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Abstract
Purpose The study tracks spatial and temporal distribution of sediment particles from their source to the deposition area 
in a dammed reservoir. This is particularly important due to the predicted future climate changes, which will increase the 
severity of problems with sediment transport, especially in catchments prone to erosion.
Methods Analyses were performed with a monthly step for two mineral and one mineral/organic sediment fractions delivered 
from the Carpathian Mts. catchment (Raba River) to the drinking water reservoir (Dobczyce) by combining SWAT (Soil and 
Water Assessment Tool), and AdH/PTM (Adaptive Hydraulics Model/Particle Tracking Model) modules on the digital platform—
Macromodel DNS (Discharge Nutrient Sea). To take into account future changes in this catchment, a variant scenario analysis 
including RCP (representative concentration pathways) 4.5 and 8.5, and land use change forecasts, was performed.
Results The differences between the two analyzed hydrological units (catchment and reservoir) have been highlighted and 
showed a large variability of the sediment load between months. The predicted climate changes will cause a significant 
increase of mineral fraction loads (silt and clay) during months with high flows. Due to the location and natural arrangement 
of the reservoir, silt particles will mainly affect faster loss of the first two reservoir zones capacities.
Conclusions The increased mobility of finer particles (clay) in the reservoir may be more problematic in the future, mainly 
due to their binding pollutant properties, and the possible negative impact on drinking water abstraction from the last res‑
ervoir zone. Moreover, the study shows that the monthly approach to forecasting the impact of climate change on sediment 
loads in the reservoir is recommended, instead of a seasonal one.

Keywords Sediment fractions · River · Dammed reservoir · Macromodel DNS/SWAT  · AdH/PTM

1 Introduction

Natural processes, such as erosion, sediment transport, and 
its deposition, can shape the land surface and influence 
the structure and function of river catchment ecosystems 

worldwide (Guillén Ludeña et al. 2017; Vercruysse et al. 
2017; Wu et al. 2018; Stähly et al. 2020; Hu et al. 2021; 
Feng and Shen 2021). However, these processes are very 
sensitive to both climate change and land use, especially in 
mountainous areas (Hohmann et al. 2018; Dibike et al. 2018; 
Zhao et al. 2018; Aksoy et al. 2019; Zhang et al. 2020). 
Already, many mountain catchments are struggling with an 
increase in soil loss due to intensification of rainfall, and 
consequently, surface runoff (Halecki et al. 2018a, b; Borrelli 
et al. 2018; Mostowik et al. 2019; Berteni and Grossi 2020; 
Ciampalini et al. 2020). Moreover, the forecasted changes 
in precipitation and temperature suggest that the intensity of 
this phenomenon may increase significantly (Borrelli et al. 
2020; Gianinetto et al. 2020; Szalińska et al. 2020). It also 
turns out that in such areas, even favorable changes in land 
use (LU) associated with a significant increase in the area 
of forests, which naturally stabilize the soil, may turn out 
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to be insufficient to stop the negative effects of the climate 
changes (Orlińska‑Woźniak et al. 2020a).

The consequences will be particularly severe in catch‑
ments with dammed reservoirs, trapping most of the sedi‑
ment particles. Sediment entrapment has long been a major 
factor in reducing the capacity and the deterioration of water 
quality in many reservoirs around the world, endangering 
their durability, human health, and safety (Zarfl and Lucía 
2018; Bilali et al. 2020; Huang et al. 2021). Multiple stud‑
ies have shown today, as a result of the increase in sediment 
loads transported by rivers into reservoirs, that each year 
about 1% of their total capacity in the world is lost (Jain 
2005; Rahmani et al. 2018). In order to effectively stop, or at 
least mitigate this negative trend, it is necessary to precisely 
predict the effects of climate and land use changes in river 
catchment systems.

Environmental models can play a key role in this, and 
research with their use has been conducted for many years, 
allowing, i.e., to estimate sediment loads introduced into a 
reservoir, the effectiveness of the reservoir as a sediment 
trap, loss of reservoir volume, and finally to identify areas 
of sediment deposition (Croley et al. 1978; Banasik et al. 
1993; Garg and Jothiprakash 2010; Wisser et  al. 2013; 
Charafi 2019; Bladé Castellet 2019). Currently, a wide 
range of sediment models are available that differ in com‑
plexity, accuracy, and spatial and temporal scales (Fu et al. 
2019). Nevertheless, there are still significant limitations in 
these models, especially when a dam reservoir is localized 
within a catchment. Then, important elements like sort‑
ing of grain fractions, role of a reservoir backwater, and 
movement of sediments downstream from a reservoir are 
not taken into account. Although a river and a reservoir 
together form an integral dynamic system with deep inter‑
actions, at the same time, they are two separate entities in 
terms of hydrology, with a complex and stochastic nature 
of the processes of transport and deposition of sediment 
particles (Idrees et al. 2021). Until now, both of these ele‑
ments of the catchment area have usually been studied using 
tools operating at different spatial and temporal scales, often 
treating them as separate units or largely generalizing the 
relationship between them. The main novelty of our work 
is the combination of two macroscale models on a digital 
platform—Macromodel DNS, one for the watershed‑to‑
river‑basin sediment transport (SWAT) (Arnold et al. 2012), 
and the other for sediment transport and deposition into the 
reservoir (AdH/PTM) (Thornton et al. 1996; Green et al. 
2015). In this way, we created a unique tool to precisely 
track sediment particles of individual fractions from their 
source, through transport, and ultimately to settlement in 
a designated reservoir zone (Kimmel et al. 1990; Thornton 
et al. 1996; Green et al. 2015). Moreover, the conducted 
analyses included four detailed variant scenarios which took 
into account both monthly changes of climate (precipitation 

