
Intelligent Service Robotics (2022) 15:381–398
https://doi.org/10.1007/s11370-022-00429-3

ORIG INAL RESEARCH PAPER

Real-time path planning for autonomous vehicle based on
teaching–learning-based optimization

Ahmed D. Sabiha1 ·Mohamed A. Kamel2 · Ehab Said1 ·Wessam M. Hussein3

Received: 28 October 2021 / Accepted: 11 May 2022 / Published online: 27 June 2022
© The Author(s) 2022

Abstract
This paper presents an online path planning approach for an autonomous tracked vehicle in a cluttered environment based
on teaching–learning-based optimization (TLBO), considering the path smoothness, and the potential collision with the
surrounding obstacles. In order to plan an efficient path that allows the vehicle to be autonomously navigated in cluttered
environments, the path planning problem is solved as a multi-objective optimization problem. First, the vehicle perception is
fully achieved by means of inertial measurement unit (IMU), wheels odometry, and light detection and ranging (LiDAR). In
order to compensate the sensors drift to achieve more reliable data and improve the localization estimation and corrections,
data fusion between the outputs of wheels odometry, LiDAR, and IMU is made through extended Kalman filter (EKF). Then,
TLBO is proposed and applied to determine the optimum online path, where the objectives are to find the shortest path to reach
the target destination, and tomaximize the path smoothness, while avoiding the surrounding obstacles, and taking into account
the vehicle dynamic and algebraic constraints. To check the performance of the proposed TLBO algorithm, it is compared
in simulation to genetic algorithm (GA), particle swarm optimization (PSO), and a hybrid GA–PSO algorithm. Finally, real-
time experiments based on robot operating system (ROS) implementation are conducted to validate the effectiveness of the
proposed path planning algorithm.

Keywords Autonomous tracked vehicles · Path planning · Teaching–learning-based optimization (TLBO)

1 Introduction

The ability to reach a desired target and to avoid the surround-
ing obstacles are vital aspects of autonomous vehicles’. The
main idea of path planning is to get a sequence of points and
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segments that allow the vehicle to navigate safely through the
working space towards the desired destination. Besides, the
path planning algorithm must consider the collision avoid-
ance with the surrounding obstacles, and achieve some other
goals such as minimizing the traveled distance, the mission
time, the consumed energy, and/or any other goals based on
the mission type.

There are two major techniques for path planning: (i)
global or off-line path planning approach, and (ii) local or
online path planning approach [1]. Typically, a global path
planning produces a high-level low-resolution path based on
knowing its current and previous perceptive environmental
information, or what is so called the environmentalmap. This
technique is successful in developing anoptimizedpath.Nev-
ertheless, the reaction to dynamic or unexpected obstacles is
inadequate. Local path planning provides a minimum-level
high-resolution path based on the gathered on-board sensory
information. However, when the environment is cluttered or
the objective is a long distance far, this approach is ineffi-
cient. Therefore, it is better to combine both approaches to
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improve their benefits and reduce some of their weaknesses
[2].

Path planning navigational approaches can be classified
into classical and bio-inspired approaches [3]. Most of the
classical approaches were used before the 2000s, while later
bio-inspired methods became to be the most dominant [4].
The basic concept of classical approaches is either to discover
a feasible solution or to confirm that there is no solution.
The main classical approaches are: cell decomposition [5,6],
roadmap [7], sampling-based algorithms [8], and artificial
potential field (APF) [9,10]. These methods are not usually
mutually incompatible, andmostly a hybrid algorithm to con-
tain two classical techniques is applied to improve the path
planning process [11]. Although the classical approaches are
simple, they have some drawbacks such as: high computa-
tional time, not being suitable for real-time implementation,
and regional minima trapping. Consequently, bio-inspired
approaches are proposed to avoid these drawbacks [3,12].

In thiswork, a real-time online path planning algorithm for
a tracked unmanned ground vehicle (UGV) in an unknown
and cluttered environment is addressed in this paper. First,
the vehicle perception is achieved using the data fusion
between the wheels’ odometry, light detection and rang-
ing (LiDAR), and inertial measurement unit (IMU). Then,
teaching–learning-based optimization (TLBO) is proposed
to find the near-optimum online path, where the objectives
are to get the shortest path to reach the target destination, and
to maximize the path smoothness, while avoiding the sur-
rounding obstacles, and taking into consideration the vehicle
dynamic and algebraic constraints.

Compared with the related works in the literature, the
major contributions can be summarized as follows:

1. Developing a near-optimal online path planning algo-
rithm based on TLBO, that obtains the desired collision-
free path that the vehicle must follow in order to reach
its destination; and

2. Implementation of the proposed algorithm in real-time
to validate its applicability. The real-time experiments
are performed based on robot operating system (ROS).

