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Summary

Chronic arsenic poisoning is a world public health issue. Long-term exposure to inorganic arsenic (As)
from drinking water has been documented to induce cancers in lung, urinary bladder, kidney, liver and
skin in a dose–response relationship. Oxidative stress, chromosomal abnormality and altered growth
factors are possible modes of action in arsenic carcinogenesis. Arsenic tends to accumulate in the skin.
Skin hyperpigmentation and hyperkeratosis have long been known to be the hallmark signs of chronic As
exposure. There are significant associations between these dermatological lesions and risk of skin cancer.
The most common arsenic-induced skin cancers are Bowen’s disease (carcinoma in situ), basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC). Arsenic-induced Bowen’s disease (As-BD) is able
to transform into invasive BCC and SCC. Individuals with As-BD are considered for more aggressive
cancer screening in the lung and urinary bladder. As-BD provides an excellent model for studying the
early stages of chemical carcinogenesis in human beings. Arsenic exposure is associated with G2/M cell
cycle arrest and DNA aneuploidy in both cultured keratinocytes and As-BD lesions. These cellular
abnormalities relate to the p53 dysfunction induced by arsenic. The characteristic clinical figures of
arsenic-induced skin cancer are: (i) occurrence on sun-protected areas of the body; (ii) multiple and
recrudescent lesions. Both As and UVB are able to induce skin cancer. Arsenic treatment enhances the
cytotoxicity, mutagenicity and clastogenicity of UV in mammalian cells. Both As and UVB induce
apoptosis in keratinocytes by caspase-9 and caspase-8 signaling, respectively. Combined UVB and As
treatments resulted in the antiproliferative and proapoptotic effects by stimulating both caspase pathways
in the keratinocytes. UVB irradiation inhibited mutant p53 and ki-67 expression, as well as increased in
the number of apoptotic cells in As-BD lesions which resulted in an inhibitory effect on proliferation. As-
UVB interaction provides a reasonable explanation for the rare occurrences of arsenical cancer in the
sun-exposed skin. The multiple and recurrent skin lesions are associated with cellular immune dys-
function in chronic arsenism. A decrease in peripheral CD4+ cells was noticed in the inhabitants of
arsenic exposure areas. There was a decrease in the number of Langerhans cells in As-BD lesion which
results in an impaired immune function on the lesional sites. Since CD4+ cells are the target cell
affected by As, the interaction between CD4+ cells and epidermal keratinocytes under As affection
might be closely linked to the pathogenesis of multiple occurrence of arsenic-induced skin cancer. In this
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review, we provide and discuss the pathomechanisms of arsenic skin cancer and the relationship to its
characteristic figures. Such information is critical for understanding the molecular mechanism for arsenic
carcinogenesis in other internal organs.

Introduction

Arsenic (As) is one of the most toxic metals
(metalloids) derived from the natural environment.
Arsenic occurs in two oxidative states: a trivalent
form, arsenite (As III), and a pentavalent form,
arsenate (As V). As III is 2–10 timesmore toxic than
As V [1]. Organic As is non-toxic whereas inorganic
As is toxic. Over the centuries, As has been used for
a variety of purposes [2]. Arsenic has been used as a
drug or poison for nearly 4,000 years. Inorganic As
has been used for the treatment of syphilis, psoriasis
and leukemia.Arsenic trioxide is nowwidely used to
induce remission in patients with acute promyelo-
cytic leukemia. In industry, As is used to manufac-
ture paints, fungicides, pesticides, insecticides,
herbicides etc. Gallium arsenide and aluminum
gallium arsenide crystals are components of semi-
conductors, high emitting diodes, lasers and variety
transistors. Because of the natural distribution of
As in the rust of the earth, drinkingwater is themost
common resource of As exposure for the general
population [3, 4]. The World Health Organization
suggests thatmaximumpermissible limit of ground-
water As concentration is 50 lg/l [5, 6]. Currently,
the drinking water As standard in Taiwan, Japan,
and U.S. is 10 lg/l. In human beings, the adult’s
acute As poisoning dosage is 0.17–0.87 mg/kg. This
acuteAs exposure dosage causes conditions ranging
from diarrhea, vomiting, liver and kidney toxicity
[5–7]. Long-term exposure to low dosage of As may
induce serious adverse health effects in multiple
organs. Chronic health effects of As exposure via
drinking water include skin and internal cancers,
peripheral vascular disease, ischemic heart disease,
cerebral infarction, diabetes mellitus and hyperten-
sion. Skin, lung, bladder, kidney, liver and uterus
are considered as the sites related to arsenic-induced
malignancies [2, 8]. The skin is thought to be
perhaps the most sensitive site. Arsenic-induced
skin cancers are usually occur on the sun-protected
areas with multiple and recrudescent lesions [9–11].
This review discusses the pathomechanisms of
arsenic skin cancer and the relationship to its
characteristic figures.

