
Intelligent Service Robotics (2021) 14:175–185
https://doi.org/10.1007/s11370-021-00358-7

ORIG INAL RESEARCH PAPER

Combining CNN and LSTM for activity of daily living recognition with a
3Dmatrix skeleton representation

Giovanni Ercolano1 · Silvia Rossi1

Received: 3 April 2020 / Accepted: 28 January 2021 / Published online: 10 March 2021
© The Author(s) 2021

Abstract
In socially assistive robotics, human activity recognition plays a central role when the adaptation of the robot behavior to the
human one is required. In this paper, we present an activity recognition approach for activities of daily living based on deep
learning and skeleton data. In the literature, ad hoc features extraction/selection algorithms with supervised classification
methods have been deployed, reaching an excellent classification performance. Here, we propose a deep learning approach,
combining CNN and LSTM, that exploits both the learning of spatial dependencies correlating the limbs in a skeleton 3D grid
representation and the learning of temporal dependencies from instances with a periodic pattern that works on raw data and
so without requiring an explicit feature extraction process. These models are proposed for real-time activity recognition, and
they are tested on the CAD-60 dataset. Results show that the proposed model behaves better than an LSTM model thanks to
the automatic features extraction of the limbs’ correlation. “New Person” results show that the CNN-LSTM model achieves
95.4% of precision and 94.4% of recall, while the “Have Seen” results are 96.1% of precision and 94.7% of recall.

Keywords Social robots · Deep learning · Activity recognition

1 Introduction

Personal service robotics applications are already available
on the market to be used in human-populated environments
such as working, public and domestic ones. Such applica-
tions are designed to accomplish tasks on behalf of the user,
with different degrees of autonomy and interaction capabili-
ties. However, they are typically designed to show the same
behavior regardless of humans’ possible activities and reac-
tions [11]. The foreseen market success of such a technology
is still far to be realized due to several research challenges
that are mainly related to the need for a high degree of per-
sonalization of the robot behavior to the specific user’s needs

This work has been supported by MIUR within the PRIN2015
research project “User-centered Profiling and Adaptation for Socially
Assistive Robotics - UPA4SAR” (Grant No. 2015KB-L78T).

B Silvia Rossi
silvia.rossi@unina.it

Giovanni Ercolano
giovanni.ercolano@unina.it

1 Department of Electrical Engineering and Information
Technologies, University of Naples Federico II, Strada
Vicinale Cupa Cintia, 21, 80126 Napoli, NA, Italy

and preferences and acceptance. Indeed, to be acceptable the
robot behaviors have to take into account the user activities
to not interfere with them [24] and to adapt to them [22]. The
robot is required to sense its environment but also to under-
stand what happens within it in terms of human activities.

Thework presented in this paper is part of a project aiming
at using mobile robots for monitoring the activities of daily
living, or ADLs. In this direction, we aimed to develop an
activity of daily living recognition algorithm in a home envi-
ronment using the skeleton data of an RGB-D camera [23].
In the literature, the combination of ad hoc features selec-
tion and extraction algorithms with supervised classification
techniques has reached excellent classification performance
[4,10,25]. In contrast, we propose the use of a simple deep
neural networks structure to automatically extract features
and to find long-term temporal dependencies. The proposed
model relies on the use of a convolutional neural network
(CNN) that is able to extract the spatial dependencies from
a grid and it works well on image recognition. To do so,
we define a simple but informative 3D matrix skeleton rep-
resentation to be the input of the CNN that can learn limb
correlations.Moreover, according to the literature, CNNs are
effectively deployed in action recognition due to their ability
of representation learning exploiting the spatial relationships
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of the extracted features. However, to take into account the
temporal dimension of an action, temporal data have to be
opportunely fused in one complex image, as in [7], or 3D
matrix representations have to be deployed [1]. Here, taking
inspiration from the work of [6,20], where the authors pro-
pose a spatiotemporal classification, respectively, for video
description from images and activity recognition from wear-
able devices data, here we aim at achieving the same results
by combining the use of CNNs with LSTM gaining benefits
of both spatial and temporal learning.

Following this idea, we investigate the possibility of
training the recognition module considering both spatial
dependencies due to the relationships among the RGB-D
skeleton joints by the use of a CNN and the temporal patterns
of the activities by the use of anLSTM. In apreviouswork [9],
we briefly introduced the framework and provided the first
experimentation with respect to another approach dealing
only with the use of a multi-scale LSTM. Here, we detailed
the proposed approach and provided more in-depth experi-
mentation with respect to the state-of-the-art approaches on
the cornell CAD-60 activity dataset [28] to highlight the con-
tribution of the feature extraction level of the CNN.

Results on short video sequences (i.e., 140 frames) show
that the approach is able to evaluate in real time the activity
performed by the human user with performance beyond the
state-of-the-art approaches. Indeed, this result allows for a
robot to react instantly adapting its behaviors with respect
to human behaviors. Moreover, when comparing the per-
formance on the whole duration of a video the approach
performs as the other state-of-the-art approaches.

