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Abstract
Simultaneous object recognition and pose estimation are two key functionalities for robots to safely interact with humans as
well as environments. Although both object recognition and pose estimation use visual input, most state of the art tackles them
as two separate problems since the former needs a view-invariant representation, while object pose estimation necessitates a
view-dependent description. Nowadays, multi-view convolutional neural network (MVCNN) approaches show state-of-the-
art classification performance. Although MVCNN object recognition has been widely explored, there has been very little
research on multi-view object pose estimation methods, and even less on addressing these two problems simultaneously.
The pose of virtual cameras in MVCNN methods is often pre-defined in advance, leading to bound the application of such
approaches. In this paper, we propose an approach capable of handling object recognition and pose estimation simultaneously.
In particular, we develop a deep object-agnostic entropy estimation model, capable of predicting the best viewpoints of a
given 3D object. The obtained views of the object are then fed to the network to simultaneously predict the pose and category
label of the target object. Experimental results showed that the views obtained from such positions are descriptive enough to
achieve a good accuracy score. Furthermore, we designed a real-life serve drink scenario to demonstrate howwell the proposed
approach worked in real robot tasks. Code is available online at: https://github.com/SubhadityaMukherjee/more_mvcnn.

Keywords Multi-view object recognition · Pose estimation · Multiple representations · Service robots

1 Introduction

Nowadays, robots are leaving pre-defined setting and helping
humans in many collaborative tasks in both industrial and
human-centric environments. In order to safely interact with
users and environments, robots need to recognize a range
of objects and estimate their poses precisely from different
perspectives. It is a challenging task due to high demand for
accurate object recognition and precise pose estimation, as
the output of these tasks are used as input for the purpose
of object manipulation. For instance, consider the task of
serving beer as shown in Fig. 1. To accomplish this task
successfully, the robot first needs to knowwhich objects exist
in the scene and where they are (Fig. 1 first column). Then,
it should plan a trajectory to grasp the beer and one of the
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cups (Fig. 1 middle column), and finally, move the beer on
top of the cup, and pour the beer into the cup (Fig. 1 last
column). Although object recognition and pose estimation
tasks both require visual information as input, they are often
contradicting from a problem definition point of view. In
particular, a robot needs to learn pose-invariant features of
objects to be able to recognize them accurately from different
viewpoints [1];

In contrast, the robot requires to learn pose-dependent fea-
tures of objects to be able to estimate their pose. This is the
main reason that state-of-the-art approaches address object
recognition and pose estimation often as two separate prob-
lems. Recent multi-view deep learning approaches achieved
the best results in both object recognition and pose estima-
tion when they tackled these problems separately. The pose
of virtual cameras inMVCNNmethods is defined in advance,
leading to limitations in the application of such approaches.

There are still many challenges to overcome, even though
many problems have already been understood and solved
successfully. Simultaneous object recognition and pose esti-
mation is one of the challenges that require more research. In
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Fig. 1 In this example, the robot is instructed to perform the serve drink
task. To achieve this task successfully, the robot needs to know which
objects exist in the scene, and where they are. Then, it should plan a
trajectory for grasping the bottle object with one arm and one of the
cups with the other arm. Finally, it serves the drink by moving the beer
on top of the cup and pouring it into the cup

this paper, we take a step toward addressing this issue in the
context of service robotics, by proposing an approach to han-
dle object recognition and pose estimation simultaneously by
sharing representations between these tasks. This is done by
an object-agnostic entropy estimation model that automati-
cally predicts the most informative viewpoints of a given 3D
object directly and more efficiently. These predicted views
are then fed into a viewpoint network to simultaneously pre-
dict the pose and category label of the target object as shown
in Fig. 2. By using a single model for both tasks, MORE
reduces the overall complexity and memory requirements of
a robotics pipeline where real-time responsiveness is crucial.
We also performed real robot experiments to show the useful-
ness of the proposed approach in real-world scenarios. The
main contributions of this work are as follows:

• Wepresent a novel approach to simultaneously recognize
objects and estimate their poses using a framework that

first predicts the best views and then uses it for both tasks
at once.

• We extensively evaluate the proposed approach and on
publicly available dataset and achieved state-of-the-art
object recognition accuracy of 98.26% and 96.52% on
ModelNet10 and ModelNet40 datasets, respectively.

• To the benefit of research communities, we release the
source code and the trained models, making it possible
to reproduce our results.

2 Related work

Three-dimensional (3D) object recognition and pose esti-
mation have been under investigation for a long time in
both computer vision and robotics communities. Although an
exhaustive survey of recent deep learning-based approaches
is beyond the scope of this paper, we review the main efforts.

