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Abstract

Purpose The aim of the study was to determine the usefulness of the Munsell colour indices for identification of drained
soils with various content of organic matter, developed on the sandy substrate.

Methods The analysed soils, according to the Polish Soil Classification (PSC 2019), belong to thin murshic soils (WRB 2022:
Murshic Histosols/Histic Gleysols), typical semimurshic soils (Mollic/Umbric Gleysols (Arenic, Drainic, Mulmic)) and to
postmurshic soils (Umbric Gleysols (Arenic, Drainic, Nechic)). The following dry colour indices: value (V), chroma (Ch),
V+Ch, V+0.5Ch, VXCh and V/Ch, were correlated with soil variables (LOI, C_, , N, C:N and Fey;, Mny—elements
extracted with 0.5 M HCI).

Results The strongest correlation with the SOM content was displayed by the Munsell value, which allows one to estimate
the SOM, C,,, N, content in the soils studied. The classification and regression trees (C&RT) revealed that the analysed
soil materials could be successfully divided based on the Munsell value alone. The V/Ch quotient demonstrated significant
correlations with LOL C,,, Ny, C:N, Feye and My, This quotient equalled 1-2 for murshic (> 12% C,,, ) and semimur-
shic (6.0 C,,,, <12.0%), but varied greatly (1-5) for postmurshic (>0.6 C,,, <6.0% C,,, ) soil materials.
Conclusion The analysed soil materials had the Munsell value differentiated enough to enable their identification. The V/Ch
quotient can help to trace the origin of postmurshic soils. Its narrow value (1-2) indicates that the postmurshic soil developed
through advanced transformation of murshic soil materials, whereas a broader value (2-5) indicates that the postmurshic
soil originated from dewatered Gleysols.
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1 Introduction and—indirectly—nutrients. Field measurements of soil col-

our are essential for making an assessment of water rela-

The colour of soils is an obvious morphological feature aris-
ing from the chemical composition of soils (Taylor 1981).
Based on the colour, it is possible to estimate the content of
some soil components, including humus or iron compounds,
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tions, including the identification of redoximorphic features
(Rabenhorst et al. 2014; Pretorius et al. 2017). Measure-
ments of the soil colour can also be helpful in the monitoring
of changes occurring in soil after a fire (Pereira et al. 2014).
Colour serves to distinguish the horizons in a soil profile,
and thus to determine the advancement of the soil formation
process. As an important diagnostic feature, it is commonly
used in descriptions of soil profiles (FAO 2006). Colour can
also help to estimate the fertility of soils and their agricul-
tural usefulness. This explains why so many names of soils
are derived from the colour of their surface horizon.
Munsell soil colour charts are widely used for soil
classification (Gobin et al. 2000; Pegalajar et al. 2020).
Munsell soil colour parameters serve to define the soil
features and diagnostic horizons in many soil classifica-
tion systems, e.g. Soil Taxonomy (Soil Survey Staff 2014),
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World Reference Base for Soil Resources (IUSS Work-
ing Group WRB 2022), Polish Soil Classification—PSC
2019 (Kabata et al. 2019). In the Netherlands, the colour
of soils has been employed to distinguish brown plaggen
soils from black plaggen soils based on the value + chroma
criterion (Pape 1970).

Many articles discuss dependences between the colour
of soils and the content of soil organic matter (SOM) or
organic carbon (C,,, ) (Blume and Helsper 1987; Evans and
Franzmeier 1988; Lachacz 1993; Schulze et al. 1993; Konen
et al. 2003; Wills et al. 2007; Jorge et al. 2021), nitrogen
(Qian et al. 1993; Moritsuka et al. 2014) and iron oxides
(Leger et al. 1979; Torrent et al. 1983; Schwertmann 1993;
Moritsuka et al. 2014). A rapid assessment of the SOM con-
tent using Munsell soil colour charts can help to determine
trends and consequently the soil degradation state (Minh
et al. 2020; Rubini¢ et al. 2021). Soil organic matter is the
most important pigment that influences the soil colour. Typi-
cally, the SOM content is negatively correlated with soil
hue, value and chroma (Ibafiez-Asensio et al. 2013). This is
due to the fact that humus substances absorb most visible
wavelengths of light (Vodyanitskii and Savichev 2017). The
general relationship between SOM and soil colour is modi-
fied by the grain-size distribution, chemical and mineral-
ogical composition, land use, climatic conditions and other
factors (Franzmeier 1988; Schulze et al. 1993; Konen et al.
2003; Spielvogel et al. 2004; Wills et al. 2007; Pretorius
et al. 2017). In some soils, the presence of dark minerals
can strongly affect the relationship between organic matter
and colour.

