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Abstract
Purpose  The aim of this work was to determine the characteristics of SOM decomposition under forest vegetation and to 
investigate the influence of soil mineralogy on SOM turnover.
Methods  Thirteen Hungarian forest topsoil samples amended with maize residues were incubated at 20 °C for 163 days. 
The CO2 evolved was measured and the fast and slow decomposition rate constants (k1 and k2, respectively) of SOM were 
quantified using a first-order two pools model. Linear regression analysis was applied between the quantity of total mineral-
ized carbon (TMC), k1 and k2 values and the mineralogical parameters of the soils.
Results  The illite (R2 = 0.797, p < 0.001) and non-swelling clay mineral (R2 = 0.767, p < 0.001) content and the dithionite–
citrate–bicarbonate-extractable Al (AlDCB, R2 = 0.708, p < 0.001) and ammonium-oxalate-extractable Al concentration (AlOX, 
R2 = 0.627, p < 0.01) reduced the TMC to the greatest extent. The AlDCB (R2 = 0.681, p < 0.001), AlOX (R2 = 0.583, p < 0.01) 
and illite (R2 = 0.545, p < 0.01) contents had strong negative relationship with the k1 value. The k2 value was only affected 
by the non-swelling clay mineral (R2 = 0.467, p < 0.05) and illite (R2 = 0.574, p < 0.01) contents.
Conclusion  These results confirm that the mineral composition of the soil, including the Al oxide, non-swelling clay mineral 
and illite contents, may significantly inhibit the decomposition of SOM, showing that illite minerals may provide binding 
surfaces for SOM over a longer timescale.

Keywords  SOM turnover · SOM decomposition rate · Organo-mineral interactions · Clay minerals · Illite · Al oxide

1  Introduction

Soil organic matter (SOM) regulates many soil processes, 
but its significance is not restricted to the soil ecosystem, 
as it also plays an important role in the global carbon cycle. 

However, SOM is not a single homogeneous pool; it can 
be divided into carbon pools with different decomposition 
kinetics: pools with fast turnover and others with slow 
turnover. Therefore, the residence time of SOM is very 
diverse, ranging from a few hours, weeks or months to as 
much as 10,000 years (Trumbore 2000; Kuzyakov 2006; 
Schmidt et al. 2011; Fekete et al. 2021) depending on many 
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factors. The main mechanisms, which provides the resistance 
of organic matter — even over a longer timescale — 
against microbial decomposition are chemical and physical 
stabilization processes of SOM (Angst et al. 2021). The 
chemical protection of SOM adsorption via forming stable 
complexes of organic molecules on the surface of minerals 
is one of the most important mechanism responsible for 
the long-term stabilization of SOM (Mikutta et al. 2006; 
von Lützow et al. 2008; Kleber et al. 2021). The physical 
protection of SOM by aggregates is another important SOM 
stabilization process (Six et al. 2002; Angst et al. 2017; 
Guidi et al. 2021). Therefore, the silt and clay content of 
the soil are considered main factors for SOM stabilization 
(Hassink 1997; von Lützow et al. 2008; Wiesmeier et al. 
2019). It is widely accepted that sand-associated SOM 
has a faster turnover rate, whereas silt and clay-associated 
SOM has a slower turnover rate, thus representing a more 
stabilized carbon pool (Trumbore et al. 1996; Saviozzi et al. 
2014; Kögel-Knabner and Amelung 2021).

Also, the type of mineral phase plays a crucial role in 
the stabilization of SOM, often having a more significant 
effect than the amount of fine particles (Saggar et al. 1996; 
Bruun et al. 2010; Rasmussen et al. 2018). Clay-sized min-
erals (< 2 µm), oxides with R2O3 structure (primarily Fe 
and Al oxides with 5 − 100 nm), short-range order Fe-oxides 
(3 − 10 nm) and amorphous Al-oxides (< 3 nm) provide the 
most suitable surfaces for the effective binding of SOM 
(Kögel-Knabner and Amelung 2014), mainly by ligand 
exchange and formation of polyvalent cation bridges (von 
Lützow et al. 2006).