There are substantially three main approaches for CNN-
based object recognition: volume-based, point-based, and
view-based approaches. Volume-based approaches use vol-
umetric representation of data; in particular they employ
voxelization methods to obtain a uniform representation for
all input objects. The obtained representation is then used
as input of the network. Point-based approaches are popular
with data retrieved with 2.5D depth sensors. These sensors
capture a dense set of depth samples from the scene, repre-
senting the surface of the objects as a collection of points
in the Euclidean space. Point-based neural networks learn
features about the positional relations between points on the
surfaces of objects. View-based approaches use one or more
images representations of the objects, usually captured with
a camera from a specific viewpoint. CNNs trained on such
representations learn features from the visible attributes of
the objects. The availability of 3D data usually induces to
directly apply recognition algorithms on 3D data; however,
it has been shown that view-based methods outperformed
other methods and achieved better performance.

Fig. 2 The 3D object is transformed into a 56 × 56 × 56 voxel grid
which is the input size for MORE. The entropy model uses a branching
architecture that converges into a fully connected layer. The output of
the entropy model is a 60-values vector which is reshaped into a 2D
entropy map. From the entropy map, a peak selection algorithm returns

the coordinates of the local maxima. We extract the views correspond-
ing to those coordinates, and we use them as input for the CNNs. The
label and pose predictions are pooled by majority vote, resulting in the
final prediction
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Qi et al. [2] provide a comprehensive study on voxel-
based CNNs and multi-view CNNs for three-dimensional
object classification, stating that empirical results from the
view-based and volume-based types of CNNs exhibit a large
gap, indicating that existing volumetric CNN architectures
and approaches are unable to fully exploit the power of 3D
representations. Among voxel-based systems, one of the ear-
liest works would be 3D ShapeNets [3] which developed a
convolutional deep belief network to learn probability distri-
butions of binary occupancy grids. VoxNet [4] was designed
to tackle object recognition by integrating the voxel represen-
tation to deal with large amounts of point cloud data. FPNN
[5] employed field probing filters to efficiently extract fea-
tures from voxel data. 3D-GAN [6] implemented generative
adversarial networks (GAN) to generate 3D objects from a
probabilistic space and obtain a object descriptor from an
adversarial discriminator. DensePoint [7] was proposed as
a variant grid CNN to find local patterns and learn useful
hierarchies frompoint clouds. Thismakes the network partic-
ularly good at object identification. Kumawat et al. proposed
a variant of 3D Conv layers, the ReLPV block, which applies
multiple local STFTs to neighboring points and linearly com-
bines the output [8]. The LP-3DCNNwas created using such
blocks and was shown to be less memory intensive by having
lesser trainable parameters than a regular 3D convolution. A
variant of the standard convolution was introduced by Liu et
al. [9], where the geometric relations of points in their respec-
tive cloud were used to create the RS-CNN. This operation
was intended to better model spatial layout that would in turn
make it better at understanding shapes from the point cloud.

Recent approaches showed that it is possible to achieve
significant improvements in classification accuracy by using
collections of rendered views of 3D objects [1, 10]. In par-
ticular, Su et al. [1] obtained object’s views by retrieving
2D projections of the object with a set of virtual cameras
positioned in a regular setup. The authors opted for a fixed
number of virtual camera points, positioning of the cameras
on a regular structure around the objects. They demonstrated
that a convolutional neural network, trained on a fixed set
of rendered views of a 3D shape, could outperform most
architectures trained on three-dimensional structured data.
It was shown that in many cases a single view already
achieves satisfying classification accuracy. Jiang et al. intro-
duced MLVCNN [11], which used multiple loops of views
to extract hierarchical relationships between multiple views.
The obtained representations were used to generate descrip-
tive descriptions for 3D object classification. Zhang et al.
tackled some of the faults of multiple hypergraph transduc-
tive learning and propose iMHL [12] where the hypergraph
embedding is learnt offline, while the test samples are clas-
sified in an online manner. This inductive approach suffers
from not being able to rely on existing projection matrices

if new classes are added to the data but is much faster than
performing the learning transductively.

OrthographicNet [13] was designed for a more general
online learning situation where the model was required to
learn new classes after the initial training, with very few
examples. This thus required the network to learn to model
more rotation and scale invariance and improved perfor-
mance of learning new objects. Orthographic projection was
used along withMobileNetV2 [14] to create a novel network
that would, in collaboration with a simulated teacher–student
approach, learn and update new features in an online manner.

Kanezaki et al. proposed amulti-viewCNN-based approach
namely RotationNet [10], which achieved SOTA. They pro-
posed a CNN-based model which takes multi-views images
as input and jointly estimates its pose and object category.
Viewpoint labels are learned in an unsupervised manner dur-
ing the training, and the architecture is designed to use only
a partial set of views for inference. Unlike MVCNNs, their
method is able to classify an object using a partial set of
images that may be sequentially observed by a moving cam-
era. The system infers the probability of a retrieved view to
match the camera position it has been taken from, subse-
quently determining the orientation of the object.

