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Abstract
Purpose Given the rapid growth of people living in urban and peri-urban areas, this study examined the downstream trends 
in concentrations and determined the total storage of potentially toxic elements (PTEs) and phosphorus (P) associated with 
fine-grained sediment (0.45 to 63 µm) stored in the channel bed of an urban river.
Materials and methods Samples were collected from seven sites along McMillan Creek (watershed area = 55  km2) in the 
city of Prince George, British Columbia, Canada, between 2010 and 2016 using a resuspension approach. Grabs samples 
were also collected from two key tributaries and a large culvert.
Results and discussion Some elements (e.g., As, Mn and P) decreased in a downstream direction due to inputs from agri-
cultural sources in the headwaters, while others (e.g., Cr, Cu, Pb and Zn) increased downstream reflecting inputs from 
urban sources in the lower part of the watershed. Several PTEs increased significantly due to a large culvert which supplied 
road-deposited sediment (RDS) and other urban materials. In some cases (e.g., As, Mn, Zn) PTE concentrations exceeded 
Canadian sediment quality guidelines (SQGs) for the protection of aquatic organisms. While concentrations were similar 
for most years, they were elevated in 2016 which may reflect higher rainfall prior to sample collection. The average total 
storage of fine-grained sediment in the channel bed of McMillan Creek was 155 t (4198 g  m−2), while for PTEs this ranged 
from 0.01 kg (0.0002 g  m−2) for Hg to 1130 kg (30.7 g  m−2) for Mn.
Conclusions The channel bed of an urban river stored large amounts of fine sediment, PTEs and P, with concentrations that 
exceeded SQGs for some elements. Given the expected increase of people living in urban and peri-urban areas, more studies 
are required to assess the impacts of this growth on the amount and quality of fine-grained sediment stored in urban rivers.

Keywords Metals · Anthropogenic activities · Road-deposited sediment · Culvert · Streambed pollution · Nechako

1 Introduction

The world’s population is increasing, and a greater pro-
portion of people are living in urban and peri-urban areas. 
In 2021, 4.46 billion people (57%) were living in urban 
areas, and this is expected to increase to 6.68 billion people 
by 2050; the latter value being a 10-times increase since 
1950 (United Nations 2018; Statistics Times 2021). The 

proportion of people living in urban areas varies across the 
globe, being greatest in North America; at present 83% and 
expected to grow to 89% by 2050 (United Nations 2018; 
Statistics Times 2021).

As a consequence, many studies are documenting that 
streams and rivers in these areas are becoming contami-
nated with chemicals and fine-grained sediment derived 
from human activities (for reviews, see Salomons and 
Förstner 1984; Horowitz 1991; Foster and Charlesworth 
1996; Taylor and Owens 2009; Mohanavelu et al. 2022). 
As urban areas expand, they are utilizing and encroaching 
on landscapes that were previously under different land 
cover, such as agriculture and forest. These more-natural 
landscapes contain streams and rivers that are, or have 
been, important habitats for aquatic organisms. With this 
transformation of the landscape, there has been an increase 
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of contaminant loads into urban and peri-urban rivers, 
leading to detrimental impacts on aquatic organisms in 
terms of species composition and diversity. In many cases, 
key species such as salmonids (e.g., salmon, trout) have 
declined or are no longer present.

In urban landscapes, chemicals are delivered to water-
courses via several pathways including sewage treatment 
works (STWs) and urban runoff. A large portion of these 
contaminants are in dissolved form but ionic and hydro-
phobic elements may sorb to sediment, both suspended and 
on the channel bed, once in the channel. Some contami-
nants are delivered in particulate form, especially during 
periods of runoff from impervious surfaces and due to 
erosion of channel banks. As a consequence, studies have 
documented sediments in urban rivers with high concentra-
tions of sorbed contaminants including metals/metalloids, 
persistent organic pollutants (e.g., polycyclic aromatic 
hydrocarbons), fallout radionuclides, phosphorus and, 
more recently, micro-plastics, pharmaceutical wastes and 
personal care products (e.g., Owens et al. 2001; Horowitz  
and Elrick 2017; Hurley et al. 2018; Mohanavelu et al. 
2022; Van Metre et al. 2022). Furthermore, fine-grained 
sediment (0.45 to 63 µm) itself can be considered a physi-
cal contaminant (Owens et al. 2005; Bilotta and Brazier 
2008), for example through clogging of river gravels and 
reducing interactions between surface waters and the hypor-
heic zone (Packman and MacKay 2003; Shrivastava et al. 
2020). Thus, the deposition and storage of sediment and 
chemicals in channel-bed gravels represents a risk to organ-
isms that live (e.g., invertebrates) or spawn (e.g., salmonids, 
sturgeon) in such gravels (e.g.,Wood and Armitage 1997; 
Soulsby et al. 2001; Jones et al. 2012a), as well as plants 
such as macrophytes (Jones et al. 2012b; Wharton et al. 
2017). In addition, fine-grained sediment and associated 
contaminants can be mobilized by increasing river flows 
during storm events, floods and freshets, thereby causing 
problems to organisms that reside in the water column (e.g., 
phyto- and zooplankton), as well as society through drink-
ing water quality issues.

