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Abstract    Most  distributed  stream processing  engines  (DSPEs)  do  not  support  online  task  management  and  cannot

adapt to time-varying data flows. Recently, some studies have proposed online task deployment algorithms to solve this

problem. However, these approaches do not guarantee the Quality of Service (QoS) when the task deployment changes at

runtime, because the task migrations caused by the change of task deployments will impose an exorbitant cost. We study

one of the most popular DSPEs, Apache Storm, and find out that when a task needs to be migrated, Storm has to stop the

resource (implemented as a process of Worker in Storm) where the task is deployed. This will lead to the stop and restart

of all tasks in the resource, resulting in the poor performance of task migrations. Aiming to solve this problem, in this pa-

per, we propose N-Storm (Nonstop Storm), which is a task-resource decoupling DSPE. N-Storm allows tasks allocated to

resources to be changed at runtime, which is implemented by a thread-level scheme for task migrations. Particularly, we

add a local shared key/value store on each node to make resources aware of the changes in the allocation plan. Thus, each

resource can manage its tasks at runtime. Based on N-Storm, we further propose Online Task Deployment (OTD). Differ-

ing from traditional task deployment algorithms that deploy all tasks at once without considering the cost of task migra-

tions caused by a task re-deployment, OTD can gradually adjust the current task deployment to an optimized one based

on the communication cost and the runtime states of resources. We demonstrate that OTD can adapt to different kinds of

applications including computation- and communication-intensive applications. The experimental results on a real DSPE

cluster show that N-Storm can avoid the system stop and save up to 87% of the performance degradation time, compared

with Apache Storm and other state-of-the-art approaches. In addition, OTD can increase the average CPU usage by 51%

for computation-intensive applications and reduce network communication costs by 88% for communication-intensive ap-

plications.
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1    Introduction

With  the  development  of  the  Internet  of  Things

(IoT)[1],  social  networks[2–4],  and  E-commerce,  dis-

tributed  stream  processing  engines  (DSPEs)  such  as

Apache Storm① (storm for short) and Apache Flink②

(Flink for short) have attracted much attention from

both  academia  and  industry,  e.g.,  Twitter[2] and  Al-

ibaba③. Compared with batch processing, stream pro-

cessing  offers  timely  and  continuous  task  processing,

which  is  critical  in  many  real-time  applications  such

as IoT-based monitoring.

Task management is an essential part of a DSPE.

The task management module in a DSPE is responsi-
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ble  for  task  deployment,  task  selection,  and  migra-

tion  in  case  of  node  failure  or  new  node  addition.

Task  management  directly  affects  the  system

throughput  and  processing  delay,  which  are  impor-

tant  indicators  to  measure  the  overall  performance

and the Quality of Service (QoS) of applications. Gen-

erally,  the  QoS of  applications  refers  to  the  response

time,  usually  in  terms  of  seconds.  The  task  manage-

ment modules employed in popular DSPEs, including

Storm  and  Flink,  adopt  an  offline  scheme.  However,

in many real-time applications, e.g.,  IoT-based moni-

toring,  the  data  and  workloads  are  time-varying,

making the static task deployment no longer efficient

as the workload changes.  As a result,  it  has been an

urgent  need  to  develop  an  online  task  management

scheme for DSPEs.

Online task management needs to support task se-

lection and migration between nodes at runtime while

maintaining high performance and QoS. For example,

supposing that the task deployment in Storm is to be

changed  after  Storm  deploys  tasks,  all  running  pro-

cesses have to be stopped, waiting for all  tuples (the

processing  units  in  Storm)  to  be  completed  so  that

Storm  can  perform  task  migration.  This  procedure

lasts  about 30 seconds[5].  Some prior studies,  such as

T-Storm[6] and  TS-Storm[7],  proposed  to  improve  the

task  management  scheme  of  Storm.  But  they  still

take over 10 seconds of system stall during a task mi-

gration,  which  cannot  meet  the  QoS requirements  of

real-time stream-processing applications. We find that

the intrinsic reason for the high system stall time dur-

ing  a  task  migration  in  Storm,  T-Storm,  and  TS-

Storm  is  that  the  tasks  are  tightly  coupled  with  re-

sources in a task deployment. More specifically, tasks

(implemented as threads/Executors) and resources in

Storm are tightly coupled in Workers,  which are im-

plemented as Java Virtual Machine (JVM) processes.

In Storm, processes are the smallest units for task de-

ployments and migrations. In other words, Storm us-

es  a  process-level  scheme  for  task  deployments  and

migrations. Therefore, when a task migration is start-

ed,  all  tasks  within  a  Worker  have  to  be  stopped so

that the system can reallocate the Worker’s resources

to tasks. In such a scheme, many Workers might even

be  stopped  due  to  a  small-scaled  task  migration  in-

volving a small number of tasks.

In  this  paper,  to  overcome the  problem of  offline

task management in Storm, T-Storm, and TS-Storm,

and  to  offer  an  efficient  online  task  management

mechanism  for  DSPEs,  we  propose  N-Storm  (Non-

stop Storm).  The main idea  of  N-Storm is  to  decou-

ple tasks from resources during task deployments and

migrations.  In  addition,  instead  of  the  process-level
task  migration  in  Storm,  N-Storm  adopts  a  new
thread-level  scheme.  As  a  consequence,  N-Storm  can
perform thread-level task migrations at runtime with-
out affecting other tasks. Further, based on N-Storm,
we  propose  an  online  task  deployment  algorithm
called  Online  Task  Deployment  (OTD).  Instead  of
previous task deployment algorithms[6–8] that have to
stop  the  system for  a  while  during  a  task  re-deploy-
ment,  OTD can  avoid  system  stall  by  gradually  ad-
justing the old task deployment to a new one that is
more  efficient  for  the  current  workload.  Briefly,  we
make the following contributions in this study.

● We find out the intrinsic cause of the inefficien-

cy  of  task  migrations  in  DSPEs  like  Apache  Storm,

i.e., the coupling of tasks and resources. Motivated by

this finding, we propose N-Storm, which supports on-

line  task  migrations.  N-Storm  has  two  new  designs.

First,  it  presents a task-resource decoupling architec-

ture for DSPEs. Second, it uses a thread-level scheme

to manage tasks rather than the process-level method

in  Storm.  We  also  propose  two  optimization  strate-

gies, namely, lazy task killing and synchronization cy-

cle adjustment, to further improve the performance of

N-Storm.
● Based on N-Storm, we further propose OTD for

realizing  online  task  deployments.  OTD  can  support
task deployments and migrations at runtime. OTD is
implemented by gradually  adjusting the  current  task
allocation  plan  to  a  new  optimized  one  according  to
the  network  communication  cost  and  the  runtime
states of resources. With this mechanism, we need not
stop  the  system  during  a  task  deployment.  We
demonstrate that OTD can adapt to different kinds of
applications, including computation- and communica-
tion-intensive applications.

● We verify the effectiveness and efficiency of N-

Storm and OTD on a real DSPE cluster. The experi-

mental results show that N-Storm can avoid the stop

time  and  save  up  to  87%  of  the  severe  performance

degradation  time  compared  with  Storm  and  other

state-of-the-art  approaches.  Furthermore,  OTD  can

increase average CPU usage by 51% for computation-

intensive  applications  and  reduce  network  communi-

cation  costs  by 88% for  communication-intensive  ap-

plications.
The  remaining  of  the  paper  is  structured  as  fol-

lows. Section 2 introduces  the  background  and  moti-
vation of our research. Section 3 describes the design
and  implementation  of  N-Storm  in  detail. Section 4
presents OTD in detail. Section 5 reports the experi-
mental  results. Section 6 discusses  related  work.  Fi-
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nally, Section 7 concludes the paper. 

2    Background and Motivation
 

2.1    Basic Concepts of DSPEs

Storm  packages  the  logic  of  a  stream  processing

application as a ``Topology'', an abstraction of Storm

tasks, represented as a directed acyclic graph (DAG),

as  shown in Fig.1.  Each vertex in  a  Topology repre-

sents  a  logical  operator.  There  are  two  types  of  ver-

tices  in  a  Topology,  namely  Spout  and  Bolt.  The

Spout is responsible for receiving data tuples from the

data source. The Bolt is responsible for encapsulating

the  processing  logic  and  processing  specific  tuples.