Another type of modeling multiple view data was pro-
posed byKhan et al. [15] where the authors worked on a finer
3D representation generation. A primitive discovery making
use of physical properties andmodeled by a higher orderCRF
was shown. The model also learns to differentiate between
changes in the view and shape. This type of modeling leads
to a more compressed representation as compared to voxels
and similar data structures. It was also acknowledged that
due to some of the objects being hollow, missing voxels led
to a deterioration of accuracy.

Joint learning of object classification and pose estimation
has already been unraveled by several researches [10, 16–
18]; however, very few of them address inter-class feature
learning for pose alignment. Ma et al. [16] showed that a
combination of CNNs and LSTMs could be used to create a
more robust descriptor of the object by taking into account
multiple low-level features and then performing voting in
order to improve performance. They also used a highway net-
work layer to further ensure less loss of information between
the two different types of networks. Xuan et al. [17] took
a similar route and proposed a 3DCNN that could take the
multiple viewpoints into account and better understand the
object. This would work even if the object was only partially
visible. The set of views of an object are taken fully as the
input in order to learn the spatial relations between the views.
The caveat being, if there were not enough views present, the
model could not learn an accurate representation.

It has been proved beneficial to share appearance infor-
mation across classes to simultaneously solve for object
classification and pose estimation [19]. Elhoseiny et al. [20]
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studied CNNs for joint object classification and pose estima-
tion based on multi-view images, discussing architectures of
the following archetypes: Parallel Model (PM) consists of
two base networks running in parallel; Cross-Product Model
(CPM) explores a way to combine categorization and pose
estimation by building a last layer capable of capturing both;
Late BranchingModel (LBM) splits the network into two last
layers, each designed to be specific to the two tasks; Early
Branching Model (EBM) is similar to LBM; however, the
branching is moved to an earlier layer in the network. While
their method takes a single image as input for its prediction,
later works focused on how to aggregate predictions from
multiple images captured from different viewpoints [10].

The best-view selection corresponds to the automated task
of selecting the most representative view of a 3D model.
Dutagaci et al. [21] provide a benchmark for the evaluation
of best-view algorithms and a survey on popular methods of
best-view selection. The algorithms discussed by Dutagaci
et al. differ with respect to the descriptor they use to assess
the goodness of a view, which are assumed to measure the
geometric complexity of the visible surface of an object. This
survey was further continued by [22] where the authors tried
to unify the approaches from the previous paper and newer
ones that were created in recent years. They proposed a new
framework to do the same.

3 Proposedmethodology

We propose a deep learning approach to infer the best views
of a 3D model. The obtained views are then used to per-
form both object recognition and pose estimation tasks. We
subdivide the problem in two main tasks, the first being the
best-view prediction and the second being the multi-view-
based object recognition and pose estimation.

3.1 Best-view predictionmodel

The main objective is to design a model that predicts which
point of views aremost informative. In this vein, we first need
to define how we measure quantitatively the goodness of an
object view. From the information theory, we can calculate
the expected information gain from various metrics (vari-
ance, entropy, etc.). Among these metrics, viewpoint entropy
is a goodproxy for expected information gain [23]. In particu-
lar, by choosing views that covermore of the object’s surface,
the likelihood of estimating the pose and identifying the label
of the object increases. This is because viewpoints that cap-
ture high entropy areas tend to providemore informative data
compared to those that capture low entropy areas. In MORE,
the view ranking procedure is based on viewpoint entropy,
which takes into account both the number of occupied pix-
els and their values. Therefore, we evaluate the quantity of
information for each view by calculating the entropy of depth

image captured from the same viewpoint with the definition
from Shannon’s information theory [24]:

H(X) = −
n∑

i=1

p(xi ) log p(xi ) (1)

where xi represents the value of i th pixel [25] [26]. Although
it is possible to render several views of an object and then
select the best views by computing the view entropy for each
view, such approaches are computationally expensive and
not appropriate for robotic applications. Our intention is to
replace multiple computational steps with a single neural
network inference, thus improving efficiency. This training
needs to be done once to learn an object-agnostic best-view
prediction function. It is worth mentioning that the view
selection function can be customized to suit the criteria of
any other task with ease. The proposed entropy calculation
is not rely on the size of the object. Although considering size
might lead to a slightly better performance in differentiating
similar objects, doing so would increase computation time
and is not considered.