2 Related works

In this section, we accounted for different approaches to
activity recognitionworking on the samedataset.We also dis-
cuss some deep learning approaches applied to other datasets
that inspired our work.

In [8], the authors introduced an approach where the
human skeleton data are analyzed by considering five parts
(i.e., arms, legs, and torso), and a hierarchical bidirectional
RNN network with a final LSTM layer is deployed to extract
features for building a higher-level representation. Subse-
quently, a fully connected deep LSTM network is proposed
in [32] to recognize action with a framework composed of
three LSTM and two feed-forward layers, incorporating the
co-occurrence regularization into the loss function, so explor-
ing the conjunctions of discriminative joints and different
co-occurrences for several actions. In [16], a deep LSTM
framework, based on RNN, is proposed to better localize the
start and end of action with a regressionmodule, to automati-
cally extract the features. This joint classification–regression
RNN considers the sequence frame by frame and does not

require a sliding window approach. A hierarchical approach
is also presented in [31], where they propose three explo-
ration fusion methods based on multilayer LSTM. The first
LSTM layer takes geometric features computed on the 3D
coordinates of the human joints; then, the upper LSTM lay-
ers investigate into more detail the input features, abstracting
them into a high level of knowledge. All these approaches
are characterized by a deep/hierarchical structure aiming at
recognizing high-level features for temporal data. Indeed, in
the presented work, a single LSTM layer is used but in com-
bination with CNN, so relying on the possibility to extract
spatial dependencies on the skeleton’s joints patterns. In [9],
we showed that a multi-scale LSTM approach resulted in
slightly lower performanceswith respect to the proposed one.

Other approaches dealt with the use of CNN for activity
recognition. For example, in [7], the skeleton sequence is
represented as a matrix concatenating all frames together in
chronological order. This allows us to treat the time sequence
of joints in a single image that is fed into a CNN model
for feature extraction and activity recognition. In [3], the
whole images, and not the skeletons, are used to extract joint
heatmaps (using CNNs) for each video frame and colorize
them using a specific color depending on the relative time. To
obtain a fixed-size representation independent of the duration
of the video, they aggregate the colorized heatmaps with dif-
ferent methods to obtain the clip-level representation with a
fixed dimension. The necessity of compressing temporal data
into single images is overcome by the use of 3D CNN that
recognizes spatial–temporal features applying convolutions
on a time series of frames [1,12]. Also in [19], the authors
consider as input for CNNall the skeleton joints of all frames,
arranged in a 3Dmatrix. This 3Dmatrix has in thefirst dimen-
sion the number of joints, in the seconddimension the number
of consecutive frames and in the third dimension the 3D coor-
dinates of the joints. Results of the CNN are then combined
with anLSTMusing a two-stage training strategy that focuses
first on CNN training and then on the entire CNN+LSTM
method. In our approach, the CNN takes as input each frame
of the sequence independently since temporal relationships
are deployed at the LSTM layer. In [30], the authors propose
a novel model of dynamics skeletons called spatial–temporal
graph convolutional networks (ST-GCN) tested on Kinetics
andNTU-RGBDdatasets. TheST-GCN implementations are
different from 2D or 3D CNN since the temporal properties
of the skeleton are kept together as in a graph. It follows the
similar implementation of graph convolution [14]. In [18],
the authors consider the action recognition and the human
pose estimation as one problem that they solve with a multi-
taskCNN.The human pose estimation is composed of aCNN
with one entry flow and K prediction blocks to estimate both
the 2Dand the 3Dposebyvolumetric heatmaps.Appearance-
based recognition relies on local visual features considering
also the objects used during the performed action. The results
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are combined to estimate the action. Finally, in [15], the
authors use a combination of CNN and LSTM to extract spa-
tiotemporal information, but differently from our approach
bymerging the individual scores obtained from the CNN and
the LSTM.Also in this case, contrary to themethod proposed
by us, they consider all the joints of the skeleton, extrapolat-
ing also other information of distance and trajectory between
the joints and the poses. The 3 LSTMmodels take in input the
real positions, distances between joints, distances between
joints and lines, while the 7 CNN models take in input the
joint distances maps and the joint trajectories maps in time to
generate color image to be fed into a CNNmodule. The inno-
vation in our proposed approach compared to similar works
presented so far is in proposing a new spatial representation
of the features of human pose.

Different approaches are presented in the literature that
are evaluated by the use of the CAD-60 dataset. These
approaches are mainly characterized by different features
extraction initial processes. In [4], for example, a k-means
clustering algorithmcomputes the “keyposes” to describe the
activity for each sequence with K centroids that composed
the features vector. In [25], the key poses are identified by
recognizing poseswith the kinetic energy close to zero to per-
form a sequence segmentation. This approach is shown to be
robust with respect to the temporal stretching of an action. In
[13], the fusion of 5-CNN is proposed for activity recogni-
tion, using motion history image (MHI), depth motion maps
(DMMs) (front, side, top) and skeleton images (an image rep-
resentation of the skeleton joints) as input. Eachdifferent type
of data is trained on a different CNN and the softmax scores
are fused to classify the activity. In [10], the distances and
motion features (evaluated as the distances between the initial
position of a joint and the position in the following frames)
form a total of 14 features that characterize the 12 activities
of the dataset. A dynamic Bayesian mixture model (DBMM)
is proposed to classify the activity considering the temporal
information. Depth-based action recognition is evaluated in
[33] using the spatial–temporal interest point (STIP) with the
combination of different interest point detectors and descrip-
tors. The SVM classifiers are used to detect the activity. A
neurobiologically motivated approach is presented in [21] to
recognize action in real time with the growing when required
(GWR) networks. The GWR network is a set of neurons that
dynamically change their topological structure according to
the input creating new neurons with different weights. The
architecture proposed is a two-stream hierarchy of GWRnet-
works that can learn spatiotemporal dependencies processing
in parallel the pose and motion features extracted from video
sequences.

