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Abstract
Purpose The interplay between microbial taxonomy, functional diversity, and land-use changes across diverse ecosystems 
must be better understood. This study explores, through a statistical modeling approach, the intricate relationships between 
microbial communities, soil properties (nutrient contents and physicochemical parameters), and land-use changes, using 
stable isotopes ratio (δ13C/δ15N) as ecosystem function indicator.
Methods Using Structural Equation Modeling (SEM) this study aims to investigate how soil microbial communities, soil 
properties and ecosystem function are interconnected in three ecosystems undergoing land-use change in Nevado de Toluca, 
Mexico.
Results Multivariate analyses of microbial communities and soil parameters for the different land-uses reveal significant 
variation in both microbial composition and soil properties (i.e. nutrient contents) mainly explained by the land-use history 
of the studied ecosystems. Through the SEM approach, it was possible to disentangle the relative contribution of land-use 
change, microbial community composition and nutrient contents to the ecosystem function defined as the δ13C/δ15N ratio.
Conclusions Microbial communities are the main drivers of soil ecosystem functioning. However, through SEM approach 
it is possible to formally test direct and indirect relationships impacting microbial communities and the resulting functional 
consequences, contributing to a mechanistic understanding of the ecological implications of land-use change, aiding in 
sustainable land-use decision-making.

Keywords Soil microbial ecology · Statistical modeling · Stable isotopes · Structural Equation Modeling

1 Introduction

Microbial communities, as both the architects and opera-
tors of ecosystems, play a fundamental role in the minerali-
zation of plant residues, thereby significantly influencing 

the cycling and storage of carbon and nitrogen (Wang et al. 
2020). In recent years, the interplay between microbial tax-
onomy and functional diversity has been recognized as a piv-
otal factor steering soil nutrient cycling across various eco-
systems, such as crop fields, grasslands, and forests (He et al. 
2023; Singavarapu et al. 2023). Nevertheless, the nuanced 
responses of microbial community structure and function 
to the complex mosaics of land-use changes across vary-
ing temporal scales remain elusive (George et al. 2019). In 
this context, the utilization of stable isotopes in soil ecology 
emerges as a powerful instrument for exploring the historical 
activities of microbial communities. Stable isotopes, such as 
13C and 15N, serve as robust indicators of previous environ-
mental changing conditions in soil over time, through intri-
cate biogeochemical processes (Craine et al. 2015; Zhang 
et al. 2018; Choi et al. 2023; Park et al. 2023). Changes in 
land-use from natural ecosystems to agriculture or forestry, 
can notably impact isotopic composition (Gerschlauer et al. 
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2019; Ngaba et al. 2019). For instance, the replacement of 
native C3 plants with C4 crops and shifts in organic matter 
inputs – in terms of quantity, quality, and composition – can 
exert direct effects on the microbial communities engaged 
in organic matter decomposition, altering δ13C values (Diels 
et al. 2004; Wynn and Bird 2008). In addition, altered nutri-
ent inputs from fertilization practices and changes in primary 
productivity can shift δ15N values (Craine et al. 2015; Park 
et al. 2023). Thus, in principle, δ13C/δ15N ratio as isotopic 
tapestry of any ecosystem can be taken as an indicator of 
its historical functioning, offering invaluable insights into 
past alterations in vegetation, shifts in carbon and nitrogen 
sources, as well as, the microbial activity dynamics (Choi 
et al. 2023; Tang et al. 2023).