and temperature) in short‑ and long‑time horizons, as well 
as changes in land use (forest and urban areas). This enabled 
the precise indication of critical periods for the sediment 
load increase in the reservoir, which is of great interest, 
since storage capacity of dammed reservoirs is being lost 
worldwide due to sedimentation (Kondolf et al. 2014). The 
implemented approach can thus be a valuable tool for the 
assessment of reservoir sedimentation problems with regard 
to climate change effects and implementation of appropri‑
ate countermeasures. The developed tool was used for the 
mountain catchment of the upper Raba River, located in 
the Polish part of the Carpathian Mountains, and flowing 
into the Dobczyce Reservoir. This area is distinguished by 
intensity of meteorological phenomena and water erosion 
(Mikuś et al. 2019; Orlińska‑Woźniak et al. 2020a; Szalińska 
et al. 2020). Moreover, land use forecasts indicate a gradual 
increase in forest cover in this area (Kozak et al. 2017; Price 
et al. 2017). The reservoir itself is the main source of drink‑
ing water for one of the largest agglomerations in Poland, 
and also serves as flood protection. As the Raba estuary to 
the reservoir is an effective trap of large particles, like sand 
and gravel, only suspended sediment fractions were analyzed 
in this study. Ultimately, two mineral SILT and CLAY, and 
one organic‑mineral SMAG fractions have been tracked, 
taking into account the different nature of the catchment 
area and reservoir, and their different sensitivities to future 
changes. As a consequence, we were able to show the effects 
of the implementation in the variant scenario model, both 
for the catchment area, and subsequent zones of the dammed 
reservoir in a monthly time step.

2  Data and methods

2.1  Study area

The study area consists of two parts, the upper Raba River 
catchment (RR) and the Dobczyce Reservoir (DR) (Fig. 1). 
The upper Raba River flows 60 km from its source, located 
in the Carpathian Gorce Mts. (780 m a.s.l.), to the Dobczyce 
dammed reservoir (265 m a.s.l.). The RR catchment covers 
an area of 768  km2 (Mazurkiewicz‑Boroń 2016; Operacz 
2017; Mikuś et al. 2019) and has a typically mountainous 
character with almost 43% of the area covered by slopes 
over 25% and overgrown by forest (Fig. 2). The mountainous 
nature of this catchment also manifests it with a fast reac‑
tion to precipitation. The river features very large amplitudes 
of water levels and flows, with maximum values recorded 
in the snow melt period, and early‑summer long‑lasting 
rainfall events. The studied catchment is covered generally 
by clays, and its lower slopes are used mostly for agricul‑
tural activities (over 40%). The entire area is well known as 
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being particularly vulnerable to water erosion (Partyka 2002; 
Kijowska‑Strugała et al. 2017; Halecki et al. 2018a, b).

The Dobczyce Reservoir was created as a result of 
dam construction undertaken in 1986 to provide drinking 

water for approx. half a million people, and to regulate the 
river flows (Mazurkiewicz‑Boron 2016; Hachaj 2019). It 
is a multipurpose dam reservoir supplying people with 
drinking water, protecting against floods and droughts, 

Fig. 1  The research area with division into the upper Raba River catchment (RR) and the Dobczyce Reservoir (DR)

Fig. 2  The upper Raba River catchment (RR) with soil, land use type, and terrain slopes
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producing electricity, and being a place for fish farming. 
The created reservoir has an area of approx. 10.7  km2 
(length of 8 km and width of 1.6 km), and an average 
depth of 12 m (maximum of 35 m) (Hachaj and Szlapa 
2017; Zemełka et al. 2019; Wilk‑Woźniak et al. 2021). 
The reservoir is divided into four zones (Fig. 3) including 
a riverine part (A), backwater (B), Myślenice basin (C), 
and Dobczyce basin (D) closed by the dam cross section 
(OUT). The entire area of the upper Raba River catch‑
ment belongs to the Carpathian climatic region of Poland 
(Kędra and Szczepanek 2019; Hachaj and Kołodziejczyk 
2020) where the topography has a great influence on cli‑
matic conditions (Wypych et al. 2017, 2018). Average 
annual air temperature is around 7 °C; however, the annual 
temperature amplitude reaches 21 °C. The average rainfall 
ranges from about 700 mm to about 1600 mm at the higher 
altitudes (Gorczyca et al. 2018). The growing season lasts 
about 200–210 days (April to mid‑October).

2.2  Modeling tool

To achieve the goal of the study, i.e., to track sediment 
particles from their source to the deposition area, the DNS 
(Discharge Nutrient Sea) digital platform (Macromodel 
DNS) has been used as a modeling tool. The Macromodel 

DNS, developed at the Institute of Meteorology and Water 
Management—National Research Institute (Instytut Mete‑
orologii i Gospodarki Wodnej—Państwowy Instytut Bad‑
awczy, IMGW‑PIB) (Wilk et al. 2018b; Wilk and Orlińska‑
Woźniak 2019), provides an interactive platform allowing 
for integration of the SWAT (Soil and Water Assessment 
Tool) module (version 2012) (Arnold et al. 2012; Abbaspour 
et al. 2015) with other modeling tools (modules) to track dif‑
ferent processes of the sediment/contaminant transport in a 
catchment (Wilk et al. 2018a; Szalińska et al. 2020, 2021; 
Orlińska‑Woźniak et al. 2020a). The RR catchment module 
has been created in the SWAT module (Fig. 4) with the use 
of the following data:

• map of Poland hydrographical divisions, scale of 
1:10,000 (source: IMGW‑PIB, resolution: 5 m);

• digital elevation model (DEM), scale of 1:20,000 
(source: IMGW‑PIB, resolution: 10 m);

• land use map based on Corine Land Cover (CLC 2012), 
and agrotechnical data from the Local Data Bank 
(Fig. 2b) (source: Copernicus Programme, resolution 
20 m);

• soil map detailed data on soil types, scale of 1:5000 
(Fig. 2c) (source: Institute of Soil Science and Plant Cul‑
tivation, resolution 2.5 m);

Fig. 3  Division of the Dobczyce Reservoir (DR) into four zones (source: Google Maps)
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• meteorological data (1992–2016, e.g., precipitation 
and temperature) for 75 stations located directly in the 
catchment, and within 20 km from its borders (source: 
IMGW‑PIB); and.

• surface water quality data for suspended sediment 
(2005–2018) (PSMS 2021) and flow rate data (1991–
2018) (IMGW 2021).