While numerous studies have documented high concentra-
tions of contaminants in urban rivers, few studies have deter-
mined the total mass storage of fine-grained sediment and asso-
ciated contaminants in urban rivers. In the few studies that have 
done this (e.g., Walling et al. 2003; Collins et al. 2005; Estrany 
et al. 2011), it has been shown that the mass storage of sediment 
and contaminants on the channel bottom can be high. Thus, the 
objectives of this work are: (i) to determine spatial concentra-
tions of sediment-associated potentially toxic elements (PTEs) 
and phosphorus (P) in an urban river in British Columbia, Can-
ada; (ii) to assess if concentrations have changed over time; and 
(iii) to estimate the total mass storage of fine-grained sediment 
and associated PTEs and P in the channel bed.

2  Study area and methods

2.1  Study area

McMillan Creek watershed (area: ~ 55  km2; mainstem 
river length: ~ 15 km) is the largest watershed contained 
within the city of Prince George, British Columbia, Can-
ada (Fig. 1). Prince George is the most northern city in 
Canada for its size (population =  ~ 80,000) and acts as a 
regional centre for most of the central and northern part of 
British Columbia; the province is ~ 925,000  km2. The city 
expanded rapidly in the 1960s with the creation of several 
pulp and paper mills to serve the timber industry, which 
dominates this part of the province. Recently, the city has 
expanded spatially with a steady influx of people and also 
diversified with the creation of a university and a range of 
light industries, many of which serve resource extraction 
industries such as oil and gas development and metal/met-
alloid mining. The city lies at the junction of several major 
transportation routes, including highways and rail net-
works, and is at the confluence of the Nechako (~ 45,000 
 km2) and Fraser (~ 220,000  km2) Rivers. McMillan Creek 
is located to the north of the city centre and drains pri-
marily small-scale agricultural land with a low population 
density in the headwaters, with increasing urbanization 
downstream including light-industry. Highway 97 (Fig. 1) 
links southern British Columbia (including Vancouver) to 
northern British Columbia, Yukon and Alaska. It passes 
through the western part of the watershed and occurs close 
to the river in its lower reaches, such that there are several 
culverts that supply water, sediment and chemicals to the 
river close to its confluence with the Nechako River.

Given its high latitude (ca. 54°N, 122°W) the water-
shed has cold winters (annual minimums of about -30 °C) 
and warm summers (annual maximums of about 30 °C). 
Annual precipitation is about 650 mm of which a large 
portion falls as snow. River flows are dominated by the 
annual freshet which occurs in April to May, with low 
flows between November and March. There is not a dis-
charge gauging station on the river, so there are no dis-
charge or sediment flux data.

McMillan Creek is a fish-bearing stream, including 
Chinook salmon (Oncorhynchus tshawytscha), bull trout 
(Salvelinus confluentus), rainbow trout (Oncorhynchus 
mykiss) and northern pikeminnow (Ptychocheilus ore-
gonensis). Chinook salmon typically spawn in September 
(NWSRI 2017). Studies (e.g., Jacklin 2007) have deter-
mined that aquatic organisms in McMillian Creek such as 
macroinvertebrates and fish are stressed by contaminants 
and fine sediment. However, these studies have been based 
on sampling of the water column and have not assessed the 
quality and quantity of channel stored material.
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2.2  Methods

Samples of the fine-grained sediment stored on the bottom 
of the channel bed were collected from seven sites along the 
mainstem of McMillan Creek in 2010, 2011, 2012, 2015 and 
2016. In each year, samples were collected in late September 
in order to determine concentrations and storage of fine-
grained sediment, PTEs and P at the key time for spawn-
ing of Chinook salmon, and to assess temporal trends. At 
each site, a resuspension approach was used (for details, see 
Lambert and Walling 1988), whereby an open-ended plastic 
cylinder was pushed into the channel bed – so as to isolate 
a section of the bed – and a stainless-steel trowel was used 
to mobilize the fine-grained sediment stored on and within 
the upper ~ 5 cm of the bed. This approach has been used 
frequently to sample fine-grained sediment and associated 
contaminants from the channel bed of shallow (typically < 1 
m depth) rivers (e.g., Estrany et al. 2011; Smith and Owens 
2014; Pulley et al. 2016; Hurley et al. 2018; McKenzie et al. 
2022; Chen et al. 2023). Once resuspended into the water 
column within the cylinder, sub-samples of the sediment‒
water mixture were collected and transferred to fill one-third 
of a 20 L plastic bucket. Three replicate samples were col-
lected at each site so as to encompass some of the local 

variation, and to also yield a sufficient volume (i.e., 20 L) 
and thus sediment mass (> 1 g dry sediment) for subsequent 
property analysis.