Microbial communities are pivotal not only in nutrient 
cycling and organic matter decomposition but also in the 
restoration of ecological interactions (Singh et al. 2019; Hu 
et al. 2022). However, understanding how these communities 
and ecosystem functioning recover after land-use change is 
complex and influenced by multiple factors such as sever-
ity and duration of the land-use alteration, ecosystem type, 
and microbial communities adaptability (Tosi et al. 2016; 
McKinley 2019; Pérez-Hernández and Gavilán 2021). These 
relationships involve ecological interactions and feedback 
mechanisms. In this context, Structural Equation Modeling 
(SEM) is a powerful tool to understand the complex pro-
cesses and mechanisms such as trophic interactions (Shao 
et al. 2015; Jiang et al. 2020), community dynamics (Luan 
et al. 2020; Ma et al. 2022), and ecosystem stability (Chen 
et al. 2021; Xu et al. 2021; Zhang et al. 2021a, b) based in 
causal-effect relationships (Heck and Thomas 2020). SEM 
offers a valuable approach for testing multivariate hypoth-
eses that integrate multiple variables and relationships in 
a quantitative and visual manner (Shao et al. 2015; Hair 
et al. 2021). Also, SEM allows evaluating different models 
and incorporate empirical data from diverse sources into a 
unified framework that considers direct and indirect cause-
effect relationships, including measurement error, typically 
overlooked in traditional linear models, (Saborío‐Montero 
et al. 2020; Lai and Hsiao 2022;). Moreover, SEM enables 
the modeling of composite variables as latent variables, 
which are not individually quantified but are inferred from 
multiple observed or measured variables, allowing for the 
identification of the most plausible and parsimonious expla-
nation for the observed patterns (Fan et al. 2016).

In this study, employing a SEM approach, we identified 
the relative significance of the microbial community com-
position, environmental variables, and metabolic diversity 
focused on the δ13C/δ15N isotopic signature as indicator 
of ecosystem functioning along an altitudinal gradient of 
land use conversion in Nevado de Toluca, Mexico. The 
bidirectional relationship between microbial composition 
and nutrient content has been extensively documented 

(Jing et  al. 2020; Jiao et  al. 2021; Kang et  al. 2021; 
Philippot et al. 2023). Moreover, the relationship between 
soil microbial composition and environmental variables 
(including management practices) in different functional 
outcomes has been investigated in previous research (Sun 
et al. 2020; Liu et al. 2022; Xue et al. 2022). In addition, 
previous studies have shown that soil microbial composi-
tion and nutrient dynamics are also influenced by some 
environmental variables such as pH, soil organic matter 
(SOM) quality and quantity, nutrient content, etc. (Lauber  
et al. 2008; Trivedi et al. 2016; Fierer 2017; Philippot 
et al. 2023). Finally, it has been documented that land-
use change negatively influences biodiversity and nutri-
ent content, (Felipe-Lucia et al. 2020; Hasan et al. 2020). 
Based on these findings, we hypothesized the reciprocal 
(bidirectional) interaction between soil properties and 
microbial communities, and microbial communities acting 
as mediators of the effects of land-use change in soil func-
tional response (δ13C/δ15N). Testing these hypothetical 
relationships is crucial for understanding the consequences 
of land-use changes in the underlying mechanisms of func-
tional ecosystem processes and provide valuable insights 
for a sustainable land-management decision making.

2  Materials and methods

2.1  Experimental design and study sites

The study was conducted at Nevado de Toluca, Central 
Mexico (Fig. 1), which is the fourth highest formation in 
Mexico reaching 4645 m above sea level (masl). The cli-
mate in the area is characterized by semicol-subhumid C(E)
wig and cold E(T)Hwig conditions (García 1990). The main 
ecosystems observed are temperate forests, which include 
species such as Abies, Pinus and Quercus, situated between 
3000 to 4100 masl. Additionally, there are high mountain 
grasslands consisting of Festuca and Calamagrostis, found 
at altitudes ranging from 4100 to 4500 masl (Calderón de 
Rzedowski and Rzedowski 2005).

To statistically evaluate the relationship between land-use 
change, soil properties (nutrient contents and physicochemi-
cal parameters), microbial diversity, and their influence on 
stable isotopes measures as ecosystem functioning indica-
tors, soil samples were collected from six sites with different 
land-use at different altitudinal floors (3200, 3400 and 4000 
masl). The corresponding pairs of sites with contrasting 
land-use were: grassland-burned grassland, pine-reforested 
pine and fir-agriculture. As contextual background for the 
sites, we include the C and N stable isotopes of the dominant 
vegetation (González Contreras 2019) in each ecosystem 
studied (Table 1).
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Fig. 1  Location of sampling sites at Nevado de Toluca, Mexico. Six types of land-use: Fir (solid circles), Agriculture (open circles), Pine (solid 
triangles), Reforested pine (open triangles), Grassland (solid squares) and Burned grassland (open squares) in Santiago Tlacotepec, Mexico

Table 1  Characteristics of land-use change pairs sites (original vs transformed)

*NA Not available at the time of sampling
a González Contreras (2019)