Mechanisms of arsenic carcinogenesis

The International Agency for Research on Cancer
(IARC) has classified As as a human carcinogen
[12]. Exposure to As in drinking water is almost
exclusive to inorganic As. Various hypotheses
have been proposed to explain the carcinogenicity
of inorganic arsenic. Oxidative stress, chromo-
somal abnormality and altered growth factors are
possible modes of action in arsenic carcinogenesis
[13, 14]. The mode-of-action studies suggest that
the arsenic might be acting as a cocarcinogen, a
promoter or a progressor of carcinogensis [15].

Reactive oxygen species

In human beings, As can be metabolized by
s-adenosylmethionine dependent methylation.
Arsenic methylation has been generally considered
a detoxification process, because the methylated
compounds are less genotoxic [16] and are excreted
more rapidly in urine than inorganic forms [17].
After ingestion, inorganic As is taken up by red
blood cells and then distributed primarily to the
liver, kidney, spleen, lung, intestine and skin [18,
19]. As V is reduced to As III in blood. Arsenic is
metabolized in the liver to various methylated
forms. Enzymatic transfer to arsenite produces
monomethylarsenic acid (MMA V), which is
reduced to monomethyl arsonous acid (MMA
III). A second methylation reaction methylates
MMA III to dimethylarsinic acid (DMA V). Some
DMA V can then be reduced to DMA III [20]. In
this methylation process, reactive oxygen species
(ROS) including peroxyl radical, superoxide rad-
ical, and hydroxyl radical could be generated [21,
22]. Arsenic is a strong ligand to the thio-group
(-SH) of proteins [23]. Arsenic can react with -SH
of the reduced glutathione (GSH). Since GSH is
one of the most important free radical scavengers,
the effects of As on GSH activity will affect
cellular abilities of oxidative stress elimination.
Directly or indirectly, arsenic-induced oxidative
stress can induce further damages in cells, and
these oxidative injuries are reported to associate
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with arsenical carcinogenesis. Both in mouse
and human skins, arsenic can induce oxidative
damage in cellular DNA and generate 8-hydroxyl-
2¢-deoxylguanosine (8-OHdG) oxidative DNA ad-
ducts [24–26]. Clinical studies in arsenic-induced
Bowen’s disease (As-BD) indicate that the in-
creased 8-OHdG levels are positively correlated to
the lesional arsenic concentration [26], suggesting
the involvement of oxidative stress in arsenical
skin carcinogenesis. In vitro studies indicated
that ROS induced by low concentrations of
arsenic (<5 lM) can increase the transcription
of the activator protein-1 (AP-1) and the
nuclear factor kappa B (NF-jB) [27–30], which
results in subsequent stimulation of cell prolifer-
ation [31, 32].

