

Online Nonstop Task Management for Storm-Based Distributed
Stream Processing Engines

Zhou Zhang1, 2 (张　洲), Pei-Quan Jin1, 2, * (金培权), Senior Member, CCF, Member, ACM, IEEE
Xi-Ke Xie1 (谢希科), Member, ACM, IEEE, Xiao-Liang Wang1, 2 (王晓亮), Rui-Cheng Liu1, 2 (刘睿诚)
and Shou-Hong Wan1, 2 (万寿红), Member, ACM, IEEE

1 School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230026, China

E-mail: zzwolf@mail.ustc.edu.cn; jpq@ustc.edu.cn; xkxie@ustc.edu.cn; wxl147@mail.ustc.edu.cn; sagitrs@mail.ustc.edu.cn
wansh@ustc.edu.cn

Received May 30, 2021; accepted January 6, 2022.

Abstract Most distributed stream processing engines (DSPEs) do not support online task management and cannot

adapt to time-varying data flows. Recently, some studies have proposed online task deployment algorithms to solve this

problem. However, these approaches do not guarantee the Quality of Service (QoS) when the task deployment changes at

runtime, because the task migrations caused by the change of task deployments will impose an exorbitant cost. We study

one of the most popular DSPEs, Apache Storm, and find out that when a task needs to be migrated, Storm has to stop the

resource (implemented as a process of Worker in Storm) where the task is deployed. This will lead to the stop and restart

of all tasks in the resource, resulting in the poor performance of task migrations. Aiming to solve this problem, in this pa-

per, we propose N-Storm (Nonstop Storm), which is a task-resource decoupling DSPE. N-Storm allows tasks allocated to

resources to be changed at runtime, which is implemented by a thread-level scheme for task migrations. Particularly, we

add a local shared key/value store on each node to make resources aware of the changes in the allocation plan. Thus, each

resource can manage its tasks at runtime. Based on N-Storm, we further propose Online Task Deployment (OTD). Differ-

ing from traditional task deployment algorithms that deploy all tasks at once without considering the cost of task migra-

tions caused by a task re-deployment, OTD can gradually adjust the current task deployment to an optimized one based

on the communication cost and the runtime states of resources. We demonstrate that OTD can adapt to different kinds of

applications including computation- and communication-intensive applications. The experimental results on a real DSPE

cluster show that N-Storm can avoid the system stop and save up to 87% of the performance degradation time, compared

with Apache Storm and other state-of-the-art approaches. In addition, OTD can increase the average CPU usage by 51%

for computation-intensive applications and reduce network communication costs by 88% for communication-intensive ap-

plications.

Keywords distributed stream processing engine (DSPE), Apache Storm, online task migration, online task deployment

1 Introduction

With the development of the Internet of Things

(IoT)[1], social networks[2–4], and E-commerce, dis-

tributed stream processing engines (DSPEs) such as

Apache Storm① (storm for short) and Apache Flink②

(Flink for short) have attracted much attention from

both academia and industry, e.g., Twitter[2] and Al-

ibaba③. Compared with batch processing, stream pro-

cessing offers timely and continuous task processing,

which is critical in many real-time applications such

as IoT-based monitoring.

Task management is an essential part of a DSPE.

The task management module in a DSPE is responsi-

Regular Paper

The work was supported by the National Natural Science Foundation of China under Grant Nos. 62072419 and 61672479.
*Corresponding Author

Zhang Z, Jin PQ, Xie XK et al. Online nonstop task management for storm-based distributed stream processing engines.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(1): 116−138 Jan. 2024. DOI: 10.1007/s11390-021-1629-9

①Apache Storm. http://storm.apache.org/, Jan. 2024.

②Apache Flink. http://flink.apache.org/, Jan. 2024.

③Alibaba JStorm: Enterprise stream process engine. http://github.com/alibaba/jstorm/, Jan. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
https://doi.org/10.1007/s11390-021-1629-9
http://storm.apache.org/
http://flink.apache.org/
http://github.com/alibaba/jstorm/

ble for task deployment, task selection, and migra-

tion in case of node failure or new node addition.

Task management directly affects the system

throughput and processing delay, which are impor-

tant indicators to measure the overall performance

and the Quality of Service (QoS) of applications. Gen-

erally, the QoS of applications refers to the response

time, usually in terms of seconds. The task manage-

ment modules employed in popular DSPEs, including

Storm and Flink, adopt an offline scheme. However,

in many real-time applications, e.g., IoT-based moni-

toring, the data and workloads are time-varying,

making the static task deployment no longer efficient

as the workload changes. As a result, it has been an

urgent need to develop an online task management

scheme for DSPEs.

Online task management needs to support task se-

lection and migration between nodes at runtime while

maintaining high performance and QoS. For example,

supposing that the task deployment in Storm is to be

changed after Storm deploys tasks, all running pro-

cesses have to be stopped, waiting for all tuples (the

processing units in Storm) to be completed so that

Storm can perform task migration. This procedure

lasts about 30 seconds[5]. Some prior studies, such as

T-Storm[6] and TS-Storm[7], proposed to improve the

task management scheme of Storm. But they still

take over 10 seconds of system stall during a task mi-

gration, which cannot meet the QoS requirements of

real-time stream-processing applications. We find that

the intrinsic reason for the high system stall time dur-

ing a task migration in Storm, T-Storm, and TS-

Storm is that the tasks are tightly coupled with re-

sources in a task deployment. More specifically, tasks

(implemented as threads/Executors) and resources in

Storm are tightly coupled in Workers, which are im-

plemented as Java Virtual Machine (JVM) processes.

In Storm, processes are the smallest units for task de-

ployments and migrations. In other words, Storm us-

es a process-level scheme for task deployments and

migrations. Therefore, when a task migration is start-

ed, all tasks within a Worker have to be stopped so

that the system can reallocate the Worker’s resources

to tasks. In such a scheme, many Workers might even

be stopped due to a small-scaled task migration in-

volving a small number of tasks.

In this paper, to overcome the problem of offline

task management in Storm, T-Storm, and TS-Storm,

and to offer an efficient online task management

mechanism for DSPEs, we propose N-Storm (Non-

stop Storm). The main idea of N-Storm is to decou-

ple tasks from resources during task deployments and

migrations. In addition, instead of the process-level
task migration in Storm, N-Storm adopts a new
thread-level scheme. As a consequence, N-Storm can
perform thread-level task migrations at runtime with-
out affecting other tasks. Further, based on N-Storm,
we propose an online task deployment algorithm
called Online Task Deployment (OTD). Instead of
previous task deployment algorithms[6–8] that have to
stop the system for a while during a task re-deploy-
ment, OTD can avoid system stall by gradually ad-
justing the old task deployment to a new one that is
more efficient for the current workload. Briefly, we
make the following contributions in this study.

● We find out the intrinsic cause of the inefficien-

cy of task migrations in DSPEs like Apache Storm,

i.e., the coupling of tasks and resources. Motivated by

this finding, we propose N-Storm, which supports on-

line task migrations. N-Storm has two new designs.

First, it presents a task-resource decoupling architec-

ture for DSPEs. Second, it uses a thread-level scheme

to manage tasks rather than the process-level method

in Storm. We also propose two optimization strate-

gies, namely, lazy task killing and synchronization cy-

cle adjustment, to further improve the performance of

N-Storm.
● Based on N-Storm, we further propose OTD for

realizing online task deployments. OTD can support
task deployments and migrations at runtime. OTD is
implemented by gradually adjusting the current task
allocation plan to a new optimized one according to
the network communication cost and the runtime
states of resources. With this mechanism, we need not
stop the system during a task deployment. We
demonstrate that OTD can adapt to different kinds of
applications, including computation- and communica-
tion-intensive applications.

● We verify the effectiveness and efficiency of N-

Storm and OTD on a real DSPE cluster. The experi-

mental results show that N-Storm can avoid the stop

time and save up to 87% of the severe performance

degradation time compared with Storm and other

state-of-the-art approaches. Furthermore, OTD can

increase average CPU usage by 51% for computation-

intensive applications and reduce network communi-

cation costs by 88% for communication-intensive ap-

plications.
The remaining of the paper is structured as fol-

lows. Section 2 introduces the background and moti-
vation of our research. Section 3 describes the design
and implementation of N-Storm in detail. Section 4
presents OTD in detail. Section 5 reports the experi-
mental results. Section 6 discusses related work. Fi-

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 117

nally, Section 7 concludes the paper.

2 Background and Motivation

2.1 Basic Concepts of DSPEs

Storm packages the logic of a stream processing

application as a ``Topology'', an abstraction of Storm

tasks, represented as a directed acyclic graph (DAG),

as shown in Fig.1. Each vertex in a Topology repre-

sents a logical operator. There are two types of ver-

tices in a Topology, namely Spout and Bolt. The

Spout is responsible for receiving data tuples from the

data source. The Bolt is responsible for encapsulating

the processing logic and processing specific tuples.

Thus, Storm can start multiple tasks to perform the

processing logic of a vertex in parallel.
Generally, Storm runs on a cluster with the mas-

ter-slave architecture, as shown in Fig.2. The master
node in Storm is called Nimbus. It is responsible for
conducting task deployments and monitoring the run-
ning state of Storm. Other nodes in the cluster are
called Worker nodes. A Worker node is responsible
for accepting, running, and managing tasks assigned

by Nimbus. A Worker node consists of a Supervisor
process and some Worker processes (denoted as
Workers in the texts below). The Supervisor in a
Worker node communicates with the Nimbus through
the Apache ZooKeeper④, which is a distributed coor-
dinator. A Worker is a JVM process that runs on a
Worker node with configured resources. Each Worker
can have one or more Executors. An Executor is a
thread for processing one specific task, which refers to
a part of the particular work of a vertex. In this pa-

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 8

Task 7

Spout

Bolt 1

Bolt 2

Bolt 3

Bolt 4

Fig.1. Example of the Storm Topology.

Nimbus

Supervisor

Executor

Executor

Executor

Worker Node

ZooKeeper

…

…

Worker

Executor

Executor

Executor

Worker

Executor

Executor

Executor

Worker

1

2

3

4

Supervisor

Executor

Executor

Executor

Worker Node

…

Worker

Executor

Executor

Executor

Worker

Executor

Executor

Executor

Worker

Fig.2. Architecture and task management mechanism of Storm.

118 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

④Apache ZooKeeper. http://zookeeper.apache.org/, Jan. 2024.

http://zookeeper.apache.org/

per, an Executor can be considered as a task.