Many colour indices have been proposed in the literature
to determine the SOM storage and to assess water conditions
in soils (Evans and Franzmeier 1988; Thompson and Bell
1996; Gobin et al. 2000; Chaplot et al. 2001; Bravo et al.
2007; Pretorius et al. 2017). Because the composition of
organic matter comprises different light-absorbing compo-
nents, studies have been carried out on the effect of humic
substances on the colour of soils (Schulze et al. 1993). These
authors showed the dependence between the content of ful-
vic acids, humic acids and the Munsell value. They also
concluded that the fulvic acid fraction isolated from Indiana
soils displayed the Munsell value of 5.5, whereas the humic
acid fraction had an average value of 2.1. The colour of soils
is an outcome of interactions between pigmented mineral
particles. Blume and Helsper (1987) demonstrated that the
grouping of soils according to grain-size distribution greatly
improved the correlation between the colour and content of
SOM (humus) in soil. Leger et al. (1979) as well as Preto-
rius et al. (2017) found a stronger impact of organic matter
on the colour of sandy soils than of clay ones. This is due
to the smaller external surface area of sand grains than that
of the clay fraction, hence the former require fewer organic
colloids to be covered.
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For decades now, standardized soil colour charts based
on the Munsell colour system have been used in soil science
field practice (Kirillova et al. 2018; Turk and Young 2020).
Currently, they are available in different versions, depend-
ing on a producer. Studies have been completed to compare
different versions of these charts (Thompson et al. 2013;
Rabenhorst et al. 2015), and to find out to what extent an
individual user is able to match soils to colour chips (Shields
et al. 1966; Post et al. 1993, 2006). Results of these inves-
tigations indicate that an experienced soil scientist is able
to interpolate determinations of soil colour to the nearest
unit of hue and nearest half unit of both value and chroma
(Pomerening and Knox 1962; Shields et al. 1966; Post et al.
1993; Rabenhorst et al. 2015). Although easy-to-use digital
colorimeters have been made available (Kirillova et al. 2018;
Moritsuka et al. 2019), colour charts continue to be used in
soil science studies because of the rapidness and ease of
determinations (Sugita and Marumo 1996).

Studies on colour are useful in the identification of post-
bog soils developed on sandy substrate (Lachacz 1993).
In the soil landscape, they constitute a transitional zone
between organic soils (murshic soils), through soils with
the decreasing SOM content, referred to as semimurshic
and postmurshic soils in PSC 2019 (Kabata et al. 2019), to
humose sands composing the top horizons of Arenosols.
Semimurshic and postmurshic soils occur on the edges of
peat bogs, and are particularly common on fluvioglacial
plains, where they tend to cover large areas (L.achacz 2001).
They develop in two ways: (i) directly from drained gley
soils; (ii) as a result of prolonged intensive draining of shal-
low peat soils, which leads to a decrease in the SOM content
below the lower threshold value set for organic soils, e.g. in
PSC2019<12% C,,, . An elevated content of mineral parts
(sand and silt fractions) in these soils arises from: (i) input
by flooding rivers, (ii) pedoturbation (mixing the surface soil
layers with the mineral substrate) and (iii) aeolian supply
from nearby sandy areas.

The further evolution of organic soils after dewatering is
called pedogenic transformation (mursh-forming process),
which contributes to the depletion of SOM and a relative
increase in the content of mineral matter (.abaz and Kabala
2016; Kabata et al. 2019). In soil with a small thickness
of the SOM rich horizon, ploughing also contributes to
the formation of soil materials containing less than 12%
Core.- Organic matter in these soils is loosely attached to
sand grains. It is composed of small granular aggregates
(clusters) of coagulated humus, which are only partly envel-
oped in sand grains (Fig. 1). As a result of redoximorphic
processes in the predrainage phase of these soils, a large
amount of sand grains is devoid of any colour coatings. As
SOM is being depleted, the share of black pigment (humic
compounds) is decreasing, while a lighter in colour (whit-
ish) sandy component (mainly quartz grains) is becoming
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Fig. 1 Examples of soil
materials studied: a murshic
(20.26% C,, , 40.9% LOI,
96,740 mg kg‘1 Feyc); b
semimurshic (8.56% C, ,
19.0% LOI, 44,000 mg kg™
Feyy); ¢ semimurshic

(6.88% C,,, , 14.5% LOI,
23,100 mg kg™! Feyc)); d
postmurshic (4.23% C,,,, , 10.7%
LOI, 16,800 mg kg™! Feyc)); e
postmurshic (2.68% C,, , 6.1%
LOI, 2000 mg kg~! Feycp; f ]
postmurshic (1.06% C,,, , 2.6% )
LOI, 3420 mg kg™! Fey)
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more visible. In outwash plains, a mosaic-like pattern of
soils has developed with soils having a different content of
organic matter, depending on the groundwater level (hydro-
toposequences of soils). Different colours (shades of the
grey colour) can be observed on the surface of a given area
after ploughing or other soil tillage treatments, depending
on small (up to 20-30 cm) differences in the elevation of the
terrain (Lachacz 1993, 2001).