Genotoxicity

Arsenic is known to induce genetic toxicity in
mammalian cells. Arsenic is reported to increase
the rate of chromosome aberration and sister
chromatid exchange that associated with arsenical
carcinogenesis [33, 34]. Chromosome aberrations
and endoreduplication were induced by arsenite in
human fibroblasts and Chinese hamster ovary cells
at higher concentrations, in contrast, arsenic
induced sister chromatid exchanges at lower
concentrations [35, 36]. These chromosomal
abnormalities are reported closely relate to
arsenic-induced oxidative DNA damage [26, 37].
Arsenite exposure induces micronuclei (MN) for-
mation in human fibroblasts [38]. Low dose
exposure to arsenite results mainly in kinetocho-
re-positive (K+) MN (MN contain centromere),
whereas high dose treatment causes K-negative
MN (MN without centromere). K+ MN are
usually derived from whole chromosome and are
induced by agents that cause aneuploidy, whereas
X-rays and other clastogens induce (K)) MN [39,
40]. Therefore at low dose, arsenite acts as an
aneugen, but at high dose it acts as a clastogen
[15]. An increased frequency of MN has been
detected in exfoliated bladder cells, buccal cells,
sputum cells and lymphocytes from arsenic-exposed
population [41–43]. Chien et al. reported that
arsenite induced an increased frequency of MN
in HaCaT cells which was associated with tumor-
igenicity in nude mice [44].

Altered DNA repair

Arsenic is able to inhibit DNA repair systems [45,
46]. The incision step and the ligation step of
nucleotide excision repair were inhibited by arse-
nite [47]. Arsenite has been reported to decrease
the DNA ligase III activity which results in DNA
base excision repair [48, 49] and DNA strand
break rejoining [50]. Arsenic is also reported to
inhibit other DNA repair regulatory proteins
including DNA ligase I, DNA ligase II, DNA
ligase III, DNA polymerase b, O6-methyl-guanine-
DNA methyltransferase and poly (ADP-ribose)
polymerase (PARP) [13, 49, 51]. Interfering of
these DNA repair proteins by arsenic is shown to
affect genome stabilities of the cells. Arsenite
enhances the mutagenicity of carcinogeneic stres-
ses (such as UV, X-rays, and chemical agent) in
mammalian cells [52–55]. It is proposed that
spontaneous or induced mutations in key genetic
sites can then lead to subsequent mutation via
inhibited DNA repair by arsenic.

Altered transcription factors

Arsenic is a strong ligand to the -SH, an
important active residue for some regulatory
proteins. It is known that about 200 proteins
could be affected by arsenic-thio interaction [56].
Among these proteins, the proto-oncogene c-Jun
is well-studied. Arsenic can block Jun N-terminal
kinase (JNK) phosphatase activity via binding
with its -SH. Since JNK phosphatase functions
as a negative regulator of JNK, arsenic-induced
JNK phosphatase dysfunction will cause irre-
versible activation of JNK. This JNK activation
can further activate proto-oncogene c-Jun and
the subsequent gene expression regulated by c-
Jun/c-Fos complex (AP-1) [30, 57]. The effects of
arsenic on transcription factor AP-1, as well as
NF-jB, can induce series of abnormalities in cell
functions. In which, the abnormalities in growth
factor expression, cell cycle regulation, and
apoptotic signaling are most closely associated
with arsenic carcinogenesis. It is reported that
long-term low dose arsenic exposure can enhance
cellular sensitivity and response to epithelial
growth factor (EGF) [31, 58] which can further
inhibit cell cycle inhibitory protein p27 expres-
sion and cause cell hyperproliferation via c-myc
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and E2F-1 regulatory pathway [59]. Arsenic can
also enhance keratinocytes to express TGF-a,
GM-CSF, IL-6 and IL-8 [31, 58, 60]. These
arsenic-induced growth factors and cytokines
expression are reported to associate with ar-
senic-induced cutaneous tumorigenesis via AP-1
and NF-jB regulation [61]. High concentrations
of arsenic can induce significant cellular and
DNA injuries. Arsenic-induced DNA damages
are reported to activate p53-associated cell cycle
checking and result in G2/M cell cycle arrest.
Since arsenic exposure can inhibit DNA repair
system, this p53-associated cell cycle checking
will possibly fail and p53-regulated apoptotic cell
death will be activated [62–65].