In Storm, all processes, including Nimbus, Super-

visors, and Workers, do not maintain their runtime

states inside themselves. More specifically, all states

are stored on ZooKeeper, meaning that all modules in

Storm (i.e., Nimbus, Supervisors, and Workers) are

stateless[2]. Thus, when a process is killed, it simply

restarts and gets messages from ZooKeeper without

affecting the whole system. Note that our work is al-

so based on the stateless principle of Storm.

Fig.2 shows the task management mechanism in

Storm. It includes four steps. First, Nimbus generates

an allocation plan for the given Topology by a task

deployment algorithm. Second, Nimbus writes the al-

location plan into ZooKeeper. Third, the Supervisor

on each Worker node gets the allocation plan from

the ZooKeeper. Finally, each Supervisor checks its

Workers, where some tasks have changed, and

restarts these Workers.

2.2 Limitations of Current Task Management

The task management in a DSPE is designed to

solve the following two problems.

Problem 1: Task Deployment. Given all tasks, re-

sources, and the distribution of the resources among

the Worker nodes, how to find an optimal scheme to

deploy all tasks to Workers?

Problem 2: Task Migration. In case of removing or

adding a Worker node, or updating the task deploy-

ment, how to migrate tasks to other Worker nodes?

Note that an offline task management mechanism

only deals with task deployments, while an online

task management mechanism tackles not only task

deployments but also task migrations.

Offline solutions are inefficient for many stream

processing applications because the data and work-

loads are time-varying. The inefficiency can be inter-

preted for two reasons. First, the throughput of a da-

ta flow may fluctuate with time. For example, prior

work[9] showed that the data flow in a log-monitoring

application would increase sharply when some bugs

happened. Second, some logical operators in the

Storm Topology will use non-random partitioning

strategies, such as region-based or hash-based parti-

tioning, making the data distribution uneven in the

system[10]. Thus, loads of the tasks belonging to the

same logical operator (i.e., the Bolt) are different.

Consequently, Storm calls for online schemes that can

change the task deployment at runtime.

However, online task deployments cannot be sup-

ported by trivially extending existing DSPEs. For ex-

ample, Storm uses the rebalance command to update

the task deployment. This command needs first to

stop all running Executors that belong to the Topolo-

gy and kill all Workers. After that, Nimbus generates

a new allocation plan and restarts Topology accord-

ing to the new allocation plan. With such a scheme,

the system needs to wait until all tuples in the queue

are finished. To make it worse, Nimbus and Supervi-

sors have to wait a threshold of 30 seconds for con-

firming the completion states of tasks, meaning that

the rebalance command will make the system stop for

at least 30 seconds.

Instead of stopping the running of the entire

Topology, a better way is to send the new allocation

plan to the Supervisor at each Worker node and let

the Supervisor perform task migrations. Such a

scheme was proposed in T-Storm[6] and TS-Storm[7].

With this scheme, the Supervisor can selectively kill

and restart the Workers whose Executors need to be

updated so that the running of other Workers will not

be interrupted. This approach is more efficient than

the ``rebalance'' command. However, it still has to

stop the system for more than 10 seconds when per-

forming a task migration[5], mainly because stopping a

Worker means killing all the Executors within the

Worker. Thus, the system's stop will incur much

waiting and executing time, especially when only a

few Executors within the Worker need to be updated.

Through a deep investigation on the implementa-

tion of existing DSPEs, we find the intrinsic reason

for the high system-stall time during a task migra-

tion in Storm, T-Storm, and TS-Storm is that the

tasks are tightly coupled with resources in a task de-

ployment. More specifically, tasks (Executors) and re-

sources are tightly coupled in Workers. With this

mechanism, the finest granularity components al-

lowed to be migrated at runtime are process-level

components. As a result, a task migration involving a

small number of tasks may also cause the stop of

many Workers. Therefore, to reduce the cost of task

migrations, the architecture of a DSPE needs to be

redesigned.

3 N-Storm: Online Nonstop Task Migration

In this section, we aim to solve problem 2 defined

in Subsection 2.2. In particular, we propose a new

scheme for online task migrations called N-Storm

(Nonstop Storm).

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 119

3.1 Main Ideas of N-Storm

We propose two novel techniques for N-Storm: 1)

the decoupling of tasks and resources and 2) thread-

level task management.

Decoupling of Tasks and Resources. In Storm,

tasks are tightly coupled with resources. Notably, a

Worker’s key information including tasks, message

queues, and resource configurations is stored in an im-

mutable data structure maintained by ZooKeeper.

This means the task-resource allocation cannot be

changed if tasks have been deployed to Workers. We

propose in N-Storm a new scheme to decouple tasks

from resources. Specially, we add a new shared updat-

able data structure in each Worker node to store all

configuration information about the task deployment

in Workers. This data structure is shared by the Su-

pervisor and all the Workers in a Worker node. The

Supervisor can periodically write messages into the

data structure to indicate the changes in the alloca-

tion plan. At the same time, each Worker in a Work-

er node can access the shared data structure to get

the up-to-date allocation plan, i.e., each Worker can

know the change of the current task deployment at

runtime from the shared data structure. With this

mechanism, we can implement the decoupling of tasks

and resources. Here, the main difference between N-

Storm and Storm is that N-Storm allows the

stop/restart of a specific Executor while Storm does

not.

In the implementation of N-Storm, we use a local

shared K/V (key/value) store in each node to main-

tain the shared data structure of the node. The task

management mechanism of N-Storm is shown in

Fig.3. The first three steps in Fig.3 are the same as

those in Fig.2. In the fourth step, the Supervisor on a

Worker node periodically writes messages to the K/V

store. Finally, in the fifth step, each Worker periodi-

cally accesses the K/V store to get the latest message

and update the Executors it manages. Based on such

implementation, we realize the decoupling of tasks

and resources in N-Storm.

Thread-Level Task Management. Another idea of

N-Storm is to perform task deployments and migra-

tions in terms of threads. As Executors are imple-

mented as threads in Storm, we allow N-Storm to

manage each Executor to execute the task manage-

ment. More specifically, each Worker can directly

control its Executors, either for task deployments or

task migrations. For example, when the Supervisor in-

Nimbus

Supervisor

Executor

Executor

Executor

Worker Node

ZooKeeper

…

…

Worker

Executor

Executor

Executor

Worker

Executor

Executor

Executor

Worker

1

2

3

4

Worker Node

K/V

Store

5

Supervisor

Executor

Executor

Executor

…

Worker

Executor

Executor

Executor

Worker

Executor

Executor

Executor

Worker

K/V

Store

Fig.3. Architecture and task management mechanism of N-Storm. The black dotted arrow is the original control flow of Apache
Storm, and the blue dotted arrow is the new control flow of N-Storm.

120 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

forms a Worker through the K/V store to stop an Ex-

ecutor, it can directly kill the thread of the Executor

but does not interfere with other Executors within the

Worker. Thus, we can adjust the task deployment

while keeping all Workers running, avoiding the over-

head of the system stop caused by previous DSPEs

like Storm, T-Storm, and TS-Storm.

3.2 Implementation of N-Storm

Supervisor. In N-Storm, the Supervisor on a

Worker node periodically synchronizes with ZooKeep-

er to get the latest allocation plan. Differing from

Storm, the Supervisors in N-Storm do not need to

compare the new allocation plan with the current task

deployment. Instead, after requesting messages from

ZooKeeper, the Supervisors in N-Storm extract the lo-

cal allocation plan from the global allocation plan and

write it to the K/V store of each Worker node.

Worker. In Storm, after a Worker starts up, the

configurations about Executors and the mapping from

Executors to message queues are saved in an im-

mutable map structure. In N-Storm, we support

atomic updates of these configurations. Thus, Work-

ers periodically access the K/V store to know the

changes in the allocation plan and update their con-

figurations. Once a Worker finds that the allocation

plan has changed, it can kill/start the tasks involved

to deploy tasks adaptive to the changes.

K/V Store. N-Storm extends each Worker node

with a lightweight, durable, and atomic K/V store.

Both Supervisors and Workers with the same Worker

node can access the K/V store within the node simul-

taneously to communicate with each other. The K/V

store handles updates in an append-only mode. It

maintains a version number for each record, and read

requests will only access the latest version of the

record. The K/V store only locks write operations so

that read operations can be executed concurrently.

Such a scheme does not affect the system perfor-

mance because only the Supervisor, unique on each

Worker node, has the authority to update the alloca-

tion plan.

The K/V store only introduces low overhead.

Since the K/V store is embedded in each Worker

node, no inter-process communication costs will be

caused. In addition, write operations will incur disk

I/Os but read operations only access the latest ver-

sion of the K/V records; thus, we can assume that

most reads will hit the operating system’s page cache.

What is more, a Worker node does not save the glob-

al allocation plan but only the local allocation plan,

meaning that the size of the K/V store is indepen-

dent of the cluster size and will not consume too

much space. In our implementation, the space cost of

a local allocation plan is typically less than 512 bytes.

3.3 Lazy Task Killing

During task migrations, the Executors to be killed

may be processing tuples, and there may be tuples in

the message queue that are going to be processed by

these Executors. If the Executors are killed immedi-

ately, all of these associated tuples will be lost. In this

case, Storm will reprocess these tuples according to a

lineage-based fault-tolerant mechanism[2], eventually

impacting the system’s performance.

Aiming to avoid the tuple loss during task migra-

tions, we propose to delay the killing of Executors.

Specifically, when we need to kill an Executor, we do

not kill it immediately but let a timer thread in the

Worker monitor and perform the killing operation.

The timer thread will wait a few seconds before it fi-

nally kills the Executor. During the delayed time, two

identical Executors may exist in two Workers, but it

will not affect the normal execution of the system.

This is because upstream Executors can only know

one specific downstream Executor at any time. Dur-

ing the delayed time, the old Executor continues to

process tuples in the message queue before the timer

thread performs the killing, effectively reducing mes-

sage loss in the old Executor. Note that there is still a

tiny chance of losing some intermediate data. Howev-

er, even when message loss occurs, N-Storm adopts a

similar lineage-based fault tolerance mechanism[2] as

Storm to enable all lost messages to be reprocessed af-

ter timeouts to ensure data integrity.