Site Status Time of  
conversion
(years)

Dominant vegetation (sp) Altitude
(masl)

δ13C
‰(PDB)a

δ15N
‰(ATM)a

Fir Original 0 Abies religiosa 3275 -31.46 (0.91) -3.484 (0.588)
Agriculture Transformed 50 Solanum tuberosum 3268 NA* NA*
Pine Original 0 Pinus hartwegii 3959 -29.79 (0.72) -4.65 (0.90)
Reforested pine Transformed 30 Pinus montezumae 3284 -29.75 (0.91) -3.23 (1.03)
Grassland Original 0 Festuca tolucensis 4101 -26.35 (0.81) -6.392 (1.17)
Burned grassland Transformed 5 Festuca tolucensis 4059 -27.24 (0.69) -5.105 (1.24)
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2.2  Sampling

At each site, a 30 × 30 m plot was established for sampling. 
Specifically, three equidistant rows (10 m apart) were drawn, 
and three soil cores (7.5 cm in diameter and 10 cm deep) 
were taken from three equidistant points (10 m apart) in 
each row. For the physicochemical and microbial diversity 
analyses, samples taken at each point were combined into 
one composite sample per row for a total of three composite 
samples per site (N = 18). Samples for microbial diversity 
analyses were added to 50 mL centrifuge tubes contain-
ing RNAlater™ (SIGMA) (1:1), RNAlater™ was removed 
before sample storage at -80 ºC until DNA extraction. Sam-
ples for the physicochemical analyses were stored in high 
density black plastic bags at room temperature (RT) until 
processed. Samples for C and N isotopic measurements were 
taken individually (N = 36) and stored at RT.

2.3  Physicochemical analyses

Soil samples were sieved to 2 mm and air-dried for physico-
chemical characterization. Soil organic carbon (SOC) was 
analyzed using a ground subsample of 5 g of soil that passed 
through a 100-mesh screen by dry digestion at 900 ºC in an 
automated C- analyzer (Shimadzu 5050A, Canada), concen-
tration of total soil N (TN) was determined by acid digestion 
in  H2SO4 with the Kjeldahl method (Bremner 1960), phos-
phorus content (TP) was determined using the Olsen Method 
(Sims 2000). Ca, Mg and Fe concentrations were determined 
by atomic absorption, K and Na by atomic emission. Particle 
size distribution (clay, silt, and sand) was analyzed using the 
modified hydrometer method (Gee and Bauder 1986). The 
pH was determined in water (1:2 w/v). Analysis of vari-
ance (ANOVA) and Tukey’s HSD mean comparisons test at 
P < 0.05 were used to show differences of the soil physico-
chemical parameters among different land-use ecosystems.

2.4  DNA extraction and 16S rRNA sequencing

Genomic DNA from each sample was extracted using 
 DNAeasy®  PowerSoil® Kit (Qiagen, Valencia CA, USA) 
according to manufacturer instructions with the following 
modifications: 0.5 g of sample instead of 0.25 g was used 
and incubation periods at 4 °C were increased from 5 to 20 
min. Genomic DNA samples were submitted to Macrogen 
laboratory for 16S rRNA gene sequencing of V3-V4 region 
(341F/805R primer set) (Herlemann et al. 2011) using an 
Illumina MiSeq instrument.

2.5  16S rRNA sequence data processing

Illumina raw sequences (7,720,761) were processed, and 
quality filtered using Quantitative Insights into Microbial 

Ecology (QIIME 2). Chimera and amplicon sequence 
variants (ASVs) identification were performed using 
the DADA2 algorithm. Because of quality, only forward 
sequences were trimmed by 30 base pairs (bp) and truncated 
at 220 bp during the ASV clustering in DADA2. The filtered 
sequences (5,489,149) were assigned using SILVA database 
(v138.1). For the compositional nature of the metagenomic 
data, a center log ratio (CLR) normalization was performed 
with the Microbiome Analyst web-based tool (https:// www. 
micro biome analy st. ca). The raw data were deposited in the 
NCBI sequence read archive (SRA) under the accession 
number PRJNA1037141.