The rest of this paper is organized as follows. The related
work is presented in Sect. 2. The formulation of the path
planning problem as a multi-objective optimization problem
is presented in Sect. 3. Next, TLBO approach is presented to
solve the optimization problem in Sect. 4. Section 5 presents
the simulation results of the proposed TLBO algorithm com-
pared to genetic algorithm (GA), particle swarmoptimization
(PSO), and a hybridGA–PSO. Section 6 illustrates the exper-
imental results to validate the effectiveness and applicability
of the presented approach. Finally, conclusions and future
work recommendations are conducted in Sect. 7.

2 Related work

Most recently, computational intelligent approaches have
become themost dominant in the field of unmanned systems’
navigation due to their ability to handle the uncertainties in
the robot’s surrounding environment, and to find the near-
optimal path considering the vehicle’s algebraic and dynamic
constraints, as well as any other constraints corresponding to
the vehicle or its assigned mission. The main bio-inspired
approaches used for UGVs path planning are: GA, fuzzy
logic (FL), neural network (NN), PSO, firefly algorithm
(FFA), and most recently, TLBO.

In [13], a path planning algorithm for a mobile robot is
proposed based on GA to find a collision-free path. The pro-
posed approach incorporates GA with a modified mutation
operation as a solution technique to ensure a selection of grids
from the available zones without any repetition. The pro-
posed model tries to shrink the search space, which in turn
reduces the computational complexity. In [14], navigation
from narrow passages is investigated. The authors proposed
a dependent behavior modulation combining motor schema
and FL. Nevertheless, the scalability of this algorithm is its
major demerit and results in a huge number of fuzzy rules in
the case of a complicated behavior-based systems. Chang-
won et al. [15] presented a fuzzy analytic hierarchy process
(FAHP) for navigation of a mobile robot to be efficiently
handledbymeans of a decision-makingmulti-objective prob-
lem. The presented FAHP differs from traditional AHP in
using triangulation of fuzzy number-based extent analysis
to produce the weight vectors. In [16], a fast simultane-
ous localization and mapping technique (SLAM) based on
NN is exploited to mitigate the error accumulation caused
by the imprecise linearization of the SLAM nonlinear func-
tion, and the improper odometry model. Results showed the
capability of a wheeled mobile robot (WMR) to safely nav-
igate in an unknown and cluttered environment. In [17], an
online path planner is based on NN, where the performance
of this algorithm is estimated based on two offline training
path data sets.Nevertheless, experimental results are omitted,
and simulation results are obtained. In [18], the localiza-
tion and mapping of a mobile robot during the navigation
in an unknown environment is addressed. A multi-agent par-
ticle filter is applied to handle the mapping and localization
challenges, where PSO is exploited to improve the computa-
tional burden and the convergence characteristics. To avoid
the problems of premature convergence and local-minima
trapping associated with PSO, an improved PSO algorithm
is proposed in [19] to obtain a near-optimal path for mobile
robots. Besides, the path smoothness is achieved based on
a continuous high-degree Bézier curve. Fengling et al. [20]
exploited an optimal path planning algorithm based on FFA
with self-adaptive population size. Two nonlinear functions
are presented to get the population size based on the degree of
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a potential collision. Results showed that the proposed algo-
rithm is stable and its convergence speed and computational
time are acceptable.

It can be noted that all the bio-inspired approaches have
somemerits and suffer from other demerits. Therefore, many
hybrid algorithms consist of two approaches are proposed
to enhance the overall efficiency and performance of the
path planner [21–24]. Also, all swarm and evolutionary tech-
niques are random and probabilistic. As a result, they must
have some common controlling parameters, such as the pop-
ulation size. Furthermore, each algorithm has its own specific
control parameters such as the crossover and mutation rates
in GA, and the inertia weight and cognitive and social param-
eters in PSO. It is worth noted that the proper tuning of the
algorithm-specific parameters is a critical factor affecting the
computational time and obtaining the feasible solution. Con-
sidering this fact, TLBO is proposed as it does not need any
specific parameters.

TLBO is a meta-heuristic approach proposed by Rao et
al. in 2011 [25]. It is inspired by the learning and teaching
process, via a simplified mathematical model of knowledge
enhancements gained by learners in the classroom [26]. In
TLBO, the population is defined as a group of learners, while
the most learned one is assigned as a teacher, i.e. the learner
with the best results. Based on that, there are two stages of
TLBO: the teacher stage and the learner stage. In the first
stage, all learners improve their knowledge from the teacher.
Then, in the second stage, learners continue learning and
improving through peer interaction between them.