However, our knowledge on the complex SOM stabili-
zation processes of the soil minerals is incomplete (Barré 
et al. 2014; Wiesmeier et al. 2019) and it is often hard to 
differentiate the overlapping effects of the different type 
of minerals (Gartzia-Bengoetxea et  al. 2020), oxides,  
hydroxides, oxy-hydroxides and poorly crystalline phases of 
Al and Fe are of particular interest because in some cases, 
the SOM stabilizing effect of these materials was found to 
be more important than that of other soil minerals (Jones and 
Edwards 1998; Kaiser et al. 2002; Wiseman and Puttmann 
2005; Ringer et al. 2021). Fang et al. (2019) also showed that 
Al and Fe (hydr) oxides had a greater effect on soil organic 
carbon stocks than climatic and edaphic parameters.

The 2:1 type clay minerals (e.g. smectites, vermiculites, 
chlorites and illite) are another type of soil minerals with 
significant role in SOM stabilization. It is generally believed 
that the capacity of soil dominated by 2:1 clay minerals to 
bond SOM is higher than that of soils dominated by 1:1 
clay minerals (e.g. kaolinite) (Schulten and Leinweber 2000; 
Six et al. 2002; Feng et al. 2013). In line with this, Saggar 
et al. (1996) and Wattel-Koekkoek et al. (2003) found that 
the mean residence time of soil organic carbon (SOC) was 
higher in smectitic than in kaolinitic soils. On the contrary, 

Bruun et al. (2010) reported higher stability of SOC in kao-
linitic than in smecitic soil.

Therefore, there is a growing need for not only the deter-
mination of the clay content but also the study of the miner-
alogical characteristics of the soils and to examine the role 
of the different type of minerals in SOM turnover in order 
to better understand SOM stabilization processes. In addi-
tion, it is especially important to study the stabilization of 
organic matter in temperate soils, since these soils often con-
tain a mixture of the above-mentioned minerals. Thus, the 
different SOM stabilization capacities of the various miner-
als can thus be compared in situ regardless of the different 
environmental conditions (climate, pH and redox conditions) 
in temperate soils. Therefore, the aim of this study was to 
determine the type and quantity of clay-sized minerals in 
13 temperate forest soils with different mineral composi-
tion to study their role in SOM turnover. Specifically, the 
study aimed to (i) address the role of soil texture in affecting 
the decomposition of SOM and to (ii) identify the mineral 
groups with the greatest effect on SOM turnover in the short 
and long term in the acid forest soils studied. In addition, the 
study also aimed to (iii) analyse how the addition of plant 
material to the soil affected the decomposition rates of SOM.

2 � Materials and methods

2.1 � Soil samples

Thirteen topsoils (0‒20 cm with one exception: sample code 
BAT, 0‒3 cm, where the bedrock was near the surface) were 
collected as point samples from seven regions in Hungary 
(Fig. 1). Samples were collected from non-arable forest sites 
from different regions of the country in order to represent 
soils with various parent materials (Table 1) and textural and 
mineralogical characteristics (Table 2). Samples collected 
from the same region also represent different basic soil prop-
erties (Table 3) and mineralogical parameters (Table 2).

Undisturbed soil samples were taken in order to deter-
mine the water-holding capacity (WHC). The soils were 
air-dried, homogenized, passed through a 2-mm sieve and 
stored at room temperature in the dark for 9 months before 
the incubation experiment.

2.2 � Laboratory analysis of soil properties and soil 
minerals

The soil texture, the total and dissolved organic carbon and 
nitrogen contents, the iron and aluminium contents and the 
cation exchange capacity (CEC) were measured before the 
163-day incubation experiment. The soil texture was deter-
mined by the pipette method (Gee and Bauder 1986). The 
total organic carbon (TOC) content was analysed using an 
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NDIR-chemiluminescent analyser (Apollo 9000, Tekmar 
Dohrmann). The total N content was determined by the 
Kjeldahl method (Conklin 2014). The CEC was determined 
according to the method of Gillman (1979). A detailed 
description of the procedure was reported in a previous study 
(Zacháry et al. 2018).

The iron and aluminium concentrations were determined 
in acid ammonium oxalate (Schwertmann 1973) and  
dithionite–citrate–bicarbonate extracts (Holmgren 1967), 
and measured using a microwave plasma-atomic emission 
spectrometer (4200, Agilent Technologies). Ammonium oxalate 
extraction was used to assess the contents of poorly crystalline 
Fe- and Al-oxides, whereas the dithionite–citrate–bicarbonate 
extraction was applied to determine the total “free” Fe- and 
Al-oxide concentrations. Thus, the difference of FeDCB and 
FeOX (FeDCB‒FeOX) represents crystalline Fe oxides (Mikutta 
et al. 2005).