The total storage of fine-grained sediment, PTEs and 
P at each site was determined for 2011, 2012 and 2015 
using the approach described by Walling et al. (2003). 
The mass of resuspended sediment within the cylinder 
was determined based on the sediment concentration and 
total volume of water in the cylinder, the latter based on 
the water depth and cross-sectional area of the cylinder. 
The sediment concentrations were determined from a 1 
L grab sample collected at the time of resuspension and 
passed through a 0.45 µm filter in the laboratory. From the 
mass of sediment retained on the filter paper, the mass of 
fine-grained sediment stored on the channel bed was deter-
mined (i.e., g  m−2). Total storage for each reach – which 
was defined as the channel bed between two consecutive 
sampling sites – was estimated by extrapolating the average 
sediment mass storage at the two sites by the reach area. 
The area of a reach was determined from 10 measurements 
of channel bed width at each site and the distance between 
consecutive sites obtained from maps, GPS and Google 
Earth. Total fine-grained sediment storage (i.e., < 63 µm 
fraction) for the whole mainstem was determined by 

Fig. 1  Location map of McMillan 
Creek watershed, Prince George, 
British Columbia, Canada. The 
main channel bed sampling sites 
for the period 2010–2016 are 
MC1 to MC7 with additional 
grab samples collected from 
Upper Trib, Lower Trib and 
Culvert sites
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summing values for all reaches. The total masses of PTEs 
and P were determined using the approach described above 
for sediment and the average PTEs and P concentration of 
sediment for the two consecutive sites which define the 
upper and lower ends of each reach (Walling et al. 2003).

In addition to the samples collected at the seven sites 
along the mainstem, grab samples were also collected 
from three additional sites during most of the years when 
resuspension samples were collected (i.e., 2010 to 2016). 
The grab samples from these additional sites were used 
to help examine spatial trends in PTEs and P concentra-
tions but were not used to estimate total sediment and con-
taminant mass storage. The upper grab sample site (Upper 
Trib; Fig. 1) is a headwater tributary that is confluent with 
the main stem near site MC7 and thus is representative of 
material in the agricultural part of the watershed. A lower 
tributary between sites MC4 and MC5 represents material 
delivered to the creek from the middle of the watershed. 
The lowest grab sample site is a large culvert that drains 
Highway 97 and delivers solids and liquids directly into 
McMillan Creek between sites MC3 and MC4. To further 
assess the effect of this large culvert in delivering sediment 
and chemicals to McMillan Creek, a more intensive set of 
samples were collected from upstream (n = 2), downstream 
(n = 7) and within (n = 2) the culvert in October 2018, using 
the resuspension approach described above.

Upon return to the laboratory, the sediment‒water mix-
ture in the 20 L buckets were left to settle for 48–72 h, the 
supernatant water was siphoned off, and the remaining wet 
sediment slurry, along with the grab samples, were oven 
dried at 60 °C. The dried sediment was carefully disaggre-
gated with a mortar and pestle and then passed through a 
63 µm stainless steel sieve. The < 63 µm fraction was ana-
lysed for trace elements using ICP-MS after aqua regia 
digestion at a commercial laboratory (ALS, Vancouver, Brit-
ish Columbia) or at Northern Analytical Laboratory Services 
(NALS) at University of Northern British Columbia (Prince 
George, Canada). Attention is focused on the metals/metal-
loids As, Cd, Cr, Cu, Hg, Mn, Pb and Zn and the nutrient P 
given the concerns associated with these PTEs in urban sys-
tems, including issues associated with cultural eutrophica-
tion (e.g., Foster and Charlesworth 1996; Sutherland 2000; 
Owens and Walling 2002; Tansel and Rafiuddin 2016). 
Samples were also analysed for Al to assist with normaliza-
tion due to differences in particle size composition between 
samples from different sites. A check on the suitability of 
using Al as a normalizing element, assessed by correlating 
Al with other normalizing elements (i.e., Ca and La), gave 
Pearson correlation coefficients of > 0.9, thereby confirming 
the suitability of using Al.