Toward this goal, instead of a multi-label classification
problem where we classified each viewpoint as informa-
tive or not, we defined the problem as a regression to infer
the entropy values of every viewpoint, generating a spheri-
cal entropy map of the object. The entropy map H(φ, θ) is
learned in the form of a 2D function that maps two spheri-
cal coordinates, φ and θ necessary to identify the viewpoints
on a sphere around the object to the inferred entropy values:
H : (φ, θ) −→ h. Since MORE can generate the entropy
map from any angle, the initial angle does not influence the
results. For a view v, the coordinates of the most informa-
tive views are then obtained by evaluating the peaks of the
entropy map:

{(φv, θv)} = argmax
φ,θ

(
d2H

dφdθ
= 0) (2)

We design a CNN approach to estimate an entropy map
for a given object. As shown in Fig. 2, we employ two con-
volutional branches with kernels of different sizes separating
the flow of the graph from the input layers. Supposedly the
different kernel size helps the network identifying high-level
features of different scales. The output of the convolutional
branches both receives average pooling, batch normalization
and dropout before being transformed into flat vectors. The
outputs of the branches are then concatenated in a single
vector and sent as input to a fully connected hidden layer.
The last layer is a fully connected output layer with linear
activation that outputs 60 entropy values (see Fig. 2). Note
that a linear activation is used instead of one like softmax,
because the outputs are entropy values and not probabili-
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ties. It is to be noted that a softmax activation can also be
used if the view values are normalized. To make sure the
activations were proportional to the input, a linear activation
was used here. The optimal number of filters for the convolu-
tional layers and the number of units in the hidden layer were
estimated empirically with a hyper-parameters based on the
search algorithmHyperband [27], a bandit-based approach to
hyper-parameters optimization that speeds up random search
through adaptive resource allocation and early stopping. It
evaluates architectures by training a set of configurations for
a limited number of epochs and carrying the evaluation only
for the most promising half until it reaches the best set of
parameters. We used the Adam optimizer with dynamical
learning rate starting at 5e−5 with a reduction on the plateau
of factor 0.3 and mean absolute error as a loss function. To
improve training speed, mixed precision training [28] was
also used where lower precision values are used in some
parts of the network to reduce computational effort.

Toward this end, the first step is to generate a dataset taking
depth images from several views of a collection of objects;
in particular we took images from 60 positions, regularly
distributed on a sphere. The virtual cameras are positioned
on 12 points on a section ring of the sphere, each one at an
angle of 30 degrees from the next one. The sphere is circled
by 5 rings and parallels to the horizontal axis of the object,
which are looking at the center of the sphere from each at
an angle of 30 degrees from the next one, cutting the sphere
at 30, 60, 90, 120 and 150 degrees from the vertical axis
of the object. The structure of the camera positions ensures
we obtain a complete overview of any object while having a
limited number of fixed positions.Oncewehave the positions
for the cameras, we take a grayscale depth image of 224 ×
224 pixels of the object for each of the 60 views. We can
then evaluate the quantity of information in each view by
calculating their entropy. (Details are presented in Sect. 4.1.)

We initially trained the model as a best-view classifier;
however, such configuration tended to provide a list of best
views based on high entropy values instead of learning the
relationship between silhouettes and entropy. Since theMod-
elNet dataset is an imbalanced dataset, such approaches do
not work well. We opted for a more efficient solution: We
built the dataset by matching each 3D object to its entropy
values and trained the 3DCNN to infer by regression the val-
ues from any 3Dmodel. With this solution, we observed that
the network generalizes better on new data and it allows for
a more precise evaluation of the best views.

Higher predicted entropy values tend to denotemore infor-
mative views. Figure 3 shows the five best views of two
never-seen-before objects (airplane andflower pot) predicted
by the proposed model. For each of these views, the spher-
ical coordinates are denoted by φ and θ , while H denotes
the predicted entropy of these views. The obtained views are
then used for classification and pose estimation purposes.

Fig. 3 Five best views sorted by predicted entropy (more informative
views) for unseen object classes: (top) airplane and (bottom) flower pot

It is also to be noted that the best-view prediction model
is independent of class information and the voxel grid does
not need class labels. In the case of novel objects, tempo-
rary labels can be assigned based on the model’s prediction
confidence. Continual object recognition usingMORE is out
of the scope of this work and can be addressed by future
research.