Thus,  Storm can start  multiple  tasks  to  perform the

processing logic of a vertex in parallel.
Generally, Storm runs on a cluster with the mas-

ter-slave architecture,  as shown in Fig.2.  The master
node  in  Storm is  called  Nimbus.  It  is  responsible  for
conducting task deployments and monitoring the run-
ning  state  of  Storm.  Other  nodes  in  the  cluster  are
called  Worker  nodes.  A  Worker  node  is  responsible
for  accepting,  running,  and  managing  tasks  assigned

by  Nimbus.  A  Worker  node  consists  of  a  Supervisor
process  and  some  Worker  processes  (denoted  as
Workers  in  the  texts  below).  The  Supervisor  in  a
Worker node communicates with the Nimbus through
the Apache ZooKeeper④, which is a distributed coor-
dinator.  A Worker  is  a  JVM process  that  runs  on  a
Worker node with configured resources. Each Worker
can  have  one  or  more  Executors.  An  Executor  is  a
thread for processing one specific task, which refers to
a part of the particular work of a vertex. In this pa-
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per, an Executor can be considered as a task.

In Storm, all  processes,  including Nimbus,  Super-

visors,  and  Workers,  do  not  maintain  their  runtime

states  inside  themselves.  More  specifically,  all  states

are stored on ZooKeeper, meaning that all modules in

Storm  (i.e.,  Nimbus,  Supervisors,  and  Workers)  are

stateless[2].  Thus,  when  a  process  is  killed,  it  simply

restarts  and  gets  messages  from  ZooKeeper  without

affecting the whole system. Note that our work is al-

so based on the stateless principle of Storm.

Fig.2 shows  the  task  management  mechanism  in

Storm. It includes four steps. First, Nimbus generates

an  allocation  plan  for  the  given  Topology  by  a  task

deployment algorithm. Second, Nimbus writes the al-

location  plan  into  ZooKeeper.  Third,  the  Supervisor

on  each  Worker  node  gets  the  allocation  plan  from

the  ZooKeeper.  Finally,  each  Supervisor  checks  its

Workers,  where  some  tasks  have  changed,  and

restarts these Workers. 

2.2    Limitations of Current Task Management

The  task  management  in  a  DSPE  is  designed  to

solve the following two problems.

Problem 1: Task Deployment.  Given all  tasks,  re-

sources,  and  the  distribution  of  the  resources  among

the Worker nodes, how to find an optimal scheme to

deploy all tasks to Workers?

Problem 2: Task Migration. In case of removing or

adding  a  Worker  node,  or  updating  the  task  deploy-

ment, how to migrate tasks to other Worker nodes?

Note that an offline task management mechanism

only  deals  with  task  deployments,  while  an  online

task  management  mechanism  tackles  not  only  task

deployments but also task migrations.

Offline  solutions  are  inefficient  for  many  stream

processing  applications  because  the  data  and  work-

loads are time-varying. The inefficiency can be inter-

preted for two reasons. First, the throughput of a da-

ta  flow  may  fluctuate  with  time.  For  example,  prior

work[9] showed that the data flow in a log-monitoring

application  would  increase  sharply  when  some  bugs

happened.  Second,  some  logical  operators  in  the

Storm  Topology  will  use  non-random  partitioning

strategies,  such  as  region-based  or  hash-based  parti-

tioning,  making  the  data  distribution  uneven  in  the

system[10].  Thus,  loads  of  the  tasks  belonging  to  the

same  logical  operator  (i.e.,  the  Bolt)  are  different.

Consequently, Storm calls for online schemes that can

change the task deployment at runtime.

However, online task deployments cannot be sup-

ported by trivially extending existing DSPEs. For ex-

ample, Storm uses the rebalance command to update

the  task  deployment.  This  command  needs  first  to

stop all running Executors that belong to the Topolo-

gy and kill all Workers. After that, Nimbus generates

a  new  allocation  plan  and  restarts  Topology  accord-

ing to  the  new allocation plan.  With such a  scheme,

the system needs to wait until all tuples in the queue

are finished. To make it worse, Nimbus and Supervi-

sors  have  to  wait  a  threshold  of  30  seconds  for  con-

firming  the  completion  states  of  tasks,  meaning  that

the rebalance command will make the system stop for

at least 30 seconds.

Instead  of  stopping  the  running  of  the  entire

Topology, a better way is to send the new allocation

plan  to  the  Supervisor  at  each  Worker  node  and  let

the  Supervisor  perform  task  migrations.  Such  a

scheme  was  proposed  in  T-Storm[6] and  TS-Storm[7].

With  this  scheme,  the  Supervisor  can  selectively  kill

and restart the Workers whose Executors need to be

updated so that the running of other Workers will not

be  interrupted.  This  approach  is  more  efficient  than

the  ``rebalance''  command.  However,  it  still  has  to

stop the system for  more than 10 seconds when per-

forming a task migration[5], mainly because stopping a

Worker  means  killing  all  the  Executors  within  the

Worker.  Thus,  the  system's  stop  will  incur  much

waiting  and  executing  time,  especially  when  only  a

few Executors within the Worker need to be updated.

Through a deep investigation on the implementa-

tion  of  existing  DSPEs,  we  find  the  intrinsic  reason

for  the  high  system-stall  time  during  a  task  migra-

tion  in  Storm,  T-Storm,  and  TS-Storm  is  that  the

tasks are tightly coupled with resources in a task de-

ployment. More specifically, tasks (Executors) and re-

sources  are  tightly  coupled  in  Workers.  With  this

mechanism,  the  finest  granularity  components  al-

lowed  to  be  migrated  at  runtime  are  process-level

components. As a result, a task migration involving a

small  number  of  tasks  may  also  cause  the  stop  of

many Workers.  Therefore,  to  reduce the cost  of  task

migrations,  the  architecture  of  a  DSPE  needs  to  be

redesigned. 

3    N-Storm: Online Nonstop Task Migration

In this section, we aim to solve problem 2 defined

in Subsection 2.2.  In  particular,  we  propose  a  new

scheme  for  online  task  migrations  called  N-Storm

(Nonstop Storm). 
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3.1    Main Ideas of N-Storm

We propose two novel techniques for N-Storm: 1)

the decoupling of  tasks  and resources  and 2)  thread-

level task management.

Decoupling  of  Tasks  and  Resources. In  Storm,

tasks  are  tightly  coupled  with  resources.  Notably,  a

Worker’s  key  information  including  tasks,  message

queues, and resource configurations is stored in an im-

mutable  data  structure  maintained  by  ZooKeeper.

This  means  the  task-resource  allocation  cannot  be

changed if tasks have been deployed to Workers. We

propose  in  N-Storm a  new scheme  to  decouple  tasks

from resources. Specially, we add a new shared updat-

able  data structure in each Worker  node to store  all

configuration information about  the  task  deployment

in Workers. This data structure is shared by the Su-

pervisor  and all  the Workers  in a Worker node.  The

Supervisor  can  periodically  write  messages  into  the

data  structure  to  indicate  the  changes  in  the  alloca-

tion plan. At the same time, each Worker in a Work-

er  node  can  access  the  shared  data  structure  to  get

the  up-to-date  allocation  plan,  i.e.,  each  Worker  can

know  the  change  of  the  current  task  deployment  at

runtime  from  the  shared  data  structure.  With  this

mechanism, we can implement the decoupling of tasks

and  resources.  Here,  the  main  difference  between  N-

Storm  and  Storm  is  that  N-Storm  allows  the

stop/restart  of  a  specific  Executor  while  Storm  does

not.

In the implementation of N-Storm, we use a local

shared K/V (key/value)  store  in  each node to  main-

tain the shared data structure of  the node.  The task

management  mechanism  of  N-Storm  is  shown  in

Fig.3.  The  first  three  steps  in Fig.3 are  the  same  as

those in Fig.2. In the fourth step, the Supervisor on a

Worker node periodically writes messages to the K/V

store. Finally,  in the fifth step, each Worker periodi-

cally accesses the K/V store to get the latest message

and update the Executors it manages. Based on such

implementation,  we  realize  the  decoupling  of  tasks

and resources in N-Storm.

