk + δk)Sk

−

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − bkUkSk,

dEk

dt
=

n
∑

j=1

βkjSk

∫ ∞

0

hj(θ)ij(t, θ)dθ − (dEk + εk)Ek,

( ∂

∂t
+

∂

∂θ

)

ik(t, θ) = −(dIk + γk)ik(t, θ),

dUk

dt
= −fkUk + ekSk,

dRk

dt
= pkΓk + δkSk + γk

∫ ∞

0

ik(t, θ)dθ − dRk Rk,

where k = 1, 2. (5.1)

A numerical example of associated ODE model system with n = 2 would be given

dSk

dt
= (1− pk)Γk − (dSk + δk)Sk −

n
∑

j=1

βkjSkIj − bkUkSk,

dEk

dt
=

n
∑

j=1

βkjSkIj − (dEk + εk)Ek,

dIk
dt

= εkEk − (dIk + γk)Ik,

dUk

dt
= −fkUk + ekSk,

dRk

dt
= pkΓk + δkSk + γkIk − dRk Rk,

where k = 1, 2. (5.2)
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Figure 1 The transfer diagram for model system (2.1), where Pj =
∫

∞

0
hj(θ)ij(t, θ)dθ

and Pk =
∫

∞

0
hk(θ)ik(t, θ)dθ. The red line is corresponding to the transmission process.
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In Figure 1, we show the disease transmission diagram of model system (3).
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Figure 2 The graph shows changes in infectivity of infected individuals (for both groups)

with respect to infection age.

In Figure 2, we describe the infectivity of infected individuals for varying infection age. Here

we observe that the infectivity increases and becomes saturated after a threshold of infection

age. This situation can arise to a disease which becomes more and more transmissible with

increasing infection age. This type of infectivity function could be applicable to Ebola disease

(see [27]).

Table 1 Model parameters and their definitions.

Parameters Definition
dsk Natural death rate of susceptible individuals in the k-th group.
dEk Natural death rate of exposed individuals in the k-th group.
dIk Natural death rate of infected individuals in the k-th group.
dRk Natural death rate of recovered individuals in the k-th group.
pk Fraction of new individuals into the k-th group who are

immuned.
δk Vaccination rate of susceptible individuals in the k-th group.
γk Recovery rate of infected individuals in the k-th group.
εk Disease induced death rate of infected individuals in the k-th

group.
bk,fk ek Feedback parameters.

Table 2 Numerical values of parameters.

Parameters Numerical Value Units Parameters Numerical Value Units

P1 0.05 unit less P2 0.05 unit less
Γ1 200 per day Γ2 250 per day
β11 8× 10−4 per day β12 7× 10−4 per day
β21 8× 10−4 per day β22 8× 10−4 per day
γ1 5× 10−6 (For (5.1)) per day γ1 51× 10−7 (For (5.1)) per day

0.5 (For (5.2)) 0.51 (For (5.2))

Figure 3 shows the long-time dynamics of our considered model (5.1) which supports our

main mathematical results. Here we observe that the solution curves converge to the disease-

free equilibrium for R0 ≤ 1 (see Figure 3a). If R0 > 1, then the solution curves converge to

endemic state of disease (see Figure 3b). Thus, Figure 3 also ensures the global stability of the

both equilibria of our model system (5.1).
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(a) For R0 < 1, the solutions of system (5.1) converge to disease free equilibrium.
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(b) For R0 > 1, the solutions of system converge to endemic state of disease.

Figure 3 The graphs show the long time dynamics of our model system (5.1). Here,

blue dashed curves stand for group-1 and green solid curves for group-2. Numerical

values of all parameters are given in Table 1.
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In Figure 4a, we observe that if we take the infection age from Region-2 (2 < θ < 20)

of Figure 2, then the infected population of that infection age converges to endemic state of

disease (after reaching peak point). For Region-1 (θ < 2) and Region-3 (θ > 20) of Figure 2,

the infected population converges with damped oscillations to the endemic state of disease. In

Figure 4b, we easily observe that in the infection age model, damped oscillations become visible

but the associated ODE model system (5.2) does not show any such oscillations.
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(a) The graph shows the effects of infection age
on long time dynamics of infected populations
(i1(t, θ) and i2(t, θ)), where dash-dotted curve for
θ = 50, soild curve for θ = 5 and dashed curve for
θ = 1.9. For all three curves, f1 = f2 = e1 = e2 =
b1 = b2 = 0.
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(b) The graph shows the effects of age of infec-
tion on long time dynamics of infected populations.
Here, dashed curves stand for infection age (θ = 50)
of model system (5.1) and solid curves for associat-
ed ODE model system (5.2).

Figure 4 The graphs show the effects of age of infection on long time dynamics of

infected populations, where numerical values of all parameters are given in Table 2.

Moreover, the effects of four feedback parameters on infected population are compared

in Figure 5. According to the gradient of I, we rank the effect of parameters as follows:

e2 > f1 > f2 > e1. It is also found that almost all increases in ei or fi will increase the total

number of infections up except e1. In the first row of Figure 5, e1 is labeled on the Y-axis, I

will decrease with e1 rising. Meanwhile we probe the effecst of ei and fi on each group I1 and

I2. We find that the parameters play the same role on each group on I but different on I2 as

e1 and f1 vary. Two groups, I1 and I2, receive the opposite effects from e1 and f1. Specifically,

when e1 descends or f1 rises, the number of I1 increases but I2 show a decline which is shown

in Figure 6. Interestingly, direction of gradient change in density completely turns around from

an intuitive view. High-density diseased area for I1 is low-density diseased area for I2, similarly,

the low-density diseased area for I1 is high-density diseased area for I2.