3.4 Synchronization Cycle Adjustment

The performance of N-Storm is highly affected by

two synchronization cycles. The first is for a Supervi-

sor to communicate with ZooKeeper (Supervisor-

ZooKeeper cycle), and the second is for a Worker to

visit the K/V store (Worker-Store cycle). Note that

Supervisors and Workers work asynchronously in N-

Storm. We illustrate the performance impact of this

asynchronism in Fig.4. Let us assume that the Super-

visor-ZooKeeper cycle is 10 seconds (default set in

Storm). We want to migrate Executor 1 from Work-

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 121

er node 1 to Worker node 2. In the worst case, Super-

visor 2 visits ZooKeeper at the moment T = 0 and

finds that the allocation plan has not changed. Then,

after half a second, Nimbus issues a new allocation

plan to ZooKeeper. After another half a second, Su-

pervisor 1 accesses ZooKeeper and updates the tasks

for Worker node 1, and kills Executor 1. However, Su-

pervisor 2 has to wait until T = 10 s to get the new

allocation plan and start the new Executor 1, making

Executor 1 stop working for about 9 seconds. Conse-

quently, in the worst case, the stopping time of the

migrated Executor is nearly the Supervisor-ZooKeep-

er cycle. The influence of the Worker-Store cycle is

similar.

Thus, we propose to shorten the Supervisor-

ZooKeeper cycle as well as the Worker-Store cycle.

Generally, when the cycles are set to a small value,

the expected stopping time of migrated Executors can

be reduced to improve the overall performance of task

migrations. However, a small cycle may also lead to

the frequent invoking of the synchronization opera-

tion, introducing more CPU costs and increasing the

workloads of Supervisors and Workers. In Subsection

5.2, we test the influence of the setting of the cycles

on the performance of N-Storm and find that setting

a moderate size for the cycles can get the best perfor-

mance.

Synchronize
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(Old Deployment)

Workers and

K/V Store

Workers and

K/V Store

Issue a New
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

Kill
Executor 1

Synchronize
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

Synchronize
Deployment

Start
Executor 1

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

(b)(a)

(d)(c)

Fig.4. Worst case of the asynchronous working mechanism. (a) T = 0 s. (b) T = 0.5 s. (c) T = 1 s. (d) T = 10 s.

122 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

3.5 Reliability of N-Storm

N-Storm provides the same reliability as Apache

Storm. First, in Storm, modules are stateless, and the

states are kept in ZooKeeper, which allows any mod-

ule to be shut down and restarted at any time[2].

Thus, the system can continue processing tuples nor-

mally after the module is restarted. N-Storm contin-

ues to follow the stateless module design. The key

idea is that the allocation plan has been persistently

stored in the K/V store. Second, Storm uses a lin-

eage-based approach to avoid message loss by having

an Acker in the system that tracks tuple processing[2].

If a tuple times out, it will be reprocessed by the sys-

tem. Our lazy task-killing mechanism has greatly re-

duced the likelihood of message loss due to migration,

and the Acker can guarantee that no tuple is lost

even in the worst case. Third, some applications need

to save intermediate processing states. The Storm has

not provided persistence support for intermediate

states; therefore, some states may be missing during

the task migration. Users can save intermediate states

using other persistent applications to ensure the relia-

bility of intermediate states.

4 OTD: Online Task Deployment

This section mainly aims to solve problem 1 defin-

ed in Subsection 2.2, which is the task deployment pro-

blem. Previous online task deployment schemes[6, 7, 11]

deploy all tasks at once, which have to stop the sys-

tem for seconds, resulting in decreased system

throughput. Differing from prior work, we propose an

online nonstop task deployment scheme called Online

Task Deployment (OTD). Our method can avoid sys-

tem stall by gradually adjusting the task deployment

to make it more efficient for the current workload.

4.1 Problem Analysis

The performance of task deployment is mainly de-

termined by two indicators, namely the processing de-

lay and system throughput. To improve these two in-

dicators, task deployments need to realize the follow-

ing two objectives.

Objective 1: ensuring that tasks allocated to all re-

sources do not exceed the computation power of the

Workers, a.k.a., Workers cannot be overloaded.

Objective 2: minimizing the cost of the network

communication between nodes.

A Topology (i.e., a DAG) can be divided into

t1, t2, . . . , tm
ti Proci

ti ti+1 Transi

multiple processing paths, and each tuple completes a

processing path. Assuming that the complete process-

ing path for a tuple contains tasks , the

processing delay for each task is , the trans-

mission delay between tasks and is , the

overall delay of a processing path can be represented

by (1).

D =
∑

1⩽i⩽m

Proci +
∑

1⩽i⩽m−1

Transi. (1)

ProciHere, mainly involves CPU processing time,

memory and cache accessing time, and waiting time.

Let us assume that all resources are with identical

CPUs, memories, and other hardware. The CPU pro-

cessing time and memory/cache accessing time can be

regarded as constants. The waiting time refers to the

time of the tuples in the queue waiting to be pro-

cessed. When the total number of tasks undertaken

by a resource exceeds the computation power of the

resources, we can say that the processing speed of the

tasks on the resource is slower than the input speed of

the data flow. In this case, tuples will accumulate in

the queue, and the tuples' waiting time will increase

quickly.

TDN

TDP

Assuming that the network transmission delay be-

tween any two nodes is constant (denoted as),

the inter-process transmission delay within nodes is

also constant (denoted as), and a total of k net-

work transmissions are required for processing one tu-

ple, we have the following (2). ∑
1⩽i⩽m−1

Transi = k× TDN + (m− 1− k)× TDP . (2)

TDN ≫ TDP

∑
1⩽i⩽m−1

Transi

Since the cost of network transmissions is much

higher than that of inter-process communications, i.e.,

, we can infer that is

proportional to k. Generally, we can assume that the

waiting time is short. Therefore, we can say that most

of the processing delay is caused by network transmis-

sions.

The maximum throughput of a DSPE is up to the

busiest component. It can be a Worker or a network

between two nodes. Assuming that a DSPE is de-

ployed on N Worker nodes that contain W Workers,

the maximum throughput of the DSPE can be ex-

pressed by (3).

T =min
(
α/max

(
{CCn→n′|n, n′ ∈ N,n ̸= n′}

)
,

β/max
({

PCw|w ∈ W
}))

. (3)

CCn→n′Here, represents the communication cost

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 123

n′ PCw

α β

between Worker nodes n and , and is the pro-

cessing cost of Worker w. The symbols and are

two coefficients, which are correlated to the network

bandwidth and the computation power of Workers.

The applications running in DSPEs can be rough-

ly divided into computation-intensive ones and com-

munication-intensive ones. For computation-intensive

applications, the throughput of a DSPE is limited by

the computation power of the system. Therefore, real-

izing objective 1 is more important to this kind of ap-

plications than realizing objective 2. On the other

hand, for communication-intensive applications, the

throughput is limited by the network bandwidth.

Thus, objective 2 is more important.

CCn→n′ PCw

For each task deployment, if we can calculate the

expectation of k and the values of and ,

we can find the optimal deployment. Unfortunately,

all these parameters are related to task deployment

and the throughput and distribution of the data flow.

As the data flow changes over time, we need an on-

line task deployment strategy to adjust the current

task deployment to adapt to the change of the data

flow. However, it is inefficient to re-deploy all tasks at

once, which was proposed in T-Storm[6] and TS-

Storm[7], because such a scheme will cause high com-

puting costs. On the other hand, migrating a large

number of tasks at once will also increase the system’s
instability. Therefore, we propose OTD, which can

gradually change the current task deployment accord-

ing to the properties of applications, make the task

deployment adaptive to dataflow changes, and ensure

the system’s stability.

4.2 Implementation of OTD

OTD is proposed to realize objective 1 and objec-

tive 2, i.e., avoiding the overload of Workers and re-

ducing the communication costs between nodes. It

consists of two modules, namely a load collection

module and a module for task deployment, as shown

in Fig.5. The load collection module is deployed on

Workers and is responsible for collecting the commu-

nication cost between Executors, the length of each

message queue, and the CPU utilization of each

Worker. It will send the collected information to

ZooKeeper. The module of the task deployment runs

on Nimbus. It is responsible for obtaining the infor-

mation collected by the load collection module from

Supervisor

Executor

Workers

Worker Node

Supervisor

Workers

ZooKeeper

Load

Collection

Module

Load

Collection

Module

Executor

Message Queue

Nimbus Task Deployment

Communication Cost

Queue Length

CPU Usage

1

2

3

Executor

Executor

Fig.5. Architecture and load collection flow of OTD. The black dotted arrow is the original control flow of Apache Storm, and the
red solid arrow is the new statistical data flow of OTD.

124 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

ZooKeeper and performing the online task deploy-

ment algorithm (see Subsection 4.3).

The working process of OTD is shown in Fig.6.

First, we get the Worker loads and the communica-

tion costs from ZooKeeper. Then, according to the

length of message queues and the CPU utilization of

each Worker, we can distinguish high-load Workers

and low-load Workers from normal-load Workers. Fi-

nally, according to the results of classification, we per-

form appropriate operations as follows.

Case 1. If both high-load and low-load Workers

exist, we execute the load balancing algorithm (see

Algorithm 1) to migrate one task from a high-load

Worker to a low-load Worker.

Case 2. If high-load Workers exist, but no low-

load Workers live, we send the user a warning mes-

sage to inform him/her of lacking resources.

Case 3. If high-load Workers do not exist, but

low-load Workers exist, we execute the communica-

tion optimization algorithm (see Algorithm 2) to re-

duce the inter-node communication costs.

Case 4. If neither high-load Workers nor low-load

Workers exist, meaning that the system usually is

running, we need not take any actions.

For case 1 and case 3, the load balancing algo-

rithm and the communication optimization algorithm

will be invoked to generate a new allocation plan,

which will determine the best-fit Executor and per-

form a task migration that is supported by N-Storm.

To minimize the impact of task migrations on the sys-

tem, we only generate one best-fit pair each time, in-

cluding one Executor and a targeted Worker. We pe-

riodically execute the best-fit pair selection until the

current task deployment is suitable for the current

data flow.

4.3 Task Deployment Algorithm

The key issue of OTD is to determine the best-fit

Executor and Worker. Based on this best-fit selection,

we can then invoke N-Storm to perform a task migra-

tion. For different types of applications, we optimize

for application bottlenecks. In particular, for compu-

tation-intensive applications, we optimize the task de-

ployment mainly toward objective 1. On the other

hand, for communication-intensive applications, we

take objective 2 as the primary objective.