2.6  Characterization C and N stable isotopes

Soil samples for carbon (δ13C) and nitrogen (δ15N) stable 
isotope analyses were collected in the southwest corner of 
each plot: 0–15 and 15–30 cm-deep soil cores were col-
lected with a 3.2 cm-diameter auger (Dorme Soil Samplers; 
Australia) and placed in sealed plastic bags and transported 
to the laboratory where they were kept refrigerated at 4 ºC 
until they were processed. The processed samples were 
sent to the Environmental Isotope Laboratory, University 
of Arizona, USA for dC13 and dN15 detection with a con-
tinuous flow mass spectrometer (Finnigan Delta PlusXL; 
USA) coupled to an elemental analyzer (Costech, Analytical 
Technologies Inc; USA) using acetanilide as standard for C 
and N. The values of δ13C and δ15N were expressed in parts 
per thousand (‰) according to the international standard 
(δ13C, Vienna-PeeDee Belemnite; δ15N, atmospheric  N2) in 
the conventional δ-notation, where the X refers to 13C or 15N 
and  Rsample and  Rstandard are the 13C/12C or 15N/14N ratios of 
sample and standard, respectively:

2.7  Microbial diversity analyses

Alpha diversity Chao1 diversity index was calculated from 
the ASV tables derived from the bioinformatic sequence 
analysis using the phyloseq R package (McMurdie and  
Holmes 2013). Post-hoc T-student tests were applied to 
detect differences between treatments using the R package 
(Constantin and Patil 2021).

2.8  Beta diversity

Aitchinson distance matrices were calculated and Non- 
Metric Multidimensional Scaling (NMDS) at order level were 
performed using the vegdist function of the vegan package in 
R (Oksanen et al. 2022). Permutational Analysis of Variance 

�X =

[(

Rsample

Rstandard

)

− 1

]

∗ 1, 000‰

https://www.microbiomeanalyst.ca
https://www.microbiomeanalyst.ca
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analysis (PERMANOVA) and LDA Effect size (LEfSe)  
analysis were performed to test differences between land- 
use categories using the Microbiome Analyst web-based tool 
(Dhariwal et al. 2017).

2.9  Modeling approach

A structural equation modeling approach (SEM) was used to 
tests the hypothesis that soil properties and microbial communi-
ties in reciprocal interaction act as mediators of the effects of 
land-use over the soil functional response (δ13C/δ15N ratio). 
Based on the literature, we expected: (i) direct unidirectional 
relationships between land-use and nutrient content (negative), 
nutrient content and δ13C/δ15N (positive and negative), micro-
bial community and δ13C/δ15N (positive and negative) (Qun and 
Geng-Xing 2010; Adugna and Abegaz 2016; Djodjic et al. 2021; 
Farooq et al. 2021; Jeong et al. 2023), (ii) direct, bidirectional and 
positive relationship between microbial community and nutri-
ent content (Allison et al. 2007; Cui et al. 2018; Xu et al. 2022; 
Philippot et al. 2023), and (iii) indirect relationship, mediated by 
microbial community, between nutrient content and δ13C/δ15N.

The input variables for the model were selected and optimized 
in two steps. First, since the number of explanatory variables 
corresponding to microbial diversity was very large (> 50 Bac-
teria and Archaea orders), we performed an efficient branch- 
and-bound algorithm implemented on the regsubsets function 
in the leaps R package (Lumley 2020) to determine the ten best 
models that better explain δ13C/δ15N ratio variances according 
with the Akaike Information Criterion (AIC). Second, to explain 
the variance of the outcome δ13C/δ15N ratio as ecosystem func-
tion indicator, a SEM was constructed using the R package the 
lavaan (Latent Variable Analysis, v 0.6–17, (Rosseel 2012), 
where the following interactions were tested: 1) land-use as a 
latent variable (time of conversion and managed/not managed 
categorical variable), 2) nutrient content as a composite variable 
(N,  NO3, SOM) and, 3) microbial community, as latent variable 
(only the three orders that exhibit significant differences with the 
response variable).

Statistical significance estimates were calculated by Maxi-
mum Likelihood and Non-Linear Minimization Subject to 
Box Constraints (NLMINB) was used as optimization method. 
Finally, the goodness of fit for the overall model was judged 
by the  X2-test (p < 0.05) and RMSEA (< 0.05) (Root-Mean-
Square Error Approximation) statistic for statistical signifi-
cance (Gao et al. 2020) previous.