In a recent work [17], Liu et al. proposed a classical
machine learning technique, selecting the features from the
skeleton data. First, they preprocessed the skeleton data
denoising, transforming andnormalizing the pose.Then, they

considered the position, the velocity and the acceleration of
the poses. The recognition method is a three-step weighted
voting process based on k-nearest neighbors (kNN). They
evaluated their method on MSR-Action3D and CAD-60
datasets, obtaining good results. Currently, this approach is
the one obtaining the best performance on precision and
recall for CAD-60 considering a whole video sequence. The
main difference between our work and [17] is that we use a
sliding window to solve a different problem. The obtained
model trained on 140 frames instances can classify activities
in real time on videos of a few seconds. We also tested our
model on the whole videos to compare our approach with
the others. Unlike the approaches applied on the CAD-60
dataset that select and extract features manually, we propose
a deep learning model for automatic feature extraction that
uses CNNs to extract spatial dependencies fromhuman poses
and LSTMs to extract temporal dependencies between poses.

3 The proposed approach

The proposed model aims to explore the combination of
CNN for representation learning and of LSTM for temporal
dependencies learning,which is proposed in applications that
concern spatiotemporal classification, like in [6] for video
description and in [20] for activity recognition from wear-
able devices data.

A CNN can be thought of as a hierarchy of convolutional
modules that progressively learn higher-level features. Each
convolutional module can be composed of: convolution lay-
ers that are banks of affine transformations of input (also
called kernels) applied on the grid input; detector layers that
apply a nonlinear activation function; and pooling layers for
reducing the input size and improving the statistical effi-
ciency. The CNNs are deep neural networks for processing
grid-like topology data (i.e., image data). Indeed, also the
skeleton data can be mapped into an image, but the proper
representation has to be investigated. Our initial aim was to
automate also the extraction of the spatial features consid-
ering all possible connections between the skeleton joints.
However, we found a reduced and concise representation that
could well describe the human pose.

To be efficiently applied for action recognition, the first
step is the transformation of the input data, the coordinates
(xi , yi , zi ) of each of the i th joint of the human body at
time t extracted by an RGB-D camera. Here, a novel rep-
resentation of the joints values is proposed. Given the vector
f = [x1, y1, z1, ..., xN , yN , zN ] of N skeleton joints, we
combine these features in a three-dimensional matrix consid-
ering the spatial dependencies between the limbs. We have
built a three-dimensionalmatrix to be invariant to translation,
rotation, and scale. This matrix is the representation of the
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Fig. 1 An abstract diagram of the proposed three-dimensional matrix
for human pose representation

posture and it is the input of the CNN that can automatically
extract the spatial features.

The input is composed of three matrices referring to data
related to the left arm (al )/leg (ll ), the trunk (t) and the right
arm (ar )/leg (lr ) of the human skeleton joints for each frame.
Every considered limb is constituted by three joints each. For
example, in the case of the left arm, the three joints are the
left shoulder (al [0]), the left elbow (al [1]) and the left hand
(al [2]). In the case of the left leg, the three joints are the left
hip (ll [0]), the left knee (ll [1]) and the left foot (ll [2]). The
same is for the right arm and leg. In the case of the trunk,
we have the head (t[0]), the neck (t[1]) and the torso (t[2]).
The aim is to recognize the spatial dependencies between the
limbs. Therefore, we model the following matrix represen-

tation:

⎡
⎣
al [x0] al [x1] al [x2] ll [x0] ll [x1] ll [x2]
al [y0] al [y1] al [y2] ll [y0] ll [y1] ll [y2]
al [z0] al [z1] al [z2] ll [z0] ll [z1] ll [z2]

⎤
⎦

⎡
⎣
t[x0] t[x1] t[x2] t[x0] t[x1] t[x2]
t[y0] t[y1] t[y2] t[y0] t[y1] t[y2]
t[z0] t[z1] t[z2] t[z0] t[z1] t[z2]

⎤
⎦

⎡
⎣
ar [x0] ar [x1] ar [x2] lr [x0] lr [x1] lr [x2]
ar [y0] ar [y1] ar [y2] lr [y0] lr [y1] lr [y2]
ar [z0] ar [z1] ar [z2] lr [z0] lr [z1] lr [z2]

⎤
⎦

Figure 1 shows an abstract diagram to explain the dispo-
sition of the limbs in our proposed three-dimensional matrix
for human pose representation and feature extractionwith the
CNN. Each limb is composed of three joints and represents
the rows of the three coordinates x, y and z. From this matrix
representation, CNN learns the spatial features that involve
the spatial limb correlations.