To measure the quality of task deployment, we in-

troduce the allocation score of a task as a metric. We

get the allocation score by calculating the running

Start

Get Load and Communication Cost

 High Load Workers

!= NULL?

Y

Low Load
Workers

 != NULL?

N

Low Load Workers

!= NULL?

Perform Load

Balancing

Algorithm

Add Resources

Perform

Communication

Optimization Algorithm

Y

N

N Y

End

Perform Task

Migration

Fig.6. Working process of OTD.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 125

ASe,n

ASe,n

state of the system. Let represent the alloca-

tion score of allocating Executor e to Worker n, and

we define as the difference between the intra-

node communication cost of e and the inter-node

communication cost of e, as shown in (4).

ASe,n =
∑
e′∈n

(CCe′→e + CCe→e′)−∑
e′′∈N−n

(CCe′′→e + CCe→e′′) . (4)

CCe′→e CCe→e′

CCe′′→e CCe→e′′

Here, the variables and represent

the intra-node communication costs sent to and from

e, respectively. The variables and

represent the inter-node communication costs sent to

and from e, respectively.

ASCe,n0→n

In a task deployment, we calculate the change of

the allocation score to measure the benefit of current

task migration. We use to represent the

change of the allocation score of migrating Executor e
from Worker n0 to Worker n. The calculation is

shown in (5).

ASCe,n0→n =
ASe,n − ASe,n0

2
,

ASCe,n0→n =
∑
e′∈n

(CCe′→e + CCe→e′)−∑
e′′∈n0

(CCe′′→e + CCe→e′′). (5)

ASCe,n0→n

In (5), the first sum is the communication cost be-

tween e and the Executors on the targeted Worker n,

and the second sum is the communication cost be-

tween e and the Executors on the source Worker n0.

The value of is used in both the load bal-

ancing algorithm and the communication optimiza-

tion algorithm.

ASCe,n0→n

The load balancing algorithm is shown in Algo-

rithm 1. First, the algorithm selects the Worker with

the highest load, denoted as max_load_worker, from

the high_load_workers set. Then, we get all Execu-

tors who are deployed on the Worker identified by

max_load_worker. These Executors are denoted as ex-
ecutors. Next, we select the Worker with the lowest

load on each Worker node, denoted as min_load_
workers, from the low_load_workers set. After that,

we connect the selected Executors in executors to the

Workers in min_load_workers and use (5) to calcu-

late the change of the allocation score for each candi-

date migration pair. Finally, we return the migration

pair which has the maximum value of as a

result.

Algorithm 1. Load Balancing

{CCe→e′ |e, e′ ∈
E}
Input: high_load_workers, low_load_workers,

em, wtOutput:

1: get max_load_Worker from high_load_workers
← {e|e ∈2: executors max_load_worker}

3: get min_load_workers from low_load_workers
∈4: for e executors

n0 ← getNode(e)5: 　

w ∈6: 　 for min_load_workers
n← getNode(w)7: 　　

ASCe,n0→n8: 　　 calculate by (5)

9: 　 end for
10: end for

em, wt←argmax(ASCe,n0→n), e∈n0, w ∈ n11: calculate
em, wt12: return

ASCe,n0→n

The communication optimization algorithm is

shown in Algorithm 2. This algorithm is similar to the

load balancing algorithm, with only two differences.

First, for the input, it uses all Executors in the Topol-

ogy instead of the Executors in max_load_worker.
Second, at the end of Algorithm 2, it determines

whether the value of of the migration pair

to be returned exceeds a threshold (thresholdASC).

This is because a task migration will cause some fluc-

tuation in the system performance. Thus, we need to

evaluate the benefit of the selected migration. We on-

ly perform the selected task migration when the bene-

fit exceeds the threshold. Such a scheme is intro-

duced to avoid the task migrations that incur high

costs and impact the stability of the system.

Algorithm 2. Communication Optimization

{CCe→e′ |e, e′ ∈ E}Input: executors, low_load_workers,
em, wtOutput:

1: get min_load_workers from low_load_workers
∈2: for e executors

n0 ← getNode(e)3: 　

w ∈4: 　 for low_load_workers
n← getNode(w)5: 　　

ASCe,n0→n6: 　 　calculate by (5)

7:　　end for
8: end for

em, wt←argmax(ASCe,n0→n), e ∈ n0, w ∈ n9: calculate

ASCem,n0→nt > thresholdASC, em ∈ n0, wt ∈ nt10: if then

em, wt11: 　return
12: end if
13: return NULL

O(|E| × |N |) |E|
|N |

The complexity of the OTD algorithm is

, where is the count of Executors,

and is the count of Workers. To ensure the stabil-

126 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

ity of the system, we execute the OTD algorithm pe-

riodically. Thus, it will not introduce excessive com-

puting load to Nimbus.

5 Performance Evaluation

5.1 Experimental Setup

For the experiments in this paper, if there is no

additional description, the default configuration de-

scribed in this subsection is used.

The experiments use the distributed remote proce-

dure call (DRPC)[2] to provide input data to the sys-

tem. DRPC consists of DRPC servers and DRPC

clients and is responsible for the communication be-

tween the user and the system. Due to the budget

limit, we run experiments by default on a local clus-

ter consisting of three servers, each equipped with two

Intel Xeon e5-2620 v4 CPUs and 128 GB memory.

Nimbus and the DRPC server runs on one server, and

the other two servers are used as Worker nodes.

Thus, each Worker node has four Workers with

equivalent resources. The DRPC client runs on a per-

sonal computer equipped with an Intel Core i5-4590

CPU and 8 GB memory. In addition, to verify the

scalability of online task deployment, we also run an

experiment on a cloud platform, which will be dis-

cussed in Subsection 5.3.

We use a linear Topology with two Bolts for the

experiments. The template of the linear Topology is

shown in Fig.7. For the experiments in Subsection 5.2

and the communication-intensive experiments in Sub-

section 5.3, we use the Word Count Topology⑤. The

input of the Word Count Topology is English sen-

tences. Bolt 1 divides sentences into words, while Bolt

2 counts the number of word occurrences and out-

puts statistical results. We randomly select sentences

from the novel “Harry Potter” as inputs. The Topolo-

gy parallelism represents the number of Workers used

by the Topology, which is set to 8. The operator par-

allelism means the number of tasks that run the com-

putational logic of the operator. The parallelism of

Bolt 1 and Bolt 2 is set to 12 and 24, respectively.

For the computation-intensive experiments in Subsec-

tion 5.3, Bolt 1 is an operator with heavy computa-

tions, and Bolt 2 is an operator with few calculations.

The parallelism settings are the same as before.

5.2 Performance of N-Storm

To test the performance of N-Storm, we imple-

ment a random task re-deployment algorithm to trig-

ger task migrations. The algorithm can generate the

required number of migrated tasks and ensure that

the tasks are evenly distributed after the migration.

We set the period of task re-deployment to 60 sec-

onds. The experimental results are the total value or

average value of the system running for 600 seconds.

Note that there are three important parameters in

this experiment, namely M, TS, and TW. The parame-

ter M represents the number of the Executors to be

migrated in each task re-deployment. The parameter

TS represents the cycle that the Supervisor visits

ZooKeeper to get the allocation plan, and TW repre-

sents the cycle that each Worker visits the K/V store

to get the allocation plan. To ensure the fairness of

the comparison, we let supervisors execute the pro-

cess-level task management (i.e., kill/start Workers)

every TW seconds in the comparative experiments.

The default settings are M = 1, TS = 10 seconds, and

TW = 3 seconds.

We compare N-Storm with several existing

schemes, which are summarized below.

1) Storm. It uses the rebalance command before a

task migration, which is recommended by Storm and

has been used by prior work[12–14].

2) Storm*. This scheme is the task migration algo-

rithm proposed in T-Storm[6] and TS-Storm[7]. It di-

rectly dispatches the new allocation plan to supervi-

sors, and then supervisors kill or start Workers.

3) N-Storm. This is the scheme proposed in this

study. It uses the thread-level migration policy based

on the task-resource decoupling design, but it does

not use the optimization strategies proposed in Sub-

section 3.3 and Subsection 3.4.

4) N-Storm+. This scheme extends N-Storm by

adding the two optimization strategies proposed in

Subsection 3.3 and Subsection 3.4, respectively.

5.2.1 One-Task Migration

In the first experiment, we compare the perfor-

mance of one-task migration of N-Storm with that of

Bolt 2Bolt 1Input Output

Fig.7. Template of the linear Topology.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 127

⑤https://storm.apache.org/releases/current/javadocs/org/apache/storm/starter/WordCountTopology.html, Jan. 2024.

https://storm.apache.org/releases/current/javadocs/org/apache/storm/starter/WordCountTopology.html

Storm and Storm*. We use the default settings of M,

TS, and TW.

First, we record the real-time throughput of the

three methods, as shown in Fig.8. The unit of the

throughput is tuples per second (TPS). In the stable

running stage, the throughput of the three methods is

very close, indicating that N-Storm performs as well

as Storm when task migrations are not invoked. We

make the first task migration at the 50th second.

Storm needs to suspend the running of the Topology

before the task migration, and the entire stop time is

around 30 seconds, which is close to the default down-

time set in Storm. During this time, we can see that

the system throughput drops to 0. The throughput of

Storm* also decreases by more than a half, which is

far below the normal throughput. The low through-

put keeps about 10 seconds. This is because that the

task migration in Storm* will stop Workers related to

the migration.

Time (s)

T
h
ro

u
g
h
p
u
t

(T
P
S
)

500

400

300

200

100

0
0 20 40 120 14060 80 100

Storm

Storm*

N-Storm

Fig.8. Throughput comparison for the one-task migration.

Meanwhile, as Storm* does not affect other Work-

ers that are not involved in the migration, it has

shorter system-stop time than Storm. N-Storm re-

duces the system-stop time to less than one second,

which is much better than Storm and Storm*. As a

result, N-Storm can perform task migration while

meeting QoS requirements for real-time applications,

i.e., second-level response latency.

In the remaining experiments in this subsection,

we measure the average throughput per second of

Storm without any task migration as a baseline and

count the duration of performance degradation at dif-

ferent levels. The level of performance degradation is

set to 20%, 40%, 60%, 80%, and 100%, respectively

(see Fig.9). We specially focus on the levels of 60%

and 100%. If the performance degradation level is

over 60%, the system performance is seriously worse.