Subsequently, the created RR module has been used to 
simulate sediment yields from the catchment (land phase) 
and sediment loads (river phase) delivered to the reser‑
voir (DR). Moreover, the SWAT module has been also 
used to estimate the sediment loads discharged into the 
DR in future time horizons under climate and land use 
changes. To simulate sediment transport and deposition 
processes into the DR, two additional modules have been 

incorporated into the DNS digital platform. Hydraulic 
conditions in the DR for sediment load scenarios have 
been modeled with use of the AdH (Adaptive Hydraulics 
Model) module, while the particle transport within the 
DR has been simulated with the use of the PTM (Particle 
Tracking Model) module (Fig. 4) (Burgan and Icaga 2019; 
Jiang et al. 2021). The DR module has been created with 
use of the following data:

• numerical model of the Dobczyce Reservoir bottom from 
the Cracow University of Technology, Faculty of Envi‑
ronmental and Power Engineering (CUT FEPE) own data 
of the DR bottom shape; and.

• backwater shape updated based on the IMGW‑PIB 
bathymetry map from 2008, scale of 1:10,000.

Fig. 4  Modeling flow‑chart
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2.2.1  SWAT module

The RR module applied in the current catchment study 
has been adopted from the model built for the entire Raba 
River catchment area, calibrated and validated for flow 
and sediment for the upper (upstream from DR) and lower 
(downstream from DR) parts. Calibration, verification, and 
validation of the model were performed using the SWAT‑
CUP (Abbaspour 2013), and the SUFI‑2 algorithm (Khalid 

et al. 2016). The Latin Hypercube (LH‑OAT) was used to 
identify the most influential model parameters (Jaiswal et al. 
2017). Model calibration and validation were performed for 
the calculation profiles closing both parts of the catchment 
(Fig. 1) with the use of flow data obtained from the IMGW‑
PIB (IMGW 2021), and total suspended sediment concen‑
trations from the Polish State Monitoring System (PSMS 
2021). Due to the fact that the state monitoring frequency 
is relatively low (12 times per year), the LOAD ESTima‑
tor program (LOADEST) was used to assist in development 
of the regression model for reliable estimation of constitu‑
ent load (calibration), which has already been described  
in detail (Orlińska‑Woźniak et al. 2020a; Szalińska et al. 
2020). Model validation was performed for one of the Raba 
River right‑bank tributaries (Fig. 1) also subjected to flow 
and suspended sediment monitoring measurements. To  
evaluate the fit of the model to the monitoring results, four  
statistical measures were used, such as determination coef‑
ficient (R2) (Zhang 2017), efficiency coefficient of the Nash– 
Sutcliffe model (NSE) (Knoben et al. 2019), percentage of 
load (PBIAS) (Goshime et al. 2019), and Kling‑Gupta effi‑
ciency (KGE) (Pool et al. 2018), whose respective value 
ranges are shown in Table S1.

For the flow calibration statistical measures, R2, NSE, 
and KGE classified the model performance as good and very 
good, and PBIAS obtained satisfactory values. Sediment 
calibration for the upper Raba River catchment indicated a 
satisfactory model performance according to R2 and NSE, 
and very good and good according to PBIAS and KGE. Bet‑
ter results were obtained for the lower part of the catchment, 
where the efficiency of the model can be considered very 
good (R2) and good (NSE, PBIAS, and KGE). The valida‑
tion of the flow model (according to R2, PBIAS, and KGE) 
showed good performance of the model, while only NSE 
had obtained a satisfactory value. For sediments, accord‑
ing to R2, NSE, and KGE, the efficiency of the model can 
be considered satisfactory and good according to PBIAS 
(Table A2).

The upper part of the catchment (Fig. 1) has been sepa‑
rated using the GIS tool and the catchment boundaries. The 

calculation profile closing this area is Myślenice located 
directly above the DR. The land phase of the model (sedi‑
ment yields) has been simulated for all RR 17 sub‑catchments, 
delineated as hydrological response units (HRUs) combining 
unique land use, soil type, and slope features. The sediment 
yield estimations (SYLD) have been based on the modified 
universal soil loss equation (MUSLE), embedded in the 
SWAT module, according to Eq. (1) (Williams 1975; Vigiak 
et al. 2015):

where sed is the sediment yield on a given day (metric tons), 
Qsurf is the surface runoff volume  (mmH2O  ha−1), qpeak is the 
peak runoff rate  (m3  s−1), area HRU is the area of the HRU 
(ha),  KUSLE is the USLE soil erodibility factor,  CUSLE is the 
USLE cover and management factor,  PUSLE is the USLE sup‑
port practice factor,  LSUSLE is the USLE topographic factor, 
and CFRG is the coarse fragment factor.

The SWAT model offers four methods of tracking sedi‑
ments in the riverbed phase (Bagnold, Kodoatie, Molinas, 
and Wu, Yang) of which Kodoatie is considered to be par‑
ticularly effective for suspended and small sediment particles 
(Simons et al. 2004; Neitsch et al. 2011; Yen et al. 2017). 
Since a negligible amount of large particles, such as sand 
and gravel, reaches the DR, as the RR mouth is an effec‑
tive trap for them, the current study focuses only on parti‑
cles classified as suspended sediments (up to 0.062 mm). 
Therefore, the Kodoatie method (Kodoatie 2000) was used 
to simulate the channel phase of sediment transport, accord‑
ing to Eq. (2):

where concsed,ch,mx is the maximum sediment concentration 
(t  m3); vb

ch
 is mean flow velocity (m  s−1); y is mean flow 

depth (m); S is energy slope (m  m−1); Qin is water entering 
the reach  (m3); a, b, c, and d are regression coefficients for 
different bed materials; W is channel width at the water level 
(m), and Wbtm is bottom width of the channel (m).

Ultimately the sediment loads for the calculation profile 
of Myślenice were estimated for the following fractions, 
mineral: CLAY 0–0.004 mm, SILT 0.004–0.062 mm, and 
mineral/organic: SMAG 0.03 mm (Lu et al. 2015; Ayaseh 
et al. 2019; Orlińska‑Woźniak et al. 2020a).

The climate change predictions were based on data from 
Euro‑CORDEX, RCM models (Rummukainen 2016; Dosio 
2016), and Global Climate Models‑GCM (Yang et al. 2019). 
They included RCP4.5 and RCP8.5 emission scenarios 
(stabilization and raising pathways) for the short‑term (H1, 

(1)sed = 11.8 × (Qsurf × qpeak × areaHRU)
0.56 × KUSLE × CUSLE × PUSLE × LSUSLE × CFRG

(2)concsed,ch,mx =

(
a × vb

ch
× y × Sd

Qin

)
∗

(
W +Wbtm

2

)
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average for 2026–2035), and long‑term (H2, average for 
2046–2055) time horizons.