Thread-Level  Task  Management. Another  idea  of

N-Storm  is  to  perform  task  deployments  and  migra-

tions  in  terms  of  threads.  As  Executors  are  imple-

mented  as  threads  in  Storm,  we  allow  N-Storm  to

manage  each  Executor  to  execute  the  task  manage-

ment.  More  specifically,  each  Worker  can  directly

control  its  Executors,  either  for  task  deployments  or

task migrations. For example, when the Supervisor in-
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forms a Worker through the K/V store to stop an Ex-

ecutor, it can directly kill the thread of the Executor

but does not interfere with other Executors within the

Worker.  Thus,  we  can  adjust  the  task  deployment

while keeping all Workers running, avoiding the over-

head  of  the  system  stop  caused  by  previous  DSPEs

like Storm, T-Storm, and TS-Storm. 

3.2    Implementation of N-Storm

Supervisor. In  N-Storm,  the  Supervisor  on  a

Worker node periodically synchronizes with ZooKeep-

er  to  get  the  latest  allocation  plan.  Differing  from

Storm,  the  Supervisors  in  N-Storm  do  not  need  to

compare the new allocation plan with the current task

deployment.  Instead,  after  requesting  messages  from

ZooKeeper, the Supervisors in N-Storm extract the lo-

cal allocation plan from the global allocation plan and

write it to the K/V store of each Worker node.

Worker. In  Storm,  after  a  Worker  starts  up,  the

configurations about Executors and the mapping from

Executors  to  message  queues  are  saved  in  an  im-

mutable  map  structure.  In  N-Storm,  we  support

atomic  updates  of  these  configurations.  Thus,  Work-

ers  periodically  access  the  K/V  store  to  know  the

changes  in  the  allocation  plan  and update  their  con-

figurations.  Once  a  Worker  finds  that  the  allocation

plan has changed, it can kill/start the tasks involved

to deploy tasks adaptive to the changes.

K/V  Store. N-Storm  extends  each  Worker  node

with  a  lightweight,  durable,  and  atomic  K/V  store.

Both Supervisors and Workers with the same Worker

node can access the K/V store within the node simul-

taneously to communicate with each other. The K/V

store  handles  updates  in  an  append-only  mode.  It

maintains a version number for each record, and read

requests  will  only  access  the  latest  version  of  the

record. The K/V store only locks write operations so

that  read  operations  can  be  executed  concurrently.

Such  a  scheme  does  not  affect  the  system  perfor-

mance  because  only  the  Supervisor,  unique  on  each

Worker node, has the authority to update the alloca-

tion plan.

The  K/V  store  only  introduces  low  overhead.

Since  the  K/V  store  is  embedded  in  each  Worker

node,  no  inter-process  communication  costs  will  be

caused.  In  addition,  write  operations  will  incur  disk

I/Os  but  read  operations  only  access  the  latest  ver-

sion  of  the  K/V  records;  thus,  we  can  assume  that

most reads will hit the operating system’s page cache.

What is more, a Worker node does not save the glob-

al  allocation  plan  but  only  the  local  allocation  plan,

meaning  that  the  size  of  the  K/V  store  is  indepen-

dent  of  the  cluster  size  and  will  not  consume  too

much space. In our implementation, the space cost of

a local allocation plan is typically less than 512 bytes. 

3.3    Lazy Task Killing

During task migrations, the Executors to be killed

may be processing tuples, and there may be tuples in

the message queue that are going to be processed by

these  Executors.  If  the  Executors  are  killed  immedi-

ately, all of these associated tuples will be lost. In this

case, Storm will reprocess these tuples according to a

lineage-based  fault-tolerant  mechanism[2], eventually

impacting the system’s performance.

Aiming to avoid the tuple loss during task migra-

tions,  we  propose  to  delay  the  killing  of  Executors.

Specifically, when we need to kill an Executor, we do

not  kill  it  immediately  but  let  a  timer  thread in  the

Worker  monitor  and  perform  the  killing  operation.

The timer thread will wait a few seconds before it fi-

nally kills the Executor. During the delayed time, two

identical Executors may exist in two Workers, but it

will  not  affect  the  normal  execution  of  the  system.

This  is  because  upstream  Executors  can  only  know

one  specific  downstream Executor  at  any  time.  Dur-

ing  the  delayed  time,  the  old  Executor  continues  to

process tuples in the message queue before the timer

thread  performs  the  killing,  effectively  reducing  mes-

sage loss in the old Executor. Note that there is still a

tiny chance of losing some intermediate data. Howev-

er, even when message loss occurs, N-Storm adopts a

similar  lineage-based  fault  tolerance  mechanism[2] as

Storm to enable all lost messages to be reprocessed af-

ter timeouts to ensure data integrity. 

3.4    Synchronization Cycle Adjustment

The performance of N-Storm is highly affected by

two synchronization cycles. The first is for a Supervi-

sor  to  communicate  with  ZooKeeper  (Supervisor-

ZooKeeper cycle),  and the second is  for  a Worker to

visit  the  K/V  store  (Worker-Store  cycle).  Note  that

Supervisors  and  Workers  work  asynchronously  in  N-

Storm.  We  illustrate  the  performance  impact  of  this

asynchronism in Fig.4. Let us assume that the Super-

visor-ZooKeeper  cycle  is  10  seconds  (default  set  in

Storm). We want to migrate Executor 1 from Work-
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er node 1 to Worker node 2. In the worst case, Super-

visor  2  visits  ZooKeeper  at  the  moment T =  0  and

finds that the allocation plan has not changed. Then,

after  half  a  second,  Nimbus  issues  a  new  allocation

plan  to  ZooKeeper.  After  another  half  a  second,  Su-

pervisor  1  accesses  ZooKeeper  and updates  the  tasks

for Worker node 1, and kills Executor 1. However, Su-

pervisor 2 has to wait until T = 10 s to get the new

allocation plan and start the new Executor 1, making

Executor 1 stop working for about 9 seconds. Conse-

quently,  in  the  worst  case,  the  stopping  time  of  the

migrated Executor is  nearly the Supervisor-ZooKeep-

er  cycle.  The  influence  of  the  Worker-Store  cycle  is

similar.

Thus,  we  propose  to  shorten  the  Supervisor-

ZooKeeper  cycle  as  well  as  the  Worker-Store  cycle.

Generally,  when  the  cycles  are  set  to  a  small  value,

the expected stopping time of migrated Executors can

be reduced to improve the overall performance of task

migrations.  However,  a  small  cycle  may  also  lead  to

the  frequent  invoking  of  the  synchronization  opera-

tion,  introducing more CPU costs  and increasing the

workloads of Supervisors and Workers. In Subsection

5.2,  we test  the influence of  the setting of  the cycles

on the performance of N-Storm and find that setting

a moderate size for the cycles can get the best perfor-

mance.
 

 

Synchronize 
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(Old Deployment)

Workers and

K/V Store

Workers and

K/V Store

Issue a New 
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

Kill
Executor 1

Synchronize 
Deployment

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

Synchronize 
Deployment

Start
Executor 1

Nimbus

Supervisor 1

Worker Node 1

Supervisor 2

Worker Node 2

ZooKeeper

(New Deployment)

Workers and

K/V Store

Workers and

K/V Store

(b)(a)

(d)(c)

Fig.4.  Worst case of the asynchronous working mechanism. (a) T = 0 s. (b) T = 0.5 s. (c) T = 1 s. (d) T = 10 s.
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3.5    Reliability of N-Storm

N-Storm  provides  the  same  reliability  as  Apache

Storm. First, in Storm, modules are stateless, and the

states are kept in ZooKeeper, which allows any mod-

ule  to  be  shut  down  and  restarted  at  any  time[2].

Thus, the system can continue processing tuples nor-

mally  after  the  module  is  restarted.  N-Storm contin-

ues  to  follow  the  stateless  module  design.  The  key

idea is  that  the  allocation plan has  been persistently

stored  in  the  K/V  store.  Second,  Storm  uses  a  lin-

eage-based approach to avoid message loss by having

an Acker in the system that tracks tuple processing[2].

If a tuple times out, it will be reprocessed by the sys-

tem.  Our lazy task-killing mechanism has  greatly  re-

duced the likelihood of message loss due to migration,

and  the  Acker  can  guarantee  that  no  tuple  is  lost

even in the worst case. Third, some applications need

to save intermediate processing states. The Storm has

not  provided  persistence  support  for  intermediate

states;  therefore,  some  states  may  be  missing  during

the task migration. Users can save intermediate states

using other persistent applications to ensure the relia-

bility of intermediate states. 