For each sample, three replicate readings were under-
taken, and the average reading was used. ALS perform 
instrument and method QA/QC which includes using 

method blanks, laboratory control samples and a reference 
material standard (EnvironMAT SS-2 soil standard) during 
each set of 20 samples. At NALS, continuous calibration 
blanks (0 ppb) and calibration verifications checks (500 ppb 
multi-element standard) were run every 20 samples to con-
firm instrument stability (for more details on the analysis 
at NALS, see Owens et al. 2019). An additional standard 
(Canadian Certified Reference Material Till-3 from Cobalt, 
Ontario) was also run during each sample batch. Estimates 
of analyte recovery based on spiked laboratory controls were 
typically in the range 90 to 110%. Replicate analysis of a ref-
erence standard had relative standard deviation (RSD) values 
of between 0.5 and 2.2%, except for Hg where RSD was 9%, 
due to the low concentrations.

Samples were analysed for absolute particle size composi-
tion using a Malvern Mastersizer 3000 laser diffraction par-
ticle size analyser at NALS after removal of organic matter, 
and chemical (sodium hexametaphosphate) and ultrasonic 
dispersion. The values reported are  d50 (median particle 
size) and specific surface area (SSA: the total surface area 
of particles divided by the total weight, calculated within 
the Malvern software assuming the particles are spherical 
and non-porous). Organic matter content was determined by 
loss-on-ignition (LOI) at 550 °C.

2.3  Statistical analysis

Difference in properties (i.e., element concentrations, par-
ticle size parameters, organic matter content) between sites 
were assessed used the Mann–Whitney U-test using a 95% 
probability of significance (i.e., p = 0.05). It is important to 
recognize that the low sample numbers limits the statistical 
power of this test.

3  Results

3.1  Spatial variations of PTEs and phosphorus 
concentrations

Although there are variations between years (discussed 
further in Section 3.2), there are consistent trends over the 
sampling period 2010 to 2016 with some elements (e.g., Cr, 
Cu, Pb and Zn) increasing in concentration with increasing 
distance downstream, while other elements (e.g., As, Mn 
and P) decrease in concentration in a downstream direction 
(Fig. 2). Some elements, such as Cd and Hg, show no con-
sistent downstream trend. Thus, the average (n = 5 years; 
mean ± 1 standard deviation) P content for channel bed sedi-
ment at the most upstream site (site MC7) was 2995 ± 235 
µg  g−1, whereas the value for the most downstream site (site 
MC1) was 1491 ± 125 µg  g−1. In the case of As, equivalent 
values were 147 ± 7 µg  g−1 (site MC7) and 12.8 ± 2.3 µg 
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 g−1 (site MC1). For both elements, these differences were 
statistically significant (p < 0.05). However, for most ele-
ments, concentrations increased with distance downstream 
being greatest in the urban part of the watershed. Thus, Zn 
increased from 71.5 ± 1.5 µg  g−1 at site MC7 to a maximum 
of 404 ± 123 µg  g−1 at site MC3, while Pb increased from 
4.65 ± 0.05 µg  g−1 to 22.9 ± 5.3 µg  g−1 at sites MC7 and 
MC3, respectively, and these differences were statistically 
significant (p < 0.05).

For those elements that increased downstream, there was 
often a pronounced increase below a large culvert that enters 
McMillian Creek between sites MC3 and MC4, with con-
centrations at MC3 (i.e., below the culvert) being similar to 
the grab samples collected from the culvert (Fig. 2). These 
patterns suggest that not only do some PTE concentrations 
increase in the urbanized part of the watershed but that the 
culvert is a main source of these. For the samples collected 
upstream, within and downstream of the culvert in 2018 
(Table 1), concentrations were similar to those collected dur-
ing the period 2010–2016 (Fig. 2) for equivalent sampling 
sites. For most PTEs (i.e., Cd, Cr, Cu, Pb and Zn) concentra-
tions were highest for the samples taken within the culvert 
and the effect of the culvert was to increase concentrations 
for samples collected downstream of it (i.e., MC3), espe-
cially for Cu, Pb and Zn. For Mn and P, the culvert appeared 
to dilute concentrations, whereas for As the effect of the 
culvert was less clear. The upstream and downstream of the 

culvert differences were statistically significant (p < 0.05) 
for Cu, P, Pb and Zn. The Lower Trib site also had lower 
concentrations for some elements (e.g., As, Mn, P, Zn) than 
the main river, and may have had a similar diluting effect.