There are some deductions. It may be a suitable method to modulate feedback parameters

with obvious effects like e2 and f1, when we intend to control the total infected population.

However, when we want to restrict one of infected groups, both proper parameters and appro-

priate values must be deliberately selected because the influence over another group can not be

neglected.
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(A) (B)

(C)

(D) (E)

(F)

Figure 5 The graphs show the total number of infected population with respect to

different values of ei or fi. We use I to represent the total number, which is equal to

the sum of I1 and I2. Expect feedback parameters, other parameters are taken from

Table 2. (A) e1 and e2 with f1 = f2 = 0.1; (B) e1 and f1 with e2 = f2 = 0.1; (C)

e1 and f2 with e2 = f1 = 0.1; (D) f1 and f2 with e1 = e2 = 0.1; (E) e2 and f1 with

e1 = f2 = 0.1; (F) e2 and f2 with e1 = f1 = 0.1.
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(A) (B)

Figure 6 The graphs show the number of each group I1 in (A) and I2 in (B) with

different value of e1 and f1, corresponding to the total number I shown in Figure 5(B)

in which e2 and f2 are equal to 0.1. The red area in (A) turns blue in (B), blue area in

(A) turns red in (B).

The Figure 7 represents the region of feedback parameters, in which R0 ≤ 1 or the disease

remains eradicated. The Figure 7 also establishes some thresholds of feedback parameters to

the eradication of disease from all considered groups.
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Figure 7 The graph shows the region (shadowed) for R0 ≤ 1, where f1 = f2 = 5×10−10

and numerical values of all other parameters are given in Table 2.

6 Conclusion

Over the last few decades, the spread of different infectious diseases (both incurable diseases

like HIV/AIDS and major diseases like Cholera) are posing continuous threatening to public

health. More than fifty thousands men, women and children are dying everyday due to different

kind of infectious diseases. At regular time periods, different strategies are being suggested to
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control the transmission of a particular disease, however, success and failure of such control

strategies depend on various factors e.g., heterogeneity of host population. Multi-group ap-

proach of mathematical formulation of a particular infectious disease is one of different ways to

incorporate the associated heterogeneity in the epidemic system. In this paper, a multi-group

SEIR epidemic model system (2.1) incorporating infection age and feedback variables has been

studied. The proposed model system (2.1) describes the transmission dynamics of the disease

in a heterogeneous host population and via heterogeneity, the irregularity of infectiveness of

infectious individuals have been incorporated. Both infection age and feedback have important

influence on transmission dynamics of infectious diseases. The main contributions of our study

are the following:

(a) The feedback strategy to control the infectious disease, is introduced into an SEIR

multi-group epidemic model in which the effects of infection age are considered.

(b) The global stability of endemic equilibrium using some important graph theoretic results

to Lyapunov function method has been established.

(c) The numerical simulations of a 2-group example show the influences of feedback and

infection age on the dynamics of our proposed model.

Basic reproduction number R0 has been computed using the spectral radius of next gener-

ation matrix. It is found that the global behaviour of proposed multi-group model system is

completely determined via R0. More precisely, we show that if R0 ≤ 1, then the disease dies out

from all groups that means DFE is globally asymptotically stable. Further, we have also proved

that if R0 > 1, then the disease becomes endemic in all the groups. In this way, for R0 > 1, the

global asymptotic stability of endemic equilibrium has been established using graph theoretical

approach to the method of Lyapunov function. Further, via numerical simulations of a 2-group

model system incorporating variable infectivity (infection age), we establish that the initial

dynamics of system are very sensitive to the shape and timing of the first prevalence peak, but

the long-term dynamics shows the same qualitative behaviour. That means the steady state

of each infected individual approaches to almost the same endemic equilibrium. Thieme et al.

[29] elaborated that undamped oscillations may also occur if the infectivity is at sufficiently

higher level but our results show that the damped oscillations also occur in the initial dynamics

of infected individuals. Therefore, this result is the answer of question in special case of work

[29]. We have also found that the feedback not only changes the level of endemicity of disease

but also can play a major role in the eradication of the disease from all considered groups. This

particular result is consistent with result obtained in [43]. The feedback parameters have been

ranked in order of effect on total number of infected population. This can provide a strategy

to modulate the infected population: Priority to alter the parameter with strong effect is a

simple way for a greater change in infected population. The region of feedback parameters has

been described where the disease dies out from all groups. Furthermore, it is found that some

of feedback parameters have dissimilar effects on different groups. When the overall infect-

ed population is adjusted by the control parameters, each group also needs to be considered.

This requires special attention in practice. We have also quantified thresholds of infection age

with respect to change of the dynamical behaviour of infected individuals and thresholds of the
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feedback in respect of eradication of infectious disease.

Our findings would necessarily contribute for more deeper understanding of role of feedback

in the dynamics of infected individuals with infection age. This particular study may also

provide important information for future modeling efforts in predicting future epidemics and

establishing control strategies. In this way, the findings of this paper may be valuable for health

policymakers who work on various types of suitable policies for controlling respective infectious

diseases. Moreover, it may be interesting and more reasonable to further investigate of our

proposed model by incorporating the death rate and removal rate of infected individuals and

taking into account the function of infection age. The threshold dynamics of infected individuals

can be investigated and that may change the global stability of equilibria into oscillations. The

model system may undergo a Hopf bifurcation. We leave these ideas for future studies.
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