4    OTD: Online Task Deployment

This section mainly aims to solve problem 1 defin-

ed in Subsection 2.2, which is the task deployment pro-

blem. Previous online task deployment schemes[6, 7, 11]

deploy all  tasks at once, which have to stop the sys-

tem  for  seconds,  resulting  in  decreased  system

throughput. Differing from prior work, we propose an

online nonstop task deployment scheme called Online

Task Deployment (OTD). Our method can avoid sys-

tem stall by gradually adjusting the task deployment

to make it more efficient for the current workload. 

4.1    Problem Analysis

The performance of task deployment is mainly de-

termined by two indicators, namely the processing de-

lay and system throughput. To improve these two in-

dicators, task deployments need to realize the follow-

ing two objectives.

Objective 1: ensuring that tasks allocated to all re-

sources  do  not  exceed  the  computation  power  of  the

Workers, a.k.a., Workers cannot be overloaded.

Objective 2:  minimizing  the  cost  of  the  network

communication between nodes.

A  Topology  (i.e.,  a  DAG)  can  be  divided  into

t1, t2, . . . , tm
ti Proci

ti ti+1 Transi

multiple processing paths, and each tuple completes a

processing path. Assuming that the complete process-

ing  path  for  a  tuple  contains  tasks ,  the

processing delay for  each task  is ,  the  trans-

mission delay between tasks  and  is , the

overall delay of a processing path can be represented

by (1). 

D =
∑

1⩽i⩽m

Proci +
∑

1⩽i⩽m−1

Transi. (1)

ProciHere,  mainly  involves  CPU  processing  time,

memory and cache accessing time,  and waiting time.

Let  us  assume  that  all  resources  are  with  identical

CPUs, memories, and other hardware. The CPU pro-

cessing time and memory/cache accessing time can be

regarded as constants. The waiting time refers to the

time  of  the  tuples  in  the  queue  waiting  to  be  pro-

cessed.  When  the  total  number  of  tasks  undertaken

by  a  resource  exceeds  the  computation  power  of  the

resources, we can say that the processing speed of the

tasks on the resource is slower than the input speed of

the data flow. In this case,  tuples will  accumulate in

the  queue,  and the  tuples'  waiting  time will  increase

quickly.

TDN

TDP

Assuming that the network transmission delay be-

tween any two nodes  is  constant  (denoted as ),

the  inter-process  transmission  delay  within  nodes  is

also constant (denoted as ), and a total of k net-

work transmissions are required for processing one tu-

ple, we have the following (2).  ∑
1⩽i⩽m−1

Transi = k× TDN + (m− 1− k)× TDP . (2)

TDN ≫ TDP

∑
1⩽i⩽m−1

Transi

Since  the  cost  of  network  transmissions  is  much

higher than that of inter-process communications, i.e.,

,  we  can  infer  that  is

proportional to k. Generally, we can assume that the

waiting time is short. Therefore, we can say that most

of the processing delay is caused by network transmis-

sions.

The maximum throughput of a DSPE is up to the

busiest component. It can be a Worker or a network

between  two  nodes.  Assuming  that  a  DSPE  is  de-

ployed on N Worker nodes that contain W Workers,

the  maximum  throughput  of  the  DSPE  can  be  ex-

pressed by (3). 

T =min
(
α/max

(
{CCn→n′|n, n′ ∈ N,n ̸= n′}

)
,

β/max
({

PCw|w ∈ W
}))

. (3)

CCn→n′Here,  represents  the  communication  cost
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n′ PCw

α β

between Worker nodes n and , and  is the pro-

cessing  cost  of  Worker w.  The symbols  and  are

two coefficients,  which are  correlated to  the  network

bandwidth and the computation power of Workers.

The applications running in DSPEs can be rough-

ly  divided  into  computation-intensive  ones  and  com-

munication-intensive  ones.  For  computation-intensive

applications, the throughput of a DSPE is limited by

the computation power of the system. Therefore, real-

izing objective 1 is more important to this kind of ap-

plications  than  realizing  objective  2.  On  the  other

hand,  for  communication-intensive  applications,  the

throughput  is  limited  by  the  network  bandwidth.

Thus, objective 2 is more important.

CCn→n′ PCw

For each task deployment, if we can calculate the

expectation of k and the values of  and ,

we  can  find  the  optimal  deployment.  Unfortunately,

all  these  parameters  are  related  to  task  deployment

and the throughput and distribution of the data flow.

As the data flow changes  over  time,  we need an on-

line  task  deployment  strategy  to  adjust  the  current

task  deployment  to  adapt  to  the  change  of  the  data

flow. However, it is inefficient to re-deploy all tasks at

once,  which  was  proposed  in  T-Storm[6] and  TS-

Storm[7],  because such a scheme will cause high com-

puting  costs.  On  the  other  hand,  migrating  a  large

number of tasks at once will also increase the system’s
instability.  Therefore,  we  propose  OTD,  which  can

gradually change the current task deployment accord-

ing  to  the  properties  of  applications,  make  the  task

deployment adaptive to dataflow changes, and ensure

the system’s stability. 

4.2    Implementation of OTD

OTD is proposed to realize objective 1 and objec-

tive 2, i.e.,  avoiding the overload of Workers and re-

ducing  the  communication  costs  between  nodes.  It

consists  of  two  modules,  namely  a  load  collection

module and a module for task deployment, as shown

in Fig.5.  The  load  collection  module  is  deployed  on

Workers and is responsible for collecting the commu-

nication  cost  between  Executors,  the  length  of  each

message  queue,  and  the  CPU  utilization  of  each

Worker.  It  will  send  the  collected  information  to

ZooKeeper.  The module of  the task deployment runs

on  Nimbus.  It  is  responsible  for  obtaining  the  infor-

mation  collected  by  the  load  collection  module  from
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ZooKeeper  and  performing  the  online  task  deploy-

ment algorithm (see Subsection 4.3).

The  working  process  of  OTD  is  shown  in Fig.6.

First,  we  get  the  Worker  loads  and  the  communica-

tion  costs  from  ZooKeeper.  Then,  according  to  the

length of  message queues and the CPU utilization of

each  Worker,  we  can  distinguish  high-load  Workers

and low-load Workers from normal-load Workers. Fi-

nally, according to the results of classification, we per-

form appropriate operations as follows.

Case 1.  If  both  high-load  and  low-load  Workers

exist,  we  execute  the  load  balancing  algorithm  (see

Algorithm 1)  to  migrate  one  task  from  a  high-load

Worker to a low-load Worker.

Case 2.  If  high-load  Workers  exist,  but  no  low-

load  Workers  live,  we  send  the  user  a  warning  mes-

sage to inform him/her of lacking resources.

Case 3.  If  high-load  Workers  do  not  exist,  but

low-load  Workers  exist,  we  execute  the  communica-

tion  optimization  algorithm  (see Algorithm 2)  to  re-

duce the inter-node communication costs.

Case 4. If neither high-load Workers nor low-load

Workers  exist,  meaning  that  the  system  usually  is

running, we need not take any actions.

For  case  1  and  case  3,  the  load  balancing  algo-

rithm and the communication optimization algorithm

will  be  invoked  to  generate  a  new  allocation  plan,

which  will  determine  the  best-fit  Executor  and  per-

form a task migration that is supported by N-Storm.

To minimize the impact of task migrations on the sys-

tem, we only generate one best-fit pair each time, in-

cluding one Executor and a targeted Worker. We pe-

riodically  execute  the  best-fit  pair  selection  until  the

current  task  deployment  is  suitable  for  the  current

data flow. 

4.3    Task Deployment Algorithm

The key issue of OTD is to determine the best-fit

Executor and Worker. Based on this best-fit selection,

we can then invoke N-Storm to perform a task migra-

tion.  For  different  types  of  applications,  we optimize

for  application  bottlenecks.  In  particular,  for  compu-

tation-intensive applications, we optimize the task de-

ployment  mainly  toward  objective  1.  On  the  other

hand,  for  communication-intensive  applications,  we

take objective 2 as the primary objective.

To measure the quality of task deployment, we in-

troduce the allocation score of a task as a metric. We

get  the  allocation  score  by  calculating  the  running
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ASe,n

ASe,n

state  of  the  system.  Let  represent  the  alloca-

tion score of  allocating Executor e to Worker n,  and

we  define  as  the  difference  between  the  intra-

node  communication  cost  of e and  the  inter-node

communication cost of e, as shown in (4). 