The proposed CNN is a three-layer deep network (see
Fig. 2). The three-matrix representation of the posture is
given as input to the first convolutional layer. It sizes 3×6×3
and has a set of kernels of size 1× 1 and stride 1 to consider
the spatial limb dependencies. Since the kernels size 1 × 1,
the first convolutional layer linear recombines the weights
based on the input featuremaps as a parametric pooling layer.
Therefore, its output sizes 3 × 6 × k1 and it is the input of
the second convolutional layer. The second layer has a set of
kernels of size 3× 3 with stride 1. Its output sizes 3× 6× k2
where k2 is the number of kernels. A max-pooling layer of
size 2×2 with stride 2 halves the resolution of the third layer
output and its output sizes 1×3×k2. The size of 2×2 instead
of the size of 3×2 is due to consider more information of the
coordinates x and y than the information of coordinate z. A
final layer flattens the output of the third layer concatenating
the values in a vector with a length of 1 · 3 · k2.

The features extracted by the CNN are the input of the
LSTM to identify the temporal dependencies of the change of
the postures during the instance sequence. Hence, the LSTM
layer takes as input a sequence of CNN output accumulating
the temporal dependencies between each frame of the video.
The LSTM input is a feature vector that contains the con-

Fig. 2 Combination of a CNN for automatic features extraction from the skeleton representation and an LSTM
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catenation of the weight matrix. The LSTM is composed of
a single layer and a number of neurons equal to the number of
the feature vector extracted from the CNN. A full-connected
layer with a softmax activation function classifies the activi-
ties performed in the video from the extracted features of the
LSTM.

4 Experimental evaluation

In this paragraph, we first introduce the dataset used for the
experimental evaluation. Then, we describe the configura-
tion of the proposed models and the results. Specifically, we
compared the CNN-LSTM model based on our 3D skele-
ton representation with an architecture composed only by an
LSTM layer to highlight the possible contribution of using
CNNand theproposed jointmatrix representation in account-
ing for spatial dependencies. Moreover, we will discuss our
results in comparison to other state-of-the-art approaches
tested on the same dataset.

4.1 Dataset

Our project aims at recognizing the ADL to monitor the
daily activities of elderly people. In this direction, we use
the cornell activity dataset (CAD-60) for training and test-
ing the deep networks. The CAD-60 [28] is composed of 60
RGB-D videos captured by a Microsoft Kinect, with twelve
activities performed in five environments. These videos are
accomplished by four subjects, two males and two females,
with one left-handed. The 12 labeled activities are: rinsing
mouth, brushing teeth, wearing contact lenses, talking on
the phone, drinking water, opening pill container, cooking
(chopping), cooking (stirring), talking on couch, relaxing on
couch, writing on whiteboard and working on computer. The
CAD-60 dataset has two more activities (random and still)
which are used together for classification assessment on test-
ing sets. The 5 environments are office, kitchen, bedroom,
bathroom and living room. The dataset is made up of RGB
and depth images, and the tracked skeleton. Fifteen of the
skeleton information are extracted for each frame. The total
number of videos is 68: 17 videos for each user.

We decided to use a temporal sliding window for consid-
ering all the contiguous frames, unlike [29] where they used
a deep learning approach by selecting one frame every six
frames of the videos to reduce redundancy and complex-
ity. The smallest video of the CAD-60 is of 147 frames;
therefore, we have set the instances of 140 frames (e.g., we
obtain 8 instances with a video of 147 frames). Thus, the
input sequence to the CNN-LSTM and LSTM models sizes
140 frames. Further considerations on the choice of the 140
frames window size can be found in the results of the CNN-

LSTM model. In all model configurations, the validation set
is 33% of the training set.

Table 1 shows the frequency distribution of the instances
extracted from the CAD-60 dataset with 140 frames for each
instance. In Table 1, we considered the environment and the
activity class performed by each user. Note that the numbers
of the instance are not balanced between the 13 activities.
In particular, the “random + still” activity has a number pro-
portional to the sum of the other activities for classification
assessment.

4.2 Data preprocessing

The number of skeleton joints tracked in CAD-60 is 15.
Eleven joints have both joint orientation and joint position
while 4 joints have only the joint position. We considered
only the joint positions of the 15 joints. To train our model on
140 frame instances, a temporal sliding windowwas applied.
For each 140 frame instance, we have performed three pre-
process steps for the coordinates of the skeleton joints as
follows:

1. Symmetrization. Since in the dataset, there is one left-
handed person, for each subject, we also considered
mirrored skeleton data. Tomirror the skeleton sequences,
we took the opposite values of the x coordinate that are
on the horizontal axis. In other words, the point coordi-
nates J = (x, y, z) become Jnew = (−x, y, z). This step
doubles the number of dataset instances.