The downstream increases in the concentrations of some 
PTEs may also reflect changes in particle size of the sediment. 
The average (± 1SD)  d50 and SSA of the analysed sediment 
collected at site MC7 were 30 ± 3 µm and 245 ± 39  m2  g−1, 

Fig. 2  Concentrations (average ± 1 standard deviation) of PTEs and P 
on channel-bed stored sediment collected from 10 sites in McMillan 
Creek watershed for the period 2010–2016. Also shown (red horizon-

tal line) is the probable effects level (PEL) sediment quality guideline 
for the protection of aquatic organisms for the PTEs or an equivalent 
guideline for P

Table 1  Effect of a large culvert on concentrations of PTEs and P on 
stored channel bed sediment collected from McMillan Creek in 2018

a Each sample is a composite of several taken within 5 m using the 
resuspension approach
b Each sample is a composite of several grab samples

Element Upstream 
concentration 
(n = 2a)
(µg g−1)

Culvert 
concentration 
(n = 2b)
(µg g−1)

Downstream 
concentration 
(n = 7a)
(µg g−1)

As 21.9 21.3 24.3
Cd 1.5 1.82 1.80
Cr 62.5 80.3 71.5
Cu 34.7 101.0 79.0
Mn 17,400 8454 16,700
P 2600 1692 1970
Pb 14.6 31.8 20.3
Zn 231 635 587
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respectively, and these values are statistically different (p < 0.05) 
than those at site MC1; 16 ± 6 µm and 471 ± 82  m2  g−1, respec-
tively. The sediment collected from the culvert (< 63 µm frac-
tion) was coarser than that collected from the river, with average 
 d50 and SSA of 35 ± 10 µm and 231 ± 59  m2  g−1, respectively, 
compared to 23 ± 7 µm and 344 ± 62  m2  g−1, respectively, for 
site MC4, although this was not statistically different (p > 0.05). 
This resulted in noticeable changes between sites MC4 and MC3 
(i.e., upstream and downstream of the culvert), although these 
were not statistically different (p > 0.05). In the case of organic 
matter content, there was not a clear downstream trend although 
the highest average value for a site was recorded for the upstream 
tributary site (Upper Trib; 25%) and values for sites MC6 and 
MC7 were > 14%. The lowest average value was 7.5% for site 
MC3, again likely due to the supply of organic-poor, minero-
genic material from the culvert (LOI = 1.8%).

3.2  Temporal variations in PTEs and phosphorus 
concentrations

In most cases, while there were temporal variations in PTEs 
and P concentrations over the study period, there was no 

consistent pattern for the years 2010, 2011, 2012 and 2015. 
Thus, some sites had the highest element values in some 
years, while for other sites the highest values were in dif-
ferent years. However, 78% of the PTEs and P were highest 
for the samples collected in 2016. Figure 3 shows examples 
from an upstream and a downstream site for a selection of 
elements that either decreased (As, Mn, P) or increased (Cr, 
Cu, Zn) in a downstream direction. In all cases, concen-
trations were greatest in 2016; this is discussed further in 
Section 4.1.

3.3  Channel bed storage of PTEs and phosphorus

Table 2 gives total storage of fine-grained sediment, PTEs 
and P in the channel bed of McMillan Creek for the years 
when this was determined (i.e., 2011, 2012 and 2015). 
The average fine-grained sediment storage for the three 
years was 155 t, while that for the trace elements ranged 
from 0.01 kg for Hg to 1130 kg for Mn. When expressed 
per unit surface area of the channel bed, equivalent values 
were 4198, 0.0002 and 30.7 g  m−2 for sediment, Hg and 
Mn, respectively.

Fig. 3  Temporal changes in PTEs and P concentrations for the study 
period (2010–2016) for example elements that either increase down-
stream (Cr, Cu and Zn at site MC2; left column) or decrease down-

stream (As, Mn and P at site MC6; right column). Note the years with 
consistently high or low concentrations
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4  Discussion

4.1  Temporal and spatial patterns in PTEs 
and phosphorus concentrations

There were distinct downstream trends in PTEs and P con-
centrations which reflect anthropogenic activities in the 
watershed. For those elements that were higher at headwater 
sites (e.g., As, Mn and P), which is dominated by agricul-
tural land and ranching, it may reflect agricultural amend-
ments and products, such as P associated with fertilizers 
(e.g., ammonium phosphate,  (NH4)3PO4) and manures. Man-
ganese is essential for plant growth and Mn deficiency can 
be a serious problem (Alejandro et al. 2020), and therefore 
is often addressed through the addition of fertilizers (e.g., 
manganese sulphate,  MnSO4), manures, other amendments, 
or through soil pH adjustment (Adriano 2001). Arsenic is 
used in some pesticides. Concentrations of As, Mn and P 
were higher at site MC7 compared to the Upper Trib site 
suggesting that the part of the watershed draining into site 
MC7 is the main source of these elements.