ASe,n =
∑
e′∈n

(CCe′→e + CCe→e′)−∑
e′′∈N−n

(CCe′′→e + CCe→e′′) . (4)

CCe′→e CCe→e′

CCe′′→e CCe→e′′

Here,  the variables  and  represent

the intra-node communication costs sent to and from

e,  respectively.  The  variables  and 

represent the inter-node communication costs sent to

and from e, respectively.

ASCe,n0→n

In a task deployment,  we calculate the change of

the allocation score to measure the benefit of current

task  migration.  We  use  to  represent  the

change of the allocation score of migrating Executor e
from  Worker n0 to  Worker n.  The  calculation  is

shown in (5). 

ASCe,n0→n =
ASe,n − ASe,n0

2
,

ASCe,n0→n =
∑
e′∈n

(CCe′→e + CCe→e′)−∑
e′′∈n0

(CCe′′→e + CCe→e′′). (5)

ASCe,n0→n

In (5), the first sum is the communication cost be-

tween e and the Executors on the targeted Worker n,

and  the  second  sum  is  the  communication  cost  be-

tween e and the Executors on the source Worker n0.

The value of  is used in both the load bal-

ancing  algorithm  and  the  communication  optimiza-

tion algorithm.

ASCe,n0→n

The  load  balancing  algorithm  is  shown  in Algo-

rithm 1. First, the algorithm selects the Worker with

the  highest  load,  denoted  as max_load_worker,  from

the high_load_workers set.  Then,  we  get  all  Execu-

tors  who  are  deployed  on  the  Worker  identified  by

max_load_worker. These Executors are denoted as ex-
ecutors.  Next,  we  select  the  Worker  with  the  lowest

load  on  each  Worker  node,  denoted  as min_load_
workers,  from  the low_load_workers set.  After  that,

we connect the selected Executors in executors to the

Workers  in min_load_workers and  use  (5)  to  calcu-

late the change of the allocation score for each candi-

date migration pair. Finally, we return the migration

pair which has the maximum value of  as a

result.

Algorithm 1. Load Balancing

{CCe→e′ |e, e′ ∈
E}
Input: high_load_workers, low_load_workers, 

em, wtOutput: 

1:  get max_load_Worker from high_load_workers
← {e|e ∈2:  executors  max_load_worker}

3:    get min_load_workers from low_load_workers
∈4:   for e  executors

n0 ← getNode(e)5: 　 

w ∈6: 　  for  min_load_workers
n← getNode(w)7: 　　 

ASCe,n0→n8: 　　 calculate  by (5)

9: 　 end for
10: end for

em, wt←argmax(ASCe,n0→n), e∈n0, w ∈ n11: calculate 
em, wt12: return 

ASCe,n0→n

The  communication  optimization  algorithm  is

shown in Algorithm 2. This algorithm is similar to the

load  balancing  algorithm,  with  only  two  differences.

First, for the input, it uses all Executors in the Topol-

ogy  instead  of  the  Executors  in max_load_worker.
Second,  at  the  end  of Algorithm 2,  it  determines

whether the value of  of the migration pair

to  be  returned  exceeds  a  threshold  (thresholdASC).

This is because a task migration will cause some fluc-

tuation in the system performance. Thus, we need to

evaluate the benefit of the selected migration. We on-

ly perform the selected task migration when the bene-

fit  exceeds  the  threshold.  Such  a  scheme  is  intro-

duced  to  avoid  the  task  migrations  that  incur  high

costs and impact the stability of the system.

Algorithm 2. Communication Optimization

{CCe→e′ |e, e′ ∈ E}Input: executors, low_load_workers, 
em, wtOutput: 

1:    get min_load_workers from low_load_workers
∈2:   for e  executors

n0 ← getNode(e)3: 　 

w ∈4: 　  for  low_load_workers
n← getNode(w)5: 　　 

ASCe,n0→n6: 　 　calculate  by (5)

7:　　end for
8:  end for

em, wt←argmax(ASCe,n0→n), e ∈ n0, w ∈ n9:  calculate 

ASCem,n0→nt > thresholdASC, em ∈ n0, wt ∈ nt10: if    then

em, wt11: 　return 
12: end if
13: return NULL

O(|E| × |N |) |E|
|N |

The  complexity  of  the  OTD  algorithm  is

,  where  is  the  count  of  Executors,

and  is the count of Workers. To ensure the stabil-
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ity of the system, we execute the OTD algorithm pe-

riodically.  Thus,  it  will  not  introduce  excessive  com-

puting load to Nimbus. 

5    Performance Evaluation
 

5.1    Experimental Setup

For  the  experiments  in  this  paper,  if  there  is  no

additional  description,  the  default  configuration  de-

scribed in this subsection is used.

The experiments use the distributed remote proce-

dure call (DRPC)[2] to provide input data to the sys-

tem.  DRPC  consists  of  DRPC  servers  and  DRPC

clients  and  is  responsible  for  the  communication  be-

tween  the  user  and  the  system.  Due  to  the  budget

limit,  we run experiments by default  on a local  clus-

ter consisting of three servers, each equipped with two

Intel  Xeon  e5-2620  v4  CPUs  and  128  GB  memory.

Nimbus and the DRPC server runs on one server, and

the  other  two  servers  are  used  as  Worker  nodes.

Thus,  each  Worker  node  has  four  Workers  with

equivalent resources. The DRPC client runs on a per-

sonal  computer  equipped  with  an  Intel  Core  i5-4590

CPU  and  8  GB  memory.  In  addition,  to  verify  the

scalability of online task deployment, we also run an

experiment  on  a  cloud  platform,  which  will  be  dis-

cussed in Subsection 5.3.

We use a linear Topology with two Bolts  for the

experiments.  The  template  of  the  linear  Topology  is

shown in Fig.7. For the experiments in Subsection 5.2

and the communication-intensive experiments in Sub-

section 5.3,  we use the Word Count Topology⑤.  The

input  of  the  Word  Count  Topology  is  English  sen-

tences. Bolt 1 divides sentences into words, while Bolt

2  counts  the  number  of  word  occurrences  and  out-

puts statistical results. We randomly select sentences

from the novel “Harry Potter” as inputs. The Topolo-

gy parallelism represents the number of Workers used

by the Topology, which is set to 8. The operator par-

allelism means the number of tasks that run the com-

putational  logic  of  the  operator.  The  parallelism  of

Bolt  1  and  Bolt  2  is  set  to  12  and  24,  respectively.

For the computation-intensive experiments in Subsec-

tion 5.3,  Bolt  1  is  an  operator  with  heavy  computa-

tions, and Bolt 2 is an operator with few calculations.

The parallelism settings are the same as before. 

5.2    Performance of N-Storm

To  test  the  performance  of  N-Storm,  we  imple-

ment a random task re-deployment algorithm to trig-

ger  task  migrations.  The  algorithm can  generate  the

required  number  of  migrated  tasks  and  ensure  that

the  tasks  are  evenly  distributed  after  the  migration.

We  set  the  period  of  task  re-deployment  to  60  sec-

onds. The experimental results are the total value or

average value of the system running for 600 seconds.

Note that there are three important parameters in

this experiment, namely M, TS, and TW. The parame-

ter M represents  the  number  of  the  Executors  to  be

migrated in  each task re-deployment.  The parameter

TS represents  the  cycle  that  the  Supervisor  visits

ZooKeeper  to  get  the  allocation plan,  and TW repre-

sents the cycle that each Worker visits the K/V store

to  get  the  allocation  plan.  To  ensure  the  fairness  of

the  comparison,  we  let  supervisors  execute  the  pro-

cess-level  task  management  (i.e.,  kill/start  Workers)

every TW seconds  in  the  comparative  experiments.

The default settings are M = 1, TS = 10 seconds, and

TW = 3 seconds.

We  compare  N-Storm  with  several  existing

schemes, which are summarized below.

1) Storm. It uses the rebalance command before a

task migration, which is recommended by Storm and

has been used by prior work[12–14].

2) Storm*. This scheme is the task migration algo-

rithm  proposed  in  T-Storm[6] and  TS-Storm[7].  It  di-

rectly  dispatches  the  new  allocation  plan  to  supervi-

sors, and then supervisors kill or start Workers.

3) N-Storm.  This  is  the  scheme  proposed  in  this

study. It uses the thread-level migration policy based

on  the  task-resource  decoupling  design,  but  it  does

not  use  the  optimization  strategies  proposed  in Sub-

section 3.3 and Subsection 3.4.