The clay fraction (< 2 µm) of the soil samples was sepa-
rated by sedimentation. X-ray powder diffraction (XRD) 
measurements were carried out using a Philips PW 1710 dif-
fractometer with CuKα radiation at 45 kV and 35 mA. Clay 
minerals were identified by XRD patterns obtained from 
parallel-oriented specimens sedimented on glass slide. The 
following diagnostic treatments were carried out for all the 
samples: ethylene glycol solvation at 60 °C overnight, Mg 

saturation followed by glycerol solvation at 95 °C overnight, 
K saturation, and heating at 350 and 550 °C for 2 h.

2.3 � Incubation experiment

A detailed description of the incubation experiment was 
reported in a previous study (Zacháry et al. 2018). Briefly, 
200 g of sieved, air-dried soil was weighed into 1 l Duran® 
glass bottles and pre-incubated at 50% WHC at 20 °C for 
2 weeks, because soil disturbances such as rewetting and 
sieving may cause a flush of C mineralization (Franzluebbers 
1999). The pre-incubated soils were thoroughly mixed with 
1 g air-dried, shredded and sieved (< 2 mm) maize residues 
and incubated for 163 days. Maize residues were added to the 
forest soils in order to study the effect of new organic matter 
amendment and to get a δ13C isotopic difference between 
the maize residues and the forest soils. Three replicates of 
amended soil and one control with no residue addition were 
used for each soil type. One blank sample without soil or 
residue was used for the whole incubation experiment. The 
samples were kept in an incubator (KBW400 E5.1, Binder) at 
20 °C for 163 days at 70% WHC. Soil respiration was trapped 
in plastic tubes containing 15 ml of 2 M NaOH, placed in the 
air-tight incubation bottles. The NaOH traps were replaced 
on days 3, 8, 15, 30, 51, 79, 107, 135 and 163. The amount 

Fig. 1   Location of the 13 sampling sites with sample codes
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of CO2 evolved was measured by titrating the remaining 
NaOH with 1 M HCl after adding BaCl2 (Anderson 1982). 
Soil moisture losses were measured by weighing the mass 
of the samples on day 0 and the days of the NaOH replace-
ment. The mass differences were calculated and the losses 
were compensated on the NaOH replacement days by adding 
distilled water to the samples.

2.4 � Kinetic model fitting and calculations

Carbon mineralization kinetics (decomposition rate con-
stants) was modelled by fitting the cumulative CO2 efflux 
measured during the 163-day incubation period to a first-
order two pools model (Molina et al. 1980):

where C is the cumulative carbon mineralized over t time, 
C1 is the size of the easily mineralizable carbon pool, C2 
is the size of the slowly mineralizable carbon pool, k1 is 
the decomposition rate constant of the easily mineralizable 
carbon pool, k2 is the decomposition rate constant of the 

(1)C = C1

(

1 − e−k1t
)

+C2

(

1 − e−k2t
)

,

slowly mineralizable carbon pool and t is the time from the 
start of incubation.

The quantity of organic matter (soil plus added residue 
in case of the amended samples) that is decomposed under 
the full length of incubation (TMC, total mineralized car-
bon) was calculated as the percentage of the quantity of 
CO2 respired during the incubation relative to the initial 
TOC content of the samples:

Statistical analysis was conducted using IBM SPSS Sta-
tistics 22.0 (Armonk, NY, USA). One-way analysis of var-
iance (ANOVA) with post hoc Tukey’s HSD test was used 
to evaluate differences between the soils. Linear regression 
was applied to determine how the mineral properties were 
related to the quantity of TMC and to the decomposition 
rate constants of the easily (k1) and slowly (k2) mineraliz-
able carbon pools. Statistical outliers, where standardized 
values (with zero mean and one standard deviation) were 
less than − 2 or greater than 2, were excluded from the 
analysis.