The Polish Soil Classification (Kabata et al. 2019), in
accordance with the tradition of Polish soil science, distin-
guishes a diagnostic horizon in post-bog sandy soils called
arenimurshic (Polish—arenimurszik) one, composed of
semimurshic (6-12% C,,, ) or postmurshic (0.6-6% C,,)
soil material. The World Reference Base for Soil Resources
(IUSS Working Group WRB 2022) among diagnostic soil
materials distinguishes mulmic one. It is a mineral material
containing > 8% C,,, <20% developed from organic mate-
rial after drainage. This material may have varied grain-size
distribution, not only sandy but also heavier, which enables
the identification of a principal qualifier for Phaeozems, as
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well as a supplementary qualifier for Histosols and Gleysols.
It should be underlined that the WRB classification does not
distinguish soil materials which contain less than 8% C,,,
developed at a further stage in the pedogenic transforma-
tion of drained soils. In this classification, soils which repre-
sent further stages in the degradative depletion of SOM are
most often classified as Gleysols, while the supplementary
qualifiers (Arenic, Drainic, Humic, Mulmic, Nechic) allow
more detailed characterisation of these soils. In our paper, we
focused on post-bog soils with sandy texture containing less
than 12% C,,, There is an urgent need to develop methods for
the assessment of the SOM content that will allow rapid and
inexpensive evaluation of organic carbon resources over large
areas of the globe. Despite the improvement of spectropho-
tometric and remote methods, the use of Munsell charts will
remain the standard practice (Wills et al. 2007; Rabenhorst
et al. 2015; Jorge et al. 2021; Schmidt and Ahn 2021).

The aim of the study was to answer the following
questions: (1) can soil colour be a reliable proxy for soil
organic matter, organic carbon and total nitrogen content
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in sandy post-bog soils and (2) to what extent can col-
our help to identify the following soil materials: murshic,
semimurshic, postmurshic?

2 Materials and methods
2.1 Study area and soil sampling

The study covered soil samples collected from Mazury Plain
and Kurpiowska Plain, NE Poland (Solon et al. 2018). These
two physico-geographical regions in Poland embrace a plain
formed from fluvioglacial sands (outwash plains). In the
river valleys as well as in numerous terrain depressions,
there are organic soils and accompanying mineral-organic
soils (containing less than 12% C,,, ). Usually shallow fens
(alder and reed peats) were drained in the second half of the
nineteenth century, and the drainage works continued in the
first half of the twentieth century. The draining triggered
changes of the soil mass, referred to as a mursh-forming pro-
cess, and soil-degrading SOM depletion (Labaz and Kabala
2016; Kabata et al. 2019). The soils studied were used as
meadows and pastures as well as arable fields. To a certain
extent, the type of land use depends on the SOM content,
which in turn is dependent on the groundwater level. Thus,
soils containing over 12% C,,, in surface horizon are typi-
cally used as meadows, and those having less than 12% C,,,
are more often turned into arable fields. The type of land use
is not constant over time, and therefore some arable fields
are temporarily converted to grassland, while some grass-
land is converted into arable land. Ploughing deepens the
surface layer and homogenises the soil material while the
resulting aeration of the soil accelerates the mineralisation
of SOM. It is only murshic soils used as permanent meadows
that are sporadically ploughed in order to sow them with
grass mixtures.

The analysed soils, according to the Polish Soil Clas-
sification (PSC 2019), belong to thin murshic soils (WRB
2022: Murshic Histosols/Histic Gleysols), typical semi-
murshic soils (Mollic/Umbric Gleysols (Arenic, Drainic,
Mulmic)) and to postmurshic soils (Umbric Gleysols
(Arenic, Drainic, Nechic)). Soil samples were taken from
the surface layer (0-20(30) cm) (n=187) and from the
subsurface layer lying directly underneath (21(31)-60 cm)
(n=139). No samples were extracted from soil horizons
below 60 cm because these were composed of fluviogla-
cial sand, not transformed by processes of pedogenesis.
The surface layers represented mainly the mineral horizon
A (Ah, Ap layer) and, less often, the organic H horizon.
The subsurface layers represented mainly the mineral C
horizon (Cr layer) and less often, the organic H horizon
(IUSS Working Group WRB 2022). The soil sampling was
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based on the morphological differentiation visible in soil
profiles, hence the lower threshold of the surface layer is
not identical, varying from 20 to 30 cm in depth, which
to some extent is associated with the depth of plough-
ing. The analysed soils are characterised by the topmost
layer rich in organic matter, which is underlain either
directly by fluvioglacial sand or an unploughed layer of
organic or mineral-organic formation. The soil material
taken from the depth of 21(31)-60 cm contains more of
incompletely decomposed plant residues (peat-like) and
sometimes has an addition of fine-grain (silt and clay) soil
materials accumulated due to the alluvial activity of rivers
(telmatic mud) (Dtugosz et al. 2018). The subsurface sam-
ples tend to contain less SOM than surface ones, which is
typical feature of post-bog soils with a small thickness of
the SOM abundant surface layer (Lachacz 2001). How-
ever, it is worth noting that a smaller content of SOM in
the surface layer than in the deeper ones may indicate the
prolonged draining of the soil and intensive SOM miner-
alisation. In the soils studied, this is associated with the
degradation of fen soils caused by drainage.