3.2 Multi-view classification and pose estimation

As discussed in the introduction, we aim to design an
approach to jointly handle object classification and pose esti-
mation by learning shared high-level features. Following the
notation fromElhoseiny et al. [20], our design falls in the cat-
egory of Late Branching Models (LBM). As the backbone
of MORE, we use an instance of a popular architecture, pre-
trained on ImageNet [29], for image recognition, splitting the
last layer into two fully connected layers with softmax acti-
vation of size 10 and 60 outputs for the object classification
and the pose estimation, respectively. Particularly, we evalu-
ate MobileNetV2 [14], and VGG-16 [30]. The network was
trained as a single-input multiple-outputs model. In particu-
lar, themodel takes a single viewas an input and it predicts the
class of the originating object and the estimated viewpoint.
The multi-view consists of the aggregation of m single-view
classifiers where m is the number of views provided for the
prediction. This method allows the network to accept a vari-
able number of view images, to then return as outputs the
classes represented by the majority votes. While the object
labels are quite straightforward to aggregate, different views
result in different viewpoints. The predicted viewpoints are
matched to the angle of the image views they were taken, and
the offset between these twovalues is the predicted rotation of
the object from a standing front-facing position. Using these
values, we can evaluate a majority vote for the pose estima-
tionwith precision up to half the distance between each of the
60 originating viewpoints in the dataset (15 degrees on rota-
tion around the z-axis and 15 degrees on rotation around the
y-axis). This precision can be utterly improved by generat-
ing a dataset with a more dense configuration of viewpoints
and reshaping the network to classify a larger number of
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positions, with the cost of increasing the complexity of the
network and the number of parameters. As regularization
techniques, we used a dynamic learning rate. The learning
rate set at the beginning of the training is 1e − 4, and it then
decreases on a plateau by a factor of 0.5 until reaching a min-
imum of 1e−8. This allows the learning process to switch to
a progressively finer tuning in the later stages of the training.
As loss functions, we used categorical cross-entropy for both
class and pose prediction.

4 Results

In this section, we first present the detail of generating a
multi-view dataset for training MORE and then explain the
evaluation metrics. Afterward, we discuss the performance
of the proposed approach in the case of best-view predic-
tion, single-view, and multi-view object classification and
pose estimation. Finally, we integrated MORE into a robotic
system and performed a set of real robot experiments in the
context of server fruit juice to show its usefulness in real-life
scenarios.

4.1 Dataset

To build the dataset for the proposed model, we used the
PrincetonModelNet40 dataset [3],which consists of a collec-
tion ofmeshes from40 popular object categories. To generate
depth images from a single 3D object model, virtual cameras
are set up to point at the centroid of the object, and then,
2D depth images are rendered from each camera using a
projection method. To achieve a consistent input, we scaled
each model to fit in a unit cube centered in the origin, and
we then subdivided the unit cube into a binary voxel grid,
in which occupied voxels are shown by 1 and the rest by
zero. The obtained binary matrix represents the 3D model
silhouette. We experimented with different grid sizes, while
a higher number would have increased the resolution of the
object, and it would have increased exponentially the size of
the data. We settled for a grid size of 50 × 50 × 50 which
offered an acceptable trade-off between size and resolution.
The smoothing effect due to the little details in the object
being cut off by the voxelization resolution happened to have
a regularization effect in the learning since the convolution
layers of the network would not try to learn such details as
high-level features. To supply the closeness of the models to
the sides of the cube due to the scaling and bounding process,
we added a zero-padding of three voxels per side resulting
in the occupancy grids to be of 563 voxels.

We rendered a set of 60 depth images from every object
in the ModelNet40 dataset (see Fig. 4). We evaluated the
quantity of information of every image with the Shannon’s
entropy (see Eq. 1). To explain the idea better, we provide

Fig. 4 Viewpoint setup for rendering depth images for an airplane
object: Colors indicate elevation levels, and distances between cam-
eras and the center of the object are constant. The reference frame of
the object is shown by red (x), green (y), and blue (z) lines

Fig. 5 Average distribution of the 60 views entropy for the class bed.
The coordinates (x, y) of the graph indicate the rotation (θ , φ). θ repre-
sents the yaw angle, while φ represents the pitch angle. The left image
has been captured from (θ = 30, φ = 60) coordinate

an example in Fig. 5, representing the average entropy distri-
bution for the category Bed. Given the shape of the average
bed, the larger entropy values are found in correspondence
to viewpoints closest to the four angles, since such view-
points frame more faces of the cuboid. It can be seen from
the orange-red colors being predominant in the columns rel-
ative to the rotation around the z-axis at the values of 30, 120,
210, and 300 degrees. The lowest values instead are found
on the row relative to the 90 degrees rotation on the y-axis,
meaning the object is being observed frontally. This is the
worst angle to observe a cuboid since the upper and lower
faces are not visible, hence resulting in the blue-violet row
at 90 degrees. We finally built the dataset by matching each
3D object to its entropy values. All of these processing steps
were parallelized.