(2)TMC(%) = CO2resp∕TOCsoil × 100

Table 1   Sampling site data of the soils studied

MAP mean annual precipitation, MAT mean annual temperature
*Soil classification was made according to the recommendations of the World reference base for soil resources (IUSS Working Group WRB 2015)

Code Soil classification* Parent material Elevation MAP MAT Forest type (tree species)
(m) (mm) (°C)

BAT Skeletic Dystric Leptosol Humic 
Loamic

Carboniferous granite 167 650 10 Oak (Quercus paetrea, Quercus 
cerris)

JOS1 Leptic Phaeozem Loamic Pleistocene red clay on Triassic 
limestone

344 670 8 Oak (Quercus cerris)

SOP3 Leptic Umbrisol Loamic Palaeozoic mica-schist 373 725 9 Pine, chestnut, birch, beech (Pinus 
sylvestris, Catanea sativa, Betula 
pendula, Fagus sylvatica)

SOP1 Stagnic Luvisol Clayic Humic Palaeozoic mica-schist 392 725 9 Beech, pine (Fagus sylvatica, Pinus 
sylvestris)

SOP2 Albic Luvisol Humic Loamic Palaeozoic mica-schist 388 725 9 Pine, chestnut, birch (Pinus syl-
vestris, Catanea sativa, Betula 
pendula)

SOP4 Haplic Luvisol Loamic Quaternary loess 306 725 9 Beech (Fagus sylvatica)
KIS Haplic Luvisol Loamic Miocene siltstone 319 605 9 Oak, hornbeam (Quercus paetrea, 

Carpinus betulus)
KAR Haplic Luvisol Loamic Oligocene carbonaceous siltstone 403 615 8 Oak, hornbeam (Quercus paetrea, 

Carpinus betulus)
CEG Eutric Arenosol Humic Quaternary sand 119 520 10 Oak (Quercus robur)
NYIR1 Dystric Arenosol Ochric Quaternary sand 136 570 10 Pine (Pinus sylvestris)
NYIR2 Eutric Arenosol Humic Quaternary sand 139 570 10 Oak, poplar (Quercus robur, Popu-

lus alba)
JOS2 Dystric Regosol Clayic Pleistocene red clay on Triassic 

limestone
355 670 8 Oak, hornbeam, beech (Quercus 

paetrea, Carpinus betulus, Fagus 
sylvatica)

JOS3 Eutric Regosol Loamic Pleistocene red clay on Triassic 
limestone

394 670 8 Oak, hornbeam (Quercus paetrea, 
Carpinus betulus)
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3 � Results

3.1 � Mineralogical characterization of soils

The three soils developed on red clay sediment in the 
north-eastern part of Hungary (JOS2, JOS1, JOS3) and 
one sample from Western Hungary (SOP3) had the high-
est dithionite-citrate-bicarbonate-extractable Fe concentra-
tions and FeDCB‒FeOX contents (Table 2). The dithionite-
citrate-bicarbonate-extractable Al concentrations were 
also high in these samples. The three coarsest samples 
(CEG, NYIR1 and NYIR2) had the lowest FeDCB and 
AlDCB concentrations and FeDCB‒FeOX contents.

Primary minerals (quartz and feldspars) were found in 
the clay fraction (< 2 µm) of all the samples (Table 2). The 
three coarsest samples (CEG, NYIR1 and NYIR2) con-
tained only illite and chlorite phases with the dominance 
of illite. Illite was also the dominant phase in the finer 
grain-sized samples with one exception (KAR). The three 
samples from the north-eastern part of Hungary (JOS2, 
JOS1, JOS3), which is covered with red clay sediments, 
had significant quantities (approx. 38% of all clay miner-
als) of kaolinite. Two samples, KIS and KAR, had the 
highest amount of swelling clay minerals (63% of all clay 
minerals) as mixed layer species in the KAR sample and 
as mixed layer phases plus smectite only in the KIS sam-
ple. Swelling clay minerals (illite/vermiculite and/or illite/
smectite mixed layer species + chlorite/vermiculite and/
or chlorite/smectite mixed layer species) were detected in 
the smallest amount (below 20% of all clay minerals) in 
samples SOP2, JOS3 and JOS2 and were not detected at 
all in samples CEG, NYIR1, NYIR2 and JOS1.

3.2 � Parameters affecting the quantity of total 
mineralized carbon (TMC) in soils

In the present study, 1‒6% and 2‒18% of the initial SOC 
content were mineralized during the 6-month incubation 
in the control and amended samples, respectively (Fig. 2). 
In general, the C mineralization of the amended samples 
was double that of their control pairs. The CEG (fourfold), 
NYIR1 (threefold), NYIR2 (2.5-fold) and SOP1 (2.5-fold) 
samples had the highest difference between the C minerali-
zation of the amended and control samples. Residue addi-
tion had the least effect on the mineralization of the BAT, 
JOS2, JOS1 and SOP2 samples, with 1.1, 1.2, 1.4 and 1.5-
fold differences between the amended and control samples, 
respectively.