2.2 Laboratory analysis

Soil samples were air dried while being gently crushed
and any live plant roots or iron concretions were removed
manually. Afterwards, the samples were passed through a
2 mm mesh sieve. Soft (non-concretion) aggregations of
iron and manganese oxides present in some soil samples,
following the preparation of soil samples for analysis, were
incorporated into the soil mass, thereby affecting its col-
our. The colour of air-dry soil samples was determined
under diffused natural light with the help of Munsell charts
(Munsell Color Company 1994). Two persons conducted
the colour determination independently. In about 25% of
the cases, there were differences, usually in the range of
0.5 value or chrome unit, which is when the Munsell col-
our notation is an average of the two determinations. A
similar level of agreement for the two determinations is
given by Post et al. (1993). The following determinations
were made in air-dry soil samples: loss-on-ignition (LOI)
after dry ashing for 6 h at a temperature of 550 °C, which
approximates the amount of soil organic matter (SOM);
total organic carbon (C,,, ) and total nitrogen (N, ) con-
tents, which were measured with a Vario Max Cube CN
elemental analyser; and the content of iron (Fey,) and
manganese (Mny), after extraction with 0.5 M HCI meas-
ured with the ASA technique (Sapek and Sapek 1992).
The results were converted to absolute dry matter (drying
at 105 °C) and presented as an arithmetic mean from two
parallel determinations.
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2.3 Division of soil samples into groups

Soil samples were divided (stratified) into several groups.
Considering the criteria provided in the PSC 2019 (Kabata
et al. 2019), the surface soil samples were divided accord-
ing to their C,,, content into the following groups:

>12.0% C,,, —mursh (Polish-mursz),

>6.0-<12.0% C,,, —semimurshic (Polish-murszowaty),
20.6-<6.0% C,,, —postmurshic (Polish-murszasty).
The subsurface samples were divided into the follow-

ing groups:

>12% C,,, —peat (Polish—rorf),

>6-<12% C,,, —peaty sand (Polish~zorfiasty piasek),
>0.6-<6% C,,, —humose sand (sometimes with peat

admixtures, especially when higher SOM content),
<0.6% C,,,—sand (usually with some addition of

org.
humus substance of illuvial origin).
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2.4 Statistical calculations

All statistical calculations were performed in STATISTICA
13.3 software (TIBCO Software Inc. 2017). The following
colour indices found in the literature (Shields et al. 1966; Pape
1970; Blume and Helsper 1987; Chaplot et al. 2001; Bravo
et al. 2007; Pretorius et al. 2017) were correlated with soil
variables (LOL C,, , Ny, C:N, Fey), Mny)): value of dry
so0il (V); chroma of dry soil (Ch); V4+Ch; V+0.5Ch; VXCh;
V/Ch. Before making statistical evaluation of the strength of
relationships between the aforementioned Munsell colour
indices and soil variables, the In(x) type logarithmic transfor-
mation was made. This transformation changes the natural,
curvilinear dependence of the variables (Fig. S1) to a rec-
tilinear one (Fig. 2). This enabled performing the Pearson
correlation analysis with p < 0.05. The statistical significance
of differences between soils materials was determined by the
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Fig.2 Munsell colour indices versus organic matter parameters for surface soil samples (log-normal data transformation)
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Table 1 Chemical properties of soil materials studied

Soil materials  n LOI (%) Core. (%) Ny (%) C:N Feyq (mg kg™ Mny (mg kg™
Surface

Mursh 53 “53.6+£2.52 28.5+1.31 2.03+0.113 14.5+£0.311 5.41+0.440 « 10* 361+£25.3
Semimurshic 17 16.2+0.823 8.02+0.294 0.604+0.0280  13.5+0.492 4.17+0.706 « 10* 303+43.9
Postmurshic 117 6.11+0.226 2.85+0.104 0.260+£0.0092  11.1+0212  0.789+0.075« 10*  83.5+4.82
Subsurface

Peat 5 38.4+8.32 19.5+£4.10 1.62+0.49 13.4+1.77 2.69+1.00+ 10* 255+108
Peaty sand 12 13.4+0.993 7.17+£0.576 0.464+0.0350  15.8+1.28 0.738+£0.254 « 10*  93.3+31.5
Humose sand 56 3.00+0.275 1.59+0.162 0.110+0.0115 16.4+1.28 0.476+£0.051 « 10*  63.9+5.73
Sand 66 0.567+0.0249  0.287+0.0131  0.0261+0.0013 11.7+0.654  0.265+0.020+ 10*  32.5+3.91
“Mean + SE

Dunn’s test with Bonferroni correction with p <0.05. Using
classification and regression trees (C&RT), the Munsell col-
our indices that best classified the tested soil materials were
selected. These analyses were made in two variants, i.e. for
all (surface and subsurface) soil samples together, and sepa-
rately for surface soil samples. The C&RT analysis enables
constructing regression models, in which the dependent vari-
able is a quantitative feature, and classification models, where
the dependent variable is qualitative. Generally speaking, the
objective of the analysis involving the algorithm for construct-
ing trees is to find the set of logical conditions of the division
of the type ‘if ..., then’, leading to an unambiguous classifica-
tion of objects (Breiman et al. 1984; Ripley 2014).