TLBO is widely proposed for path planning of robotic
manipulators [27,28]. However, very few works use TLBO
for UGV path planning. In [29], path planning algorithm for
a mobile robot navigation is presented based on nonlinear
inertia weighted TLBO (NIWTLBO). Based on a coordi-
nate system transformation, a new map model is built. Then,
a global path is obtained by means of NIWTLBO. The
proposed algorithm performance is tested through simula-
tion. However, experimental results are omitted. In [30], a
path planner based on adaptive neural fuzzy inference sys-
tem (ANFIS) is applied, where TLBO is implemented to
find the main parameters of ANFIS. Compared with PSO,
invasive weed optimization (IWO), and biogeography-based
optimization (BBO), simulation results showed a better per-
formance for the proposed algorithm. In [31], a conformal
geometric algebra and TLBO are proposed for a mobile
robot’s path planning. First, the robot and the obstacles are
considered as conformal spheres. Then, in order to con-
vert the robot sphere to a new sphere location, a conformal
translator is provided. Finally, TLBO algorithm is applied to
optimize this translator by minimizing the distance between
the desired position and the newposition, in addition tomaxi-
mize the distancebetween all possible obstacles positions and
the new position. In [32], TLBO technique is proposed for

path planning to navigate a three-wheeled robot. The consid-
ered objective function is to safely reach the desired target. In
[33], a path planning algorithmbased on shuffled frog leaping
algorithm (SFLA) is exploited. To improve the exploitation
and increase the convergence rate of SFLA, a hybrid SLFA-
TLBO algorithm is presented. Simulation results emphasize
the applicability of this hybrid algorithm compared with the
traditional TLBO and PSO.

From the literature review, the following results are sum-
marized for the problem of unmanned tracked vehicles’ path
planning:

1. Classical approaches are simple. However, they have
some disadvantages like high computational time, the
difficulty of online implementation, and local minima
trapping;

2. Bio-inspired approaches are able to find the near-optimal
path. However, their main demerit is the tuning of the
algorithm’s control parameters;

3. TLBO is widely applied in path planning of robotic
manipulators [27,28]. However, very few works focused
on applying TLBO for UGV path planning [31–33]; and

4. Most of the existing TLBO techniques have not yet been
validated experimentally.

3 Path planning problem

Let q ∈ C be the vector of generalized coordinates for the
vehicle, q = [x, y]T , and C is the vehicle’s configuration
space. The vehicle moves in an unknown cluttered environ-
ment starting from Sp with coordinates (xs ,ys), while the goal
is to reach the target location Tp with coordinates (xt ,yt ) as
shown in Fig. 1. During motion, let q be the current posture
of the vehicle’s center of gravity with coordinates (x, y) and
orientation angle θ , then:

q(t) = [x(t), y(t)], q ∈ R
2

In the vehicle configuration spaceC, the start and the target
points are linked with a line segment regardless the obstacles
considered as the shortest path. This line is divided into (M−
1) segments, and M points starting from P1 to PM , where
every two successive points define a segment which is part of
the path linking Sp to Tp. Consequently, to avoid the potential
collision with the surrounding obstacles, and considering all
other constraints, a newpath consists of (M−1) segments and
M points (including source and target locations) is planned.

Based on the aforementioned explanation, the objective
of the path planning algorithm is to determine the optimum
coordinates of (M − 2) points (as Sp and Tp are already
known) that minimizes the path length, maximizes the path
smoothness, and avoids the potential collision with the sur-
rounding obstacles. For this purpose, TLBO is proposed.
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Fig. 1 Path planning modeling in 2D space

As illustrated before, the vector of vehicle position is
defined as:

q = [x, y]T , q ∈ R
2

As the path is divided into (M − 1) segments, at the end of
any segment, the vehicle position can be obtained as:

qi = [xi , yi ], ∀i ∈ {2, 3, . . . , (M − 1)} (1)

Remark 1 In this work, points P1 and PM are considered as
the starting and target points Sp and Tp, respectively.

Consequently, the optimal path planning problem can be
declared as: finding the optimum coordinates (xi , yi ) and
orientation angle θi , i ∈ {2, 3, . . . , (M −1)} in order to min-
imize the path length and maximize the path smoothness,
such that:

min
u

J (u),

J (u) = w1 J1(u) + w2 J2(u)
(2)

where J (u) is the total objective function, J1(u) is the objec-
tive function that minimizes the path length, J2(u) is the
objective function that maximizes the path smoothness, w1

and w2 are weighting factors, and u is the vector ofm design
variables, such that:

u = [xi , yi ], ∀i ∈ {2, 3, . . . , (M − 1)}, u ∈ R
2×(M−2)

(3)

The values of J1 and J2 can be calculated as follows:

1. Minimizing the path length:

The total path length is determined by:

J1(u) = S =
M∑

i=1

S(Pi , Pi+1)

=
M∑

i=1

√
(xi+1 − xi )2 + (yi+1 − yi )2 (4)

where S(Pi , Pi+1) presents the distance between two
successive points Pi and Pi+1.

2. Maximizing the path smoothness:
The smoothness of a path is a significant factor in vehi-
cle path planning, as the vehicle should not abruptly alter
its orientation. The path smoothness leads to lesser time
consumption and energy. So, the smoothness is consid-
ered as a secondary concern. Consequently, maximizing
path smoothness equals minimizing the total turning
angle of the vehicle [34]. As a result, the following is
the objective function of the vehicle’s turning angle:

J2(u) = � =
M−1∑

i=1

|θi | (5)

where θi is the angle between two vectors
−−−−→
Pi−1Pi and−−−−→

Pi Pi+1:

θi = atan2
( yi+1 − yi
xi+1 − xi

) − atan2
( yi − yi−1

xi − xi−1

)
,

∀i ∈ {2, 3, . . . , M}. (6)

The optimization problem is subjected to the following con-
straints:

1. The boundary constraints:

In which the coordinates of Pi be always within the vehi-
cle’s configuration space C, i.e.