4.2 Evaluation of best-view predictionmodel

For input voxel grid of size 56 × 56 × 56, we designed two
branching 3Dconvolutional layerswith kernels sizes 3×3×3
and 5 × 5 × 5. The Hyperband algorithm [27] evaluated 8
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Fig. 6 Entropy map calculated from the projected depth views of a
Toilet class object (top left) and the map of the same object predicted by
MORE (top right). The colors indicate the entropy value calculated on
a depth image captured from the position (�,�). Violet-blue indicates
smaller values, while orange-red indicates larger values. (lower row)
The depth images for the six best-predicted views in order of entropy
are shown on the lower row

as the best number of kernels for both the convolutional lay-
ers and 512 units for the fully connected layer before the
output layer. To accelerate and stabilize the learning pro-
cess, we applied batch normalization in-between layers and
considered a progressively smaller learning rate (starting at
5 × 10−5 until reaching 3 × 10−7) and dropout factors of
0.25 on the output of convolution layers and of 0.5 on the
fully connected layer. We formulate the problem in the form
of a multi-output regression with 60 values. To evaluate the
quality of the learning, we used two measures: mean abso-
lute error (MAE) and mean squared error (MSE), the former
being employed as the loss function.

It was observed that the network was able to learn a func-
tion to approximate the entropy of 60 viewpoints precisely.
An example of a comparison between the original entropy
map (built by calculating the entropy of views) and the map
predicted by MORE for a Toilet object is shown in Fig. 6.
The distribution of the predicted values resembles closely
the distribution of the true values. To extract the best views
from the entropymap, we use a peak detection algorithm that
returns the coordinates of the local maxima in the matrices.

4.3 Evaluation of classification and pose estimation

In this round of experiments, we first evaluated the pro-
posed system using two core architectures, VGG-16 [30] and
MobileNetV2 [14], which are reliable CNN architectures for
object recognition. Both models are pre-trained using the
ImageNet dataset [29], a large dataset consisting of 1.4M
images and 1000 classes. The architecture is instantiated
without the top layers, to adapt to the branching structure
for object classification and pose estimation. The branching
is performed at the last layer, following the Late Branching
Model (LBM) example by the notation from Elhoseiny et al.
[20]. We experimented with different branching archetypes;
however, the number of parameters increased dramatically

Table 1 Performance of single-view object recognition

Dataset Approach Acc. 1

ModelNet10 MORE – MobileNet 0.9826

MORE – VGG-16 0.9651

LP-3DCNN [8] 0.9440

Ma et al. [16] 0.9105

Orthographic Net [13] 0.8856

Primitive-GAN. [15] 0.8640

ModelNet40 MORE – MobileNet 0.9652

MORE – VGG-16 0.8105

LP-3DCNN [8] 0.9210

iMHL [12] 0.9716

RS-CNN [9] 0.9360

MLVCNN [11] 0.9416

Ma et al. [16] 0.9319

Primitive-GAN. [15] 0.9220

without a corresponding improvement in accuracy. The last
layer of the core architecture is split into two fully connected
layers representing the number of possible classes and poses
(60 nodes). We used the Adam optimizer with a starting
learning rate of 1 × 10−4 which is dynamically reduced on
plateauing validation loss. As loss functions, we employed
categorical cross-entropy for both class and pose. We fine-
tuned the architectures on a dataset of 293, 940 images,
composed of projections from 60 viewpoints of 4, 899 3D
models from the ModelNet10 dataset. For the ModelNet40
dataset, 8, 617 3D models and 517, 020 images were used.

4.3.1 Single-view prediction

MORE bases its final classification and pose estimation on
a majority vote. Each prediction from the instances of the
single-view CNN is pooled and contributes to the decision
of the system (see the right side of Fig. 2). We tested the
proposed system with the best-performing models. For a fair
comparison, we trained the single-view CNN and then tested
the proposed approach using the training and test split of
the original dataset as in [3, 10]. We benchmark MORE
against a few baselines, including LP-3DCNN [8], iMHL
[12], RS-CNN [9], Ma et al. [16], Orthographic Net [13],
and MLVCNN [11]. Results are summarized in Table 1 and
Fig. 7.

By comparing the results obtained, it is visible that
MORE with MobileNet backbone achieved the best recog-
nition performance on ModelNet10 and the second best on
ModelNet40. It also did much better than the VGG-16 back-
bone. Experimental results showed that iMHL performed
slightly better (≈ 0.02) thanMOREconcerning object recog-
nition onModelNet40. The difference is most likely because
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Fig. 7 The performance of pose estimation (top row) and object recog-
nition (lower row) of MORE onModelNet10 and ModelNet40 datasets

we forced the network to learn a representation that can be
used for object recognition and pose estimation.

In the case of the single-view object recognition task,
MORE performs better than other state-of-the-art models
because it predicts the best view first and then recognizes
the object. Unlike previous approaches, MORE finds views
that contain rich information. This in turn contributes to bet-
ter model performance.