In addition, a 100% drop performance means that the

system is stopped. As shown in Fig.9(a), Storm in-

curs a total of 279 seconds, during which the system

performance decreases by 60%, and 267 seconds in

case of 100% degradation. Storm* reduces the dura-

tion of 60% performance degradation to 155 seconds,

44% less than that of Storm. However, the duration

still accounts for more than 25% of the total system

running time.

In contrast, N-Storm only costs 20 seconds at the

level of 60% performance degradation, 93% less than

that of Storm, and 87% less than that of Storm*.

Fig.10(a) shows the total throughput of the system.

We can see that Storm has the lowest throughput,

and the throughput of Storm* is 41% higher than

that of Storm. N-Storm has the highest throughput,

which is 25% higher than that of Storm*, and 75%

higher than that of Storm.

5.2.2 Multiple-Task Migration

In this experiment, we evaluate the performance

of N-Storm for multiple-task migration, i.e., each mi-

gration involves multiple tasks. We treat M as a vari-

able and set the values of TS and TW with default set-

tings.

Fig.9(b) shows the different durations of perfor-

mance degradation under different values of M. When

M is set to 1, 2, and 4, respectively, there are few dif-

ferences in the duration of performance degradation in

the five levels. However, when M is set to 8 and 16,

the duration of performance degradation significantly

increases, and the system throughput drops to 0 in

many cases. Especially when M = 16, the duration of

60% performance degradation is 118 seconds.

Fig.10(b) shows the total throughput of N-Storm un-

der different values of M. Only when M = 16, the to-

tal throughput decreases significantly. When M is set

to 1, 2, 4, and 8, respectively, the total throughput is

not significantly varied. Surprisingly, the total

throughput at M = 4 is greater than that at M = 2.

By looking at throughput per second over the entire

experiment, we find that when M = 4, after two or

three task re-deployments, the throughput increases

by about 5% compared with the initial state of the

system. The migrated Executors are randomly select-

ed, which means that the initial task deployment is

not so efficient as the random task deployment.

5.2.3 Lazy Task Killing

In this experiment, we set TS = 10 seconds, TW =

128 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

3 seconds, and M = 16. Previous experiments have

shown that N-Storm does not perform well in this set-

ting. We optimize N-Storm (the optimized N-Storm is

denoted as N-Storm+) by delaying the killing of Ex-

ecutors and setting the default delay time DK = 2 sec-

onds. This delay is sufficient to ensure that the sys-

tem can finish the processing of the tuples in the mes-

sage queue. We compare the performance of N-

Storm+ and N-Storm under the same settings.

Fig.9(c) shows the duration of the performance

degradation. We can see that the degradation time of

N-Storm+ is less than that of N-Storm in all five lev-

els. Among them, the duration of N-Storm+ at the

60% level is 84 seconds, which is 29% less than that

of N-Storm. The duration of N-Storm+ at the 100%

level is 53 seconds, which is 31% less than that of N-

Storm. Fig.10(c) shows that the total throughput of

N-Storm+ is 11% higher than that of N-Storm. In

conclusion, the experimental results have shown that

it is more efficient to delay the killing of Executors

when performing task migrations in N-Storm.

S W5.2.4 Impact of T and T

In this experiment, we study the impact of TS and

TW on the performance of N-Storm+. All experi-

ments are based on N-Storm+, and M is set to 16.

Since a Supervisor gets messages from ZooKeeper and

350

300

250

200

150

100

50

0
20 40 60

Level of Performance Degradation (%)

80 100

(a)

20 40 60

Level of Performance Degradation (%)

80 100

(b)

20 40 60

Level of Performance Degradation (%)

80 100

(c)

20 40 60

Level of Performance Degradation (%)

80 100

(d)

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

Storm

Storm*

N-Storm

N-Storm

N-Storm+
S s, W s
S s, W s
S s, W ms

S ms, W ms

Fig.9. Time duration of performance degradation. (a) One-task migration. (b) Multiple-task migration. (c) Lazy task killing.
(d) Impact of TS and TW.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 129

sends them to Workers through the K/V store, TW

should be less than TS. We let TS be about three

times of TW, which is similar to the default setting in

Storm. Then, we reduce the values of TS and TW to

report the duration of performance degradation.

Fig.9(d) shows the duration of performance degra-

dation under four settings of TS and TW. We can see

that the performance degradation time of the system

continues to decline with the decreasing of TS and TW

in the first three settings. However, in the last setting,

where TS = 300 milliseconds and TW = 100 millisec-

onds, the performance degradation time of the sys-

tem is longer than that of the second and the third

settings. Fig.10(d) shows the total throughput under

different updating cycles. Again, the results are con-

sistent with those in Fig.9(d).

In conclusion, the experimental results confirm

our analysis in Subsection 3.4. In general, a short syn-

chronization cycle can lead to higher system perfor-

mance. However, the cycle should not be set too

short; otherwise, the additional communication costs

will outweigh the benefit. In the followings, we ana-

Storm Storm* N-Storm

18

16

14

12

10

8

6

4

2

0

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(
1
0

4
)

18

16

14

12

10

8

6

4

2

0

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(
1
0

4
)

18

16

14

12

10

8

6

4

2

0

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(
1
0

4
)

18

16

14

12

10

8

6

4

2

0

T
o
ta

l
T

h
ro

u
g
h
p
u
t

(
1
0

4
)

(a) (b)

1 2 4

Number of Executors per Migration

(d)(c)

Update Cycle

8 16

N-Storm+N-Storm

S

 m

s

W

 m

s
S

 s

W

 s S

 s

W

 s S

 s

W

 m

s

Fig.10. Total throughput during the running of the system. (a) One-task migration. (b) Multiple-task migration. (c) Lazy task
killing. (d) Impact of TS and TW.

130 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

lyze the communication costs of the task manage-

ment at each Worker node.

5.2.5 Communication Costs

As shown in Fig.11, we use the communication

traffic per second to estimate communication costs.

The results show that the communication costs in-

crease rapidly with the shortening of the synchroniza-

tion cycle. This finding supports the previous result,

i.e., the moderate synchronization cycle is the best.

S

 m

s

W

 m

s
S

 s

W

 s S

 s

W

 s S

 s

W

 m

s

25

20

15

10

5

0C
o
m

m
u
n
ic

a
ti
o
n
 T

ra
ff
ic

(K
B

/
s
)

Update Cycle

ZooKeeper

K/V Store (Write)

K/V Store (Read)

Fig.11. Communication costs of the task management at each
Worker node.

Further, we classify communication costs into

three categories: communication with ZooKeeper,

writing to the K/V store, and reading from the K/V

store. The communication cost with ZooKeeper in N-

Storm is the same as all previous methods[6, 7], and

thus we only focus on the reading and writing costs

caused by the K/V store. Note that the writes to the

K/V store need to consume disk I/Os, while most

reads to the K/V store only cost memory access.

Thus, the communication costs of the K/V store are

dominated by the writes to the K/V store. Fig.11

shows that N-Storm has few writes to the K/V store,

indicating that N-Storm does not introduce high ex-

tra communication costs.

5.3 Performance of OTD

In this subsection, we evaluate the performance of

OTD. Since all known online task deployment algo-

rithms can cause more than 10 seconds of downtime

during task migration, they cannot be invoked fre-

quently. As a result, we only compare OTD with

Storm in the experiments. Here, Storm is selected as

the representative of the offline task management

scheme. We aim to demonstrate that OTD can opti-

mize the current task deployment without stopping

the system for seconds. Since the role of OTD is to

adjust task deployment online, its initial task deploy-

ment is the same as that of Storm.

We run OTD on computation-intensive applica-

tions and communication-intensive applications, re-

spectively, to verify the performance. In Subsection

5.2, we observe that the CPU usage is stable at a low

level for all Workers. Thus, the Word Count Topolo-

gy used in the experiments can be regarded as a com-

munication-intensive application. Therefore, in this

subsection, we still use the Word Count Topology in

the experiment of communication-intensive applica-

tions. We modify the code of the Word Count Topol-

ogy by adding a harmonic number calculation into

Bolt 1 and randomly making the distribution of the

calculation in the key domain change. Consequently,

we make Bolt 1 be an operator with heavy computa-

tions and Bolt 2 be an operator with few calculations.

The OTD algorithm runs on the optimized N-

Storm (i.e., N-Storm+) and migrates only one task

each time to minimize the performance fluctuation

caused by task migrations. The cycle of task deploy-

ment adjustment is set to 5 seconds. We set TS = 3

seconds, TW = 1 second, and DK = 2 seconds. We use

the mean value of each performance metric (e.g.,

CPU usage and throughput) within 5 seconds after

each task migration to show the effect of the algo-

rithm.

5.3.1 Computation-Intensive Applications

For computation-intensive applications, OTD is

mainly toward the realization of load balancing, re-

flected by the average CPU usage of Workers. Note

that Workers are the modules responsible for the pro-

cessing. Our statistics of CPU usage do not include

management modules such as Nimbus and Supervi-

sors. Based on Fig.12(b), we can see that the average

CPU usage of Storm is only 51%, and OTD increases

the average CPU utilization to 77% after less than 50

seconds (i.e., less than 10 times of task deployment

adjustment). The increase of the average CPU usage

is 51%, which means that OTD makes the system

load more balanced. In addition, OTD keeps the aver-

age CPU usage at 75%, although the load distribu-

tion is changing in the experiment. Fig.12(a) shows

that after less than 10 times of task deployment ad-

justment, OTD increases the throughput by 14%,

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 131

which also verifies the efficiency of the load balancing

algorithm of OTD. Fig.12(c) shows that after about

250 seconds (50 times of task deployment

adjustment), the ratio of inter-node communication is

reduced from 50% to less than 20%. This indicates

that for computation-intensive applications, OTD can

effectively reduce the ratio of inter-node communica-

tion while maintaining a high level of load balancing.

5.3.2 Communication-Intensive Applications

OTD mainly aims to reduce the inter-node com-

munication cost and the processing delay for commu-

nication-intensive applications. Fig.13(c) shows OTD

can continuously reduce the ratio of inter-node com-

munication. The reduction converges at the 305th sec-

ond (i.e., after 61 times of task deployment adjust-

ment). As a result, the ratio of the inter-node commu-

nication decreases from 50% to less than 6%. Com-

pared with Storm, OTD reduces inter-node communi-

cation by up to 88%. Fig.13(a) shows that OTD can

keep increasing the system’s throughput and main-

tain a high throughput after 200 seconds. After 200

seconds, the throughput of OTD increases by 19%.