For those PTEs that increased downstream, this likely 
reflects inputs from urban and industrial sources includ-
ing culverts, such as the large one between sites MC3 
and MC4. Culverts are known to deliver water and sedi-
ment from the urban road network to rivers, such as road-
deposited sediment (RDS). Numerous studies (e.g., Carter 
et al. 2003; Poleto et al. 2009; Devereux et al. 2010) have 
determined that RDS can represent a significant amount of 
the fluvial sediment transported and stored in urban river 
systems. Not only is RDS an important source of sediment 
in urban streams but it is also an important source of PTEs; 
for reviews, see Hanfi et al. (2020) and Haynes et al. (2020).

In terms of variations over the different sampling years, 
generally PTEs and P concentrations were consistent over 
time, with the exception of 2016, when concentrations 
were markedly greater (Fig. 3). The exact reason for this 
is unknown, however rainfall for the period prior to sample 
collection was greatest in 2016. For the four months June 
to September, total precipitation during 2016 was 266 mm 
and this was greater than the average for 2010, 2011, 2012 
and 2015 (211 mm). This may have caused greater runoff 

and erosion in the headwaters, and more surface runoff 
and mobilization of RDS and other contaminant sources 
in the lower reaches of the watershed. Other studies (e.g., 
Carter et al. 2003; Mohanavelu et al. 2022) have also iden-
tified that rainfall (and snowmelt) events are important 
in supplying chemicals to urban rivers by connecting the 
terrestrial component of the watershed to the channel net-
work. In addition to RDS, rainfall events also increase the 
movement of water, sediment and chemicals through sewer 
and septic systems and industrial effluents.

It is important to recognize that samples were not col-
lected during 2013 and 2014, which limits a comprehen-
sive assessment of temporal trends over the full 2010 to 
2016 period. In addition, samples were only collected 
in late September for each year, so it is not possible to 
examine how concentrations and storage may have varied 
during the year. It is likely that both would vary consider-
ably during differ seasons and also different hydrological 
events. During the main winter period in Prince George 
(e.g., November to March) it is likely that the delivery 
of sediment and chemicals to McMillan Creek would be 
minimal due to the cold temperatures (i.e., below freezing) 
and frozen nature of the river corridor. During this period, 
it is logistically difficult to sample the channel bed and 
thus determine concentrations and storage of sediment, 
PTEs and P. Ideally, future work would assess variations 
over the full year to identify the times of the year when 
concentrations are greatest. This, in addition to the spatial 
trends described above, would help determine the likely 
hydrological and geomorphological processes and human 
activities that supply sediment and chemicals to the river. 
In turn, such information could assist with developing and 
implementing mitigation options, such as road sweeping 
and nature-based solutions such as urban buffers and wet-
lands (e.g., Irvine et al. 2023).

4.2  Effects of variations in sediment particle size 
and organic matter content on downstream trends

While there are clear downstream trends in the 
concentrations of PTEs and P (Fig.  2), as explained in 
Section 3.1 there were variations in the particle size and 

Table 2  Total storage of fine-
grained sediment (0.45 to 63 
µm) and associated PTEs and P 
on the channel bed of McMillan 
Creek on a particular day in 
September 2011, 2012 and 
2015. The values of average 
storage per unit surface area (g 
 m−2) are also shown

Year Sediment
(t)

As
(kg)

Cd
(kg)

Cr
(kg)

Cu
(kg)

Hg
(kg)

Mn
(kg)

P
(kg)

Pb
(kg)

Zn
(kg)

2011 116 2.90 0.05 4.97 2.23 0.005 668 178 0.94 13.4
2012 203 4.54 0.08 8.18 3.70 0.015 1735 308 1.67 24.4
2015 146 2.70 0.08 5.30 2.40 0.009 986 201 0.97 19.0
Average 155 3.38 0.07 6.15 2.78 0.010 1130 229 1.20 18.9
Average 

storage (g 
 m−2)

