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Abstract
Purpose  Climate extremes, such as droughts and floods, have become intensified and more frequent due to intensifying 
climate change. Increased atmospheric carbon dioxide (CO2) and warming-induced water limitation, as well as climate 
extremes, may alter carbon (C) and nitrogen (N) cycling in forest ecosystems. This provides a brief review of stable nitrogen 
isotopic composition (δ15N) in tree ring in relation to climate extremes and bushfires in context of N availability and losses 
in forest ecosystems.
Material and methods  Tree rings were extracted from four Pinus sylvestris and four Larix gmelinii sample trees, located 
in a boreal plantation forest of Mohe City, Heilongjiang Province, China. Tree rings were measured to obtain mean annual 
basal area increment (BAI), while tree ring δ15N and total N concentrations were measured on mass spectrometer at 3-year 
intervals. The tree ring δ15N data were related to possible climate extremes and bushfires. A brief review of the relevant 
literature was also undertaken to support our preliminary research findings.
Results and discussion  Globally, increasing atmospheric CO2 concentration and water limitations have led to a warmer-drier 
climate. This has also been associated with increases of climate extremes such as drought and floods as well as bushfires. 
These extremes have been recorded with detrimental effects on plant and soil structures within forest ecosystems and play 
an important role in regulating N availability and losses in forest ecosystems. Studies of N deposition within forest ecosys-
tems using soil and plant δ15N also showed that N losses under various climate extremes can occur through direct changes 
in N cycling, such as increasing soil nitrification and denitrification or leaching. It is highlighted that tree rings δ15N has the 
potential to fingerprint the intensity and frequency of climate extremes and bushfires in the forest ecosystems, but more such 
tree ring δ15N research needs to be done in diversified forest ecosystems to confirm the potential of using tree ring δ15N for 
quantifying the frequency and intensity of climate extremes and bushfires at both regional and global scale.
Conclusion  The variation and trend of δ15N in the soil–plant-climate systems are closely linked to the N cycling in forest 
ecosystems, and tree ring δ15N has the great potential to fingerprint both intensity and frequency of climate extremes such 
as drought and floods as well as bushfires.
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1  Introduction

Climate extremes, noted to be a necessity for the balance 
of the Earth’s atmosphere, have become more frequent 
and intensified in their destructive behaviour due to global 
climate change (Stewart et al. 2021). Climate extremes, 
such as droughts and floods, potentially alter carbon (C) 
and nitrogen (N) cycling in terrestrial ecosystems at pro-
foundly different timescales (Xu et al. 2009; Bai et al. 
2015a, b; Choi et al. 2020). Hence, increasing environ-
mental stress exists within forest ecosystems, decreas-
ing plant and soil health (Stewart et al. 2021). Extreme 
events, such as heatwaves, floods and bushfires, can be 
short in duration but can have long-lasting impacts upon 
ecosystem function and services (Li et al. 2019, 2020a, 
2021a, b; Peguero et al. 2021; Stewart et al. 2021), shap-
ing the abundance and distribution of plant communities 
(Girardin 2009: Li et al. 2022a, b). Increasing tempera-
tures and heatwaves lead to increasing intensity and fre-
quency of droughts, which can cause a warmer and drier 
environment, resulting in increases in bushfires and light-
ing frequency (Girardin 2009; Li et al. 2021a). Increas-
ing temperatures and heatwaves together with increased 
droughts have been related to tree mortality events (Li 
et al. 2021b, 2022b). Drought stress is a large component 
of global crisis in forest and plant health risks due to the 
lack of water availability, leading to plant dieback at a 
regional and global scale (Peguero et al. 2021). Flooding 
is also an extreme event that is detrimental to ecosystem 
environments, but flooding tends to increase once drought 
season has been completed, thus indicating seasonal or 
annual variations in above or below average water avail-
ability. Seasonal and annual variations in temperature and 
soil moisture are important determinant of growth success 
within plants and changes in growth ability can lead to 
variations of landscape distributions, physiological thresh-
old, photosynthesis function and C and N cycling (Li et al. 
2019, 2020a, b, 2021a, b, c, 2022a, b, c).