Fig.13(b) shows that OTD consistently reduces the

processing delay of tuples. After 200 seconds, OTD

reduces the processing delay by 14%. In conclusion,

all the results have verified the effectiveness and effi-

ciency of OTD.

5.3.3 Scalability

In this experiment, we extend the scale of the

cluster to verify the scalability of OTD. As we only

have a local cluster of five servers, we run this experi-

ment on the Huawei Cloud by buying its cloud stor-

age and computation services. In the cloud-based ex-

periment, all servers and clients have four vCPUs of

Intel Cascade Lake 3.0 GHz and 16 GB memory. The

maximum bandwidth between all servers and clients

is 8 Gbit/s.

2×NW

3×NW

Assuming the number of Worker nodes is NW, we

use one server running the Nimbus and DRPC server

and NW servers as Worker nodes. Then, we vary NW

from 2 to 16 to evaluate the scalability of OTD. Each

Worker node is configured to have two Workers. In

addition, we use NW clients to run DRPC clients. The

number of tasks increases in proportion to the num-

ber of Worker nodes. Specifically, the Topology paral-

lelism is set to , the parallelism of Bolt 1 is set

to , and the parallelism of Bolt 2 is set to

0 50 100 150

Running Time (s)

200 250

(a)

14

12

10

8

6

120
100
80
60
40
20
0

T
h
ro

u
g
h
p
u
t

(T
P
S
)

C
P
U

 U
sa

g
e
 (

%
)

OTD
Storm

0 50 100 150

Running Time (s)

200 250

(b)

OTD
Storm

0 50 100 150

Running Time (s)

200 250

(c)

R
a
ti
o
 o

f
In

te
r-

N
o
d
e

C
o
m

m
u
n
ic

a
ti
o
n

OTD
Storm

1.0

0.8

0.6

0.4

0.2

0.0

0

Fig.12. Performance of OTD for computation-intensive appli-
cations. (a) Throughput of the system. (b) Average CPU usage
of Workers. (c) Ratio of inter-node communication.

0 50 100 150

Running Time (s)

200 250 300 350 400

(a)

0 50

L
a
te

n
c
y
 (

m
s)

100 150

Running Time (s)

200 250 300 350 400

(b)

4.0

3.5

3.0

2.5

2.0

420

380

340

300

T
h
ro

u
g
h
p
u
t

(T
P
S
)

OTD
Storm

OTD
Storm

0 50 100 150

Running Time (s)

200 250 300 350 400

(c)

0.8

0.6

0.4

0.2

0.0

OTD
Storm

R
a
ti
o
 o

f
In

te
r-

N
o
d
e

C
o
m

m
u
n
ic

a
ti
o
n

Fig.13. Performance of OTD for communication-intensive ap-
plications. (a) Throughput of the system. (b) Average process-
ing delay of tuples. (c) Ratio of inter-node communication.

132 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

6×NW . Other parameter settings are the same as in

previous experiments. All results are the average val-

ue of a 600-second running.

For computation-intensive applications, Fig.14(a)

shows that the throughput of OTD goes up steadily

with the increasing number of Worker nodes and al-

ways outperforms the throughput of Storm, indicat-

ing that OTD can maintain high performance in

large-scale clusters. In addition, as shown in

Fig.14(b), the average CPU usage of Storm declines

slightly as the number of Worker nodes increases,

while OTD keeps a stable CPU usage when the clus-

ter size changes. As Fig.14(c) shows, OTD can keep

less inter-node communication than Storm when the

cluster size changes. As a result, OTD performs bet-

ter on a large cluster than on a small cluster for com-

putation-intensive applications.

The results for communication-intensive applica-

tions, as shown in Fig.15, are similar to those in

Fig.14. We also notice that the improvement of OTD

over Storm when running for communication-inten-

sive applications is slightly worse than the results in

Fig.14. That is mainly because communication-inten-

sive applications only benefit from the OTD’s im-

provement in reducing inter-node communication.

However, we can see that the reduction of inter-node

2 4 8
Number of Worker Nodes

16

5

4

3

2

1

0

(a)

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(T
P
S
)

Storm
OTD

2 4 8
Number of Worker Nodes

16

6

5

4

3

2

1

0

(b)

2 4 8
Number of Worker Nodes

16

(c)

Storm
OTD

Storm
OTD

R
a
ti
o
 o

f
In

te
r-

N
o
d
e

C
o
m

m
u
n
ic

a
ti
o
n

1.0

0.8

0.6

0.4

0.2

0.0

103

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s)

Fig.15. Scalability of OTD for communication-intensive appli-
cations. (a) Average throughput of the system. (b) Average
processing delay of tuples. (c) Ratio of inter-node communica-
tion.

2 4 8
Number of Worker Nodes

16

120

100

80

60

40

20

0

(a)

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(T
P
S
)

Storm
OTD

2 4 8
Number of Worker Nodes

16

120

100

80

60

40

20

0

(b)

2 4 8
Number of Worker Nodes

16

(c)

Storm
OTD

Storm
OTD

A
v
e
ra

g
e
 C

P
U

 U
sa

g
e
 (

%
)

R
a
ti
o
 o

f
In

te
r-

N
o
d
e

C
o
m

m
u
n
ic

a
ti
o
n

1.0

0.8

0.6

0.4

0.2

0.0

Fig.14. Scalability of OTD for computation-intensive applica-
tions. (a) Average throughput of the system. (b) Average CPU
usage of Workers. (c) Ratio of inter-node communication.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 133

communication in OTD generally decreases when the

cluster size expands, as shown in Fig.14(c) and

Fig.15(c). That is simply because of the complicated

routing rules in large clusters. To sum up, it is better

to use a smaller cluster for communication-intensive

applications, in which OTD outperforms Storm more

than running on a larger cluster. Another way is to

use multiple small isolated clusters instead of a single

large cluster for communication-intensive applica-

tions.

6 Related Work

6.1 Task Deployment and Elastic Algorithms

Offline Task Deployment. Apache Storm adopts a

simple round-robin method as its default task deploy-

ment strategy. This method does not consider the

cost of inter-node communication and load balancing.

R-Storm[8] maps CPU, memory, and bandwidth re-

sources into a three-dimensional space and adopts a

resource-aware task deployment algorithm. Fara-

habady et al.[15] proposed a QoS-based task deploy-

ment algorithm, which allocates resources based on

the QoS requirements of the data flows. Jiang et al.[16]

proposed a task deployment algorithm based on graph

division. Nardelli et al.[17] proposed a general frame-

work of the optimal task deployment and demonstrat-

ed that it solves an NP-hard problem. Therefore, sev-

eral heuristics that consider the heterogeneity of com-

puting and network resources were proposed[17, 18]. Fu

et al.[1] considered the deployment of DSPEs on edge

and proposed EdgeWise to optimize resource multi-

plexing, which uses a congestion-aware task-deploy-

ment strategy. All of the methods mentioned above

use offline task deployment algorithms. The limita-

tion of the offline solutions makes DSPEs unable to

efficiently cope with time-varying data flows and real-

time pluggable multiple Topologies.

Online Task Deployment. Aniello et al.[11] pro-

posed an online task deployment method based on

communication traffics. It monitors the tuple transfer

rate between Executors in real time through a moni-

toring module and prioritizes the Executors with

heavy communication load in the same Worker. Ref-

erences [6] and [19] further consider the computation

power of nodes. The work in the literature[7, 20, 21] con-

sidered load balancing. Specifically, researchers pre-

ferred to allocate Workers to the Worker node with

the lowest load[7, 20]. Fang et al.[21] dealt with the load

skewness by changing the critical partition. Li et al.[22]

proposed a dynamic algorithm for the Topology opti-

mization based on a constraint theory, which is used

to eliminate the performance bottleneck of pipeline

operations. Sun et al.[23] proposed a task deployment

algorithm based on the critical path. All of these

methods use online task deployment algorithms. If the

data flow changes, they can recalculate and update

the allocation plan, triggering task migrations. How-

ever, due to the task-resource coupling design and

process-level task management in DSPEs, the task

migrations lead to severe performance fluctuation.

Moreover, these methods calculate a new allocation

plan without considering the cost of task migration.

Unlike them, our algorithm gradually fine-tunes the

task deployment for the sake of system stability.

Elastic Algorithms. Aeolus[24] and DRS[25] dynami-

cally adjust the degree of the parallelism of operators

by monitoring the data arrival rate and data outflow

rate of Executors. Similarly, the studies in the litera-

ture[26–30] proposed to regulate the resource and con-

figuration of DSPEs automatically. Furthermore,

AdaStorm[14] and OrientStream[31] use machine learn-

ing methods to obtain the optimal Storm parameter

configuration. Specifically, AdaStorm[14] is trained to

select the parameter configuration which uses the

least resources to meet user needs. OrientStream[31]

adopts an incremental learning algorithm and an inte-

grated learning model based on AdaStorm to make

the prediction results more accurate. These methods

implement elastic mechanisms on DSPEs by dynami-

cally adjusting parallelism or other parameters as

needed, which triggers task splitting or merging. They

use the ``rebalance'' command or similar pause-based

strategies, which does not consider the efficiency of

the adjustment process.

6.2 Task Migration and Elastic Supports

Task Migration in Storm. T-Storm[6] adopts an

optimization scheme to delay the killing of Workers.

However, it still leads to the killing of additional Ex-

ecutors and needs to stop the system for about 10 sec-

onds. Therefore, this method is not able to effectively

solve the performance fluctuation problem. Yang and

Ma[32] proposed a smoothing task migration idea for

Storm. They analyzed the performance cost of the

task migration and proposed to change the granulari-

ty of task migration from the Worker to the Execu-

tor. This visionary work inspired our study.

Furthermore, we present a systematic framework

for thread-level task migration. In addition, we pro-

pose two optimization strategies and an online non-

stop task deployment algorithm. Cardellini et al.[12]

134 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

proposed a system of automatically changing paral-

lelism and designed an interruption-recovery-based

stateful task migration method. Li et al.[13] developed

an elastic mechanism that is needed to monitor the

system’s state. The authors considered stateful opera-

tors and used an additional global state manager to

persist the states of the operators to achieve stateful

operator migrations. Shukla and Simmhan[33] pro-

posed several approaches for data-flow checkpoints

and migrations. They also focused on the stateful mi-

gration of large data flows and were committed to

eliminating message failures and tuple recalculations.