The scenarios employed to estimate sediment load dis‑
charged into the DR were adopted from the Polish Devel‑
opment of Urban Adaptation Plans (UAP) (MPA 2021a, 
b), which have been described in detail in previous stud‑
ies (Orlińska‑Woźniak et al. 2020b; Szalińska et al. 2021). 
Since they have been prepared with a monthly time step, 
the impact of meteorological parameter changes could be 
tracked in detail, which was not possible when seasonal 
forecasts were given previously (Orlińska‑Woźniak et al. 
2020a). Briefly, besides the baseline scenario, four variant 
scenarios (VS1–VS4) have been created covering predicted 
temperature and precipitation changes under the short‑term 
(H1) and long‑term (H2) perspectives (Fig. 5a) as follows:

• VS1—RCP4.5 H1—average for 2026–2035;
• VS2—RCP4.5 H2—average for 2046–2055;
• VS3—RCP8.5 H1—average for 2026–2035;
• VS4—RCP8.5 H2—average for 2046–2055.

Along with the climate change predictions, the LU future 
changes have also been taken into consideration, and were 
included in each VS since they occur concurrently. The 
estimates projected on LU change impacts on sediment 

loads in the RR were based on results of the FORECOM 
project (http:// www. gis. geo. uj. edu. pl/ FOREC OM/ index. 
html), and transposed into the analyzed area with use of 
the DYNA‑Clue model for the future time horizon of 2060 
(Kozak et al. 2017; Price et al. 2017). LU scenarios included 
future changes in the forest cover and growth of urban areas. 
Depending on the scenario, one of the following forecasts 
was assigned to each RR sub‑catchment: trend (growth of 
forest and urban areas by 23% and 10%, respectively), or 
liberal (growth of forest and urban areas, respectively by 
30% and 15%) (Fig. 5b, c) (Orlińska‑Woźniak et al. 2020a).

2.2.2  AdH/PTM module

To execute the sediment transport and deposition simula‑
tions in the DR, the AdH/PTM model (Hachaj and Szlapa 
2017; Hachaj 2018, 2019) was adapted in the current study. 
AdH is a 2D depth‑averaged, finite element, modeling tool 
for simulating hydrodynamic conditions in river systems, 
but also in bay, reservoir, and lacustrine systems (Tate et al. 
2014; Herrera‑Díaz et al. 2017; Liu et al. 2021).

It uses the finite element method to solve two‑dimensional 
momentum conservation equations for water in the Eulerian 
frame for both x and y directions (Berger 2010) according 
to Eq. (3):

Fig. 5  Forecasted changes in climate: temperature and precipitation (a), together with forecasts of changes in LU of forest areas (b), and urban‑
ized areas (c)
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works (2001–2012) commissioned by the Waterworks of the 
City of Kraków and reported by Nachlik et al. (2009) and 
Bojarski et al. (2012). This comparison resulted in a fine 
agreement between model simulations and reservoir obser‑
vations. Based on the planar velocity field calculated by the 
AdH module, the particle’s behavior over time (entrainment, 
advection, diffusion, settling, deposition, burying, etc.), the 
DR was simulated with the PTM module. Missing in the 
AdH module a vertical velocity component was calculated 
in the PTM module, based on the bed and water surfaces 
elevation profiles and the 2D velocity field provided by AdH. 
At each time step, PTM performs calculations to determine 
local characteristics of the environment (Euler frame, mesh‑
based), and the behavior of each tracked representative parti‑
cle (Lagrange frame, particle‑based). The potential transport 
rate of sediment particles was calculated by the Soulsby‑van 
Rijn method based on Eq. (5), while the other equations used 
by PTM, including the calculation of the particle trajectory 
is presented in (Neil et al. 2006).

where qt – total transport rate; As – coefficient dependent on 
grain size; U – depth‑averaged planar velocity; Uw – average  
wave orbital velocity; CD – wave drag coefficient; and Ucr 
– critical (threshold) velocity for motion/suspension regimes 
U.

The calculation profile of Myślenice, previously used as 
the closure of the RR part in the Eulerian SWAT module, 
was selected as the source of the sediment for the Lagran‑
gian PTM module simulation in the DR part. Since the 
Eulerian approach is based on tracking a mass load while 
the Lagrangian one uses a concept of tracking individual 
particles, thus, at the connection point, a given mass load 
has to be transformed into a given number of representa‑
tive particles. This issue has been solved by generating a 
number of representative particles for each suspended sedi‑
ment fraction to be proportional to the appropriate mass 
load calculated by the SWAT module for a given month. 
To ensure that all the model‑generated representative parti‑
cles will start their movement in the water, the source area 
was set as an ellipsoid with the center point at 1.9 m above 
the bed and with the vertical and horizontal radii of 1 and 
25 m, respectively. These dimensions were determined by 
the shape of the riverbed in the place where the sediment 

(5)qt = AsU

((
U

2

+
0.018

CD

Uw

2
) 1

2

− Ucr

)2.4

where vx , vy – velocity components in x and y directions, respec‑
tively [m s − 1]; fx [m s − 2] – unitary force in the x direction, 
represented by wind‑induced surface friction, wave impact; fy  
[m s − 2] – unitary force (wind, waves…) in the y direction; Cf  
[1 s − 1] – Coriolis factor; g [m s − 2] – gravitational acceleration,  
ϛ [m] – water surface elevation, H [m] – depth, C [√m − 1] –  
Chezy roughness coefficient, ν  [m2 s − 1] kinematic viscosity 
coefficient, and � [Pa] – external pressure.

In the current approach, the boundary conditions of the 
DR AdH model, i.e., inflow rate and water surface eleva‑
tion level (WSE), were adapted to include monthly average 
high flow (AHQ) and normal water surface level 269.9 m 
a.s.l. The simulation was performed with the default bot‑
tom roughness parameter and water density, as well as the 
neglected impact of wind, wave, and Coriolis forces. The 
AHQ values (Wrzesiński and Sobkowiak 2020; Luong et al. 
2021) were calculated using flow data simulated by the 
SWAT module for each VS according to Eq. (4):

where AHQ—average high flow for a given month, Y—number 
of years within the data series, and max (Qd)—the highest daily 
flow observed within a calendar month ( m index of AHQ and 
the max operator) of a given year ( y index of the max operator).