Changes and shifts in C cycle due to climate extremes 
have been extensively studied (Chen et al. 2008; Li et al. 
2019, 2020a, 2021a, b). The N cycle is closely linked to 
both C and hydrological cycle (Chen et al. 2008; Li et al. 
2020b, 2022c). The N2 makes up 78% of the Earth’s atmos-
phere (Chen et al. 2008; Bai et el. 2012; Choi et al. 2020). 
The reactive N depositions have contributed to the currently 
increasing natural CO2 sinks in some forest ecosystems. This 
anthropogenic disturbance has contributed to the current 
changes in N and C cycles within the terrestrial ecosystems 
(Chen et al. 2008; Bai et al. 2012; Choi et al. 2020). Ter-
restrial ecosystems receive N from biological N fixation 
process (Guinto et al. 2000; Reverchon et al. 2012, 2020). 
The increases of fossil fuels and other anthropogenic uses 

have led to climate change thus increasing climate extremes 
(Bai et al. 2015a, b; Peguero et al. 2021). This contribution 
can vary depending on the biotic and abiotic factors. Biotic 
factors include species, ages and plant components, while 
abiotic factors include climate change and climate extremes 
such as drought, floods and bushfires, having different effects 
on N availability and losses within terrestrial ecosystems 
(Rui et al. 2011; Ibell et al. 2013).

The 15  N natural abundance (δ15N) can provide an 
index of ecosystem N cycling (Yoshida 1988; Sun et al. 
2010; Rui et al. 2011; Ibell et al. 2013; Bai et al. 2015a). 
The ratio of N input or output relative to the N pools has 
been analysed by changes in plant and soil δ15N (Yoshida 
1988; Wang et al. 2015, 2020a, b, c; Choi et al. 2020; 
Succarie et al. 2020). Current research has also used the 
δ15N signature as an index of N losses with interaction 
of bushfires, floods and drought within the soil and plant 
ecosystems. Differences in soil and plant δ15N are closely 
associated with the N cycling processes such as N miner-
alisation, nitrification and denitrification (Handley et al. 
1999; Houlton et al. 2007; Wang et al. 2015, 2020a, b, c; 
Craine et al. 2018; Nessa et al. 2021). The use of δ15N in 
different N pools could assist in understanding N demands 
of terrestrial ecosystems (Craine et al. 2009; Perakis and 
Johnson 2011). The current literature has covered vari-
ous aspects of using a range of methodologies, identifying 
climate extremes and their effects on terrestrial ecosys-
tems. One particular methodology that is well established 
in the relationship of forestry health and climate is tree 
ring technology, which has long been used to investigate 
long-term tree responses to environmental and climatic 
change (Williams et al. 2010; Tomlinson 2015). This is 
analysed through the measurement of tree growth in the 
width of annual growth rings (Williams et al. 2010). Wide 
rings generally form during years of optimal climatic con-
ditions and narrow rings occur in response to poor condi-
tions; thus, tree rings are a well-established methodology 
in viewing the relationship between ring width and cli-
mate (Williams et al. 2010). To date, several studies have 
inferred forest responses to future climate change form sta-
tistical relationships between tree-ring record and climate 
variability during the life span of the tree (Williams et al. 
2010; Tomlinson 2015). Basal area increment (BAI) is 
used to analyse tree growth and the relationship of climate 
change giving an accurate understanding of physiological 
and climatic relationship other than ring width (Williams 
et al. 2010; Tomlinson 2015). Stable isotopes (13C, 15 N 
and 18O) have been used to further understand the rela-
tionships of physiological and biogeochemical responses, 
carbon cycling, atmospheric CO2, N cycling and water 
availability, to the increase of climate change (Williams 
et al. 2010; Tomlinson 2015). Due to variation in site- and 
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species-specific responses, tree ring methodology is pro-
viding valuable information on the long-term effects of 
forestry health (Tomlinson 2015).