Soil parameters related to the mineral phases showed 
significant relationships with the values of TMC of the 
amended samples (Fig. 3). Neither the FeOX, swelling clay 
minerals (smectite + illite/vermiculite and/or illite/smectite 
mixed layer species + chlorite/vermiculite and/or chlorite/
smectite mixed layer species), chlorite and kaolinite contents 
nor CEC exhibited a significant linear relationship with the 
quantity of TMC, while the sand, clay, non-swelling clay 
mineral (illite + kaolinite + chlorite), illite, AlDCB, AlOX and 
FeDCB contents were found to be significant parameters 
in this respect (Fig. 3). Among these mineral parameters, 
only the sand content had a positive relationship with the 
quantity of TMC (Fig. 3a), whereas an inverse relationship 
was detected for the other parameters (Fig. 3b–g). The illite 
(Fig. 3c), non-swelling (Fig. 3d), AlDCB (Fig. 3e) and AlOX 
(Fig. 3f) contents had the strongest negative relationship 
with the quantity of TMC of the soils.

Table 3   Basic characteristics of 
the soils studied

TOC total organic carbon, TN total nitrogen, CEC cation exchange capacity

Code pH (H2O) pH (KCl) TOC TN C/N ratio CEC
(%) (%) (molc kg‒1)

BAT 4.6 3.7 7.2 0.39 18.6 9.9
JOS1 5.7 4.8 9.7 0.68 14.4 29.4
SOP3 4.5 3.4 2.5 0.15 17.1 6.0
SOP1 4.5 3.3 2.6 0.15 18.3 6.2
SOP2 3.7 2.8 11.0 0.24 46.2 6.8
SOP4 4.3 5.3 3.0 0.15 20.5 9.7
KIS 5.1 6.0 3.6 0.25 14.3 18.9
KAR 4.5 5.2 1.4 0.07 19.8 10.1
CEG 6.2 5.6 1.8 0.15 12.4 7.8
NYIR1 4.9 3.7 0.56 0.05 10.5 4.3
NYIR2 6.2 5.7 2.2 0.17 13.2 11.8
JOS2 5.2 4.3 11.7 0.41 28.8 19.1
JOS3 5.9 5.5 3.9 0.29 13.4 16.9
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3.3 � Parameters affecting the decomposition rates 
(k1 and k2) of SOM

The addition of maize considerably accelerated the rate of 
SOM decomposition, which was 3.6 times faster on aver-
age than in the control samples for the easily mineralizable 
carbon pool and 1.9 times faster on average for the slowly 
mineralizable carbon pool. The addition of maize acceler-
ated the decomposition of SOM to the greatest extent in 
the amended samples CEG, NYIR2, SOP1 and KIS, where 
the k1 values were 8.2-fold, 5.5-fold, 5.5-fold and 4.5-fold 
higher, respectively, than in the control samples (Table 4). 
The SOM decomposition of the BAT, JOS2, KAR and 
SOP2 samples gave the poorest response to the addition of 
new organic matter, the difference between the k1 values of 
amended and control samples being 1.4-fold, 1.9-fold, 2.1-
fold and 2.1-fold, respectively.

Only the NYIR1 (5.2-fold), CEG (2.3-fold), NYIR2 (2.2-
fold) and KAR (2.1-fold) samples showed medium to large 
difference between the k2 values of the amended and con-
trol samples, indicating that the SOM decomposition of the 
slowly mineralizable carbon pool was less affected by the 
addition of maize residues than that of the easily mineraliz-
able carbon pool.