Arsenic and skin cancer

Arsenic tends to concentrate in ectodermal tissue
including the skin, hair and nail. Thus, skin lesions
(both malignant and non-malignant lesions) are
considered to be the most common adverse health
effects associated with chronic arsenic exposure in
humans [66–68]. Skin hyperpigmentation and
hyperkeratosis have long been known to be the
hallmark signs of chronic arsenic exposure. They
were the most common health effects found in
populations exposed to arsenic-contaminated
drinking water in many countries including Tai-
wan [9], Chile [69], Argentina [70], India [71, 72]
and Bangladesh [73]. Hyperpigmentation occurs as
diffuse brownish black pigmentation with a charac-
teristic ‘‘rain drop’’ hypopigmentation. The hyper-
keratosis may appear as a uniform thickening or as
discrete nodules. It is emphasized that both palmar
and plantar keratosis are a significant diagnostic
criterion [71, 74]. There was a significant associa-
tion between the concentration of arsenic in well
water and the prevalence of hyperpigmentation
and hyperkeratosis among the residents living in
the arsenic-exposed areas [9, 71]. Both arsenic-
induced skin lesions may be considered as a long-
term biomarker of arsenic exposure [8]. There were
significant associations between these dermatolog-
ical lesions and risk of skin cancers. Tseng et al
revealed a dose–response relationship between
arsenic levels in drinking water and skin cancers.
The most common arsenic-induced skin cancers
are Bowen’s disease, basal cell carcinoma and
squamous cell carcinoma [9].

Bowen’s disease is a carcinoma in situ of the skin,
precancerous in nature, and has been well docu-
mented as a consequence of arsenical exposure [9–
11, 66]. Clinically, Arsenic-induced Bowen’s disease
can be distinguished from non-arsenical Bowen’s
disease by its occurrence loci on sun-protected areas
of the body and itsmultiple and recrudescent lesions
[9, 11, 75]. Abnormal cellular proliferation and
dysplasia are observed in the epidermal lesion ofBD
with significant apoptotic and dyskeratotic kerati-
nocytes[11, 66]. Most of non-arsenical BD showed
complete remission after surgical operation, how-
ever, many of As-BD may recur after surgery.
Furthermore, As-BD lesion is able to transform
into invasive SCC, BCC and combined forms of the
skin cancer [9, 11, 76, 77]. Arsenic-induced cancers
of other internal organs are reported to associate
with As-BD lesions [10, 11, 76]. Individuals with
documented As-BD are considered for more
aggressive screening for long-term complications,
especially the development of malignancies in the
lung and urinary bladder [77–80]. It was indicated
that As-BD started within 10 years, invasive skin
cancer after 20–30 years [81], and pulmonary can-
cer after 30 years following the suspected arsenic
exposure [76]. Therefore, the characteristic patho-
logical and clinical features of As-BD may provide
evidences of arsenic-induced cellular responses in
the early stages of chemical carcinogenesis.

Pathomechanisms of arsenic-induced Bowen’s
disease

In vitro investigations had identified that arsenic
could induce p53 accumulation through an
ATM-dependent pathway [65, 82]. Histopatholog-
ical studies indicated that p53 protein was highly
expressed in As-BD as compared with non-arsen-
ical BD [83, 84]. The over-expressed p53 in As-BD
lesions was a mutant form [85, 86]. Most of the p53
mutation sites are located on exon 5 and exon 8.
Furthermore, the mutation types of p53 gene
mutation in arsenic-associated skin cancers are
different from those in UV-induced skin cancers
[87]. Chromosomal instability and aneuploidy were
also commonly observed in As-BD lesions [88].
These findings suggest that dysplasia in As-BD is
associated with p53 mutation. However, other
study did not find significant association between
p53mutation andAs-BD [86]. Although the linkage
between p53 mutation and arsenic exposure is not
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clear, the affect of arsenic on p53 regulation is well
documented. Both in vitro and As-BD lesion
studies indicated that arsenic exposure was associ-
ated with G2/M cell cycle arrest and DNA aneu-
ploidy [88–90]. These cellular abnormalities may
associate with p53 dysfunction induced by arsenic.