We plotted the confusion matrices to realize the differ-
ences between the prediction of VGG-16 and MobileNet
architectures on ModelNet10 dataset. It was observed that
both architectures achieved more than 96% accuracy over
bed, chair, dresser,monitor, sofa, and toilet classes, andmost
of misclassifications mainly occurred within the bathtub,
desk, and night-stand categories. On closer inspection, we
can see that the VGG-16 architecture misclassified bathtub
with sofa more times than MobileNetV2, and also misclas-
sified more frequently a desk for other objects. While the
overall accuracy on the desk class is better for MobileNetV2,
VGG-16 is more stable when separating the table and desk
classes which are arguably the most difficult to distinguish.
Another difference lies in the classification of the night-
stand class where VGG-16 performs significantly better than
MobileNetV2. Overall both architectures seem to have diffi-
culties in separating objects with very similar shape features.
To solve this issue, backbone networks could be updated to
encode both fine-grained and general features of input data
simultaneously.

4.3.2 Size of training data versus performance

Due to the large amount of data obtained, training the models
using all data would be time-consuming. We experimented
with random subsets of the full dataset to check whether a

Table 2 Single-view object recognition and pose estimation accuracy

Dataset MORE - MobileNet MORE - VGG-16

ModelNet10 Class Acc. Pose Acc. Class Acc. Pose Acc

Full 0.9826 0.8706 0.9652 0.8794

1/3 0.9713 0.8667 0.9618 0.8600

1/10 0.9697 0.8111 0.9558 0.8611

1/20 0.9496 0.8000 0.9119 0.7444

ModelNet40 Class Acc. Pose Acc. Class Acc. Pose Acc.

Full 0.9652 0.5150 0.8105 0.4833

1/3 0.9507 0.5009 0.7930 0.4606

1/10 0.9045 0.5000 0.7335 0.4384

1/20 0.8962 0.4640 0.7039 0.4320

Table 3 Accuracy ofmulti-viewobject recognition and pose estimation
on ModelNet10

Model Class accuracy Pose accuracy

VGG-16 0.9020 0.9394

MobileNetV2 0.9130 0.9372

Table 4 Effect of Gaussian noise on object recognition accuracy on
ModelNet40

σ VGG-16 MobileNetV2

0.02 0.8303 0.9212

0.04 0.7333 0.7333

0.06 0.6606 0.6484

0.08 0.5333 0.5818

0.10 0.4060 0.5333

fraction of it would achieve similar accuracy while reducing
the training time required. The results of training models
for both ModelNet10 and ModelNet40 are summarized in
Table 2. For each architecture, we tested the accuracy of both
networks when trained on the full dataset, on a third (1/3)
and a twentieth (1/20) of it.

The accuracy metrics describe the ratio of labels, on the
test split of the dataset, that are correctly predicted by the
model from a single-view image. We consider the pose to be
correctly predicted when the model reports the coordinates
(�,�) corresponding to the viewpoint used to capture the
view. We do see that increasing the amount of training data
does lead to an increase in performance, but for the (1/2) and
(1/3) this does notmake adrastic difference.Understandably,
for (1/20), there is a huge hit to the performance. Even with
this reduction though, the model performs well which shows
the validity of MORE.

123



Intelligent Service Robotics (2023) 16:497–508 505

Fig. 8 A series of snapshots demonstrating the performance of our
dual-arm robot in a scenario where it serves orange juice: To accom-
plish this task, the robot should detect the pose and label of all objects
and then grasp andmanipulate the juice bottle and themug into the serve

position. The juice is then poured into the cup by the robot. Finally, the
robot hands the user the cup and places the juice bottle in the basket.
(top row) images captured from an external camera; (lower row) images
captured from the robot’s camera

4.3.3 Multi-view prediction

As for the views used by the model to make the predictions,
the peak detection algorithm makes the best-view selection
and outputs several views equal to the number of local max-
ima in the entropy map. Results are reported in Table 3.
By comparing the results, it is clear that the model with
MobileNet achieved better recognition accuracy than the
VGG-16, while the VGG-16 achieved better pose estima-
tion accuracy. An overview of the distribution of the number
of views used for each category is presented in Fig. 10. As
it is shown in the graph the model adapts the number of
views it uses for the prediction to the supposed complex-
ity of the object it is observing. On average the algorithm
selects seven views to perform the prediction. The mean of
inference time for 10 simultaneous classification and predic-
tion for the single-view method on an NVIDIA RTX2070 is
0.048 ± 0.013 seconds.

4.4 Robustness

We conducted another series of experiments to determine
how robust the proposed approach is to Gaussian noise,
circumstances that frequently occur in real-life settings. In
particular, we tested the performance of MORE on varying
standard deviation (σ ) values for Gaussian noise.We applied
noise to the vertices of the mesh file of the object to mimic
the effects of information loss while viewing the object. An
example of this noise with varying (σ ) values is shown in
Fig. 9.