Among the mineral parameters studied, the FeOX, FeDCB, 
swelling clay mineral (smectite + illite/vermiculite and/or 
illite/smectite mixed layer species + chlorite/vermiculite 
and/or chlorite/smectite mixed layer species), chlorite and 
kaolinite contents and CEC showed no significant linear 
relationship with the decomposition rate constant of the 
amended samples in either carbon pool, whereas the sand, 
clay, non-swelling clay mineral (illite + kaolinite + chlorite), 
illite, AlDCB and AlOX contents had a significant influence 
on the SOM decomposition rate of the easily mineralizable 
carbon pool (Fig. 4). Of these parameters, only the sand 

content exhibited a positive relationship with the decompo-
sition rate constant of the easily mineralizable carbon pool 
(Fig. 4a), whereas an inverse relationship was detected for 
the other parameters (Fig. 4b–f). The AlDCB (Fig. 4c), AlOX 
(Fig. 4d) and illite (Fig. 4c) contents had the strongest nega-
tive relationship with the decomposition rate constant of the 
easily mineralizable carbon pool.

The SOM decomposition rate of the slowly mineralizable 
carbon pool in the samples was only affected by the non-
swelling clay mineral (Fig. 5a) and illite (Fig. 5b) contents 
of the samples in the present study. The results showed that 
the decomposition rate constant of the slowly mineralizable 
carbon pool decreased as the non-swelling clay mineral and 
illite content increased.

4 � Discussion

4.1 � Organic matter addition caused enhanced SOM 
mineralization

Maize addition was found to increase the rate of SOM miner-
alization, resulting in a higher quantity of TMC (Fig. 2) and 
higher decomposition rate constants (Table 4) for amended 
soil samples than for their control pairs. This is in agreement 
with other studies that demonstrated accelerated SOM min-
eralization due to fresh plant residue addition (Helfrich et al. 
2008; Stewart et al. 2009; Shahbaz et al. 2017). This could 
be attributed to the fact that the addition of plant residues 
and fertilizers stimulates the microbiological activity of the 
soil (Wutzler and Reichstein 2008; Blagodatsky et al. 2010), 
resulting in increased CO2 emissions (Thiessen et al. 2013; 
Kotroczó et al. 2020). It was also found that the turnover 
rate of the easily mineralizable carbon pool accelerated to 
a greater extent after plant residue addition than that of the 

Fig. 2   Quantity of total mineral-
ized carbon (TMC). Line bars 
indicate standard error and dif-
ferent letters indicate significant 
differences (ANOVA, p < 0.05) 
for amended samples
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slowly mineralizable carbon pool, suggesting that the car-
bon in the slowly mineralizable carbon pool is more resist-
ant to decomposition. Although, as expected, different soils 
reacted differently to the addition of maize residues, the 
carbon decomposition of the soil samples with the coarsest 
particle size (NYIR1, NYIR2 and CEG) exhibited the best 
response to maize addition, resulting in the greatest differ-
ences between the mineralization of the control and amended 
samples and the highest SOM mineralization and k1 values 
in the amended samples.

4.2 � Mineralogical parameters that control SOM 
turnover

Although texture was found to be an important controlling 
factor of carbon decomposition, more accurate and robust 
predictions can be achieved taking account the mineral 
composition of the soils, as indicated by the strength of 
the regression relationships (Figs. 3, 4 and 5). Vogel et al. 
(2014) showed that less than 19% of the clay-sized mineral 
surfaces had organic matter coverage which could explain 
why it may be misleading to consider only the clay or sand 
content when investigating the stabilization of organic mat-
ter. Confirming this, linear regression indicated that SOM 
stabilization was more closely related to the quality of the 
mineral phases than to the content of fine grain-sized parti-
cles, as the non-swelling clay mineral, illite and Al contents 
proved to be the most important mineral-related parameters 
inhibiting the decomposition of SOM in the present study.

4.2.1 � Al content found better indicator for SOM 
stabilization than Fe

It was reported by Wiseman and Puttmann (2005) that no sig-
nificant correlation was detected between soil clay mineral 
composition (smectite versus non-smectite domination) and 
organic matter content, whereas the FeOX and AlOX concentra-
tions tended to affect the amount of organic matter in the soils 
investigated. Many studies (Eusterhues et al. 2005; Kleber et al. 
2015) concluded that metallic oxides play a major role in the 
binding of organic matter in acidic soils due to their large spe-
cific area and large number of reactive surface sites. According 
to Gu et al. (1994), the maximum sorption capacity is observed 
between pH 4.3 and 4.7, where ligand exchange between the 
OH functional groups of Fe and Al oxides and the carboxyl 
and phenolic OH functional groups of the organic matter is 