2. Translation. We set the midpoint between the points of
the torso, left and right shoulder, left and right hand as the
origin of the coordinates system. Once the midpoint was
calculated, it was subtracted from the coordinates of the
joints to have the midpoint as the center of the skeleton
pose. For example, if we have a joint J = (x, y, z) and
the midpoint is Jmid = (xmid , ymid , zmid), the new joint
will be

Jnew = (x − xmid , y − ymid , z − zmid).

3. Normalization. We compute the mean and the standard
deviation for each instance to normalize the translated
data on a new origin using the standard score: Jnew =
(J−μ)/σ . The new coordinates are calculated following
the previous formula applied to each coordinate (x, y, z).
For each coordinate c (x, y, z), the following equation
applies to all the elements i of each sequence:

Jnewci =
{

(Jci − μc)/σc, if σc �= 0

0, otherwise
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Table 1 Number of 140 frame
instances for each environment
and each activity class

Environment Class User 1 User 2 User 3 User 4 Total

Bathroom Brushing teeth 1212 1536 1644 1441 5833

Random + still 2684 2074 2729 2785 10272

Rinsing mouth with water 1607 1307 1364 1726 6004

Wearing contact lenses 557 1137 544 822 3060

Bedroom Drinking water 1448 639 1171 1390 4648

Opening pill container 332 546 204 595 1677

Random + still 2684 2074 2729 2785 10272

Talking on the phone 1386 691 1149 1169 4395

Kitchen Cooking (chopping) 1426 1525 1615 1771 6337

Cooking (stirring) 1207 1210 1328 1696 5441

Drinking water 1448 639 1171 1390 4648

Opening pill container 332 546 204 595 1677

Random + still 2684 2074 2729 2785 10272

Living room Drinking water 1448 639 1171 1390 4648

Random + still 2684 2074 2729 2785 10272

Relaxing on couch 1308 1358 1240 1714 5620

Talking on couch 1542 1400 1573 1673 6188

Talking on the phone 1386 691 1149 1169 4395

Office Drinking water 1448 639 1171 1390 4648

Random + still 2684 2074 2729 2785 10272

Talking on the phone 1386 691 1149 1169 4395

Working on computer 1126 1391 1083 1523 5123

Writing on whiteboard 1653 1498 1458 1653 6262

where μc is the mean of the whole 140 frame sequence
on the c coordinate while σc is the standard deviation of
the whole 140 frame sequence on the c coordinate.

4.3 Model settings

The settings of the deep models have an important role in
the gradient convergence, preventing overfitting on this tiny
dataset. We used the Glorot normal initializer, also called
Xavier normal initializer for the initialization of the LSTM
weights for each deep model. The experiments showed that
the deep models performed well with a dropout set at 0.25
after the max-pooling layer of the CNN and at 0.5 on the
LSTM layer. CNN has 32 kernels in the two convolutional
layers for a reduction of the number of parameters.

The CNN-LSTM model is compared with an LSTM
model. The lattermodel is the sameas theCNN-LSTMmodel
without the CNN level. To make the comparison, we left the
same LSTM layer configuration for both models. Both mod-
els receive an input sequence of human poses. Thus, in the
LSTM model, we have consecutively a single LSTM layer,
that extracts the temporal dependencies from the features
vector f = [x1, y1, z1, ..., xN , yN , zN ] of N skeleton joints
representing the human pose (without considering the spatial

dependencies with a CNN), and a full-connected layer with
a softmax activation function, that classifies the activities.

4.4 Implementation details

We used the API of Keras library that is designed to simplify
the development of the neural network. Originally developed
on top of Tensorflow, now it is part of the Tensorflow library
with the Tensorflow version 2.0. During the experiments, we
ran the training and the testing on Keras version 1.2.2 with
Tensorflow version 0.12.01.

5 Classification results

Two different settings are considered in the original work
on CAD-60 [27]: “New Person” and “Have Seen” settings.
The most considered experimental setting in all the research
works on CAD-60 is the “New Person” to guarantee the
generalization of the classifier. The “New Person” setting
is defined as a “Leave One Out (LOO)” cross-validation that
is, the training set consists of three of the four people and the
test set consists of the fourth one. In the “Have Seen” setting,

1 The code is available upon request
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Table 2 Precision (P) and recall (R) of the LSTM and CNN-LSTMmodels on sequences of 140 frames for “New Person” and “Have Seen” setting
on 140 frames window

Location Activity New Person Have Seen
LSTM CNN-LSTM LSTM CNN-LSTM

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Bathroom Brushing teeth 96.8 100.0 100.0 98.7 96.6 100.0 100.0 99.8