4198 0.09 0.002 0.167 0.08 0.0002 30.7 6.22 0.03 0.51
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organic matter content of the fine-grained sediment stored 
in the river gravels. Studies (e.g., Horowitz 1991; Herngren 
et al. 2006; Tansel and Rafiuddin 2016; Unda-Calvo et al. 
2019) have shown that some elements preferentially bind 
to the finer fractions of sediment and organic matter. Thus, 
Stone and Droppo (1996) found that concentrations of Cu, 
Pb and Zn were greatest in the finest fractions of sediment 
from the channel bed of two rivers in Ontario, Canada. 
Variations in particle size and organic matter content might, 
therefore, influence the spatial interpretations described 
above. To examine this further, concentrations of PTEs and 
P were normalized by multiplying the concentration of an 
element at a specific site by the ratio of the SSA for site 
MC7 divided by the SSA for the specific site. In other words, 
values were adjusted to reflective difference in SSA using 
MC7 as a reference. The same exercise was undertaken 
using Al instead of SSA to normalize concentrations relative 
to site MC7. In all cases, the downstream trends described 
above and shown in Fig. 2 still hold, but the magnitude of 
the difference between sites changed. This is illustrated in 
Fig. 4 using As (decreases downstream) and Zn (increases 
downstream) as examples. Thus, the downstream increase 
in some PTEs (i.e., Cr, Cu, Pb and Zn) may partly be due to 
decreases in the size of the sediment ‒ itself due to hydraulic 
sorting ‒ and concomitant increases in specific surface area 
and thus more sorption sites. While this partly explains 
the absolute downstream patterns shown in Fig. 2, and is 
therefore a useful exercise, care must be taken in altering 
raw concentration data to explain patterns.

Unlike particle size composition (e.g., SSA), which 
changed consistently with distance downstream, there was 
not a clear pattern for organic matter content. The only major 
differences between the sites were for the Upper Trib site 
and the culvert, where values were noticeable higher and 
lower than the other sites, respectively.

4.3  Comparison to sediment quality guidelines

It is possible to assess if the PTEs and P associated with 
stored fine-grained channel bed sediment in McMil-
lan Creek are likely to have adverse effects on aquatic 
organisms by comparing values to Canadian sediment 
quality guidelines (SQGs) determined for the protection 
of sediment-dwelling benthic organisms (CCME 1999; 
BCMECCS 2021a). While there is not presently an SQG 
for P (CCME 1999; BCMECCS 2021a, b), earlier studies 
in Canada (e.g., Persaud et al. 1993) suggested that 2000 µg 
 g−1 could be used as a guide for adverse effects on aquatic 
organisms, although this should be treated with caution. 
While many are essential trace elements (e.g., Cr, Cu, Mn, 
Zn) and nutrients (e.g., P), they can be toxic and/or have 
detrimental effects at elevated concentrations. Other trace 
elements (e.g., As, Cd, Hg, Pb) have no known biological 
function and can be toxic even at low concentrations.

Figure 2 shows that in most cases (e.g., Cd, Cr, Cu, Hg, 
Pb), average values are below the probable effects level 
(PEL), meaning that they are unlikely to have adverse 
effects on aquatic organism that live in, or utilize (i.e., for 

Fig. 4  Downstream trends in As and Zn concentrations. Values have been normalized by Al and SSA relative to site MC7 in order to assess the 
effects of changes in particle size composition on element concentrations
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spawning), channel bed sediments. However, it should be 
noted that for Cd and Cu values for some individual sam-
ples are close to or slightly exceed the PEL threshold. In the 
case of As, Mn, Zn and P, values for some sites are above 
PEL thresholds. For Zn (PEL = 315 µg  g−1) this applies to 
the downstream sites, especially those below the culvert 
(MC1 to MC3). For As (PEL = 17 µg  g−1) and P (guideline 
value = 2000 µg  g−1) the upstream sites exceed the guide-
lines. In the case of Mn, average values for all sites, with the 
exception of the Lower Trib site, exceed the PEL threshold 
(1100 µg  g−1). As such, Mn may be the main element of 
concern in McMillan Creek. Background (i.e., non-contam-
inated) soils in the Prince George area, and other parts of 
British Columbia, can have Mn concentrations greater than 
1500 µg  g−1 (BCMECCS 2021b). As these values are for 
bulk soil samples, then it is expected that concentrations 
would be greater in the < 63 µm fraction.