3 Results

The basic chemical properties of the analysed soil materi-
als are set in Table 1. The content of LOT as well as C,,
Niot» Feyer, Mny, showed highly significant correlation

with the Munsell value at p <0.001 (Table 2). The correla-
tion between the Munsell chroma and LOL C,,, , N, turned
out to be significant only in the group of subsurface sam-
ples. Munsell colour indices based on the inclusion of both
value and chroma (V+Ch, V+0.5Ch, VXCh) demonstrated
strong correlation with LOIL, C,, , Ni,, Among these indices,
V+0.5Ch showed a slightly stronger relationship with SOM
variables, while the relationship demonstrated by VxXCh was
weaker. The V/Ch quotient showed a significant relation-
ship with LOI, C,,, and N, in the case of surface samples,
and lower values of correlation coefficients for subsurface
ones. The Munsell colour indices obtained for the group of
surface soil samples showed a highly significant correla-
tion with the content of Fey and Mny, at p <0.001, with
the relationship determined for iron being stronger than for
manganese. Similar relationships emerged in the groups of
surface soil materials distinguished according to the C,
content (Table 3). As regards murshic soil materials, the
strongest dependence with SOM variables was demonstrated
by V and V +0.5Ch. Also, chroma alone showed correlation

between Ml oo Lot Nus N Fenc My

indices and soil variables for Surface soil samples (n=187)

S;zfn;lllen;ace and subsurface soil v —0.93"* 0,92 —0.92" —049" —0.81:: _0.73::
Ch 0.10 0.09 0.08 0.11 0.36 0.27
V+Ch —0.78"™ —0.77" —0.78"™" —0.38"™" —0.52"" —0.50""
V+0.5Ch —0.89"" —0.88"™" —-0.88"™" —0.45™ —0.69"" —0.63"™*
VxCh —-0.48™" —0.49™" -0.49"" -0.23™ —0.22" —-0.24™
V/Ch -0.66™" —0.65""" -0.65""" —-0.33"" —0.71"" -0.57"""
Subsurface soil samples (n=139)
A -0.93™" -0.92"" -0.87"" -0.38™ —0.50""" —-0.45™"
Ch -0.51""" —0.53"" -0.50""" -0.19" 0.10 0.11
V+Ch -0.81""" —0.82"" -0.78"" -0.33™ —-0.20" -0.16
V+40.5Ch -0.89"" —0.89"" -0.84™" -0.36" -0.32" -0.27"
VxCh -0.67"" —0.68"" -0.63"" -0.31™ —0.06 -0.05
V/Ch 0.19" 0.21" 0.21" 0.04 —0.28™ —0.19"

“p<0.05; “p<0.01; “p<0.001
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betweun Ml coloun indices Lol Con N CN Fenc M

and soil variables for dry Murshic (n=53)

f;‘garf;ffﬁics"‘:;gf:nsr‘:ﬁ?:in P ~0.78" —072" ~0.77" 041" 030" 0.11

postmurshic materials Ch -0.35 -0.35 -0.45 0.39 0.40 0.13
V+Ch —-0.59™" —0.56"" —-0.65™" 0.44™ 0.40™ 0.13
V+40.5Ch -0.67"" —0.63"" -0.717" 0.45™ 0.38™ 0.13
VxCh —-0.52"™" —0.50"" -0.59™" 0.43™ 0.37" 0.13
V/Ch -0.12 -0.09 -0.02 -0.15 -0.31" -0.05
Semimurshic (n=17)
v -0.17 0.16 -0.38 0.66" —-0.31 —-0.02
Ch 0.29 0.15 0.20 —0.12 0.74™ 0.84"
V+Ch 0.16 0.20 -0.01 0.21 0.46 0.68"
V+0.5Ch 0.06 0.20 -0.14 0.39 0.24 0.50"
VxCh 0.23 0.19 0.09 0.08 0.57" 0.74™
V/Ch —-0.38 —0.04 —-0.39 0.47 —0.90"" —-0.79™"
Postmurshic (n=117)
\% —0.75" —0.70"" —0.69™" —0.08 —0.63"" —-0.34
Ch 0.21° 0.17 0.19 —0.04 0.41"™ 0.25"
V+Ch —0.38"™ —0.38™ —0.35™ —0.08 —0.12 —0.04
V+0.5Ch —0.60"" —0.58™" —0.56™" —0.09 —0.38"" —0.19"
VxCh -0.12 —-0.13 -0.11 —0.06 0.15 0.13
V/Ch —-0.50™" —0.44" —0.48™" 0.05 —0.51"" -0.23"

*p<0.05; “p<0.01; “p<0.001

with SOM variables, but only at the levels of significance
equal #=0.05 and a=0.01. Concerning the group of semi-
murshic soil materials, attention is drawn to the absence
of significant correlations between the SOM variables and
colour indices, but significant relationships at p <0.001
between Ch, V/Ch and Fey;, Mny,. The numerous group
of postmurshic soil materials (n=117) in general showed a
similar character of correlation that was determined for all
surface soil materials in total.