The studies[12, 13, 33] are all dedicated to migrating

stateful operators in Storm, which conflicts with the

stateless design of Storm which we have talked about

in Subsection 2.1 and Subsection 3.5. Our approach is

proposed for stateless operators, which aims to re-

duce the duration of performance degradation in-

curred by task migrations.

Elastic Supports. SEEP[34] exposes the state to the

DSPE through a set of state management primitives,

and on this basis, realizes dynamic scaling and failure

recovery. ChronoStream[35] uses a transaction migra-

tion protocol based on state reconfiguration to sup-

port stateful task migration. Similarly, DSPEs pro-

posed in the literature[36–38] aim to achieve scalability.

Additionally, Chi[9] embeds the control platform into

the data platform so that each task can obtain the

control information and perform migrations reactive-

ly. Elasticutor[39] allows to change the number of re-

sources consumed by a task dynamically to achieve

elasticity. Megaphone[40] realizes dynamic task migra-

tion by changing the Topology. Rhino[41] provides a

handover protocol and a state migration protocol for

a vast distributed state. These studies focus on main-

taining state consistency and introduce additional

costs, such as processing in full compliance with

timestamp order and adding global or local routing

tables. Furthermore, these migration strategies are

complex and not suitable for frequent use. Differing

from these researches, our research focuses on reduc-

ing the cost of task migration to achieve the stability

of the system and the QoS requirements of applica-

tions.

7 Conclusions

This paper proposed an online nonstop task man-

agement mechanism for DSPEs (distributed stream

processing engines) to adapt to the time-varying data

flows. The main contributions of this study include a

task-resource decoupling DSPE named N-Storm that

supports thread-level online task migrations and a

new online task deployment method called OTD. Our

experimental results showed that N-Storm can signifi-

cantly reduce the time duration of performance degra-

dation and eliminate the stop time during task migra-

tions. Also, the OTD method can efficiently increase

the average CPU usage for computation-intensive ap-

plications and reduce the inter-node communication

costs for communication-intensive applications.

In the current implementation of OTD, we gener-

ated the best-fit resource allocation plan under the

premise of given resources and task Topology, mean-

ing that we only deal with the dynamical load bal-

ance among Workers by migrating the tasks in high-

load Workers to low-load Workers. An interesting fu-

ture research direction is to make OTD adaptive to

the resource-quota change of Workers. For example,

some previous studies[24–31] proposed automatically

regulating resources and dynamically adjusting the

degree of operators' parallelism. In the future, we will

consider this issue and offer some efficient resource re-

balancing algorithms.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Fu X W, Ghaffar T, Davis J C, Lee D. EdgeWise: A bet-

ter stream processing engine for the edge. In Proc. the

2019 USENIX Annual Technical Conference, Jul. 2019,

pp.929–946.

[1]

 Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel J

M, Kulkarni S, Jackson J, Gade K, Fu M S, Donham J,

Bhagat N, Mittal S, Ryaboy D. Storm@Twitter. In Proc.

the 2014 ACM SIGMOD International Conference on

Management of Data, Jun. 2014, pp.147–156. DOI: 10.1145/

2588555.2595641.

[2]

 Kulkarni S, Bhagat N, Fu M S, Kedigehalli V, Kellogg C,

Mittal S, Patel J M, Ramasamy K, Taneja S. Twitter

heron: Stream processing at scale. In Proc. the 2015 ACM

SIGMOD International Conference on Management of

Data, May 2015, pp.239–250. DOI: 10.1145/2723372.2742

788.

[3]

 Fu M S, Agrawal A, Floratou A, Graham B, Jorgensen A,

Li R H, Lu N, Ramasamy K, Rao S, Wang C. Twitter

heron: Towards extensible streaming engines. In Proc. the

33rd IEEE International Conference on Data Engineering,

Apr. 2017, pp.1165–1172. DOI: 10.1109/ICDE.2017.161.

[4]

 Zhang Z, Jin P Q, Wang X L, Liu R C, Wan S H. N-

Storm: Efficient thread-level task migration in Apache

Storm. In Proc. the 21st International Conference on High

Performance Computing and Communications, the 17th

IEEE International Conference on Smart City, the 5th

IEEE International Conference on Data Science and Sys-

[5]

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 135

https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/ICDE.2017.161

tems, Aug. 2019, pp.1595–1602. DOI: 10.1109/HPCC/

SmartCity/DSS.2019.00219.

 Xu J L, Chen Z H, Tang J, Su S. T-Storm: Traffic-aware

online scheduling in Storm. In Proc. the 34th IEEE Inter-

national Conference on Distributed Computing Systems,

Jun. 30–Jul. 3, 2014, pp.535–544. DOI: 10.1109/ICDCS.

2014.61.

[6]

 Zhang J, Li C L, Zhu L Y, Liu Y P. The real-time

scheduling strategy based on traffic and load balancing in

Storm. In Proc. the 18th International Conference on

High Performance Computing and Communications, the

14th IEEE International Conference on Smart City, the

2nd IEEE International Conference on Data Science and

Systems, Dec. 2016, pp.372–379. DOI: 10.1109/HPCC-

SmartCity-DSS.2016.0060.

[7]

 Peng B Y, Hosseini M, Hong Z H, Farivar R, Campbell

R. R-Storm: Resource-aware scheduling in Storm. In

Proc. the 16th Annual Middleware Conference, Nov. 2015,

pp.149–161. DOI: 10.1145/2814576.2814808.

[8]

 Mai L, Zeng K, Potharaju R, Xu L, Suh S, Venkatara-

man S, Costa P, Kim T, Muthukrishnan S, Kuppa V,

Dhulipalla S, Rao S. Chi: A scalable and programmable

control plane for distributed stream processing systems.

Proceedings of the VLDB Endowment, 2018, 11(10):

1303–1316. DOI: 10.14778/3231751.3231765.

[9]

 Nasir M A U, De Francisci Morales G, García-Soriano D,

Kourtellis N, Serafini M. The power of both choices: Prac-

tical load balancing for distributed stream processing en-

gines. In Proc. the 31st IEEE International Conference on

Data Engineering, Apr. 2015, pp.137–148. DOI: 10.1109/

ICDE.2015.7113279.

[10]

 Aniello L, Baldoni R, Querzoni L. Adaptive online

scheduling in Storm. In Proc. the 7th ACM International

Conference on Distributed Event-Based Systems, Jun.

2013, pp.207–218. DOI: 10.1145/2488222.2488267.

[11]

 Cardellini V, Lo Presti F, Nardelli M, Russo G R. Opti-

mal operator deployment and replication for elastic dis-

tributed data stream processing. Concurrency and Com-

putation: Practice and Experience, 2018, 30(9): e4334.

DOI: 10.1002/cpe.4334.

[12]

 Li J, Pu C, Chen Y, Gmach D, Milojicic D. Enabling elas-

tic stream processing in shared clusters. In Proc. the 9th

IEEE International Conference on Cloud Computing, Jun.

27–Jul. 2, 2016, pp.108–115. DOI: 10.1109/CLOUD.2016.

0024.

[13]

 Weng Z J, Guo Q, Wang C K, Meng X F, He B S. AdaS-

torm: Resource efficient Storm with adaptive configura-

tion. In Proc. the 33rd IEEE International Conference on

Data Engineering, Apr. 2017, pp.1363–1364. DOI: 10.

1109/ICDE.2017.178.

[14]

 Farahabady M R H, Samani H R D, Wang Y D, Zomaya

A Y, Tari Z. A QoS-aware controller for Apache Storm.

In Proc. the 15th IEEE International Symposium on Net-

work Computing and Applications, Oct. 26–Nov. 2, 2016,

pp.334–342. DOI: 10.1109/NCA.2016.7778638.

[15]

 Jiang J W, Zhang Z P, Cui B, Tong Y H, Xu N. Stro-

MAX: Partitioning-based scheduler for real-time stream

[16]

processing system. In Proc. the 22nd International Con-

ference on Database Systems for Advanced Applications,

Mar. 2017, pp.269–288. DOI: 10.1007/978-3-319-55699-4_17.
 Nardelli M, Cardellini V, Grassi V, Lo Presti F. Efficient

operator placement for distributed data stream process-

ing applications. IEEE Trans. Parallel and Distributed

Systems, 2019, 30(8): 1753–1767. DOI: 10.1109/TPDS.2019.

2896115.

[17]

 Eskandari L, Mair J, Huang Z Y, Eyers D. I-Scheduler:

Iterative scheduling for distributed stream processing sys-

tems. Future Generation Computer Systems, 2021, 117:

219–233. DOI: 10.1016/j.future.2020.11.011.

[18]

 Chatzistergiou A, Viglas S D. Fast heuristics for near-op-

timal task allocation in data stream processing over clus-

ters. In Proc. the 23rd ACM International Conference on

Information and Knowledge Management, Nov. 2014,

pp.1579–1588. DOI: 10.1145/2661829.2661882.

[19]

 Qian W J, Shen Q N, Qin J, Yang D, Yang Y H, Wu Z

H. S-Storm: A slot-aware scheduling strategy for even

scheduler in Storm. In Proc. the 18th International Con-

ference on High Performance Computing and Communi-

cations, the 14th IEEE International Conference on Smart

City, the 2nd IEEE International Conference on Data Sci-

ence and Systems, Dec. 2016, pp.623–630. DOI: 10.1109/

HPCC-SmartCity-DSS.2016.0093.

[20]

 Fang J H, Zhang R, Fu T Z J, Zhang Z J, Zhou A Y, Zhu

J H. Parallel stream processing against workload skew-

ness and variance. In Proc. the 26th International Sympo-

sium on High-Performance Parallel and Distributed Com-

puting, Jun. 2017, pp.15–26. DOI: 10.1145/3078597.3078

613.

[21]

 Li C L, Zhang J, Luo Y L. Real-time scheduling based on

optimized Topology and communication traffic in dis-

tributed real-time computation platform of Storm. Jour-

nal of Network and Computer Applications, 2017, 87:

100–115. DOI: 10.1016/j.jnca.2017.03.007.

[22]

 Sun D W, Zhang G Y, Yang S L, Zheng W M, Khan S U,

Li K Q. Re-Stream: Real-time and energy-efficient re-

source scheduling in big data stream computing environ-

ments. Information Sciences, 2015, 319: 92–112. DOI: 10.

1016/j.ins.2015.03.027.

[23]

 Sax M J, Castellanos M, Chen Q M, Hsu M. Aeolus: An

optimizer for distributed intra-node-parallel streaming

systems. In Proc. the 29th IEEE International Confer-

ence on Data Engineering, Apr. 2013, pp.1280–1283. DOI:

10.1109/ICDE.2013.6544924.