4) N-Storm+.  This  scheme  extends  N-Storm  by

adding  the  two  optimization  strategies  proposed  in

Subsection 3.3 and Subsection 3.4, respectively. 

5.2.1    One-Task Migration

In  the  first  experiment,  we  compare  the  perfor-

mance of one-task migration of N-Storm with that of
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Fig.7.  Template of the linear Topology.
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Storm and Storm*. We use the default settings of M,

TS, and TW.

First,  we  record  the  real-time  throughput  of  the

three  methods,  as  shown  in Fig.8.  The  unit  of  the

throughput is tuples per second (TPS). In the stable

running stage, the throughput of the three methods is

very  close,  indicating  that  N-Storm performs  as  well

as  Storm when  task  migrations  are  not  invoked.  We

make  the  first  task  migration  at  the  50th  second.

Storm needs to suspend the running of the Topology

before the task migration, and the entire stop time is

around 30 seconds, which is close to the default down-

time set in Storm. During this time, we can see that

the system throughput drops to 0. The throughput of

Storm* also  decreases  by  more  than a  half,  which  is

far  below  the  normal  throughput.  The  low  through-

put keeps about 10 seconds. This is because that the

task migration in Storm* will stop Workers related to

the migration.
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Meanwhile, as Storm* does not affect other Work-

ers  that  are  not  involved  in  the  migration,  it  has

shorter  system-stop  time  than  Storm.  N-Storm  re-

duces  the  system-stop  time  to  less  than  one  second,

which  is  much  better  than  Storm and  Storm*.  As  a

result,  N-Storm  can  perform  task  migration  while

meeting  QoS  requirements  for  real-time  applications,

i.e., second-level response latency.

In  the  remaining  experiments  in  this  subsection,

we  measure  the  average  throughput  per  second  of

Storm without  any  task  migration  as  a  baseline  and

count the duration of performance degradation at dif-

ferent levels.  The level of performance degradation is

set  to  20%,  40%,  60%,  80%,  and  100%,  respectively

(see Fig.9).  We  specially  focus  on  the  levels  of  60%

and  100%.  If  the  performance  degradation  level  is

over 60%, the system performance is seriously worse.

In addition, a 100% drop performance means that the

system  is  stopped.  As  shown  in Fig.9(a),  Storm  in-

curs a total of 279 seconds, during which the system

performance  decreases  by  60%,  and  267  seconds  in

case  of  100%  degradation.  Storm*  reduces  the  dura-

tion of 60% performance degradation to 155 seconds,

44% less  than  that  of  Storm.  However,  the  duration

still  accounts  for  more than 25% of  the  total  system

running time.

In contrast, N-Storm only costs 20 seconds at the

level  of  60% performance degradation,  93% less  than

that  of  Storm,  and  87%  less  than  that  of  Storm*.

Fig.10(a)  shows  the  total  throughput  of  the  system.

We  can  see  that  Storm  has  the  lowest  throughput,

and  the  throughput  of  Storm*  is  41%  higher  than

that  of  Storm.  N-Storm  has  the  highest  throughput,

which  is  25%  higher  than  that  of  Storm*,  and  75%

higher than that of Storm. 

5.2.2    Multiple-Task Migration

In  this  experiment,  we  evaluate  the  performance

of N-Storm for multiple-task migration, i.e., each mi-

gration involves multiple tasks. We treat M as a vari-

able and set the values of TS and TW with default set-

tings.

Fig.9(b)  shows  the  different  durations  of  perfor-

mance degradation under different values of M. When

M is set to 1, 2, and 4, respectively, there are few dif-

ferences in the duration of performance degradation in

the five levels.  However,  when M is  set  to 8 and 16,

the duration of performance degradation significantly

increases,  and  the  system  throughput  drops  to  0  in

many cases. Especially when M = 16, the duration of

60%  performance  degradation  is  118  seconds.

Fig.10(b) shows the total throughput of N-Storm un-

der different values of M. Only when M = 16, the to-

tal throughput decreases significantly. When M is set

to 1, 2, 4, and 8, respectively, the total throughput is

not  significantly  varied.  Surprisingly,  the  total

throughput at M = 4 is greater than that at M = 2.

By looking  at  throughput  per  second over  the  entire

experiment,  we  find  that  when M =  4,  after  two  or

three  task  re-deployments,  the  throughput  increases

by  about  5%  compared  with  the  initial  state  of  the

system. The migrated Executors are randomly select-

ed,  which  means  that  the  initial  task  deployment  is

not so efficient as the random task deployment. 

5.2.3    Lazy Task Killing

In this experiment, we set TS = 10 seconds, TW =
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3  seconds,  and M =  16.  Previous  experiments  have

shown that N-Storm does not perform well in this set-

ting. We optimize N-Storm (the optimized N-Storm is

denoted as N-Storm+) by delaying the killing of Ex-

ecutors and setting the default delay time DK = 2 sec-

onds.  This  delay  is  sufficient  to  ensure  that  the  sys-

tem can finish the processing of the tuples in the mes-

sage  queue.  We  compare  the  performance  of  N-

Storm+ and N-Storm under the same settings.

Fig.9(c)  shows  the  duration  of  the  performance

degradation. We can see that the degradation time of

N-Storm+ is less than that of N-Storm in all five lev-

els.  Among  them,  the  duration  of  N-Storm+  at  the

60% level  is  84 seconds,  which is  29% less  than that

of  N-Storm.  The duration  of  N-Storm+ at  the  100%

level is 53 seconds, which is 31% less than that of N-

Storm. Fig.10(c)  shows  that  the  total  throughput  of

N-Storm+  is  11%  higher  than  that  of  N-Storm.  In

conclusion,  the experimental  results  have shown that

it  is  more  efficient  to  delay  the  killing  of  Executors

when performing task migrations in N-Storm. 

S W5.2.4    Impact of T  and T

In this experiment, we study the impact of TS and

TW on  the  performance  of  N-Storm+.  All  experi-

ments  are  based  on  N-Storm+,  and M is  set  to  16.

Since a Supervisor gets messages from ZooKeeper and

 

350

300

250

200

150

100

50

0
20 40 60

Level of Performance Degradation (%)

80 100

(a)

20 40 60

Level of Performance Degradation (%)

80 100

(b)

20 40 60

Level of Performance Degradation (%)

80 100

(c)

20 40 60

Level of Performance Degradation (%)

80 100

(d)

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

180

160

140

120

100

80

60

40

20

0

T
im

e
 D

u
ra

ti
o
n
 (

s
)

Storm

Storm*

N-Storm







N-Storm

N-Storm+
S s, W s
S s, W s
S s, W ms

S ms, W ms

Fig.9.   Time  duration  of  performance  degradation.  (a)  One-task  migration.  (b)  Multiple-task  migration.  (c)  Lazy  task  killing.
(d) Impact of TS and TW.

Zhou Zhang et al.: Online Task Management for Storm-Based DSPEs 129



sends  them  to  Workers  through  the  K/V  store, TW

should  be  less  than TS.  We  let TS be  about  three

times of TW, which is similar to the default setting in

Storm. Then,  we reduce the values of TS and TW to

report the duration of performance degradation.

Fig.9(d) shows the duration of performance degra-

dation under four settings of TS and TW. We can see

that the performance degradation time of the system

continues to decline with the decreasing of TS and TW

in the first three settings. However, in the last setting,

where TS = 300 milliseconds and TW = 100 millisec-

onds,  the  performance  degradation  time  of  the  sys-

tem  is  longer  than  that  of  the  second  and  the  third

settings. Fig.10(d)  shows  the  total  throughput  under

different  updating  cycles.  Again,  the  results  are  con-

sistent with those in Fig.9(d).

In  conclusion,  the  experimental  results  confirm

our analysis in Subsection 3.4. In general, a short syn-

chronization  cycle  can  lead  to  higher  system  perfor-

mance.  However,  the  cycle  should  not  be  set  too

short;  otherwise,  the  additional  communication  costs

will  outweigh  the  benefit.  In  the  followings,  we  ana-
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lyze  the  communication  costs  of  the  task  manage-

ment at each Worker node. 

5.2.5    Communication Costs

As  shown  in Fig.11,  we  use  the  communication

traffic  per  second  to  estimate  communication  costs.