the main process responsible for organic matter adsorption. 
Therefore, this binding mechanism is a typical organo-mineral 
interaction in soils rich in acidic protonated hydroxyl groups 
(Shen 1999; Kögel-Knabner and Amelung 2014). Furthermore, 
in addition to ligand exchange, Fe and Al ions are able to form 
cation bridges with organic ligands (mainly carboxyl groups) in 
acidic soils, thereby building organo-mineral complexes (Oades 
1988; von Lützow et al. 2006). As the 13 soils investigated in 
the present study were slightly (pH 6.2) to extremely acidic 
(pH 3.7), it is likely that the Al content of the soils was one of 
the main parameters controlling the decomposition of organic 
matter, because Al-containing minerals adsorb organic mat-
ter via ligand exchange and the formation of cation bridges. 
These mechanisms could be particularly important in highly 
weathered soil containing high amounts of crystalline Al and 
Fe oxides. From this point of view, samples JOS1, JOS2 and 
JOS3, derived from the north-eastern part of Hungary, where 
the soil is covered with red clay sediments (Kiss 2012), and 
therefore having the highest Al and Fe oxide content (Table 2) 
were of special interest in the present study. In these samples, 
the degree of mineral weathering was high, as indicated by 
the significant amount of kaolinite (approx. 38% of all clay 
minerals) accompanied by largest quantities of crystalline Fe 
oxide content (FeDCB‒FeOX) (Table 2). In contrast, the coars-
est textured soils (CEG, NYIR1 and NYIR2) had the smallest 
FeDCB‒FeOX concentrations and the simplest bimodal (illite 
plus chlorite) mineral composition as a consequence of the 
small degree of weathering in these samples.

Although the Fe content can be considered a strong con-
trolling factor in SOM turnover (Kaiser et al. 2002; Kiem 
and Kögel-Knabner 2002; Mikutta et al. 2006; Bruun et al. 

Fig. 3   Significant (p < 0.05) linear relationships between the sand (a), 
clay (b), illite (c), non-swelling clay mineral (illite + kaolinite + chlo-
rite) (d), AlDCB (e), AlOX (f) and FeDCB (g) contents and the quan-
tity of total mineralized carbon (TMC) in amended samples. Samples 
designated as ⊗ represent statistical outliers, which were excluded 
from the analysis

◂

Table 4   Decomposition rate constants of the easily (k1) and slowly 
(k2) mineralizable carbon pools

Different letters indicate significant differences (ANOVA, p < 0.05) 
for amended samples within k1 and k2 categories, respectively

Control Amended

k1 (day‒1) k2 (day‒1) k1 (day‒1) k2 (day‒1)

CEG 8.0 × 10‒4 5.0 × 10‒4 6.5 × 10‒3 (d) 1.1 × 10‒3 (cd)

NYIR1 2.6 × 10‒3 1.0 × 10‒3 6.1 × 10‒3 (d) 5.2 × 10‒3 (f)

NYIR2 1.1 × 10‒3 6.0 × 10‒4 6.1 × 10‒3 (d) 1.3 × 10‒3 (d)

BAT 2.4 × 10‒3 9.0 × 10‒4 3.5 × 10‒3 (c) 1.0 × 10‒3 (c)

JOS1 7.0 × 10‒4 3.0 × 10‒4 2.1 × 10‒3 (b) 3.0 × 10‒4 (a)

JOS2 8.0 × 10‒4 3.0 × 10‒4 1.5 × 10‒3 (ab) 3.0 × 10‒4 (a)

JOS3 1.0 × 10‒3 5.0 × 10‒4 4.2 × 10‒3 (c) 6.3 × 10‒4 (b)

SOP1 6.0 × 10‒4 3.0 × 10‒4 3.3 × 10‒3 (c) 5.7 × 10‒4 (b)

SOP2 3.0 × 10‒4 2.0 × 10‒4 6.3 × 10‒4 (a) 3.0 × 10‒4 (a)

SOP3 9.0 × 10‒4 8.0 × 10‒4 3.5 × 10‒3 (c) 1.2 × 10‒3 (cd)

SOP4 1.2 × 10‒3 4.0 × 10‒4 3.4 × 10‒3 (c) 6.7 × 10‒4 (b)

KIS 8.0 × 10‒4 5.0 × 10‒4 3.6 × 10‒3 (c) 7.3 × 10‒4 (b)