3  Results

3.1  Soil physicochemical analyses

Soil physicochemical properties within the pairs of land use 
changes (original versus transformed) indicate variations 

from fir forest to agricultural land and, from pine forest to 
reforested pine (Table 2). Notably, the conversion from fir 
forest to agriculture presents the most substantial alterations, 
with 11 out of the 15 measured variables experiencing modi-
fications. This conversion is marked by a shift to increased 
soil acidity, higher electrical conductivity, and elevated 
levels of organic matter, as well as, nitrogen, and calcium. 
Simultaneously, iron content decreased, while phosphorus, 
potassium, and, notably, nitrate increased. Conversely, the 
transition from pine forest to reforested pine showed an 
increase in organic matter, nitrogen, potassium, calcium, 
magnesium, and iron content.

In the case of the land use change from grassland to 
burned grassland, no statistically significant differences 
were observed (P < 0.05). Finally, ammonium, total phos-
phorus, and total carbon content remained unaltered in all 
sampled sites.

3.2  Microbial diversity

Microbial diversity measured as alpha diversity using the 
Chao1 index along different land use sites (original versus 
transformed) showed significant variations. Specifically, 
marked variations were evident in the transitions from fir 
forest to agricultural land and, from pine forest to reforested 
pine (Fig. 2). The conversion from fir forest to agriculture 
resulted in a reduction in diversity, while the transition from 
pine forest to reforested pine was associated with a diversity 
increase. Conversely, there were no differences in diversity 
between grassland and burned grassland sites.

Furthermore, these disparities were further underscored 
at beta diversity by the multidimensional ordination analy-
sis, we observe differences associated with land-use in 
which geographic proximity also played a pivotal role, 
leading to greater similarity among nearby sites (Fig. 3a, 
b). In this context, factors such as soil texture (including 
sand, clay, and silt content) and altitude also emerged as 
influential determinants (Fig. 3a).

Also, these diversity shifts were consistent with the 
heatmap analysis conducted on the statistically associated 
groups identified through LefSe (Fig. 3b). The sites show-
ing the most similarity were those within the grassland 
and burned grassland categories, followed by pine forest 
to reforested pine sites, while the fir forestland and agri-
cultural sites displayed the most dissimilarity.

3.3  Isotope analyses and SEM

Stable isotope and δ13C/δ15N ratio analyses across sampled 
sites revealed distinctive isotopic signatures per site (Fig. 4). 
Grassland and burned grassland sites exhibited the highest 
similarity, whereas pine trees (both natural and reforested) 



 Journal of Soils and Sediments

diverged in opposite directions, and the fir’s signature was 
closely resembling native pines. Conversely, the agricultural 
site showed a marked variation from the other sample sites, 
displaying the lowest intraspecific variation.

A Structural Equation Modeling approach (SEM) was 
used to test the hypothesis that soil properties and micro-
bial communities act as mediators of the effects of land-
use over the soil functional response (δ13C/δ15N ratio). 
The model showed that land-use exerted a negative 
relationship over the functional response of δ13C/δ15N 
ratio through nutrient content (path coefficient = -0.041, 
p < 0.05). Specifically, nutrient content had a direct and 
positive effect on the isotope signature ratio response, 
where the variables that explain variations in δ13C/ δ15N 
ratio were SOM (62.02, p < 0.01), N (-43.93, p < 0.05) 
and  NO3 (-25.04, p < 0.05). Moreover, microbial com-
munity was directly correlated with nutrient content 
and had a strong direct relationship to the functional 
response (δ13C/δ15N ratio), through the three associated 
microbial orders Chitinophagales, (-19.59, p < 0.05), 
Shingobacteriales (25.63, p < 0.01) and Tepidspherales 
(29.13, p < 0.05). Finally, the multiple squared correla-
tions highly explained (92.82%) the variation in the δ13C/
δ15N ratio as soil functional ecosystem indicator.