{xi , yi } ∈ C, ∀i ∈ {2, 3, . . . , (M − 1)} (7)

2. The collision avoidance constraint:

During vehicle motion, the distance between the vehicle
and the j th obstacle, j = {1, 2, . . . , Nobs}, where Nobs

is the number of detected obstacles, can be defined as:

d j =
√

(xi − xobs j )
2 + (yi − yobs j )

2,

∀i ∈ {2, 3, . . . , (M − 1)},∀ j = {1, 2, . . . , Nobs}
(8)

where obs j denotes the center of gravity of the j th obsta-
cle. As shown in Fig. 2, each obstacle j is surrounded by
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Fig. 2 The vehicle-obstacle interaction

a circle with radius r j
obs. To prevent the collision between

the vehicle and the j th obstacle, d j must be greater than

the minimum safety distance δ
j
obs presented as:

δ
j
obs = r j

obs + dsafe (9)

where;

dsafe = ζ b̄ (10)

where ζ is a weighting factor, and b̄ is the tracked vehicle
width.

Remark 2 The weighting factor ζ is a critical value to ensure
the collision avoidance of the vehicle. Therefore, 0.5 < ζ <

1. The selection of ζ value is significantly critical. While
increasing ζ will ensure collision avoidance, it will decrease
the possibility of finding the feasible solution of the opti-
mization problem, results in a high computational burden. In
this work, ζ is selected to be 2

3 .

As a result, the collision avoidance constraint can be
expressed as follows:

d j ≥ δ
j
obs, ∀ j ∈ {1, 2, . . . , Nobs} (11)

Finally, the path planning multi-objective optimization prob-
lem can be mathematically represented as follows:

min
u

J (u),

J (u) = w1S + w2�
(12)

subjected to:

{xi , yi } ∈ C, ∀i ∈ {2, 3, . . . , (M − 1)} (13)

d j ≥ δ
j
obs, ∀ j ∈ {1, 2, . . . , Nobs} (14)

As TLBO is a stochastic technique, the above-mentioned
constrained optimization problem presented in Eqs. (12) to
(14) should be handled as an unconstrained problem, where
all the constraints must be explicitly considered in the overall
objective function. This can be achieved by adding penal-
ties to the objective function for violating the constraints
[35]. Generally, the objective function of a constrained opti-
mization problem with c constraints can be expressed as an
unconstrained problem based on the following general form:

J ′ = J + ak

c∑

j=1

G j [g j (X)], ∀ j = {1, 2, . . . , c} (15)

where G j is the penalty function for the constraint g j , and
ak is the penalty parameter, ak > 0. According to Eq. (15),
while minimizing the objective function, a positive penalty
parameter is added whenever the constraint is violated [35].
There are various penalty functions. In this paper, the pro-
posed penalty is proportional to the degree of the violation,
where the constants ak are adapted to adjust the contribution
of the penalty terms to the objective function’s magnitude.
As a result, Eq. (12) can be re-formulated as:

J (u) = w1S + w2� + σ

Nobs∑

j=1

R j
obs, ∀ j = {1, 2, . . . , Nobs}

(16)

where σ is the penalty coefficient, and R j
obs can be calculated

as follows:

R j
obs =

⎧
⎪⎨

⎪⎩

0 if d j ≥ δ
j
obs

1

d j
− 1

δ
j
obs

if d j < δ
j
obs

∀ j = {1, 2, . . . , Nobs}

(17)

meaning that if d j is greater than δ
j
obs, i.e., the distance

between the vehicle and the j th obstacle is safe. There-
fore, the collision avoidance constraint is not violated, and
no penalty is applied to the total objective function. How-
ever, if d j is less than δ

j
obs, the vehicle will collide with the

j th obstacle. As a result, a penalty is added to the objective
function in order to avoid the potential collision.

Remark 3 Since the path is composed of line segments, it
is differentiable everywhere, except at the unions between
the line segments. Therefore, a high-degree Bézier curve is
applied [19]. Thiswill get the path differentiable everywhere,
results in improving the path smoothness, and obtaining a
suitable path for vehicle motion control.
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4 TLBO Algorithm

After defining the optimization problem in Sect. 3, The
TLBOalgorithm is provided to obtain the near-optimumpath
that minimizes the total objective function presented in Eq.
(15).

Teaching–learning is an important process in which each
learner seeks to learn something from the other learner in
order to improve themselves. TLBO was proposed by Rao
et al. [25,36] and Rao and Patel [37], which simulates the
phenomenon of teaching–learning in a classroom. In TLBO,
two basic types of learning are employed: (i) from the teacher
to learners (known as the teacher phase) and (ii) from the
interaction between learners (known as the learner phase). In
TLBO, a population consists of a group of students, where
various subjects offered to the students are considered as the
design variables. The objective function of the optimization
problem is equivalent to the mean result of each student in all
subjects. The best student with the best objective function’s
value is assigned as a teacher, while TLBO tries to improve
the solution with each iteration.