Hyperproliferative and dyskeratotic (apopto-
tic) keratinocytes co-existed in As-BD lesions. In
vitro study indicated that the co-existence of
hyperpoliferative and dyskeratotic keratinocytes
might relate to the biological effects of arsenic on
human keratinocytes [91]. The effects of As on
keratinocytes depend on the concentrations of
arsenic. At lower concentrations ( £ 1 lM),
arsenic induced keratinocyte proliferation and
enhanced both NF-jB and AP-1 activity [91].
Keratinocyte apoptosis was not induced at low
arsenic concentration (1 lM), which may relate to
the anti-apoptotis signals of NF-jB [92] or the
apoptosis resistant nature of keratinocytes. At
higher concentrations (‡ 5 lM), arsenic induced
keratinocyte apoptosis by Fas/Fas ligand (FasL)
pathway. At apoptosis inducing concentrations,
NF-jB activity was not enhanced, however, AP-1
activity was further enhanced [91]. Since promoter

regions of FasL contain binding sites for AP-1,
arsenic-activated Fas/FasL signaling may associ-
ate with arsenic-induced AP-1 activation [93–95].

Effects of UVB on arsenic-induced skin cancer

Clinically, As-induced skin cancer lesions are usu-
ally on sun-protected skin. UVB has been used to
treating many hyperproliferative dermatoses
including psoriasis and cutaneous T-cell lym-
phoma. UVB may play a modulatory role in the
skin arsenic carcinogenesis. Chai et al revealed that
UVB irradiation reduces mutant p53 and ki-67
expression, as well as decreases in the number of
apoptotic cells inAs-BD lesions [85] which results in
an inhibitory effect on cell proliferation (Figure 1).

Arsenic is not mutagenic in bacterial or mam-
malian cells, but it reinforces mutations induced by
various mutagens including UVB. Reports inves-
tigating the interaction of UVB and arsenic have
focused on the DNA excision repair and
replication. Inhibition of pyrimidine dimers exci-
sion [96] and postreplication repair [45, 48] by
arsenic is responsible for the cytotoxicity and
mutagenesis of UV in Chinese hamster ovary cells.

Figure 1. UVB irradiation on As-BD lesions. (a) HE staining of As-BD lesion from a patient before and after UVB irradation
(75 mJ/cm2� 5 times/wk � 2 = 750 mJ/cm2 UVB total). UVB irradiation showed significant effects on decreasing dysplasia and
dyskeratotic cells of the lesion. (b) TUNEL staining of apoptotic cells after UVB irradiation. UVB irradiation induced apoptosis in
lesional kerationcytes.
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Arsenic treatment enhances the cytotoxicity, muta-
genicity, and clastogenicity of UV light in Chinese
hamster ovary cells [97]. UV-induced DNA dam-
age leads to p53-mediated apoptosis [98, 99]. Upon
severe DNA damage, p53 upregulates Bax that
binds to the mitochondria membrane and activates
caspase-9 and caspase-3, leading to downstream
apoptotic responses [100, 101]. Arsenic causes
apoptosis of human keratinocytes through the
Fas/FasL pathway with enhanced AP-1 activity.
Downstream signals of Fas/FasL pathway, includ-
ing FADD, caspase-8, caspase-3 and PARP cleav-
age, are activated [91]. Therefore, activation of a
different primary caspase is involved in apoptosis
induced by As as compared to UVB-induced
apoptosis. In vitro study revealed that arsenic
enhances UVB-induced keratinocyte apoptosis via
suppression of Bcl-2 expression and stimulation of
caspase-8 activity (Figure 2). Combined UVB and
arsenic treatment resulted in the antiproliferative
and proapoptotic effects in the keratinocytes [75].
As-UVB interaction provides a reasonable expla-
nation for the rare occurrences of arsenical cancer
in the sun-exposed skin.