4  Discussion

4.1  Physicochemical soil properties changes are 
associated with land use change

Land-use changes can influence soil nutrient dynamics 
and microbial community composition, thereby impact-
ing crucial soil functions and physicochemical processes 
(Kooch et al. 2016). Our results of soil properties (i.e. 
nutrient content) showed changes associated with land-
use, for instance, the transition from fir to agriculture 
exhibited the most pronounced alterations, in particular 
changes in SOM, N, P, K, Ca, Mg, Fe, NO3 (Table 2). 
This phenomenon is consistent with existing literature, 
highlighting that deforestation of entire ecosystems leads 
to nutrient depletion (Veldkamp et al. 2020; Bodo et al. 
2021; Kumar et al. 2022). Specifically, the conversion of 
forests to agriculture has been shown to diminish organic 
matter (SOM), nitrogen, and calcium content—a trend 
reflected in our findings (Merloti et al. 2019; Peng et al. 
2021). We also observe changes in agricultural field man-
agement, such as soil acidification (de Graaff et al. 2019) 
and elevation of nitrate and phosphorus levels, attributed 
to fertilizers commonly employed in potato cultivars 
(Solanum tuberosum L), including ammonium nitrate 
(AN), diammonium phosphate (DAP), and triple super-
phosphate (TSP) (Rosen et al. 2014).Ta
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Moreover, native forest conversion typically results in a net 
carbon loss in the soil (Yang et al. 2011). In contrast, con-
version from pine to reforested pine showed an increase in 
soil organic matter and nutrient contents (N, K, Ca, Mg, and 
Fe). This increase could be attributed to the selection of frost-
resistant Pinus montezumae for reforestation, exhibiting rapid 
growth, higher survival rates, and greater biomass compared 
to Pinus hartwegii, the native vegetation species in Nevado 
de Toluca (Viveros-Viveros et al. 2007; Rojas-García et al. 
2019). Moreover, the transition from grassland (Festuca tolu-
censis) to burned grassland (due to firebreaks and controlled 
burning practices) did not result in significant soil properties 
alterations. This lack of statistical changes may be attributed 
to the lesser disturbance introduced to the environment where 
the burning is controlled and the soil structure is not affected 
(Neary et al. 1999), as opposed to the complete vegetation 
depletion observed in the fir-to-agriculture transition that 
affects soil structure, porosity, organic carbon, and nutrient 
availability or the plant species change observed in the native 
pine-to-reforested-pine scenario as reported in previous stud-
ies (Mueller et al. 2014; Goss-Souza et al. 2020; Hüblová and 
Frouz 2021).

4.2  Changes in microbial communities are 
associated with land‑use change

Microbial diversity, or alpha diversity, is associated with 
land-use change and the specific management practices. 
Our study revealed that, land use change not only modi-
fied various soil properties but also resulted in changes in 
microbial diversity (alpha diversity) (Fig. 2). These changes 
in microbial diversity can be an increase or decrease in 
diversity, we observe both scenarios that also have been 
reported previously. In particular, reduction in microbial 
diversity was observed in the fir to agriculture land-use 
transition, potentially due to a reduction in soil organic car-
bon availability (Yu et al. 2012). Specifically in our case, 
the agricultural practices in the fir to agricultural transi-
tion are associated with potato agriculture that involves a 
complete depletion of any vegetation and natural input of 
organic carbon, being limited to intentional inputs that may 
not be sufficient to maintain microbial diversity. In contrast, 
an increase in microbial diversity was observed in the pine 
to reforested pine transition which could be attributed to 
the increased nutrient availability through intended nutrient 

Fig. 2  Bacterial community diversity of land-use change pairs (orig-
inal vs transformed). A Comparison of Fir vs. Agriculture B Com-
parison of Pine vs. Forested Pine C Comparison of Grassland vs. 
Burned Grassland. Box plots of alpha diversity calculated as Chao1 
index. Box represents the interquartile range (IQR) between the first 
and third quartiles (25th and 75th), middle line inside the box repre-

sents the median and whiskers represent the lowest and highest values 
within 1.5 times the IQR. t-tests for significant differences between 
pairs were conducted and the P values are indicated on the top right 
corner of each comparison and significance is indicated as asterisk 
(P < 0.05)
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inputs (Verchot 2010; Philippot et al. 2023). In particular, 
we attribute the increase in alpha diversity in the transition 
from pine to reforested pine to the enhanced nutrient supply 
from the leaf litter of Pinus montezumae compared to Pinus 
hartwegii (Lopez-Escobar et al. 2017).