To verify the AdH model performance, the sensitivity 
analyses were first carried out for main variables account‑
able for the model response to channel roughness and wind 
forcing. As for the generalized Manning coefficient, the 
differences among the modeled flow velocities along the 
main current line were negligible for the coefficient range 
of 0.0025–0.05, and only noticeable when the parameter 
value was set at an unreasonably high level of 0.25 (Fig. 
S1). Therefore, the AdH model default value of 0.025 was 
adopted in the current study. As for the model response to 
the wind forcing, testing was performed to verify the wind 
conditions impact on the resulting velocity field. The impact 
of the wind appeared to be important for low inflows (at 
the range of the modal inflow, approx. 2  m3 s − 1), but neg‑
ligible for values higher than the mean value for the DR 
(approx. 10  m3 s − 1) (Hachaj 2019). The AdH model simula‑
tion results for the DR were validated through comparison 
with previously observed reservoir features, like appearance 
of current patterns and stagnant areas, as well as typical 
transport times/velocities in the DR selected basins. The 
hydrodynamics of the DR was investigated during the field 

(4)AHQm =

∑y

i=1
max
m,y

(Qd)

Y
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source is located and allowed for the maximum filling of 
the selected profile with the shape of an ellipsoid. Simula‑
tions were performed using sediment density of 2650 kg  m−3 
and 1240 kg  m−3 for mineral particles and mineral/organic 
aggregates respectively (Czuba et al. 2015). As for the parti‑
cle diameter the following values have been adopted: CLAY 
d = 0.002 mm (dev = 1.25), SILT d = 0.05 mm (dev = 1.2), 
SMAG d = 0.03 mm (no deviation).

The PTM model validation was performed through 
comparison between results of sediment deposition simu‑
lation and grain distribution analyses for the DR bottom 
sediments and localization of progressive shallowing areas 
observed in satellite images for over 20 years (1997–2017) 
(Bojarski et al. 2012; Landsat8). The granulometry data 
contained samples (0–5 cm) collected in the eight reser‑
voir cross sections (Szarek‑Gwiazda and Sadowska 2010), 
as well the authors own granulometry analyses performed 
in the FEPE CUT laboratory (Szlapa 2019) on samples 
collected from the additional 5 cross sections in the DR 
backwater area (0–10 cm). The comparison results showed 
a good reflection of sedimentation processes (localization 
of progressive shallows, and grain segregation along the 
reservoir in various hydrodynamic conditions). Compari‑
son of granulometric analysis results with the PTM simu‑
lations for SILT, included in the Supplementary Informa‑
tion (SI), (Fig. S2), revealed PBIAS value of − 21%, which 
signifies very good model performance (Table S2).

3  Results

3.1  The upper Raba River simulations

3.1.1  Sediment loads

The average sediment monthly loads (tons per month, t  m−1) 
for the Myślenice calculation profile produced with use of 
the SWAT module have been presented in Fig. 6. For the 
baseline scenario, high load variability in all three analyzed 
sediment fractions (SMAG, SILT, and CLAY) is clearly vis‑
ible with the coefficient of variation (CV) ranging from 85 

to 191%. Following monthly distribution, two periods can 
be distinguished, one from October until April, and the sec‑
ond from May to September. During the first, average loads 
reached about 6 t  m−1 for the SILT fraction, and 220 t  m−1 
for CLAY, while the loads for SMAG were negligible for 
this period. During the second period, a distinct increase of 
the loads could be noticed, up to 2.6 t  m−1 for SMAG, 223 t 
 m−1 for silt, and 785 t  m−1 for CLAY on average. Generally, 
the CLAY fraction dominates the sediment loads introduced 
into the DR, reaching over 66% of the total load in June, 
when the maximum values during the year are observed.

Under the variant scenarios (VS1–VS4), the temporal pat‑
tern of sediment loads has been generally maintained, with 
elevated values during the May–October period, and their 
decrease during the remaining months of the year (Fig. 6). 
However, differences in the scenarios’ impact on particular 
sediment fractions should be noticed. For the SMAG frac‑
tion, a decrease of the loads under all discussed scenarios 
is visible when compared to the baseline scenario. For the 
remaining fractions, deviations from this pattern are appar‑
ent, especially for CLAY. An increase of the clay fraction 
loads is evident during the winter and spring months (except 
for May), reaching extreme values in April, elevated by 
197–265% when compared to the baseline scenario. During 
the remaining months, an increase in September is also notice‑
able, by 49.5–131.6% of the baseline load. A similar pattern 
of the load changes under the variant scenarios has been also 
detected for SILT, with the April loads for this fraction grow‑
ing from 5.3 t  m−1, up to over 110 t  m−1 under VS3 and VS4.

3.1.2  The average high discharges

The monthly AHQ values for the Myślenice calculation 
profile, subsequently used for the AdH/PTM module sim‑
ulations, were obtained from the SWAT for the baseline 
and variant scenarios (Fig. 7). In the baseline scenario, 
the increase of the flow values can be observed from May 
to September, reaching up 147  m3  s−1 in June. During the 
remaining months of the year (October–April), the AHQ 
flows vary from 16  m3  s−1 for December to 58  m3  s−1 in 
October. Under the variant scenarios, extension of the 
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Fig. 6  Average monthly sediment fraction loads for the Myślenice calculation profile for the baseline and variant scenarios (t  m−1)
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period with elevated AHQ values can be observed due to 
the increase of the flows from October to April, even by 45 
 m3  s−1 for VS3 and VS4. During the remaining months, the 
decrease of the AHQ can be observed, even by 49  m3  s−1 
in August for VS2). Since the obtained range of the AHQ 
values of the in‑flow to the studied reservoir is similar to the 
conditions in the riverine system, the use of the AdH/PTM 
model was assumed as appropriate.