While BAI, tree ring 13C and 18O have been heavily 
applied to understand the relationships of climate change 
and forest health. The 15 N natural abundance in the soil 
and plant tissues (plant ecosystems) has shown that δ15N 
is closely linked to the importance of N cycling processes 
and the N balance in the context of climate change, climate 
extremes and bushfires (Perakis et al. 2011; Wang et al. 
2015, 2020a, b). Increasing δ15N in the soil is associated 
with losses of isotopically depleted nitrate and trace N gases 
and these processes can enable modelling of δ15N dynamics 
with 15 N mass balance and identifying the potential path-
ways of N inputs and losses. However, there has been limited 
empirical evidence of the intensity and frequency of climate 
extremes within forestry ecosystems and how N cycling is 
affected and whether specific isotopic structures such as 
δ15N, obtained within tree rings, can be used to fingerprint 
the climate extremes and bushfires (Succarie et al. 2020).

In this study, we aimed to provide a brief literature review, 
together with our preliminary research findings, to examine 
the potential of using tree ring δ15N for fingerprinting cli-
mate extremes and bushfires at regional and global scale.

2 � Methods and materials

2.1 � Site description

Mohe City is located in northwest of the Heilongjiang Prov-
ince, China (52° 10′–53° 33′ N 121° 07′–124° 20′ E). Cli-
mate in this area is subarctic, with long cold winters and 
short warm summers; the average annual mean temperature 
is − 4.49 °C. The winters generally last from mid-October 
until April; the average temperature stays below freezing 
for 7 months in a year. The Heilongjiang Province is one 
of the largest agricultural bases in China, containing large 
plantation forests that are used for wood production. The 
plantation forest that the sample trees were collected from 
is the boreal forest consisting mainly of Pinus species and 
Larix species.

2.2 � Tree ring sampling and preparation

Tree ring samples were chosen at random in the plantation 
forest. Four sample trees were chosen for Pinus sylvestris 
var. mongolica and four sample trees were chosen for Larix 
gmelinii. Pinus sylvestris var. mongolica was a dominant 
species in the plantation forest; hence, a larger number of 
sample trees were collected. In August 2018, 10–15-cm tree 
ring cores were collected from each sample tree. The tree 
ring cores were then processed (air-dried and polished) and 

cross dated according to the procedures established by Sun 
et al. (2010) and Xu et al. (2014). The ring width was meas-
ured to 0.01-mm precision along four radii to avoid growth 
anomalies and then dated by using a semi-automated device 
TSAP-Win Scientific software system. To check for tree ring 
width data accuracy and the quality of cross-dating, we used 
the statistical program COFECHA.

2.3 � δ.15N measurement

Using the same sectioning for the δ15N measurement, a spike 
was added into each sample. This N spike with known total 
N and δ15N was added to increase the N content within the 
tree ring sample so that tree ring total N and δ15N can be 
determined on the isotope ratio mass spectrometry and cal-
culated based on the mass balance method. First, 56.6 mg of 
ammonium sulphate (NH4)2 SO4 was weighted and placed 
into a tube containing 20 ml water, then the solution was 
mixed for 1 h and put into the fridge. After the spike was 
dried, we weighed and recorded the weight then an amount 
of 8–9 mg of tree ring powder was weighed and placed into 
the spiked tin capsules, to analyse for δ15N measurement; 
four spikes were left without tree ring materiel as a control, 
using a Secron Hydra 20–22 isotope ratio mass spectrometer 
coupled with a Europa EA GSL sample prep system in Sta-
ble Isotope Laboratory. The equation to calculate the δ15N 
was as follows:

where Rsample was the 15 N/14 N ratio within the sample 
that was given from the isotope analysis and the Rstandard 
was the 15 N/14 N ratio of the air as the reference.

3 � Impacts of climate change on climate 
extremes and N cycling

Climate change has become a catastrophic event that has 
altered the Earth’s ecosystems. Globally, increasing atmos-
pheric CO2 and water limitations are two key features of cli-
mate change, resulting in a warmer and drier future. Climate 
change is changing the distribution of climate extremes. This 
is due to increases in atmospheric CO2 concentration, air 
temperatures and extreme climate events caused by com-
bustion of fossil fuels and biomass (Amthor et al. 1995; Bai 
et al. 2015a, b; Savard et al. 2020). This raises a major con-
cern on biodiversity loss and the impacts of ecosystems 
functioning on both regional and global scale (Amthor et al. 
1995). To date, it is evident that atmospheric CO2 concentra-
tion is influenced by both abiotic and biotic factors, such as 
N and water and this influence has induced a warmer and 
drier climate (Choi et al. 2020).