Microbial community composition differences (beta 
diversity) are associated with specific management practices 
and the time elapsed since first intervention. We observe 
microbial composition differences associated with land-use 
and related factors such as soil properties (Fig. 3a, b). In 
this regard, it has been well documented that environmental 
perturbation (either natural or anthropogenic) can change 
microbial communities composition and if maintained, this 
change can be permanent (Hartmann et al. 2014; Yang et al. 
2020). It is worth mentioning that the magnitude of differ-
ences in microbial communities can be associated with the 
time elapsed since the land-use change occurred. In par-
ticular, microbial communities that presented the greater 
differences are those in the transition from fir-dominated 
ecosystem-to-agricultural land, where land-use modification 
occured ∼ 50 years ago, while, intermediate compositional 
differences are observed in sites with a 30 year transition 
from pine to pine reforested. Finally the lowest composi-
tional difference is observed in the grassland-to-burned 
grassland transition.

Land use transitions and associated management practices 
can be related to specific microbial groups. Bacterial orders 
whose abundances were statistically correlated with differ-
ent land-uses and soil properties (Fig. 3b). For example, the 
highest abundance of Rhizobiales in fir and reforested pine 
where high nitrogen content is also observed. These orders 
have been reported as abundant in temperate forests and are 
key taxa contributing to the overall carbon decomposition 
process (Tláskal et al. 2017). Another example is Acido-
bacteriales, found in the pine forest site (P. hartwegii) and 
grasslands sites (natural and burned), this bacterial order 
has been reported to be abundant in coniferous forests and 
grasslands (Naether et al. 2012; Li et al. 2019). Previous 
studies have found that Acidobacteriales order is ubiquitous 
and abundant, mainly in soils with low carbon availability 
(constituting around 20% on average in soil microbiome sur-
veys) (Janssen 2006), suggesting, adaptation to low substrate 
availabilities (oligotrophs) (Naether et al. 2012), and being 

consistent with the grasslands, and pine forest sites that 
exhibit the lowest total carbon contents (Table 2). Finally, 
Enterobacteriales and Corynebacteriales were abundant 
in the agriculturally managed site, these orders have been 
historically associated with fecal pollution associated with 
agricultural inputs (i.e. manure) and anthropogenic influence 
(Tkhakakhova et al. 2016; Devane et al. 2023).

4.3  Understanding the ecosystem functional 
response through isotopic signatures: 
soil properties and microbial community 
as mediators of land‑use change

There is currently insufficient emphasis on utilizing δ13C 
and δ15N records as indicators of biochemical C and N 
cycling processes in microbial ecology studies (Park et al. 
2023), despite their widespread application in plants and 
animals as indicators of trophic interactions (Wilkinson et al. 
2022). While it is feasible to identify trophic pathways of 
C and N inputs into an ecosystem through stable isotope 
measures (De Clercq et al. 2015; Bieluczyk et al. 2023), the 
δ13C and δ15N ratio can offer an aggregate overview of all 
interactions and transformations involving C and N in an 
environment (Layman et al. 2007; Liu et al. 2018; Soldatova 
et al. 2024).

In this study, δ13C/δ15N was used as a reference of the 
C and N interactions and transformations in the environ-
ment (Layman et al. 2007; Liu et al. 2018; Soldatova et al. 
2024), in order to show that each ecosystem and land-use 
possesses a unique isotopic signature (Fig. 4), reflecting 
different interactions among the components of the sys-
tems such as nutrient contents and microbial communities 
(Fig. 5). These relationships were formally tested using the 
Structural Equation Modeling (SEM) framework. Through 
this approach, we identified the effect of land-use over the 
soil functional response (δ13C/δ15N ratio), acting in cascade 
with the nutrient content and microbial community (Fig. 5). 
Furthermore, we found a negative relationship between land-
use change and nutrient content, in particular Soil Organic 
Matter (SOM), total nitrogen and nitrates. This relationship 
has been previously documented on forest soils, where the 
concentration of these nutrients decreases when land-use 
changes (Merloti et al. 2019; Peng et al. 2021). Additionally, 
specific bacterial orders emerge as potential bioindicators, 
with their abundance being a factor linked to the functional 
ecosystem parameter δ13C/δ15N (Fig. 5). For instance, the 
abundance of Sphingobacteriales is positively related with 
the δ13C/δ15N ratio, previous studies associated the abun-
dance of Sphingobacteriales with high soil organic carbon 
(SOC) mineralization (Whitman et al. 2016; Zhang et al. 
2021a, b; Carrasco-Espinosa et al. 2022). Chitinophagales, 
recognized as chitinolytic and hydrocarbon degraders, also 
show a strong influence with δ13C/δ15N ratios (Kaoping 