Remark 4 During the following explanation of the TLBO
algorithm, the subscripts i , j , and k refer to the iteration
number, the subject, and the learner, respectively.

The following steps show the execution of the TLBOalgo-
rithm:

Step 1. Construction of the design variables vector X (the
vector of learners’ subjects): For each student k, the
vector of Dv subjects (the number of design vari-
ables) is:

X = [xc, yc], ∀c ∈ {2, 3, . . . , (M − 1)},
X ∈ R

2×(M−2) (18)

As a result, the length of the vector of design vari-
ables is: Dv = 2 × (M − 2).

Step 2. Initialization:

• Choose the number of learners Np.
• Choose the maximum number of iterations imax.
• Set the iteration counter i to 1

Step 3. Initial generation of random population: Generate
a random population of learners offered Dv sub-
jects as follows:

X0
(k, j) = Xmin

j + r j × (Xmax
j − Xmin

j ),

k = [1, 2, . . . , Np], j = [1, 2, . . . , Dv] (19)

where, r j is a random number with a uniform dis-
tribution within the range ∈ [0, 1], Np denotes the
number of learners in a class,
and Xmax

j and Xmin
j represent the upper and lower

boundaries of each design variable j , respectively.
Step 4. Teacher Phase: In this phase, the objective is to

find the best student in the class to be the teacher.
Then, all other students are considered as learners.
The following are the steps of the teacher phase:

Step 4.1 Evaluate the mean result (Mi, j ): The mean result
of all learners on a particular subject j , is given as
follows:

Mi, j = 1

Np

Np∑

k=1

X(i,k, j) (20)

Step 4.2 Evaluate the objective function: For each learner k,
evaluate the objective function J presented in Eq.
(15).

Step 4.3 Find the teacher (Xteacher
i ): Determine the best

learner of the generation with its associated values
of design variables to be the teacher Xteacher

i in
the present iteration i , which is the best solution
(the lowest value of J ) among the other learners.
Under normal circumstances, the teacher is usu-
ally considered to be a learner with a high degree
of learning ability to educate the other learners,
so they can have better learning achievement. In
accordance with the teacher’s abilities, the teacher
tried to increase the average learning achievements
of learners in the subjects they taught.

Step 4.4 Evaluate the difference mean: Evaluate the differ-
ence between the current mean result Mi, j and the
teacher results in each subject j as follows:

Dif_Meani, j = r j × (Xteacher
i − T f Mi, j ) (21)

where r j is a random number with a uniform dis-
tribution within the range ∈ [0, 1], and T f is the
teaching factor, T f ∈ [1, 2] [26], which is deter-
mined randomly as follows:

T f = round[1 + rand(0, 1){2 − 1}] (22)

Step 4.5 Update the design variables’ values: For each
learner, and based on Dif_Meani, j , the vector of
design variables X is updated using the following
formula:

Xnew
(i,k, j) = X(i,k, j) + Dif_Meani, j (23)

Step 4.6 Update the solution: Recalculate the objective
function according to the updated values Xnew

(i,k, j).
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If Xnew
(i,k, j) yields a better solution than X(i,k, j),

then Xnew
(i,k, j) replaces X(i,k, j). Otherwise, X(i,k, j)

is maintained, i.e.,:

Xi,k, j =
{

X(i,k, j) if J (Xnew
(i,k, j)) > J (Xi,k, j )

Xnew
(i,k, j) if J (Xnew

(i,k, j)) < J (Xi,k, j )
(24)

This means that the knowledge of each learner is
improved from the interaction with the teacher. By
the end of this step, the teacher phase in ended, and
the learning phase will start.

Step 5. Learner phase: During this phase, each learner
interacts with other learners randomly to improve

Fig. 3 TLBO flow chart
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their knowledge. The followings are the steps of
the learner phase:

Step 5.1 Interaction: Consider two learners P and Q, the
interaction between them to improve their knowl-
edge can be obtained as follows:

Xnew
(i,P, j)

=

⎧
⎪⎨

⎪⎩

X(i,P, j) if JP = JQ
X(i,P, j) + r j × (X(i,P, j) − X(i,Q, j)) if JP < JQ
X(i,P, j) + r j × (X(i,Q, j) − X(i,P, j)) if JP > JQ

(25)

Step 5.2 Select the best values for each learner after interac-
tion: Re-evaluate the objective function according
to the updated values provided from Eq. (25). Sim-
ilar to Eq. (24), if the new solution associated
to Xnew

(i,k, j) is better than the current one X(i,k, j),
then X(i,k, j) is replaced with Xnew

(i,k, j). Otherwise,
X(i,k, j) is preserved. Learners who have been
accepted are advanced to the next iteration.