4.4  Comparison of fine sediment, PTEs 
and phosphorus storage to other studies

While there are numerous studies that have determined the 
concentrations of contaminants, like PTEs, and nutrients 
(e.g., N and P) in channel bed sediments, very few studies 
have determined the storage of such materials (i.e., g  m−2). 
Table 3 compares the values obtained for this study with 
those from other studies that have used the same sampling 
approach (i.e., resuspension following Lambert and Walling 
1988). Comparison with studies using the same approach 
is important because inevitably different approaches are 
likely to yield different amounts and sizes of sediment. In 
the case of the resuspension approach, fine-grained sedi-
ment is typically remobilized from the upper ca. 5 cm of 
the channel bed, reflecting the nature of the approach. 
Other approaches such as freeze-coring and gravel infiltra-
tion baskets/bags (e.g., Petts et al. 1989; Petticrew et al. 
2007; Harper et al. 2017) sample from different depths and 
often different types of bed material, thereby limiting the 
appropriateness of comparing with values from this study. 
Similarly, it is important to recognize that even though the 
same approach was used in the studies presented in Table 3 
that there will be sources of error and variability associated 
with different operators and variations in equipment type 
(e.g., size of sampling device). However, Duerdoth et al. 
(2015) have shown that the resuspension approach used 
here is a reasonably reliable way to quantity the storage 
of fine sediment and associated chemicals in river gravels, 
and that operator error is low. Most variability arises from 
differences in channel characteristics such as morphology 
(e.g., thalweg vs channel edges, pools vs riffles etc.). In 
this study, the widths of the channel at the various sites are 
relatively low (range 1.4 to 5.2 m) and replicates were col-
lected at each site to account for local spatial variation. In 

addition, samples were collected at approximately the same 
site each year, and at the same time of year, thereby limiting 
some sources of error and uncertainty.

Table 3 shows that the average amount of fine-grained 
sediment stored in the channel bed of McMillan Creek (4198 
g  m−2) is relatively high compared to other studies which 
range between 162 and 2375 g  m−2. This may reflect the 
urban nature of the contributing watershed compared to the 
other watersheds which are primarily agricultural and rural. 
Owens et al. (2011) determined that the total amount of RDS 
stored on the road network of the city of Prince George dur-
ing June and October of 2009 was 764 and 204 t, respec-
tively, of which the < 63 µm fraction represented 49 and 9.8 
t, respectively. They identified that the finer fraction of the 
RDS would likely make its way into local creeks and rivers, 
especially during rainfall and snowmelt events. These values 
compare to the average amount of fine sediment stored in 
McMillan Creek of 155 t (Table 2) which includes other 
urban sources of material as well as soil erosion of fields and 
channel bank erosion. Other studies (e.g., Franz et al. 2014) 
have shown that material from urban construction sites can 
be an additional source of sediment in urban rivers.

Table 3 also shows that the amounts of PTEs and P stored 
in the channel bed are similar to the few studies that have 
determined this. Given the lack of other studies, it is difficult 
to make any generalizations. However, storage of some PTEs 
(i.e., As, Cd, Cr, Zn) and P are greater in McMillan Creek 
than in other rivers where there are equivalent data.

5  Conclusion

This study demonstrated that fine-grained sediment depos-
ited and stored in the channel bed of an urban river in Prince 
George, British Columbia, was enriched in PTEs and P. 
Some elemental concentrations were higher in headwater 
areas reflecting agricultural and rural sources, while others 
appeared in elevated concentrations in the lower reaches due 
to inputs from urban and industrial sources. In particular, a 
large culvert appeared to be a significant source of Cr, Cu, 
Pb and Zn. This may be due to inputs of runoff and road-
deposited sediment and associated PTEs. While there was 
not a clear temporal trend, PTEs and P concentrations were 
highest in 2016 and may reflect higher than average rainfall 
in the months preceding sample collection.

Average concentrations of As, Mn and Zn exceeded 
sediment quality guidelines for the protection of aquatic 
organisms at several sites, while guidelines were 
approached or exceeded for Cr and P for some individual 
samples. The implications of this, is that stored fine-
grained sediment in the channel bed of McMillan Creek 
may be detrimental to benthic organisms like invertebrates 
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and fish that live and/or spawn in river gravels like Chi-
nook salmon.

The total storage of fine-grained sediment in the channel 
bed of McMillan Creek was greater than that determined 
for other studies, which may be due to the urbanized nature 
of this watershed. There was also significant total storage 
of PTEs, especially Mn and P. Given the limited number of 
studies that have determined such storage of contaminants 
using the same sampling approach, it is difficult to draw 
conclusions from this. Although the approach used here 
has its limitations ‒ such as the depth of water that it can 
be operated in ‒ it is a low-cost and simple way to both 
collect the fine-grained sediment stored in the channel bed 
and to estimate the storage of sediment and contaminants. 
Thus, it is recommended that it can be used more widely 
for applications such as: (i) initial assessments to identify 
reaches and rivers at risk; (ii) monitoring over time to deter-
mine trends; (iii) regional and national surveys; and (iv) 
assisting with the identification of the types and locations 
of mitigation options. The number of people living in urban 
and peri-urban areas is expected to increase substantially 
in the next few decades. Thus, more studies are required to 
assess how this will impact the amount and quality of sedi-
ment in urban rivers.
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