Fig. 3  Bacterial beta-diversity across land-use types. a Non-metric 
multidimensional scaling (NMDS) plot for bacterial community com-
position dissimilarity across samples. Dissimilarity was estimated 
as Aitchinson distance with soil physicochemical parameters vec-
tors generated using envfit. Shapes correspond to pairwise land-use 
change comparisons, and colors correspond to original and trans-
formed environments (solid color, original; open-color, transformed 
environment). b Heatmap of the most significant bacterial orders per 
land-use type obtained throughout LEfSe analysis. Abundance corre-
sponds to the z-score values of each microbial group

◂
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et al. 2023) and exhibit reduced abundance in afforestation 
and land-use change processes (Lan et al. 2022). Tepidi-
sphaerales, displaying good tolerance to low tempera-
tures (4-15 ºC) (Ivanova et al. 2016), experience changes 
in abundance following restoration-fertilization processes 
(Cheng et al. 2021) and soil warming experiments (Parada-
Pozo et al. 2022). Altogether the evidence here presented 
suggests potential roles for specific bacterial groups as 
biological indicators and soil nutrient drivers of C and N 
transformations, warranting further investigation through 
specific experiments such as mesocosms or complementary 
metagenomic analyses.

Finally, through SEM we tested the hypothesis of the role 
that nutrient content and microbial communities in reciprocal  
interaction play as mediators of the impact of land-use on  
ecosystem functioning. The resulting model shows that,  
in fact, land-use change (as environmental perturbation), 
directly impacts nutrient contents, and in turn nutrient contents 
interact reciprocally with microbial community composition 
that impact ecosystem function (Fig. 5). Although, in some 
sense, all these interactions have been previously documented 

(Chadwick et al. 2015; Adetunji et al. 2020; Thakur et al. 2020; 
Philippot et al. 2023), it has not been common to formally test 
not only the interactions but the strength and direction of such 
interactions. In particular, it is worth noticing, that although the 
effect of specific management practices or land-use transitions  
in ecosystem function is obscured by summarizing all sampled 
sites in a single model, we do demonstrate that interventions 
do change ecosystem function in idiosyncratic ways (Fig. 4), 
and that microbial communities act as strong mediators of such 
effects, also identifying specific microbial groups involved 
(Fig. 5), which represents a generalizable model for different 
ecosystems and/or environmental perturbations (Jorgensen 
2021; Vispoel et al. 2023). Also, although the interaction 
between nutrient contents and microbial community is highly 
significant, its magnitude is not very high, may be due to the 
specific measurements included in this latent variable that can  
overlook functionally relevant nutrients in this interaction, 
including specific carbon substrates that could be better  
correlated with the abundance of specific microbial groups 
(Abraham et al. 1998; Boschker and Middelburg 2002; Trivedi 
et al. 2016).

dC13

dN
15
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Agriculture
Pine
Reforested pine
Grassland
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Fig. 4  Biplot of N and C stable isotope ratios for all land-use change 
samples (original and transformed). For each land-use type standard 
ellipses are drawn with confidence intervals at 95%: Fir (solid cir-

cles), Agriculture (open circles), Pine (solid triangles), Reforested 
pine (open triangles), Grassland (solid squares) and Burned grassland 
(open squares)
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5  Conclusions

Our findings underscore the intricate relationship between 
microbial community structure, soil properties, and envi-
ronmental transformations, particularly land-use change. 
Specifically, we demonstrate the cause-effect relationships 
among land-use, nutrient contents and microbial commu-
nities, where soil properties and microbial communities 
interact reciprocally, acting as mediators of the effects of 
land-use change in soil functional responses (i.e. δ13C/δ15N 
ratio). This understanding highlights the potential use of 
bioindicators (microbial communities) by decision-makers 
regarding forest management in Mexico to facilitate the 
development of sustainable management strategies.
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