For these experiments, we used theModelNet40 dataset as
it would be more representative of the robustness of our solu-
tion as it has more classes and is more challenging compared

Fig. 9 An illustration of a cup object with five levels of Gaussian noise
(i.e., various σ value). We applied noise to the vertices of the mesh file
of the object in all three axes of the object

Fig. 10 Violin plot of the distribution of the number of selected best
views for each category from the ModelNet10 dataset

to the ModelNet10. Results are reported in Table 4. We can
see that the model did well for a majority of the cases even
with this noise. Having a very high noise led to a drastic loss
in the accuracy of the prediction which is well within expec-
tation. It is to be noted that even with a slight noise, there
was a slight drop in performance. The MobileNet model did
better in this experiment as well, compared to the VGG-16.

4.5 Real robot demonstration

To show all the functionalities of the proposed approach,
we integrated it into a cognitive robotic system. Our robotic
setup consists of two UR5e arms, which are equipped with
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Fig. 11 Visualizing the perception of the robot in Rviz during the
“serve_fruit_juice” scenario: The robot’s workspace is shown by the
green convex hull. The pose of each object is shown by the bounding
box and its reference frame. The recognition results are visualized above
each object

Robotiq 2F-140 gripper, and an Asus Xtion RGB-D cam-
era as shown in Fig. 8. In this round of the experiment, we
fine-tuned MORE using real point cloud data. Initially, we
randomly place a cup, a flower, a bottle of juice, and a basket
in front of the robot and then instructed the robot to perform
Serve_Fruit_Juice task.

To accomplish this task, the robot needs to recognize all
the objects and estimate their poses accurately. It should be
noted that while the label and the pose of the other objects
(cup, juice, and flower) should be detected, the pose of
the basket is known in advance. Toward this goal, we first
removed the points belonging to the dominant plane (table)
using the RANSAC algorithm and then applied Euclidean
clustering to the remaining points. We considered each of
the clusters as an object candidate and fed them into our
pipeline to estimate their pose and label. After recognizing
all the objects and estimating their pose, the robot should
plan collision-free trajectories for the left and right arms to
grasp the bottle of juice and the cup (see Fig. 11). After grasp-
ing the objects, the robot manipulates them into the severing
position and then pours the juice into the cup. Finally, the
robot delivers the drink to the user and places the bottle into
the basket and returns to the initial pose. A sequence of snap-
shots demonstrating the performance of the robot is shown
in Fig. 8. We repeated these experiments five times. In all
experiments, the robot was able to serve the drink and place
the juice bottle into the basket successfully.

Fig. 12 An example of generating 15 views of a bottle object using a
single RGB-D camera based on an orthographic projection technique
[31]: (top left) point cloud of the object, its reference frame, and the
projection of the object on 15 plans uniformly distributed over a hemi-
sphere. The red, green, and blue lines show the X-, Y-, and Z-axes,

respectively. (top right) One of the selected RGB and depth views of
the object. (lower row) Multiple RGB-D views of the object are gener-
ated from15different perspectives distributed over a hemisphere around
the object. Note that the object is partially visible in some of the images
due to self-occlusion
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In the case of real-world scenarios where it is not possible
to change the camera pose or use multiple cameras, an ortho-
graphic projection technique [31] can be used to generate
multiple views of the target object based on the information
that can be seen from a single RGB-D camera. To discuss
this point better, we captured a partial point cloud of a bottle
object using an Asus Xtion RGB-D sensor and then used an
orthographic projection technique [31] to generate 15 RGB-
D views of the bottle from various perspectives (see Fig. 12
(top row)). In this example, as shown in Fig. 12 (top left),
views are uniformly distributed over a hemisphere and visu-
alized by different colors. The generated RGB-D views of
the object are shown in Fig. 12 (lower row). This technique
allows us to estimate the images of the target object from
different perspectives while using only one camera sensor.
Furthermore, we hypothesize that better performance can be
obtained by applying shape completion techniques to the
point of the object [32]. Alternatively, we can generate a
completed point cloud of the scene by increasing the num-
ber of available cameras and using point cloud registration
techniques [33, 34].

5 Conclusions

In this paper, we proposed a deep learning-based approach to
tackle the simultaneous recognition and pose estimation of
3Dobjects.We suggested adeepobject-agnostic entropy esti-
mation model, capable of predicting the best viewpoints of a
given object.We then used the obtained views of the object to
predict the pose and category label of the target object simul-
taneously. Experimental results showed that the predicted
views of objects are descriptive enough to achieve high accu-
racy scores in both classification and pose estimation tasks.
To show the usefulness of the MORE in real-life scenarios,
we integrated it into a robotic system and performed the serve
fruit juice task with a dual-arm robot. In continuation of this
work, we would like to investigate fine-grained pose esti-
mation and object recognition. Another potential avenue to
look into is to scale up the training set using synthetic data.
In particular, the discrete nature of the proposed pose estima-
tion leaves the sensitivity of the pose estimator depending on
the density of the dataset, and hence, it would be possible to
achieve more precise estimations by sampling a dataset with
a larger number of viewpoints.
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