The  results  show  that  the  communication  costs  in-

crease rapidly with the shortening of the synchroniza-

tion  cycle.  This  finding  supports  the  previous  result,

i.e., the moderate synchronization cycle is the best.
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Further,  we  classify  communication  costs  into

three  categories:  communication  with  ZooKeeper,

writing to the K/V store, and reading from the K/V

store. The communication cost with ZooKeeper in N-

Storm  is  the  same  as  all  previous  methods[6, 7],  and

thus  we  only  focus  on  the  reading  and  writing  costs

caused by the K/V store. Note that the writes to the

K/V  store  need  to  consume  disk  I/Os,  while  most

reads  to  the  K/V  store  only  cost  memory  access.

Thus,  the communication costs of  the K/V store are

dominated  by  the  writes  to  the  K/V  store. Fig.11

shows that N-Storm has few writes to the K/V store,

indicating  that  N-Storm does  not  introduce  high  ex-

tra communication costs. 

5.3    Performance of OTD

In this subsection, we evaluate the performance of

OTD.  Since  all  known  online  task  deployment  algo-

rithms can cause  more  than 10  seconds  of  downtime

during  task  migration,  they  cannot  be  invoked  fre-

quently.  As  a  result,  we  only  compare  OTD  with

Storm in the experiments.  Here,  Storm is  selected as

the  representative  of  the  offline  task  management

scheme. We aim to demonstrate that OTD can opti-

mize  the  current  task  deployment  without  stopping

the  system  for  seconds.  Since  the  role  of  OTD is  to

adjust task deployment online, its initial task deploy-

ment is the same as that of Storm.

We  run  OTD  on  computation-intensive  applica-

tions  and  communication-intensive  applications,  re-

spectively,  to  verify  the  performance.  In Subsection

5.2, we observe that the CPU usage is stable at a low

level for all Workers. Thus, the Word Count Topolo-

gy used in the experiments can be regarded as a com-

munication-intensive  application.  Therefore,  in  this

subsection, we still  use the Word Count Topology in

the  experiment  of  communication-intensive  applica-

tions. We modify the code of the Word Count Topol-

ogy  by  adding  a  harmonic  number  calculation  into

Bolt  1  and  randomly  making  the  distribution  of  the

calculation  in  the  key  domain  change.  Consequently,

we make Bolt 1 be an operator with heavy computa-

tions and Bolt 2 be an operator with few calculations.

The  OTD  algorithm  runs  on  the  optimized  N-

Storm  (i.e.,  N-Storm+)  and  migrates  only  one  task

each  time  to  minimize  the  performance  fluctuation

caused by task migrations.  The cycle of  task deploy-

ment adjustment is set to 5 seconds. We set TS = 3

seconds, TW = 1 second, and DK = 2 seconds. We use

the  mean  value  of  each  performance  metric  (e.g.,

CPU  usage  and  throughput)  within  5  seconds  after

each  task  migration  to  show  the  effect  of  the  algo-

rithm. 

5.3.1    Computation-Intensive Applications

For  computation-intensive  applications,  OTD  is

mainly  toward  the  realization  of  load  balancing,  re-

flected  by  the  average  CPU usage  of  Workers.  Note

that Workers are the modules responsible for the pro-

cessing.  Our  statistics  of  CPU  usage  do  not  include

management  modules  such  as  Nimbus  and  Supervi-

sors. Based on Fig.12(b), we can see that the average

CPU usage of Storm is only 51%, and OTD increases

the average CPU utilization to 77% after less than 50

seconds  (i.e.,  less  than  10  times  of  task  deployment

adjustment).  The increase of  the average CPU usage

is  51%,  which  means  that  OTD  makes  the  system

load more balanced. In addition, OTD keeps the aver-

age  CPU  usage  at  75%,  although  the  load  distribu-

tion  is  changing  in  the  experiment. Fig.12(a)  shows

that  after  less  than 10 times  of  task  deployment  ad-

justment,  OTD  increases  the  throughput  by  14%,
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which also verifies the efficiency of the load balancing

algorithm  of  OTD. Fig.12(c)  shows  that  after  about

250  seconds  (50  times  of  task  deployment

adjustment), the ratio of inter-node communication is

reduced  from  50%  to  less  than  20%.  This  indicates

that for computation-intensive applications, OTD can

effectively  reduce the ratio  of  inter-node communica-

tion while maintaining a high level of load balancing. 

5.3.2    Communication-Intensive Applications

OTD mainly  aims  to  reduce  the  inter-node  com-

munication cost and the processing delay for commu-

nication-intensive  applications. Fig.13(c)  shows  OTD

can continuously  reduce  the  ratio  of  inter-node  com-

munication. The reduction converges at the 305th sec-

ond  (i.e.,  after  61  times  of  task  deployment  adjust-

ment). As a result, the ratio of the inter-node commu-

nication  decreases  from  50%  to  less  than  6%.  Com-

pared with Storm, OTD reduces inter-node communi-

cation by up to 88%. Fig.13(a) shows that OTD can

keep  increasing  the  system’s  throughput  and  main-

tain  a  high  throughput  after  200  seconds.  After  200

seconds,  the  throughput  of  OTD  increases  by  19%.

Fig.13(b)  shows  that  OTD  consistently  reduces  the

processing  delay  of  tuples.  After  200  seconds,  OTD

reduces  the  processing  delay  by  14%.  In  conclusion,

all the results have verified the effectiveness and effi-

ciency of OTD. 

5.3.3    Scalability

In  this  experiment,  we  extend  the  scale  of  the

cluster  to  verify  the  scalability  of  OTD.  As  we  only

have a local cluster of five servers, we run this experi-

ment on the Huawei Cloud by buying its cloud stor-

age and computation services. In the cloud-based ex-

periment,  all  servers  and clients  have  four  vCPUs of

Intel Cascade Lake 3.0 GHz and 16 GB memory. The

maximum bandwidth  between  all  servers  and  clients

is 8 Gbit/s.

2×NW

3×NW

Assuming the number of Worker nodes is NW, we

use one server running the Nimbus and DRPC server

and NW servers as Worker nodes. Then, we vary NW

from 2 to 16 to evaluate the scalability of OTD. Each

Worker  node  is  configured  to  have  two  Workers.  In

addition, we use NW clients to run DRPC clients. The

number  of  tasks  increases  in  proportion  to  the  num-

ber of Worker nodes. Specifically, the Topology paral-

lelism is set to , the parallelism of Bolt 1 is set

to ,  and  the  parallelism  of  Bolt  2  is  set  to
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6×NW .  Other parameter settings are the same as in

previous experiments. All results are the average val-

ue of a 600-second running.

For  computation-intensive  applications, Fig.14(a)

shows  that  the  throughput  of  OTD goes  up  steadily

with the  increasing number  of  Worker  nodes  and al-

ways  outperforms  the  throughput  of  Storm,  indicat-

ing  that  OTD  can  maintain  high  performance  in

large-scale  clusters.  In  addition,  as  shown  in

Fig.14(b),  the  average  CPU  usage  of  Storm  declines

slightly  as  the  number  of  Worker  nodes  increases,

while OTD keeps a stable CPU usage when the clus-

ter  size  changes.  As Fig.14(c)  shows,  OTD can  keep

less  inter-node  communication  than  Storm  when  the

cluster  size  changes.  As a result,  OTD performs bet-

ter on a large cluster than on a small cluster for com-

putation-intensive applications.

The  results  for  communication-intensive  applica-

tions,  as  shown  in Fig.15,  are  similar  to  those  in

Fig.14. We also notice that the improvement of OTD

over  Storm  when  running  for  communication-inten-

sive  applications  is  slightly  worse  than the  results  in

Fig.14.  That is  mainly because communication-inten-

sive  applications  only  benefit  from  the  OTD’s  im-

provement  in  reducing  inter-node  communication.

However, we can see that the reduction of inter-node
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communication in OTD generally decreases when the

cluster  size  expands,  as  shown  in Fig.14(c)  and

Fig.15(c).  That  is  simply  because  of  the  complicated

routing rules in large clusters. To sum up, it is better

to  use  a  smaller  cluster  for  communication-intensive

applications,  in which OTD outperforms Storm more

than  running  on  a  larger  cluster.  Another  way  is  to

use multiple small isolated clusters instead of a single

large  cluster  for  communication-intensive  applica-

tions. 