Step 5.3 Check that the new solutions are within the bound-
ary constraints: Check that Xmin

j ≤ X(i,k, j) ≤
Xmax

j as follows:

X(i,k, j) = Xmax
j if X(i,k, j) > Xmax

j

X(i,k, j) = Xmin
j if X(i,k, j) < Xmin

j

(26)

Step 6. Termination criterion: Check for convergence of
the iterative process after each iteration. If the ter-
mination criterion is met, terminate the algorithm.
Otherwise, set i = i + 1 and, go to Step 4.

Remark 5 The termination criterion used in this study is that
the optimization algorithm is ended if the objective function
does not change after 30 iterations.

The flowchart of the TLBO procedure is shown in Fig. 3.

5 Simulation results analysis

In simulation, the proposed path planning algorithm is vali-
dated. The goal of the simulation is to prove that the presented
path planning algorithm can find the near-optimal global
offline obstacle-free path, and to check the stability and per-
formance of the presented TLBO approach compared to GA,
PSO and a hybrid GA-PSO algorithm [38]. All the parame-
ters of GA and PSO are tuned based on [39].

Assumption 1 In simulation, it is assumed that all obstacles
are already detected, and the vehicle’s workspace is com-
pletely known.

Fig. 4 Path planning trajectory in XY plane during simulation

Fig. 5 The values’ of the objective function along the iterations

5.1 Path planning results

In simulation, the vehicle’s start point Sp = (200, 0), and
the target location is TP = (700, 300). Also, there are four
detected obstacles in the configuration space with known
locations, while the safety distance for each obstacle is
dsafe = 30 cm.

As can be seen from Fig. 4, the presented algorithm suc-
ceeded to generate a planned path with avoiding the collision
with surrounding obstacles. Also, Fig. 5 shows the conver-
gence rate of the objective function in cases of TLBO, GA,
PSO, and GA-PSO. It can be seen that TLBO is better than
the other techniques as it converges in 28 iterations to an
objective function value below the values obtained by GA-
PSO, PSO, andGA, that converge in 37, 60, and 92 iterations,
respectively.
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5.2 TLBO performance and stability analysis

Since TLBO is a meta-heuristic optimization technique, the
first iteration is basedona randompopulation, it is not assured
that the global optimum solutionwill be obtained. As a result,
it is of great importance to test its performance and stability.
This can be obtained by executing the proposed algorithm
many times to ensure that the result is close to the optimal
result. The proposed algorithm is executed 50 times, and
results are shown in Table 1. As can be seen, the proposed
TLBO algorithm is better than GA, PSO, and GA-PSO as it
converges to the minimum value of the objective function in
a smaller number of iterations, results in less computational
time. Also, from the point-of-view of stability, TLBO ismore
stable as the standard deviation value in the case of TLBO is
less than that in case of GA, PSO, and GA-PSO.

5.3 Evaluation of trajectory quality

To evaluate the quality of the planned trajectory, the proposed
algorithm is executed 25 times, and the values of J1 and J2
are evaluated in case of TLBO, GA, PSO, and GA-PSO, as
J1 and J2 can be considered as the indicators for the quality
of the trajectory. As can be seen from Fig. 6, TLBO always
finds the minimum values of J1 and J2 compared to the other
optimization techniques. Also, it can be observed from Table
2 that TLBO is more stable as the standard deviation (STD)
for the values of J1 and J2 is less than those obtained by GA,
PSO, and GA-PSO.

5.4 Effect of weightsw1 andw2

As mentioned in Sect. 3, the multi-objective optimization
problem is converted to a single objective one by means of
weight aggregation. So, it is important to study the effect of
weights on the objective function. This is achieved by means
of the multivariate partial least square (PLS) method [40].
The proposed algorithm is executed 38 times, where w1 and
w2 are changing in each execution, then J1, J2, and J are
evaluated. The PLS model is fitted by cross-validation to get
a two-component model with RX = 0.97 and QX = 0.93.
RX is known as the goodness of fit which is an estimate of
the explanation ability of the model, where QX is known as
goodness of prediction which is an estimate of the predictive
ability of the model. Figure 7 demonstrates the scatter plot
of the two score vectors, which indicates the distribution of
the data results during the 38 executions. More analysis is
conducted by examining the loading plots to investigate the
relationships between different variables. Figure 8 shows the
loading plot, clarifying the effect of the weights on the total
objective function J . It can be noticed that w1 has a remark-
able effect on the total objective function J . A sensitivity
analysis was conducted on w1, w2, J1, and J2 in an attempt

Fig. 6 Evaluation of the planned trajectory quality

Fig. 7 Scatter plot of the PLS model

to extract themost significant features along themodel on the
total objective function J . Figure 9 shows the variable impor-
tance plot (VIP) of all available parameters. The influence of
J1 and w1 along the data set is clearly noticed. Finally, in
Fig. 10, a Pareto front is obtained. Based on this, the weights
w1 and w2 are selected to be 0.65, 0.35, respectively.

6 Experimental results analysis

6.1 Platform description

To validate the proposed path planning algorithm presented
in this study, the real-time analysis of the path planning is
implemented in a cluttered environment, where the vehicle
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Fig. 8 PLS loading plot

is surrounded by different obstacles. The experiment is con-
ducted on a plane surface and is implemented on a small
tracked vehicle shown in Fig. 11. All the vehicle parameters
are obtained in Table 3.