Immunological dysfunction in arsenic-induced
skin cancer

Previous reports indicated that the multiple and
recurrent skin lesions are associated with cellular

immune dysfunction in patients with chronic
arsenism. It was reported that arsenic exposure
was associated with the decreased number in
CD4+ cells (T helper) both in adults and in
children [102, 103]. Furthermore, increased arsenic
exposure is associated with decreased proliferative
response to mitogen (phytohemagutinin) stimula-
tion in CD4+ cells. Patients with arsenic-induced
skin cancer showed increased gene expression of
inflammatory molecules, such as IL-1b, IL-6,
CD14, C-C and C-X-C chemokine motif ligand
[104]. Impaired delayed-type hypersensitivity
response to 2,4-dinitrochlorobenzene was ob-
served in patients with As-BD. The association
of impaired cellular immunity may be attributed to
the effects of arsenic on human lymphocytes. The
defective cell-mediated immune function in As-BD
was related to an impairment of IL-2 receptor
expression and a decrease in CD4+ cells after
chronic arsenic exposure [102]. The decreased
CD4+ cell number was related to arsenic induced
CD4+ cell apoptosis via the TNF-R1 pathway
[105]. In addition to these systemic effects in
immune cells by arsenic, immune cell alternations
in As-BD lesions were also observed in As-BD.
There was a progressive decrease in the number of
Langerhans cells in the order of normal skin,
normal appearing skin in As-BD, and As-BD
lesion. The Langerhans cell density in As-BD was
not correlated with the perilesional infiltrates.

Apoptosis

Arsenic (low dose)

Caspase-3

Caspase-8

X

X

p53

DNA damage

Bcl-2/BaxBcl-2/Bax

Caspase-9Caspase-9

Apoptosis

Caspase-8

Caspase-3

Death Receptors

Other apoptotic pathways?

UV Arsenic (low dose)

Death Receptors

Figure 2. A scheme of arsenic and UVB interaction in keratinocyte apoptosis. Low doses ( £ 1 lM) exposure of arsenic enhanced
human keratinocytes to express death receptors (including Fas) and its downstream caspase-8 expression. However, low dosage of
arsenic did not activate further caspase cascade and apoptosis in keratinocytes (left). UVB irradiation induces keratinocyte apopto-
sis majorly via caspase-9 pathway. Combined UVB irradiation, low doses of arsenic further enhanced UVB-induced caspase-9 acti-
vation, as well as caspase-8 activation. In this condition, the downstream effector caspase (caspase-3) was significantly activated
and keratinocyte apoptosis was increased. Nontoxic concentrations of arsenic can significantly increase UVB-induced keratinocyte
apoptosis via further activating UVB-associated caspase signals (right).
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Most of the infiltrating cells in the peritumoral
area of arsenic-induced skin cancer are T cells
[106]. Langerhans cells are known to be one of the
antigen presenting cells for T lymphocytes. They
play a pivotal role in the presentation of tumor-
associated antigens in neoplastic tissue, thereby
facilitating T cell-mediated antitumoral immune
responses [107–109]. The decreased Langerhans
cells in As-BD lesions implied an impaired
immune function on the lesional epidermis itself.
CD4+ cells carrying acquired dendritic cell anti-
gen-presenting machinery can efficiently stimulate
cytotoxic T lymphocyte response [110]. Since
CD4+ cell is the target cell affected by arsenic,
the interaction between CD4+ cells and epidermal
keratinocytes under arsenic affection might be
closely linked to the pathogenesis of the multiple
and recrudescent arsenic-induced skin cancer.

Epidemiological studies revealed that long-
term exposure to arsenic induces cancers in lung,
urinary bladder, kidney, liver, uterus and skin.
Arsenic skin cancer is usually located on sun-
protected areas with multiple and recrudescent
lesions. In this review, we provide and discuss the
pathomechanisms of arsenic skin cancer and the
relationship to its characteristic clinical figures.
Such information is critical for clarifying the
molecular mechanism for arsenic carcinogenesis
in other internal organs.
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