3.2  The Dobczyce Reservoir simulations

As a result of the AdH/PTM simulations, the percentages of 
each SMAG, SILT, and CLAY fractions that were deposited 

in individual zones of the reservoir, under the baseline and 
variant scenarios, have been determined (Fig. 8). Generally, 
on average over 86% of all fractions flowing into the DR have 
been deposited within the reservoir in the baseline scenario; 
however, this process displayed a strong seasonal pattern, and 
also varied from fraction to fraction. For SMAG, the pres‑
ence of particles belonging to this fraction has been detected 
generally between May and September, with 26–47% of these 
particles deposited only in zone B of the DR, and 52–70% 
in C. The SMAG portion introduced into zone D was small, 
at a level of 0.2–3.8%, while the outflow of these particles 
from the DR (OUT) has been observed only in June, reaching 
0.7% of the total SMAG particles. For the SILT fraction, the 

Fig. 7  Monthly mean AHQ val‑
ues  (m3  s−1) for the Myślenice 
calculation profile
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majority of these particles have been deposited into the first 
two zones of the DR (A and B); however, the share of particles 
in each zone displayed a seasonal pattern. From October to 
April, SILT particles were mostly retained in the first zone of 
the DR (A; 42–71%), while their share in the next zone was 
relatively smaller (B; 27–48%). In this period, the share of 
this fraction reaching zone C was at the level of 2–9%, while 
their further transport into zones D and OUT was almost neg‑
ligible. In the remaining months of the year, May–September, 
the SILT particles have been mainly deposited into zone B 
(67–72%), and partially into C (16–23%). The transport and 
deposition of this fraction into zones D and OUT was at a 
level of 1–4%. For CLAY, a similar seasonal pattern could be 
observed; however, the localization of these particles’ final 
deposition zones differs from the SILT fraction. Generally, 
between October and April, these particles are deposited into 
zones B and C (23–47% and 30–40%, respectively), while the 
share reaching D is estimated at 4–13%. Also, the elevated 
share of CLAY particles transported downstream from the res‑
ervoir (OUT) should be noticed in October, November, and 
March (17–35%). For the May–September period, this process 
of particle transport downstream from the reservoir dominates, 
with 46–60% of the total number of CLAY particles estimated 
in the OUT zone. The remaining share of these particles is 
distributed between zones B, C, and D, with higher values for 
C (19–23%).

The impact of the adopted variant scenarios on the 
SMAG is expressed by the extension of the period when 
these particles are transported and deposited into the DR. 
For the baseline scenario, these processes were confined to 
May–September, while under the VS1–VS3 scenarios, also 
April and October are marked with SMAG deposition into 
the DR zones B and C. While under VS4, March is also 
included in this process. As for other zones of the DR, the 
share of these particles was either 0 (A), or at the level simi‑
lar to the baseline scenario (0.1–3.3%). For the SILT frac‑
tion, similar patterns of temporal changes could be expected 
under VS1–VS4. Although the majority of these particles 
will still be deposited into the first two DR zones, the period 
when particles are retained in zone A will be shortened from 
October–April to November–March and favor a higher per‑
centage of particles settling into zone B (on average by 
21%). For the CLAY fraction, the variant scenario impact is 
expressed mainly by extension of the period in which these 
particles flow downstream of the DR (OUT). In the baseline 
scenario, this process lasted from March to November, while 
in the VS1–VS3 scenarios, December and January are also 
marked as meaningful for the CLAY particle transport to 
the lower part of the Raba River. In turn, from May to Sep‑
tember, the amount of the CLAY fraction reaching OUT 
will decrease by an average of 9%, depositing these particles 
mainly into zones B, C, and D.

4  Discussion

Dammed reservoirs pose a huge impact on entire aquatic 
ecosystems disrupting many natural processes, including 
sediment transport within the river through its effective 
entrapment (e.g., Sundborg 1992; Vörösmarty et al. 2003; 
Sedláček et al. 2017; Dong et al. 2019). Excessive sediment 
deposition not only threatens reservoir capacity and func‑
tionality, but also creates an additional threat to the reservoir 
water quality since sediment particles are considered effec‑
tive carriers of contaminants (e.g., Szalińska et al. 2013; 
Zhu et al. 2019; Jalowska and Yuan 2019; Aradpour et al. 
2020; Babek et al. 2020). For holistic assessment of sedi‑
ment inflow impact on a reservoir, exhaustive information on 
its catchment as a sediment source is required. In the current 
study, such information has been collected through previous 
research performed on the Raba River catchment for the 
land and river phases of the sediment transport (Orlińska‑
Woźniak et al. 2020a, b; Szalińska et al. 2020). The moun‑
tainous part of this catchment, located upstream from the 
Dobczyce Reservoir, is very prone to erosion; therefore, 
multiple debris flow barriers were constructed in the 1970s 
along the main river and its tributaries (Wyżga et al. 2020; 
Orlińska‑Woźniak et al. 2020a). However, currently, the 
majority of these structures are overfilled and require reno‑
vation (Korpak et al. 2008; Lenar‑Matyas et al. 2015). The 
mountainous character of this area also demonstrates the 
hydrometeorological conditions typical for the entire area 
of the Polish Carpathian Mts., with average rainfall values 
reaching 1600 mm accompanied by frequent torrential rains, 
especially during the summer. These conditions combined 
with a high share of slopes above 25%, and many areas 
still used for agriculture (41%), cause intensive loss of soil 
fractions from the land phase of the catchment. Moreover, 
they are the reasons behind large fluctuations in flows and 
frequent floods affecting sediment transport in the riverbed 
(Kijowska‑Strugała and Kiszka 2018). These features had a 
decisive impact on sediment loads introduced into the DR 
simulated for the Myślenice calculation profile with the first 
module of the DNS digital platform—SWAT.