The vehicle is powered by ROS. As shown in Fig. 11, it
is driven by two EMG49 DC motors with wheel encoders.
A power amplifier MD49 motor drive board is used as the
motors controller and driver. A sensor fusion is used to
improve the accuracy of the odometry by means of an IMU

Table 1 Performance and stability analysis for TLBO, GA, PSO, and GA-PSO

Method Average number of iterations Average execution time (sec.) Objective function
Best Mean STD

TLBO 32 22 911.565 1200.532 0.3462

GA 98 75 2425.588 2532.741 1.4232

PSO 66 60 2227.856 2328.348 0.935

GA-PSO 40 43 2119.588 2216.975 0.5186

Table 2 Results analysis for the
trajectory quality indicators for
TLBO, GA, PSO, and GA-PSO

Path length Path smoothness
Minimum Maximum Average STD Minimum Maximum Average STD

TLBO 6.1184 6.9169 6.4134 0.3458 1.7966 2.7955 2.2907 0.2931

GA 10.4947 12.3855 11.4281 0.8645 4.5475 6.8299 5.6979 0.8203

PSO 8.3372 10.6960 9.7188 0.6239 6.2679 8.7503 7.6623 0.6902

GA-PSO 7.0216 8.5360 7.7117 0.4103 3.5645 4.9489 4.2280 0.3652

Fig. 9 VIP plot
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Fig. 10 Pareto front of the multi-objective optimization problem

Table 3 Vehicle physical parameters

Vehicle parameters Value

Vehicle mass (m) 10kg

Track gauge (b) 39cm

Ground contact length of the track (L) 41.5cm

Track width (tw) 7.5 cm

Sprocket radius (r ) 3.7 cm

9-axes MPU9250. As the vehicle control is based on ROS,
it consists of an off-board master computer and an on-board
client computer. The off-board master PC has a processor
Intel Core i5 CPU 3230M, 4GB RAM, and Linux Ubuntu
18.04 operating system (OS).While the on-board client com-
puter is Raspberry-Pi 4 mounted on the vehicle, and has
Linux Raspbian OS. It communicated with the MD49 motor
driver by a TTL level serial bus, and with the IMU via I2C
protocol. In addition, a LiDAR is mounted on the top of the
vehicle to build a map of the surrounding environment. The
LiDAR is connected to the on-board Raspberry Pi4 via USB
connection.

The proposed ROS framework consists of packages and
the nodes to interface the proposed controllers with the
ROS environment, while the controllers, localization nodes
and other components are implemented as C++ and Python
libraries. The ROS framework allows the tracked vehicle to
contribute and synchronize messages between nodes in the
off-board master PC and with the client PC by using a net-
work as shown in Fig. 12.

Before path planning, The vehicle navigation system
has to solve two different problems: mapping and localiza-
tion. After that, a path planning algorithm can be applied.
To achieve the navigation task, the navigation nodes are
designed to integrate the mapping and localization together.
In order to build themap of theworkspace and, get the instan-
taneous location of the vehicle, the navigation nodes received
the information from wheels odometry, IMU, and LiDAR.
Also, it received the location of the target position. Then, the

path planning algorithm can be implemented to generate the
near-optimal path as required velocity and pose, Finally, the
controller nodes produce the safe velocity commands and
send it to the vehicle. The data fusion between the outputs of
wheels odometry, LiDAR, and IMU is made through EKF in
order to compensate the sensors drift to achievemore reliable
data to improve the localization estimation and corrections.

It’s worth noting that navigation nodes don’t need a prior
static map. In fact, it can be started with or without a map.
When started without a prior map, and based on the vehicle’s
on-board sensors, the vehicle will have online information
about the surrounded obstacles. Consequently, the vehicle
will avoid the detected obstacles. At this stage, the vehi-
cle will generate a global path for unknown places, which
may collide with undiscovered obstacles. When the vehi-
cle receives more information from its sensors about these
unknown places, it will be able to re-plan its path.

Fig. 13 demonstrates the ROS transformation tree frames
diagram rqt_tf_tree for path planning, where the
transformation tree system builds the dynamic transforma-
tion that relates all reference frames in the system (drivers,
IMU, and LiDAR) related to the frame body named base link.

According to the ROS computation framework shown
in Fig. 14 that represents the ROS computation graph dia-
gram rqt_graph for the proposed path planning TLBO
algorithm. The odometry is provided by the nav_msgs/
Odometry message through ROS, which stores an estima-
tion of the vehicle’s position and velocity in free space in
order to identify its location. To avoid any obstacles, the sen-
sor data is sent through sensor_msgs/LaserScan or
sensor_msgs/PointCloud messages over ROS. The
destination point is delivered to the navigation nodes via
geometry_msgs/PoseStamped message. The veloc-
ity commands are sent by the controller nodes using the
/cmd_vel topic in geometry_msgs/Twistmessages.