Random + still 71.4 90.5 94.0 93.4 91.8 91.2 93.3 93.5

Rinsing mouth 93.9 92.3 94.6 87.7 92.8 84.4 95.8 88.0

Wearing lens 89.7 98.9 89.9 98.0 95.5 97.3 88.8 94.0

Average 94.9 94.1 94.9 93.9 93.6 92.4 94.9 93.9

Bedroom Drinking water 94.7 97.5 94.9 90.7 96.7 89.9 95.8 93.0

Opening pill container 82.3 97.3 94.0 96.9 93.1 99.2 89.4 100.0

Random + still 99.5 91.1 99.5 96.9 99.5 90.8 99.8 95.2

Talking on phone 91.2 95.6 89.3 94.4 88.7 99.5 90.3 95.9

Average 95.2 93.9 95.9 94.7 95.2 92.8 96.1 95.11

Kitchen Cooking (chopping) 95.4 74.3 88.8 94.5 80.0 100.0 87.5 100.0

Cooking (stirring) 98.8 94.4 91.1 74.8 96.8 66.4 99.7 77.1

Drinking water 94.9 100.0 99.1 99.7 92.5 100.0 95.3 99.4

Opening container 80.7 92.4 85.5 95.5 83.3 99.0 87.3 99.2

Random + still 98.2 91.5 95.3 94.7 100.0 90.1 98.9 94.5

Average 96.4 95.3 93.1 91.6 92.9 89.9 95.3 93.7

Living room Drinking water 91.7 95.2 99.8 93.1 90.4 99.1 98.9 97.8

Random + still 100.0 93.1 99.0 98.5 99.7 91.9 100.0 97.7

Relaxing on couch 100.0 100.0 100.0 100.0 99.8 100.0 100.0 84.8

Talking on couch 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0

Talking on phone 91.0 98.1 92.5 99.2 92.4 97.9 88.4 99.7

Average 97.4 96.8 98.7 98.5 97.4 96.7 98.4 96.4

Office Drinking water 91.7 93.5 95.0 90.5 92.4 90.8 97.8 83.6

Random + still 97.2 87.3 97.8 93.9 100.0 84.3 99.1 91.2

Talking on phone 78.2 96.3 80.5 95.5 73.7 99.2 89.1 98.7

Working on computer 100.0 100.0 100.0 100.0 98.8 100.0 100.0 100.0

Writing on whiteboard 89.4 75.7 94.3 85.3 65.2 76.7 90.5 100.0

Average 91.6 89.5 94.3 93.0 87.9 88.3 95.7 94.27

Overall average 95.1 93.9 95.4 94.4 93.3 92.0 96.1 94.7

the model is trained with half of the testing subject’s data
and the other half is included in the tests. In the literature, the
CAD-60 is split according to the considered environment.
The final results are the average precision and recall among
all the environments.

Table 2 shows the classification precision and recall of
the proposed CNN-LSTM model in comparison with the
LSTM model for each environment and for both the “New
Person” and the “Have Seen” settings. First, we notice that
the test set results of the CNN-LSTM model are better than
the LSTM model and they are similar in both the settings,
but with slightly better performance in the Have Seen set-
ting.

Both models are expected to suffer from overfitting with
a small training set. Especially in cases where there are a

small number of training examples, the model may adapt
to features that are specific only to the training set; there-
fore, in the presence of overfitting, the performance of the
prediction on the training data will increase, while the per-
formance in the test set will be worse. Hence, overfitting
on data could have an impact more on the “Have Seen”
setting, leading to better results, since training and testing
are both obtained from the same subjects. Indeed, since
performance in the “New Person” setting is very simi-
lar to the Have Seen case, we can consider overfitting as
marginal.

From now on, we will make considerations only on the
“New Person” setting.
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Fig. 3 Overall activity
confusion matrix in “New
Person” setting with the
CNN-LSTM model on 140
frames window

5.1 LSTM results

In the Living Room (97.4% and 96.8%) and the Kitchen
(96.4% and 95.3%) environments, using the LSTM model,
we achieved the best results in the “New Person” setting (see
Table 2) thanks to the recognition of the activity temporal
patterns. The worst results are achieved in the Office envi-
ronment (91.63% and 89.49%). “Relaxing on couch” and
“talking on couch” are discriminated at 100%, perhaps for the
stationary character of the activities, while the LSTMmodel
has difficulty in the disambiguation of “talking on phone”
and “drinking water” in the Living Room and Office envi-
ronment probably due to their similarities. For “writing on
whiteboard,” the LSTM model predicts “talking on phone”
in the 20.6%of cases or “random+ still” in the 3.6%of cases,
thus its accuracy is lower than “talking on phone” accuracy.

5.2 CNN-LSTM results

Considering the CNN-LSTM model, we have an improve-
ment in the results compared to the LSTM model results.
This is particularly evident in the Office environment. The
lowest results are obtained in the Kitchen that, as previously
discussed, has activities with periodic patterns as chopping.
TheCNN-LSTMmodel behaves better where the LSTMgets
worse. We can see in Table 2 that the CNN-LSTMmodel has
better results in precision in the Bathroom environment with
the “random + still” (71.4% vs 94.0%), and in the Bedroom
and the Kitchen environments with the “opening container”
(82.3% vs 94.0% in the Bedroom and 80.7% vs 85.5% in the
Kitchen). There are also different results in the Office envi-
ronment in precision and recall respectively for the “talking
on the phone” (78.2% and 96.3% vs 80.5% and 95.5%) and
“writing on whiteboard” (89.4% and 75.7% vs 94.3% and
85.3%).