δ15N = 1000 × (Rsample∕Rstandard)∕Rstandard
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Nitrogen is another important factor that affects the 
productivity of the ecosystem and nutrient availability 
(Bai et al. 2015b). The anthropogenic creation of reac-
tive N in 2010 has doubled compared to the rate of natu-
rally terrestrial produced N (Savard et al. 2020; Takizawa 
et al. 2017; Michelsen-Correa et al. 2018; Yang 2018). 
Increased reactive N is through agricultural practices, 
such as use of fertiliser and burning of fossil fuels caus-
ing air pollution. Fertiliser has been used in agroforestry 
and agricultural lands to enhance plant growth through 
improving nutrient availability such as phosphorus and N. 
Increase in N inputs within the ecosystems can increase 
the efficiency of C sequestration of some tree species. 
But high rates of fertilisation can saturate the biological 
demand of N and lead to increased rate of N loss through 
leaching, denitrification and volatilisation (Takizawa 
et al. 2017; Michelsen-Correa et al. 2018).

High combustion of fossil fuel emissions within the 
atmosphere due to anthropogenic use has caused a decline 
in forestry health. High pollution rates have led to acid 
deposition. Acid deposition is slow through long-term 
chronic influences and can only be detected once visible 
symptoms appear. Chemical signatures that are sensitive 
to the acid deposition is a helpful indicator for forestry 
health (Yang 2018; Katahata 2007). With an increase in 
N availability within soil due to fertiliser, it is expected to 
result in the imbalance of N sources within soil structure 
thus potential leading to N losses via denitrification and 
leaching which many agricultural lands have found to be 
an increasing problem with crop growth and soil health, 
leading to much higher soil and plant ẟ15N (Denk et al. 
2017).

The reactive N depositions contribute to the cur-
rently increasing natural CO2 sinks, in forest ecosystem 
especially, as well as increases in the production of N2O 
within soil environments due to the lack of energy and 
nutrients that could not be observed by microbes. Dur-
ing the same interval as the CO2 concentration, N2O has 
increased by 20% from 271 to 324 ppb in 2011 (Portl 
et al. 2007; Bai et al. 2015a, b). This increase can pos-
sibly shift our prediction of the effects of climate change 
and its relationship to N. Current literature on climate 
change shows a higher frequency and intensity of various 
climate extremes such as droughts, floods and bushfires 
(Sun et al. 2010; Fu et al. 2020). Thus, climate change 
and climate extremes have been concluded to alter N 
cycling and transformation as well as C cycling within 
terrestrial ecosystems. This highlighted a need to further 
understand the relationship of increased climate change 
to acceleration of climate extremes and their effects on 

soil N transformations (Sun et al. 2010; Xu et al. 2014; Fu 
et al. 2020; Succarie et al. 2020; Liu et al. 2021).

4 � Tree ring analyses on the long‑term effects 
of climate change and their relationship 
with the N cycling process

Annual tree ring chronologies can date the effects of climate 
change and long-term temperature records going back cen-
turies. Using tree ring basal area increment (BAI) and stable 
isotope compositions, we can construct tree physiological 
responses to climate change (Sun et al. 2010; Xu et al. 2014; 
Fu et al. 2020; Liu et al 2021). The carbon isotopic composi-
tion (δ13C) of tree rings is a sensitive proxy for water avail-
ability and can provide historical records of intrinsic water use 
efficiency (WUEi) (Farquhar et al. 1982; Tomlinson 2015), 
which was also used to define the ratio of net photosynthesis 
to transpiration. These proxies are affected and correlate with 
changes in climate, atmospheric CO2 concentration, air pol-
lution and nutrient availability (Peri et al. 2012; Tomlinson 
2015).