To create a map using ROS, the /mapping node
is proposed to construct an occupancy grid map. The
/mapping node is considered as the implementation of
simultaneous localization and mapping (SLAM), a tech-
nique that constructs a map of an environment simulta-
neously with the vehicle motion. Obviously, during the
vehicle navigation through the environment, it gets infor-
mation from the environment via its sensors and develops
a map for the vehicle’s configuration space as a result.
The node /rplidarNode generates the laser range data
sensor_msgs/LaserScan, the /mapping node is
used to build 2D occupancy grid maps. So, the /mapping
node is used to create a map of an unknown environment as
well as update an existing map. This can be seen in Fig. 15
where the vehicle motion in the generated map is visualized
via the visualization environment “Rviz”.
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Fig. 11 The vehicle used in the
experiments with the main
control system components

Fig. 12 System architecture
block diagram of the
autonomous vehicle system

6.2 Results and analysis

In the experimental scenario, the start and target points
are known where the vehicle moves in a cluttered envi-
ronment, in which twelve random obstacles with different
shapes and dimensions are existing as shown in Fig. 16. The
configuration space dimensions are (5m × 5m), while the

coordinates of the start and target points are Sp = (0, 0) and
Tp = (3.6, 3.9), respectively. All the values of the TLBO
parameters are given in Table 4.

Figure 17 shows the experimental generated path. It can be
seen that the vehicle reached the destination point, and evade
the collision with the surrounding obstacles. As illustrated in
Fig. 2, each obstacle is surrounded by two circles with radii
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Fig. 13 ROS transformation tree frames diagram rqt_tf_tree for path planning

Fig. 14 ROS computation graph diagram rqt_graph for path planning

Fig. 15 The vehicle motion in the ROS-based visualization environ-
ment “Rviz”

r j
obs and δ

j
obs. It can be noted from Fig. 17 that the generated

path safely avoids the collision, as the path does not touch
any of the circles with radius δ

j
obs.

As can be illustrated from Fig. 18, the presented TLBO
algorithm can satisfy the collision avoidance constraint pre-
sented in Eq. (14), as it succeeded to ensure that the planned

Table 4 TLBO parameters in experiment

Parameter Value

Weighting factor (ζ ) 2/3

Number of design variables (Dv) 2

Number of population (Np) 100

Weighting value (w1) 0.65

Weighting value (w2) 0.35

Fig. 16 Configuration space of the real-time experiment
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Fig. 17 Path planning vehicle
trajectory with obstacles

path guarantees the safety of the vehicle by keeping a safe
distance greater than δ

j
obs from the surrounding obstacles.

Figure 19 shows eight snapshots of the real-time experi-
ment, where the tracked vehicle moves in the configuration
space between the obstacles through a collision-free path
during the experiment. At the top-right screen of each snap-
shot, the vehicle pose between the detected obstacles and
the generated path is visualized in ROS/Rviz environment.
The tracked vehicle analyzes the environment information
from LiDAR, IMU, and driving motors’ encoders through
the sensor fusion by using EKF. The TLBO algorithm is
implemented as a node to the ROS ecosystem by using C++
language to obtain the pathwith collision-free. The presented
path planning TLBO algorithm is very effective since it rec-
ognizes and avoids obstacles in the surrounding environment,
and it accomplishes the navigational task in a short time.
Also, the computational time is measured to be 1.34 s for
each frame that updates every 1.83 s.

7 Conclusions

This paper addresses the path planning algorithm for an
autonomous tracked UGV in a cluttered environment based
on TLBO algorithm. The proposed algorithm succeeded
in obtaining the near-optimal paths with avoiding the sur-

rounding obstacles, and it can handle the problem of system
kinematic and algebraic constraints. TLBO algorithm is
applied to get the near-optimal path between the start and goal
locations, considering the minimization of the path length,
the maximization of the path smoothness, and avoiding the
potential collision with the nearby obstacles. Many remark-
able features are achieved by the proposed algorithm: (1) it
is simple approach and can be implemented in real-time; and
(2) using TLBO does not need the adjustment of specific
parameters such as GA, FFA, PSO, and other meta-heuristic
optimization techniques. Finally, the proposed path plan-
ning algorithm is experimentally evaluated in real-time in
an indoor cluttered environment, and is implemented on an
autonomous tracked vehicle based on ROS to emphasize the
effectiveness of the presented path planning algorithm and
its applicability.

The main future directions of this work can be summa-
rized as: (1) the extension of the proposed path planning
algorithm to deal with a dynamic environment, in which the
target destination and obstacles are dynamic, (2) dealingwith
non-convex and irregular shapes obstacles, and (3) improve
the path planning algorithm by embedding a vision system
with a single digital camera or stereo camera. This will aid
the navigation processes to detect the surrounding environ-
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Fig. 18 The distances between
the tracked vehicle and the
surrounding obstacles
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Fig. 19 Real-time snapshots of
the tracked vehicle moving
between the obstacles through a
collision-free path
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ment as well as the terrain type, results in improving the path
planning procedure.
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