The overall activity confusion matrix, presented in Fig. 3,
shows the results in the “New Person” setting with the CNN-
LSTMmodel.We can see that “cooking (stirring),” “drinking
water,” “random + still,” “rising mouth with water” and
“writing on whiteboard” have lower accuracy than the other
activities considering only the 140 frames as an instance.

Thanks to the representation of the skeleton with a 3D
matrix, the results obtained with the CNN-LSTM model
improve in comparison with LSTM. To evaluate the impact
of the proposed approach, different combinations of input
matrix have been texted leading to lower performance. For
example, by inverting the left leg with the right arm, so to
have in the first matrix the two arms, and in the last one the
two legs, we got 92.74% of precision and 92.30% of recall
against 95.40% and 94.38% of the proposed 3D matrix rep-
resentation.

5.3 Statistical hypothesis test

In general, the model that best predicts unseen data might
be the model with the maximum accuracy or minimum error
for classification or regression problems. We can trust the
model selected with the maximum accuracy or minimum
error by applying a statistical hypothesis test. We applied
the McNemar’s test to check whether the slightest differ-
ences we have between the CNN-LSTM model (97.00%
of precision and 98.00% of recall) and the LSTM model
(95.07% of precision and 96.46% of recall) are significant.
TheMcNemar’s test strongly confirmed that theCNN-LSTM
model was significantly better than the LSTM model (χ2 =
136026, p − value < 0.0001) at a 95% confidence interval.
In short, the results of the CNN-LSTM models were statisti-
cally significant at a significance level of 0.05.
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5.4 Window size results

Let us now consider the possible impact on the perfor-
mance of the instances’ window size. In order to do so,
wemade additional experimentation considering other frame
windows: 50 and 100 frames. The results are shown in
Table 4.With respect to 140 frames, as expected, considering
fewer frames yields a decrease in performance (precision and
recall). However, in view of the application of the proposed
approach in real settings, fewer frames can still be considered
since achieving good performance.

5.5 Comparison with the SoA

The CNN-LSTM model achieves, in average, 95.4% and
94.4% on precision and recall. In Table 3, we reported our
average results with respect to other approaches in the litera-
ture. We must emphasize the fact that we get such results
considering instances of 140 frames, while all the other
works, reported in Table 3, considered the activity recog-
nition on the entire videos. The shortest video is of 147
frames, while the longest video is of 1961 frames. The aver-
age number of frames is about 1181 frames with 595 for
standard deviation. Hence, our approach achieves a better
performance with respect to all the other cases only consid-
ering small video sequences and skeleton data only. The only
exception is the work of [17].

Applying the proposed model on the entire videos with
the “New Person” setting, we obtained 96.46% of recall and
95.07% of precision with the LSTM model and we obtained
98.00% of recall and 97.00% of precision with the CNN-
LSTMmodel reaching such state-of-the-art results in activity
recognition on the CAD-60 dataset. Such results are obtained
with a sliding window of 140 frames applied to each video,
and by considering, for each classification result, only the
output with an accuracy greater than 80%. The result of a
classification process is then themost recognized activity. For
example, on a video of the activity “drinking water” formed
by 1448 instances of 140 frames we considered only the
results of classifications with a probability greater than 80%.
We obtained 1291 instances that are classified as “drinking
water,” 12 as “random + still” and 41 as “talking on the
phone.” The predicted activity is, therefore, “drinking water”
as it has been predicted more times over the entire video.

The comparison is made on the state of the art applied to
the CAD-60 dataset. The classification in these SoAworks is
performed on the entire frame sequence of each video using
manual features extraction and a classic machine learning
algorithm. The latter essentially involves the extraction of
the characteristic poses of an activity using mainly clustering
to select the significant poses that best describe the activity
performed. We want to emphasize instead that the results
we have obtained on the single instances are not comparable

Table 3 State-of-the-art results on CAD-60 dataset

Algorithm “New Person”

Precision Recall

Zhu W. et al. [33] 93.2% 84.6%

Faria D.R. et al. [10] 91.1% 91.9%

Shan J. et al. [25] 93.8% 94.5%

Parisi G.I. et al. [21] 91.9% 90.2%

Cipitelli E. et al. [4] 93.9% 93.5%

Khaire P. et al. [13] 93.1% 90.0%

Liu T. et al. [17] 97.97% 95.75%

Our LSTM 95.07% 96.46%

Our CNN-LSTM 97.00% 98.00%

Table 4 Results of our approach using different frame window on
CAD-60 dataset with “New Person” setting

Model “New Person”

Precision Recall

LSTM on 50 frames 91.21% 89.13%

LSTM on 100 frames 93.08% 91.55%

LSTM on 140 frames 95.10% 93.88%

CNN-LSTM on 50 frames 90.02% 88.89%

CNN-LSTM on 100 frames 92.22% 90.54%

CNN-LSTM on 140 frames 95.40% 94.38%

with the other works. On the contrary, the results obtained by
applying the sliding window on the entire video are compa-
rable. Moreover, as a difference of the SoA, we have carried
out an automatic extraction of the features that is the basis
of the potential of deep learning models. However, a prepro-
cessing phase, which does not include feature selection, is
necessary to train and run neural network models.