[24]

 Fu T Z J, Ding J B, Ma R T B, Winslett M, Yang Y,

Zhang Z J. DRS: Auto-scaling for real-time stream ana-

lytics. IEEE/ACM Trans. Networking, 2017, 25(6): 3338–

3352. DOI: 10.1109/TNET.2017.2741969.

[25]

 Kahveci B, Gedik B. Joker: Elastic stream processing

with organic adaptation. Journal of Parallel and Dis-

tributed Computing, 2020, 137: 205–223. DOI: 10.1016/j.

jpdc.2019.10.012.

[26]

 Floratou A, Agrawal A, Graham B, Rao S, Ramasamy K.

Dhalion: Self-regulating stream processing in Heron. Pro-

[27]

136 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00219
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00219
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00219
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00219
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0060
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0060
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0060
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0060
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0060
https://doi.org/10.1145/2814576.2814808
https://doi.org/10.14778/3231751.3231765
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1145/2488222.2488267
https://doi.org/10.1002/cpe.4334
https://doi.org/10.1109/CLOUD.2016.0024
https://doi.org/10.1109/CLOUD.2016.0024
https://doi.org/10.1109/ICDE.2017.178
https://doi.org/10.1109/ICDE.2017.178
https://doi.org/10.1109/NCA.2016.7778638
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1007/978-3-319-55699-4_17
https://doi.org/10.1109/TPDS.2019.2896115
https://doi.org/10.1109/TPDS.2019.2896115
https://doi.org/10.1016/j.future.2020.11.011
https://doi.org/10.1145/2661829.2661882
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0093
https://doi.org/10.1145/3078597.3078613
https://doi.org/10.1145/3078597.3078613
https://doi.org/10.1016/j.jnca.2017.03.007
https://doi.org/10.1016/j.ins.2015.03.027
https://doi.org/10.1016/j.ins.2015.03.027
https://doi.org/10.1109/ICDE.2013.6544924
https://doi.org/10.1109/TNET.2017.2741969
https://doi.org/10.1016/j.jpdc.2019.10.012
https://doi.org/10.1016/j.jpdc.2019.10.012

ceedings of the VLDB Endowment, 2017, 10(12):

1825–1836. DOI: 10.14778/3137765.3137786.

 Lombardi F, Aniello L, Bonomi S, Querzoni L. Elastic

symbiotic scaling of operators and resources in stream

processing systems. IEEE Trans. Parallel and Distributed

Systems, 2018, 29(3): 572–585. DOI: 10.1109/TPDS.2017.

2762683.

[28]

 Kalavri V, Liagouris J, Hoffmann M, Dimitrova D, For-

shaw M, Roscoe T. Three steps is all you need: Fast, ac-

curate, automatic scaling decisions for distributed stream-

ing dataflows. In Proc. the 13th USENIX Conference on

Operating Systems Design and Implementation, Oct.

2018, pp.783–798.

[29]

 Marangozova-Martin V, de Palma N, El Rheddane A.

Multi-level elasticity for data stream processing. IEEE

Trans. Parallel and Distributed Systems, 2019, 30(10):

2326–2337. DOI: 10.1109/TPDS.2019.2907950.

[30]

 Wang C K, Meng X F, Guo Q, Weng Z J, Yang C. Au-

tomating characterization deployment in distributed data

stream management systems. IEEE Trans. Knowledge

and Data Engineering, 2017, 29(12): 2669–2681. DOI: 10.

1109/TKDE.2017.2751606.

[31]

 Yang M S, Ma R T B. Smooth task migration in Apache

Storm. In Proc. the 2015 ACM SIGMOD International

Conference on Management of Data, May 2015,

pp.2067–2068. DOI: 10.1145/2723372.2764941.

[32]

 Shukla A, Simmhan Y. Toward reliable and rapid elastici-

ty for streaming dataflows on clouds. In Proc. the 38th

IEEE International Conference on Distributed Comput-

ing Systems, Jul. 2018, pp.1096–1106. DOI: 10.1109/ICD-

CS.2018.00109.

[33]

 Fernandez R C, Migliavacca M, Kalyvianaki E, Pietzuch

P. Integrating scale out and fault tolerance in stream pro-

cessing using operator state management. In Proc. the

2013 ACM SIGMOD International Conference on Man-

agement of Data, Jun. 2013, pp.725–736. DOI: 10.1145/

2463676.2465282.

[34]

 Wu Y J, Tan K L. ChronoStream: Elastic stateful stream

computation in the cloud. In Proc. the 31st IEEE Interna-

tional Conference on Data Engineering, Apr. 2015,

pp.723–734. DOI: 10.1109/ICDE.2015.7113328.

[35]

 Gedik B, Schneider S, Hirzel M, Wu K L. Elastic scaling

for data stream processing. IEEE Trans. Parallel and Dis-

tributed Systems, 2014, 25(6): 1447–1463. DOI: 10.1109/

TPDS.2013.295.

[36]

 Noghabi S A, Paramasivam K, Pan Y, Ramesh N,

Bringhurst J, Gupta I, Campbell R H. Samza: Stateful

scalable stream processing at LinkedIn. Proceedings of the

VLDB Endowment, 2017, 10(12): 1634–1645. DOI: 10.

14778/3137765.3137770.

[37]

 Venkataraman S, Panda A, Ousterhout K, Armbrust M,

Ghodsi A, Franklin M J, Recht B, Stoica I. Drizzle: Fast

and adaptable stream processing at scale. In Proc. the

26th Symposium on Operating Systems Principles, Oct.

2017, pp.374–389. DOI: 10.1145/3132747.3132750.

[38]

 Wang L, Fu T Z J, Ma R T B, Winslett M, Zhang Z J.[39]

Elasticutor: Rapid elasticity for realtime stateful stream

processing. In Proc. the 2019 International Conference on

Management of Data, Jun. 2019, pp.573–588. DOI: 10.

1145/3299869.3319868.

 Hoffmann M, Lattuada A, McSherry F. Megaphone: La-

tency-conscious state migration for distributed streaming

dataflows. Proceedings of the VLDB Endowment, 2019,

12(9): 1002–1015. DOI: 10.14778/3329772.3329777.

[40]

 Del Monte B, Zeuch S, Rabl T, Markl V. Rhino: Effi-

cient management of very large distributed state for

stream processing engines. In Proc. the 2020 ACM SIG-

MOD International Conference on Management of Data,

Jun. 2020, pp.2471–2486. DOI: 10.1145/3318464.3389723.

[41]

Zhou Zhang received his B.S. de-

gree in computer science and technolo-

gy from the University of Science and

Technology of China, Hefei, in 2016.

He is a Ph.D. candidate of the School

of Computer Science and Technology,

University of Science and Technology

of China, Hefei. His current research interests include

stream processing systems, database index, and non-

volatile memory.

Pei-Quan Jin received his Ph.D. de-

gree in computer science and technolo-

gy from the University of Science and

Technology of China, Hefei, in 2003.

He is currently an associate professor

in the School of Computer Science and

Technology, University of Science and

Technology of China, Hefei. He is a senior member of

CCF and a member of ACM and IEEE. His research in-

terests focus on big data management, databases on new

storage, and information retrieval.

Xi-Ke Xie received his Ph.D. de-

gree in computer science and technolo-

gy from the University of Hong Kong,

Hong Kong. He is currently a profes-

sor in the School of Computer Science

and Technology, University of Science

and Technology of China, Hefei. He is

a member of ACM and IEEE. His research interests in-

clude distributed databases, spatiotemporal databases,

and mobile computing.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 137

https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1109/TPDS.2019.2907950
https://doi.org/10.1109/TKDE.2017.2751606
https://doi.org/10.1109/TKDE.2017.2751606
https://doi.org/10.1145/2723372.2764941
https://doi.org/10.1109/ICDCS.2018.00109
https://doi.org/10.1109/ICDCS.2018.00109
https://doi.org/10.1109/ICDCS.2018.00109
https://doi.org/10.1145/2463676.2465282
https://doi.org/10.1145/2463676.2465282
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1145/3299869.3319868
https://doi.org/10.1145/3299869.3319868
https://doi.org/10.14778/3329772.3329777
https://doi.org/10.1145/3318464.3389723

Xiao-Liang Wang received his B.S.

degree in computer science and tech-

nology from Nanjing University of

Aeronautics and Astronautics, Nan-

jing, in 2015. He is currently a Ph.D.

candidate of the School of Computer

Science and Technology, University of

Science and Technology of China, Hefei. His research in-

terests focus on buffer management systems and key-

value storage engines.

Rui-Cheng Liu received his B.S. de-

gree in computer science and technolo-

gy from the University of Science and

Technology of China, Hefei, in 2016.

He is a Ph.D. candidate of the School

of Computer Science and Technology,

University of Science and Technology

of China, Hefei. His current research interests include

LSM-Tree database and non-volatile memory.

Shou-Hong Wan received her Ph.D.

degree in computer science and tech-

nology from the University of Science

and Technology of China, Hefei. She is

currently an associate professor in the

School of Computer Science and Tech-

nology, University of Science and

Technology of China, Hefei. She is a member of ACM

and IEEE. Her research interests focus on big data man-

agement, image processing, and information retrieval.

138 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

	1 Introduction
	2 Background and Motivation
	2.1 Basic Concepts of DSPEs
	2.2 Limitations of Current Task Management

	3 N-Storm: Online Nonstop Task Migration
	3.1 Main Ideas of N-Storm
	3.2 Implementation of N-Storm
	3.3 Lazy Task Killing
	3.4 Synchronization Cycle Adjustment
	3.5 Reliability of N-Storm

	4 OTD: Online Task Deployment
	4.1 Problem Analysis
	4.2 Implementation of OTD
	4.3 Task Deployment Algorithm

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Performance of N-Storm
	5.2.1 One-Task Migration
	5.2.2 Multiple-Task Migration
	5.2.3 Lazy Task Killing
	5.2.4 Impact of T$_{\rm S} $ and T$_{\rm W} $
	5.2.5 Communication Costs

	5.3 Performance of OTD
	5.3.1 Computation-Intensive Applications
	5.3.2 Communication-Intensive Applications
	5.3.3 Scalability

	6 Related Work
	6.1 Task Deployment and Elastic Algorithms
	6.2 Task Migration and Elastic Supports

	7 Conclusions
	Conflict of Interest
	References