The relationship between the Munsell value and LOI,
Corg.» Ny, is curvilinear, well described with a logarithmic
function (Fig. S1). The logarithmic transformation revealed
a similar character of the relationship between the value and
LOL C,, and N, , and a slightly better fit of the regres-
sion line for V+0.5Ch and for V+Ch, as well as the high
variation of the V/Ch quotient for soil materials with a C,,
content below 12% (Fig. 2). The surface soil materials are
distinctly different in colour expressed as value (Fig. 3a).
The median colour value is 2.5 for murshic soil materials,
3.0 for semimurshic and 4.5 for postmurshic ones. Based on
the Dunn’s test with Bonferroni correction with p <0.05, it
was determined that the analysed soil materials composed
homogenous groups in terms of the value parameter, which
proves that this colour parameter can serve for their iden-
tification. A similar situation appears in the case of sub-
surface materials (Fig. 3b). The median Munsell value for
peaty sands is slightly less than 3.5, slightly below 5 for

humose sands and 6.5 for sands. The small population of
samples denoted as peat create a homogenous group with
peaty sands.

C&RT plotted for all samples (surface and subsurface)
divided into groups according to their C,, content demon-
strated that they could be successfully divided on the basis
of the Munsell value alone (Fig. 4). Samples with 0.6 to
6.0% of C,,, have value > 3.125. The value 2.625 splits
the samples into two groups: those with > 12% C,,, have
value <2.625, whereas samples with 6-12% C,,, content
have value > 2.625. However, unexpectedly, the best col-
our index for division of surface soil materials proved to be
V+Ch (Fig. 5). The soil colour index V+Ch <4.875 was
obtained by 52 murshic samples out of a total of 53 such
samples. Another well-distinguished group, with V4+Ch
>5.125, comprised postmurshic samples. Semimurshic
soils were relatively poorly distinguished (V4+Ch <5.125),
as nearly half of their samples were classified as postmurshic
materials based on this colour index.

Other important pigments in soil, apart from organic
matter, were iron and manganese oxides determined as
forms extracted by 0.5 M HCI. Both showed highly signif-
icant correlations with the content of C,,, at p<0.0001
(Fig. 6) as well as a mutual correlation. However, it is
worth underlining that the content of manganese in the
analysed soils was approximately 150-fold lower than
the content of iron, while manganese oxides are black
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Fig. 3 Munsell value of a surface soil samples and b subsurface soil samples. Different letters below columns indicate significant differences

(p <0.05) among different soil materials

in colour, same as humus. Despite the overall increas-
ing trend concerning the content of iron and manganese
oxides alongside an increase in the C,,, content, a high
degree of dispersion of the results needs to be noted.
The V/Ch quotient showed a curvilinear dependence on
the C,,, content (Fig. 7a) as well as on the content of
Feyc (Fig. 7b). It should be emphasised that it falls in the
range of 1 to 2 for murshic soil materials (> 12% C,,, ).
It appears in a similar although slightly broader range for
semimurshic materials (6-12% C,,, ). In turn, postmurshic
materials (0.6-6% C,,, ) are characterised by this quotient
falling within the range of 1 to over 5. The diagram shows
that the V/Ch quotient depends on the presence of colour
iron compounds in the soil, represented by Fey,.

@ Springer

4 Discussion

In our study, air-dry samples were analysed because the dry-
ing of soil enlarges the span of both value and chroma (Pre-
torius et al. 2017; Rubinié et al. 2021). Of the three colour
variables, value and chroma show to be strongly dependent
on the SOM content (Konen et al. 2003; Pretorius et al.
2017; Jorge et al. 2021). In turn, the relationship between
SOM and hue is weak (Pretorius et al. 2017; Jorge et al.
2021). Hue was not discussed in this study because over
90% of the samples had the same notation (10YR) while the
remaining hue notations (7.5YR, 2.5Y, 5YR) were mainly
obtained in subsurface samples. Blume and Helsper (1987),
as well as Fernandez et al. (1988) and Franzmeier (1988)
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Fig.4 Classification and regression tree (C&TR) for all soil materials (surface and subsurface) distinguished according to organic carbon con-

tent

or Wills et al. (2007), showed that it was necessary to use
both the Munsell value and chroma in order to predict the
organic matter content in soil. However, Jorge et al. (2021)
claim that all the three colour components (value, chrome
and hue) should be included in such assessments because
the organic carbon content affects both value (lightness) as
well as other colour pigments (e.g. red, yellow and green).
Some researchers (Rubini¢ et al. 2021) concluded that the
relationship between the SOM content in dry samples was
stronger for chroma than for value. Likewise, Konen et al.
(2003) maintain that chroma can be a good predictor of the
SOM content. Based on the classification and regression
trees for surface samples (Fig. 6), we stated that despite the
low values of correlation coefficients between chroma and
organic matter variables (Table 2), value plus chroma could
be useful in the identification of the analysed soils.