On average, only 4% of the frames for each video were
discarded due to lower accuracy. Only two videos, regarding
the third user, were not correctly recognized. Respectively,
in the Kitchen environment, the “cooking (stirring)” activ-
ity was classified as “cooking (chopping)” and, in the Office
environment, the “writing on whiteboard” activity was clas-
sified as “talking on the phone.” We must emphasize that the
third user is left-handed and the “cooking (stirring)” and the
“cooking (chopping)” as the “writing on whiteboard” and
the “talking on the phone” are very similar if we consider the
movement of the human skeleton.

Considering the confusion matrix reported in Fig. 3, we
can observe that, although on average some activities have a
lower recognition rate, we reached 98% of recall and 97% of
precision on the entire videos with 140 frames sliding win-
dow approach. In this case, we supposed that some instances,
i.e., subsequences of the videos, are the most likely to pro-
vide relevant information to correctly identify an activity

123



184 Intelligent Service Robotics (2021) 14:175–185

while others are not. Indeed, this issue has to be taken into
account when performing online recognition on sequences
with a small number of frames.

5.6 Real setting configuration

The UPA4SAR project aimed at assisting and monitoring
elderly people in their homes. Hence, we conducted the
experimentation in real houses of the participants. Seven
patients participated in the trials interacting with the robot
for 2 weeks each. The experiments were performed by the
robot in full autonomy, without the presence of an operator.
For privacy and security reasons, it was not possible to save
any video or audio and the robot had no internet access during
the experimentation.

For training the network, we collected data from real
patients during preliminary experiments in a laboratory
resembling a house environment. The considered activities
were, “talking and relaxing on the couch,” “watching TV,”
“working on PC,” “ironing,” “making coffee” and “talking
on the phone.”

The robotic system used for experimentation consisted of
a Sanbot robot and an Intel NUC (Intel NUC 8i7BEH2, Intel
Core i7-8559U 4,5 GHz, 16 GB RAM, 250 GB SSD) for the
execution of artificial intelligence algorithms that required
computing power. During the daily experiments, aWorkflow
Manager [5], running on the Intel NUC, planned and sched-
uled the activities to be performed by the robot.

Among the activities, delivered as services [2] at particu-
lar times during the day, the robot was requested to monitor
the user activity in order to check whether a specific activity
was being performed by the user or not. This request was
followed by the user search [26]. The robot searching for the
user positioned itself in front of the user and, once identi-
fied the user through facial recognition, the robot recorded
10 seconds of video, sending the frames to the Intel NUC to
extract the skeleton poses. From the extracted skeleton poses,
we applied a sliding window of 140 frames and we classi-
fied the activity performed on each instance. The recognized
activity is the one with the highest number of recognitions
from the ones with the confidence greater than 80%. In case
the recognized activity was not the one “expected” the robot
performed the recognition process three times leading even-
tually to a dialogue with the user in the case of mismatch.

The running time for a single 140 frames classificationwas
about 0.015 seconds on the Intel Core i7-8559U 4.5GHz,
while it was 2.42 seconds for processing the whole 10 sec-
onds of data. Classification data cannot be reported because
for privacy reasons videos were not saved and so it was not
possible to get a ground truth.

6 Conclusions

In this work, we presented a CNN-LSTM model for activ-
ity recognition working on a matrix representation of the
skeleton joints. To handle the spatial dependencies the CNN-
LSTM model uses a CNN, while an LSTM is used to deal
with the temporal dependencies. The LSTMs are used as
memory cells for learningperiodic pattern from the sequence.
The issues faced during this work are due to the tiny datasets,
the RGB-D camera errors and the different activities’ speed
of motion. The CNN-LSTM model exceeds the speed (short
and long term) dependencies and it is made up of two small
convolutional layers, a pooling layer and an LSTM to auto-
matically extract spatial patterns from the skeleton data and
temporal patterns from the sequences of frames. Regarding
preprocessing and feature extraction, our model differs from
the others proposed in the state of the art since it automati-
cally extracts the features from the raw data.

Themodel is applied to short subsequences of the videos to
be used for real-time activity recognition.We decided to clas-
sify the activity on a sequence of 140 frames that correspond
to 4.7s with 30 f ps. The running time for the classification of
a sequence of 140 frames is about 0.015 seconds on IntelCore
i7-8559U4.5GHz. The obtained resultswere comparedwith
the results of a simple LSTM.

Starting from solving a different problem with respect to
the literature, the results of CNN-LSTM approach on the
entire videos of CAD-60 (each video is about 45s) with the
setting “NewPerson” show such performance in linewith the
state of the art (98.00% of recall and 97.00% of precision).
The main difference of our model with a classical machine
learning approach is that, if we train our model with enough
data, we can run the model in a real environment without
having to train or tune the parameters and without the need
for preprocessing and feature extraction. As future work, we
will conduct additional experiments to test the performance
of our approach on real HRI experiments and larger datasets.
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