6    Related Work
 

6.1    Task Deployment and Elastic Algorithms

Offline Task Deployment. Apache Storm adopts a

simple round-robin method as its default task deploy-

ment  strategy.  This  method  does  not  consider  the

cost of inter-node communication and load balancing.

R-Storm[8] maps  CPU,  memory,  and  bandwidth  re-

sources  into  a  three-dimensional  space  and  adopts  a

resource-aware  task  deployment  algorithm.  Fara-

habady et  al.[15] proposed  a  QoS-based  task  deploy-

ment  algorithm,  which  allocates  resources  based  on

the QoS requirements of the data flows. Jiang et al.[16]

proposed a task deployment algorithm based on graph

division.  Nardelli et  al.[17] proposed  a  general  frame-

work of the optimal task deployment and demonstrat-

ed that it solves an NP-hard problem. Therefore, sev-

eral heuristics that consider the heterogeneity of com-

puting and network resources were proposed[17, 18]. Fu

et al.[1] considered the deployment of DSPEs on edge

and  proposed  EdgeWise  to  optimize  resource  multi-

plexing,  which  uses  a  congestion-aware  task-deploy-

ment  strategy.  All  of  the  methods  mentioned  above

use  offline  task  deployment  algorithms.  The  limita-

tion  of  the  offline  solutions  makes  DSPEs  unable  to

efficiently cope with time-varying data flows and real-

time pluggable multiple Topologies.

Online  Task  Deployment.  Aniello et  al.[11] pro-

posed  an  online  task  deployment  method  based  on

communication traffics. It monitors the tuple transfer

rate between Executors in real time through a moni-

toring  module  and  prioritizes  the  Executors  with

heavy communication load in the same Worker.  Ref-

erences [6]  and [19]  further consider the computation

power of nodes. The work in the literature[7, 20, 21] con-

sidered  load  balancing.  Specifically,  researchers  pre-

ferred  to  allocate  Workers  to  the  Worker  node  with

the lowest load[7, 20]. Fang et al.[21] dealt with the load

skewness by changing the critical partition. Li et al.[22]

proposed a dynamic algorithm for the Topology opti-

mization based on a constraint theory, which is used

to  eliminate  the  performance  bottleneck  of  pipeline

operations.  Sun et  al.[23] proposed a  task  deployment

algorithm  based  on  the  critical  path.  All  of  these

methods use online task deployment algorithms. If the

data  flow  changes,  they  can  recalculate  and  update

the  allocation  plan,  triggering  task  migrations.  How-

ever,  due  to  the  task-resource  coupling  design  and

process-level  task  management  in  DSPEs,  the  task

migrations  lead  to  severe  performance  fluctuation.

Moreover,  these  methods  calculate  a  new  allocation

plan  without  considering  the  cost  of  task  migration.

Unlike  them,  our  algorithm  gradually  fine-tunes  the

task deployment for the sake of system stability.

Elastic Algorithms. Aeolus[24] and DRS[25] dynami-

cally adjust the degree of the parallelism of operators

by monitoring the data arrival rate and data outflow

rate of Executors. Similarly, the studies in the litera-

ture[26–30] proposed  to  regulate  the  resource  and  con-

figuration  of  DSPEs  automatically.  Furthermore,

AdaStorm[14] and OrientStream[31] use machine learn-

ing  methods  to  obtain  the  optimal  Storm  parameter

configuration.  Specifically,  AdaStorm[14] is  trained  to

select  the  parameter  configuration  which  uses  the

least  resources  to  meet  user  needs.  OrientStream[31]

adopts an incremental learning algorithm and an inte-

grated  learning  model  based  on  AdaStorm  to  make

the  prediction  results  more  accurate.  These  methods

implement elastic mechanisms on DSPEs by dynami-

cally  adjusting  parallelism  or  other  parameters  as

needed, which triggers task splitting or merging. They

use the ``rebalance''  command or similar pause-based

strategies,  which  does  not  consider  the  efficiency  of

the adjustment process. 

6.2    Task Migration and Elastic Supports

Task  Migration  in  Storm.  T-Storm[6] adopts  an

optimization  scheme to  delay  the  killing  of  Workers.

However, it still leads to the killing of additional Ex-

ecutors and needs to stop the system for about 10 sec-

onds. Therefore, this method is not able to effectively

solve the performance fluctuation problem. Yang and

Ma[32] proposed  a  smoothing  task  migration  idea  for

Storm.  They  analyzed  the  performance  cost  of  the

task migration and proposed to change the granulari-

ty  of  task  migration  from the  Worker  to  the  Execu-

tor. This visionary work inspired our study.

Furthermore,  we  present  a  systematic  framework

for  thread-level  task  migration.  In  addition,  we  pro-

pose  two  optimization  strategies  and  an  online  non-

stop  task  deployment  algorithm.  Cardellini et  al.[12]
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proposed  a  system  of  automatically  changing  paral-

lelism  and  designed  an  interruption-recovery-based

stateful task migration method. Li et al.[13] developed

an  elastic  mechanism  that  is  needed  to  monitor  the

system’s state. The authors considered stateful opera-

tors  and  used  an  additional  global  state  manager  to

persist  the states of  the operators to achieve stateful

operator  migrations.  Shukla  and  Simmhan[33] pro-

posed  several  approaches  for  data-flow  checkpoints

and migrations. They also focused on the stateful mi-

gration  of  large  data  flows  and  were  committed  to

eliminating  message failures  and tuple  recalculations.

The  studies[12, 13, 33] are  all  dedicated  to  migrating

stateful  operators  in  Storm,  which  conflicts  with  the

stateless design of Storm which we have talked about

in Subsection 2.1 and Subsection 3.5. Our approach is

proposed  for  stateless  operators,  which  aims  to  re-

duce  the  duration  of  performance  degradation  in-

curred by task migrations.

Elastic Supports. SEEP[34] exposes the state to the

DSPE through a set of state management primitives,

and on this basis, realizes dynamic scaling and failure

recovery.  ChronoStream[35] uses  a  transaction  migra-

tion  protocol  based  on  state  reconfiguration  to  sup-

port  stateful  task  migration.  Similarly,  DSPEs  pro-

posed in the literature[36–38] aim to achieve scalability.

Additionally,  Chi[9] embeds  the  control  platform into

the  data  platform  so  that  each  task  can  obtain  the

control  information  and  perform migrations  reactive-

ly.  Elasticutor[39] allows  to  change  the  number  of  re-

sources  consumed  by  a  task  dynamically  to  achieve

elasticity. Megaphone[40] realizes dynamic task migra-

tion  by  changing  the  Topology.  Rhino[41] provides  a

handover protocol  and a state migration protocol  for

a vast distributed state. These studies focus on main-

taining  state  consistency  and  introduce  additional

costs,  such  as  processing  in  full  compliance  with

timestamp  order  and  adding  global  or  local  routing

tables.  Furthermore,  these  migration  strategies  are

complex  and  not  suitable  for  frequent  use.  Differing

from these researches,  our research focuses  on reduc-

ing the cost of task migration to achieve the stability

of  the  system  and  the  QoS  requirements  of  applica-

tions. 

7    Conclusions

This paper proposed an online nonstop task man-

agement  mechanism  for  DSPEs  (distributed  stream

processing engines) to adapt to the time-varying data

flows. The main contributions of this study include a

task-resource  decoupling  DSPE named  N-Storm that

supports  thread-level  online  task  migrations  and  a

new online task deployment method called OTD. Our

experimental results showed that N-Storm can signifi-

cantly reduce the time duration of performance degra-

dation and eliminate the stop time during task migra-

tions.  Also,  the  OTD method can efficiently  increase

the average CPU usage for computation-intensive ap-

plications  and  reduce  the  inter-node  communication

costs for communication-intensive applications.

In the current implementation of OTD, we gener-

ated  the  best-fit  resource  allocation  plan  under  the

premise of given resources and task Topology, mean-

ing  that  we  only  deal  with  the  dynamical  load  bal-

ance among Workers by migrating the tasks in high-

load Workers to low-load Workers. An interesting fu-

ture  research  direction  is  to  make  OTD  adaptive  to

the  resource-quota  change  of  Workers.  For  example,

some  previous  studies[24–31] proposed  automatically

regulating  resources  and  dynamically  adjusting  the

degree of operators' parallelism. In the future, we will

consider this issue and offer some efficient resource re-

balancing algorithms. 
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