The obtained results showed high loads of SMAG, SILT, 
and CLAY in the baseline scenario amounting to an average 
of 184 t  m−1 and showing elevated temporal variability, with 
an average coefficient of variation (CV) of 153%. During the 
year, two periods can be distinguished: May–September when 
over 76% of the total annual sediment load flows through the 
Myślenice profile, and October–April when the rest of this 
load is delivered into the DR. As for the share of the indi‑
vidual fractions, mineral fine particles constitute over 99% 
of the total load, with CLAY and SILT contributing 82% and 
17%, respectively. Such a dominant share of these fractions 
results from the natural conditions in the studied catchment 
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(Szarek‑Gwiazda and Sadowska 2010), where clay soils cover 
more than 95% of the area (Fig. 2). Moreover, frost lasting 
more than 100 days per year in this part of the Carpathian 
Mts. also promotes erosion of soils, especially of those fine‑
grained. The high content of fine fractions facilitates ground‑
water capillary forces, causing exfoliation of the surface layers 
during periods of freezing temperatures (Augustowski and 
Kukulak 2017). Apart from the two mineral fractions (CLAY 
and SILT), a small amount of mineral‑organic agglomerates 
(SMAG) has also been observed (0.2%), mostly during the 
May–August period. The period of their appearance coin‑
cides not only with the period of high flows, but also favora‑
ble conditions for the biomass production in the river (e.g., 
temperature, solar radiation, and agricultural activities) (Lee 
et al. 2019; Hoffman et al. 2020).

The subsequent fate of the sediment particles downstream 
from the Myślenice calculation profile has been tracked with 
the second module of the DNS digital platform, AdH/PTM. 
Due to the RR width increase in the outlet section and the 
water flow decrease, zone A favors deposition of larger par‑
ticles. Although due to the choice of the Kodoatie method, 
fractions above 0.062 mm have not been considered in our 
study, their presence in this system is visible in the form of 
vast sandbanks in the mouth of the RR (Fig. 3). This phe‑
nomenon is caused by a combination of multiple natural fea‑
tures and processes, including presence of less fine‑grained 
soils in the last sub‑catchment of the RR (Fig. 2), and urban 
use in this part of the area, supplying sand particles due 

to construction work and winter maintenance of the local 
roads. Moreover, other mineral particles lose their driving 
force of advection and begin to settle in this zone, espe‑
cially during the October–April period, when the average 
flow (avg. 35  m3  s−1) favors the deposition of 60% of all 
sediment particles (56% of SILT and 4% of CLAY) (Fig. 9). 
With the increasing flow, up to 114  m3  s−1 on average during 
the May–September period, sediment deposition is limited 
to only 6% of their total load.

In zone B, the DR water level fluctuations result in alter‑
nating cycles of sedimentation and resuspension in this part 
of the DR (backwater) (Szlapa and Hachaj 2017). As a con‑
sequence, deposition of particles not settled in zone A is 
favored here, especially of the SILT larger fractions (Fig. 9), 
which are retained up to 70% during the May–September 
period. For the finer particles of the CLAY fraction, this 
zone is also the major deposition zone (34%), especially 
during the lower flow period (October–April). Furthermore, 
over 40% of the SMAG fraction is deposited during the May 
to September period in this zone. Due to their lower den‑
sity, SMAG particles are larger than mineral particles of 
the same mass which results in their slower settling velocity 
and higher drag force (Hoffmann et al. 2020). As of which, 
SMAG particles can be transported much further than min‑
eral particles of the same mass, which explains the lack of 
their deposition in zone A.

In zone C, with depth increasing to over 9 m and flow 
velocity continuing to decline, the sediment‑carrying potential 

Fig. 9  Sediment fraction distribution in the Dobczyce Reservoir under the baseline scenario
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becomes even weaker. This zone is the last which receives 
large amounts of SILT fractions (up to 18% on average in 
May–September), and accumulates over 57% of the SMAG 
particles. Moreover, an apparent pattern of “bedforms,” cre‑
ated by the particle sedimentation, is noticeable in this zone 
(Fig. 9). Localization and distribution of these bedforms cor‑
respond to the variations in reservoir‑floor relief visible in a 
high‑resolution bathymetric map (Fig. S3 and animated GIF 
file); however, confirmation of their presence requires further 
research.

The last zone of the DR (D) is characterized by the great‑
est depth (over 16 m) and the presence of the drinking water 
intake. During high flows (May–September), even more than 
60% of the CLAY fraction load flows into this zone, which 
requires special attention due to the adsorption of contami‑
nants on fine particles (Szalińska et al. 2013; Palma et al. 
2015; Rügner et al. 2019). Since only 10% of this load settles 
into this part of the DR, it is not really prone to the loss of 
capacity. However, the remaining particles are transported 
downstream of the DR (OUT) to the lower part of the RR 
catchment.

The impact of the future climate changes, for the land 
and river phases of the sediment transport in the RR catch‑
ment, has underlined the role of the spring and winter sea‑
son, mainly due to the increase of precipitation (Orlińska‑
Woźniak et al. 2020a, b; Szalińska et al. 2020). Moreover, 
the detailed simulations (Hachaj et al. 2021) have shown 
that such increases of sediment yields and loads could not 
be attenuated by the forecasted land use changes in this 
area, e.g., 30% increase of forest area at the expense of agri‑
cultural land use. In the current study, where the climate 
change predictions with a monthly step were applied, a more 
detailed temporal pattern of sediment transport has been elu‑
cidated. In particular, a considerable increase of precipita‑
tion observed especially in April (up to 81% under VS4), 
but also in December, February, and October (up to 76% 
under VS1) in all the discussed scenarios (Fig. 5), will ulti‑
mately affect the mineral and organic fraction of sediments 
delivered into the Myślenice calculation profile. Currently 
(baseline scenario), during these 4 months, a total of just 
over 18 t  m−1 of SILT and 934 t  m−1 of CLAY flow through 
this profile, whereas the future climate changes will lead in 
these months to an average SILT load increase by 154 t  m−1 
(VS3), and by more than 2000 t  m−1 (VS4) for CLAY. Since 
the pattern of precipitation changes will be reversed dur‑
ing May–September (Fig. 5), a decrease of sediment loads 
in the Myślenice profile can be expected in these months, 
when compared to the baseline scenario. Indeed, the load 
of transported fractions will be reduced in these months by 
430 and 1160 t  m−1 for SILT and CLAY, respectively. These 
monthly changes require further attention; however, it has 
been already recognized that this area is likely to experience 

substantial climate exposure leading to further alterations in 
the ecosystem (Hlasny et al. 2016).