High values of correlation coefficients between the
Munsell value and the LOL, C,,, and N, content in soil
(Tables 2 and 3) indicate that the content of organic matter
in the analysed soils can be estimated based on this colour
parameter. In our study, the correlation strength was also

tested for chroma (saturation or intensity) because this col-
our parameter also depends on the presence of the black
pigment; additionally, the following colour indices were
applied: V+Ch, V+0.5Ch, VXCh, V/Ch. Other scholars
(Pretorius et al. 2017) used only the value component of
the Munsell system, as this showed the best correlation
with SOM. Statistically significant correlations ranging
from —0.92 to —0.93 were found between the Munsell
value and LOL C,,, Ny, (p<0.001) (Table 2). The results
obtained in our study concerning the relationships between
the Munsell value and organic matter variables were in
agreement with the data given in the literature (Schulze
et al. 1993; Chaplot et al. 2001; Konen et al. 2003; Bravo
et al. 2007). The correlation coefficients calculated for the
organic matter variables versus VXCh were lower (albeit
still statistically significant) than for the Munsell value
alone (Table 2). A similar relationship was determined
by Bravo et al. (2007). Generally, based on the achieved
research results, the analysed colour indices can be ordered
in terms of their usefulness for estimating the SOM con-
tent, and therefore for identification of soil horizons. The
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Fig.7 Relationship between V/Ch quotient and a organic carbon con-
tent and b content of Fe soluble in 0.5 M HCI extract for surface soil
samples. Green colour indicates postmurshic soil materials of gleyic

Munsell value alone proved to be the best in this respect,
followed by V+Ch and V+0.5Ch, ensuring approximately
the same estimation success. Chrome alone and V+Ch were
determined to be much less useful for the above purpose.
The lack of a significant correlation between chroma and
SOM in surface soil materials (Table 2) should be linked to
the diversified content of coloured iron compounds in mursh
materials and a typically small content of such compounds
in postmurshic soil materials (Table 1, Fig. 6). Before drain-
age, large oscillations of the groundwater table had been
characteristic for semimurshic and postmurshic soils. Hence,
semimurshic and especially postmurshic soil materials con-
tain numerous whitish quartz grains completely devoid of
goethite coatings, which is referred to as redox depletions
(Soil Survey Staff 2014). Quartz grains affect the result-
ant colour of post-bog soils with sandy texture. Due to the
smaller specific surface area of sand than that of silt or clay,
smaller amounts of pigment (humus substances) are needed
to cover sand grains (Leger et al. 1979). Noteworthy is also

b)

y=8.04 - 0.63In(x)
r?=0.50

0 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000

140000

Fenci, mg kg™’

origin, blue colour indicates postmurshic soil materials of subsequent
degradation of murshic and semimurshic soil materials

the fact that quartz grains are rarely covered by dyeing sub-
stances entirely because of the low reactivity of their surface
(Spielvogel et al. 2004). These authors conclude that sandy
soils are significantly darker than finer textured soils and
have only slightly lower values than Histosols with a much
higher C,, content.

Numerous researchers emphasise that models for soil
carbon estimation from soil colour measurements should be
constrained to specific mineralogical and physiographic set-
tings (Schulze et al. 1993; Wills et al. 2007; Ibafiez-Asensio
et al. 2013; Moritsuka et al. 2014; Schmidt and Ahn 2021).
Grouping soils according to their texture improves the regres-
sion dependence between SOM and colour indices (Blume
and Helsper 1987; Evans and Franzmeier 1988). In order to
classify the surface soil materials sampled in this study, the
criteria included in the Polish Soil Classification (Kabata et al.
2019) were applied, which take into account the degrading
depletion of SOM in drained organic soils, and the specific
features of post-bog soils developed from sand. The diagnostic
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horizon distinguished in the PSC 2019 called arenimurshic,
despite having a similar SOM content as found in the mol-
lic and umbric horizons, differs from these two by its sandy
texture. The arenimurshic horizon does not form permanent
clay-humic bonds because of the lack or very small amount
of the clay fraction. Humus is mostly composed of chelated
macromolecular complexes, which appear as grains of the
size corresponding to the sand or silt fractions, with sharp or
rounded edges (Fig. 1). The PSC 2019 (Kabata et al. 2019)
assumes that the arenimurshic diagnostic horizon contains at
least 10% of sand grains without the humus coating. The col-
our of such materials is the result of the light colours of sand
and silt (quartz) grains and dark colours of granular aggrega-
tions of humus. The colour of some arenimurshic horizons,
especially postmurshic materials (Fig. 1d, e), is referred to as
lead-black or greyish, because it had low chroma (< 2) due to
the small amount of coloured iron oxides.