KAR 1.1 × 10‒3 1.1 × 10‒3 2.3 × 10‒3 (b) 2.3 × 10‒3 (e)
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Fig. 4   Significant (p < 0.05) linear relationships between the sand (a), 
clay (b), AlDCB (c), AlOX (d), illite (e) and non-swelling clay mineral 
(illite + kaolinite + chlorite) (f) contents and the decomposition rate 

constant of the easily mineralizable carbon pool (k1) of amended 
samples. Samples designated as ⊗ represent statistical outliers, which 
were excluded from the analysis
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2010), in the present study, it was found that the Al content 
of the soils is better proxy for the SOM stabilization than 
the Fe content: the FeDCB content only affected the quantity 
of the total mineralized carbon (TMC), whereas the TMC 
values of soils and the decomposition rate of SOM in the 
easily mineralized carbon pool decreased with increasing Al 
content (with both the AlDCB and AlOX content). Lawrence 
et al. (2015) and Fang et al. (2019) also found more signifi-
cant relationships between the AlDCB content and the SOC 
variables, whereas they reported no or less significant rela-
tionship between the FeDCB content and the SOC variables of 
the samples studied. This is in agreement with the findings of 
Kaiser and Zech (1998), who reported the highest adsorption 
of dissolved organic matter on amorphous Al(OH)3 rather 
than on ferrihydrite or goethite.

4.2.2 � Non‑swelling clay minerals can affect 
the decomposition rate of SOM of forest soils

While the content of clay-sized particles showed only a 
weak negative linear relationship with the quantity of TMC 
of soils (Fig. 3b) and with k1 values (Fig. 4b), the quantity 
of illite and non-swelling clay minerals had a strong 
negative relationship with these parameters (Figs. 3 and 4). 
Moreover, the illite and non-swelling clay mineral contents 
were the two parameters that affected the turnover and the 
stabilization of SOM in the slowly mineralized carbon 
pool (Fig. 5). Although the specific surface area of illite 
is generally smaller than that of smectites and its negative 
charge excess is mainly compensated by K+, the sorption 
capacity of illite may also be significant due to the formation 
of amphoteric surfaces (silanol and aluminol) at the edges 

of minerals and to ion exchange on the basal flat surfaces of 
siloxane and on “frayed edges” (Kulik et al. 2000; Sinitsyn 
et al. 2000). In addition, Kubicki et al. (1999) found that 
illite is more likely to form strong surface complexes with 
organic acids (oxalic acid, benzoic acid, salicylic acid 
and phthalic acid) than kaolinite and montmorillonite, 
which they explained by the fact that illite may have 
more reactive areas due to the presence of Fe hydroxides. 
Kögel-Knabner and Amelung (2014) also mentioned the 
amphoteric AlOH groups on the edges of illite particles 
as potential organic matter sorbents. In addition, Kögel-
Knabner and Amelung (2021) reported that silicate minerals 
(montmorrilonite > vermiculite > illite > kaolinite) are much 
more important SOM stabilizers than Fe oxides in the 
coarse clay fraction of temperate soils.

The present findings highlight the importance of the 
non-swelling clay mineral and illite contents of soils in 
controlling the stabilization of organic matter in the longer 
term. This is particularly important, as illite is a common 
mineral in almost all soil types.

5 � Conclusions

The results confirmed the significance of detailed mineral-
ogical analysis in the studies of soil organic matter turnover. 
Present study supported the crucial role of the crystalline and 
poorly crystalline mineral phases of Al and Fe in the binding 
of SOM in acid forest environments, and highlighted the effect 
on SOM stabilization of mineral groups that usually receive 
comparatively less attention. Accordingly, illite minerals are 

b)a)

PP

Fig. 5   Significant (p < 0.05) linear relationships between the non-
swelling clay mineral (illite + kaolinite + chlorite) (a) and illite (b) 
contents and the decomposition rate constant of the slowly miner-

alizable carbon pool (k2) of amended samples. Samples designated 
as ⊗ represent statistical outliers, which were excluded from the anal-
ysis
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able to provide efficient binding surfaces for organic matter 
even over a longer timescale, since the decomposition rate 
constant of the slowly mineralizable carbon pool was only 
negatively related to the content of non-swelling clay miner-
als and illite, which was the dominant clay mineral in almost  
all the 13 forest soil samples investigated.

It was concluded that detailed knowledge on the role of 
individual mineral phases on the binding of SOM is neces-
sary for a more exact determination of the dynamics of SOM 
decomposition and sequestration.
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