The climate change scenarios applied to the reservoir sim‑
ulations emphasize a fundamental difference between both 
parts of the discussed system. While even a small change 
of parameters (such as precipitation, temperature, or land 
cover) causes a rapid hydrological reaction of the mountain‑
ous river catchment and consequently alters the intensity of 
erosion, and sediment transport and fate, the response of the 
reservoir is very disparate. The flow velocity field, which 
is crucial for the range of the sediment particles transport, 
remains sensitive to flow rate changes only in zones A and B 
of the DR (river and backwater). Therefore, these two zones 
will remain the main depositional sections of the DR, espe‑
cially for larger particles, even under flood conditions (Szlapa 
2019). Directly behind the backwater zone, the sudden exten‑
sion of the reservoir’s cross‑sectional area and a slowdown 
of the water flow radically change the sediment transport 
possibilities in further parts of the DR. Therefore, when the 
SILT fraction behavior in the DR is discussed, only changes 
in particle numbers and a slight shift in temporal pattern in 
zones A and B can be noticed. Regardless of the selected 
scenario, a pronounced increase, even by 800%, of the SILT 
fraction can be expected in these two zones (Fig. 10). As for 
the monthly distribution, since the high flow period has been 
extended from May–September in the baseline scenario, to 
April–October in the V1–V4 scenarios, therefore, a similar 
extension in retention effectiveness of SILT particles in zone 
B is visible (Fig. 10). This leads towards increasing the rate 
of the reservoir volume loss in time, and consequently causes 
a transition of the backwater zone (B) towards the dam at 
the cost of the intermediate zone (C). The lacustrine zone 
(D) stays unaffected by this SILT rate increase. Moreover, 
a similar pattern is also noticeable for the SMAG particles. 
Although their spatial pattern remains the same under the 
adapted scenarios, i.e., their appearance is restricted only to 
zones B and C, their temporal distribution is noticeably dif‑
ferent, as it is extended to include even March under V4. It 
should be also noted that an extended period of allochthonous 
organic material delivery to the reservoir can promote further 
development of the autochthonous organic matter due to the 
favorable conditions in the DR (Szlapa et al. 2017). As for 
the CLAY particles, the reservoir response to the applied 
scenarios will completely differ. The altered high flow period, 
April–October, will increase the mobility of these particles, 
pushing them to flow to the last reservoir zone (D), and even 
downstream from the reservoir (OUT). Generally, the share 
of this fraction flowing to zone D will be increased by even 
30% (December) when compared to the baseline scenario, 
but only an average of 10% of them will settle there. Since 
this zone is used as a source of drinking water, the extended 
presence in this part of the reservoir should be further 
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investigated due to their role as a contaminant carrier, as 
previously discussed (Szalińska et al. 2021).

Although the adopted modeling approach has been proved 
as very suitable in tracking sediment particles from their 
source to the deposition place under a variety of scenarios, 
one should remember about possible limitations. As for the 
SWAT model, the land phase of simulations has been rarely 
contested by the scientific community, whereas a representa‑
tion of the stream processes in its bed phase is considered as 
oversimplified (Sarkar et al. 2019).

It should be also noted that in our simplified approach, 
the nonlinear phenomena affecting suspended sediment 
transport, such as density currents, has not been taken into 
consideration. However, their presence and impact will be 
assessed through further research. Moreover, due to the 
semi‑empirical character of this model an impact of adopted 
calculation equations and corresponding coefficients (Yen 
et al. 2017) could be a possible source of bias. Another 
source of uncertainties for sediment tracking, under the 
adopted scenarios, are climate change predictions. The cur‑
rently available forecasts are usually characterized by a large 

spatial scale and a low time resolution (Fatichi et al. 2016). 
Therefore, their application for catchments with limited 
areas where extreme weather events occur should be only 
used as a general indication of predicted changes.

The main limitations of the applied modeling approach 
for the reservoir part are related to the characteristics of both 
modules. As for the hydrodynamic AdH model, it gener‑
ates a planar, two‑dimensional velocity field, impacting 
the sediment transport and altering grain deposition zones. 
However, in our approach, the vertical velocity component 
has been calculated in the PTM module, therefore, the 3D 
velocity field could be used to track representative particle 
transport. As for the PTM module, its biggest limitation is 
an inability to simulate mass transport. With this tool, one 
can observe the transport of characteristic sediment parti‑
cles and indicate the places of their deposition, but no direct 
information about the transported or deposited mass could 
be provided. In order to switch from a qualitative to a quan‑
titative approach, it is necessary to characterize the sediment 
inflow carried from the river to the reservoir, which will be 
the goal of further research.

Fig. 10  Sediment fractions’ dis‑
tribution in the Dobczyce Res‑
ervoir under the selected variant 
scenarios (VS1 and VS4)
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5  Conclusions

In the current study, we have tracked the selected fractions 
of sediment particles (SMAG, SILT, and CLAY) from their 
source of origin (Raba River catchment) to the deposition 
area in a dammed reservoir (Dobczyce Reservoir). This 
research was possible due to the combined performance of 
two models (SWAT and AdH/PTM) under the umbrella of 
the Macromodel DNS digital platform. Such an approach 
could be easily adopted in similar catchments, featuring dam 
reservoirs. Especially, since the proposed solution allows 
to overcome the insufficient performance of the reservoir 
module included in the SWAT model itself. The obtained 
results underlined the fundamental difference between both 
hydrological units, i.e., river catchment and dammed res‑
ervoir. Although the studied river catchment is extremely 
prone to erosion, and under the forecasted climate change 
will respond in increasing sediment loads, this response will 
eventually be attenuated by the reservoir. Due to the very 
fortunate location and natural setup of the studied reservoir, 
the two first zones will maintain their trapping role for larger 
particles (SILT), even during periods of highly increased 
sediment delivery periods under the adopted climate and 
land use scenarios, although special attention must be paid 
towards acceleration of the capacity loss for this part of the 
reservoir. As for the finer particles (CLAY), their increased 
mobility into the reservoir is clearly visible both under short‑ 
and long‑term scenarios which raises concerns due to their 
contaminant binding affinity, and possible impact on drink‑
ing water. Moreover, a monthly resolution of our scenarios 
provided detailed analysis of the studied grain size fractions, 
which are necessary when appropriate measures to evaluate 
sediment fate in a catchment need to be discussed.
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