The analysed soil materials demonstrated a different
character of the dependence of the V/Ch quotient on the
SOM content than soils from Croatia (Rubinié et al. 2021),
which should be linked to the different conditions of their
pedogenesis. The analysed soils show large differences in
the content of Fe and Mn soluble in 0.5 M extract of HCl
(Fig. 6). Further, 0.5 M HCI extract is commonly used in
Poland for determination of the content of nutrients poten-
tially available to plants in organic and in mineral-organic
soils (Sapek and Sapek 1992). Amorphous forms of iron and
other metals enter 0.5 M HCI extract. In organic soils with
the sandy texture, the amount of iron in aluminosilicates is
extremely small, and most of iron appears in non-silicate
(amorphous) forms, because this element originates from
mineralisation of plant residues and capillary supply from
groundwater (Okruszko 1993). Hence, in post-bog soils, the
content of iron extracted with 0.5 M HCI can serve as a

Fig.8 Munsell colours of sur- g
face materials of post-bog soils ©
> Hue 10YR
5
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A
3L1C
2 \
3 4 Chroma
[ N ) | Y4 )
o o0 @ P4 YA |
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measure of amounts of amorphous forms, that is coloured
iron oxides. In these soils, more than 50% of total iron enter
this extract (Okruszko 1993). Rubini¢ et al. (2021) found a
significant positive correlation between the V/Ch quotient
and the SOM content in soil. In our study, only surface soil
materials demonstrated a significant (p < 0.001) albeit nega-
tive correlation between V/Ch and all soil variables studied
(Table 2). Among all surface soil materials, postmurshic
ones showed an exceptionally wide V/Ch quotient (Fig. 7a).
This ratio can be useful in determination of the origin of
postmurshic soils. Postmurshic soil materials with a narrow
V/Ch quotient (1-2) originated as a result of advanced trans-
formation of murshic soils, which contained larger amounts
of iron because of the mineralisation of plant residues and
particularly the capillary ascension of waters abundant in
Fe?*. Postmurshic materials with a broad V/Ch quotient
(2-5) originated mostly from the draining of Gleysols, which
due to the redox depletions were almost completely devoid
of iron compounds. As shown in Fig. 7b, all soil materi-
als, regardless of the Corg' content, which contained over
20,000 mg kg~ Fey, achieved the V/Ch quotient <2.

The pattern of the colours of surface soil materials is pre-
sented in Fig. 8. It can be helpful in identification of these
soil materials in field conditions. Soil materials demonstrat-
ing the chroma >3 were denoted as ferruginous ones. They
are characterised by a higher than 20,000 mg kg™! Feya
content (Fig. 6) and a narrow V/Ch quotient (1-2) (Fig. 7a).
It is worth noting that in Poland, murshic soils which contain
over 4.2% of total iron are known as ferruginous murshes
(Okruszko 1993), and the 20,000 mg kg‘1 Feyc content
approximately corresponds to this threshold value. It should
be noted that the dominance of the Munsell chroma < 3 is
also a consequence of the strong colouring effect of humus,
masking the effect of iron oxides by dark soil components.
General darkening also occurs when iron oxides (goe-
thite) undergo cementing, i.e. compacting into hard mass
(Schwertmann 1993). Chroma > 3 indicates that post-bog
soils contain large amounts of coloured iron oxides, which
become more visible when the black pigment (humus) is
being depleted. Schwertmann (1993) presented a change in
colour of various iron oxides after the removal of humic
substances with the H,0, treatment.

5 Conclusions

Among the analysed Munsell colour indices (V, Ch, V4Ch,
V+0.5Ch, VXCh, V/Ch), value alone showed the strongest cor-
relation with the content of soil organic matter. Less satisfactory
estimates of the SOM content were achieved by employing the
V+Ch and V+0.5Ch. Chroma alone and VXCh proved to be far
less useful. It is possible to estimate the content of C,, and Ny,

in the soils studied based on the Munsell value. The analysed
surface and subsurface soil materials had the Munsell value
differentiated enough to enable their identification. The median
Munsell value for murshic soils was 2.5, while being 3 for
semimurshic and 4.5 for postmurshic soils. Classification and
regression trees (C&TR) showed that the analysed surface and
subsurface soil materials together can be effectively divided on
the basis of value alone. Materials containing <6.0% C,, have
value > 3.125. Materials with the content>12.0% C,,, have
value <2.625. However, the best division for surface soil mate-
rials achieved with C&RT was obtained for value plus chroma.
For murshic soils, it reached <4.875, and for postmurshic ones
> 5.125. The V/Ch quotient showed highly significant correla-
tions with LOL C,,, , Ny, C:N, Feyey, My, in the group of
surface soil materials. This quotient equals 1-2 for murshic
and semimurshic soil materials, but is much more varied (1-5)
among postmurshic materials. The V/Ch quotient may serve to
trace the origin of postmurshic soils because its value within the
range of 1-2 indicates its origin due to highly advanced trans-
formation of murshic and semimurshic soil materials, whereas
the range from 2 to 5 suggests it originated directly from surface
layers of drained Gleysols.
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