The δ15N is a proxy for N losses and availability in the for-
est ecosystems which is used to define the N deposition within 
forest ecosystem (for example, see Fig. 4) (Sun et al. 2010; 
Tomlinson 2015). Changes in soil–plant ẟ15N can provide an 
index of ecosystem N cycling. The ratio of N input or output 
relative to the N pools has been analysed by changes in plant 
and soil ẟ15N (Hart et al. 2003; Craine et al. 2009; Perakis 
2011). Current research has also used the ẟ15N signature as an 
index of N losses and fixation within soil and plant ecosystems 
(Koba et al. 2003; Portl et al. 2007). Differences in ẟ15N values 
are closely associated with the N cycling processes such as 
N mineralisation, nitrification and denitrification which have 
been represented in Fig. 1 (Handley et al. 1999; Houlton et al. 
2007; Craine et al. 2018). A recent study has found the use of 
ẟ15N and climate extremes and bush fires, within sediment 
samples as a measure of the effects of water availability and N 
cycling due to climate change (Gosling et al. 2022). The ẟ15N 
was recovered from sediment, providing a historical record of 
fire activity and moisture availability, compared with atmos-
pheric CO2 data and temperature of the region. This indicates 
the potential relationship between ẟ15N and climate extremes 
(Kast et al. 2019; Gosling et al. 2022). Within the literature, 
there is an abundance of experimental design of using ẟ15N as 
an indicator for long-term responses of N cycling, water avail-
ability and soil and plant health. The ẟ15N has been extracted 
form soil material, foliage and other plant tissue; however, 
there is little research of using tree ring ẟ15N to fingerprint 
the frequency and intensity of climate extremes and bushfires.
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5 � Tree ring δ.15 N as an indicator of intensity 
and frequency of climate extremes 
and bushfires

5.1 � Droughts

Drought has been a global extreme that has affected many 
ecosystems and agricultural habitats with the increase of 
temperature and reduction of seasonal water availability, 
while the frequency and intensity of drought have increased 
(Sardans et al. 2020; Looney er al. 2021). Drought events 
cause water stress within the soil–plant systems, which can 
reduce photosynthesis and cause resistance of CO2 diffusion 
to the chloroplast and metabolic inhibition through stomatal 
closure (Looney et al. 2021). The high salt content within the 
chloroplasts leads to inadequate photosynthesis which can 
transfer to photorespiration and have a detrimental effect on 

the mitochondrial metabolic synthesis (Sardans et al. 2020). 
This can also lead to lower levels of nutrient uptake and 
energy uptake due to the lack of C thus reducing the N min-
eralisation, respiration, nitrification and soil moisture (Xue 
et al. 2020; Zhang et al. 2021; Peguero et al. 2021). Both 
NO3

−-N and NH4
+-N are sensitive to dry conditions, since 

N mineralisation, nitrification, denitrification and NO3
−-N 

leaching are decreased (Lennon et al. 2017; Peguero et al. 
2021). Current literature has shown that drought can influ-
ence the N input and output within the terrestrial ecosys-
tems. Due to the lack of water content, soil N transforma-
tions are generally very low within the soil, thus with little N 
losses (Zhang et al. 2021). Under drought conditions, there 
would be high nitrification and soil and plant δ15N would be 
expected to be very low (Ibell et al. 2013; Wang et al. 2015, 
2020a, b, c; Nessa et al. 2021). These indicate the relation-
ship that has been measured within current literature on the 

Fig. 1   Schematic model of N loss and availability affected by climate extremes and land degradation as fingerprinted by tree ring N isotopic 
composition (δ.15 N)
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implication and relationship between N transformation and 
cycling and drought events in soil and plant systems using 
soil δ15N.

It is expected that lower tree ring δ15N values would be 
detected under drought conditions since there would be little 
N mineralisation and hence little available mineral N to be 
lost via soil nitrification, denitrification and leaching (Figs. 2 
and 3).

5.2 � Bushfires

Bushfires is a detrimental event that is triggered by climate 
change and increased drought and a warmer-drier climate. 
Increasing bushfires, due to climate change and drought, N 
fertilisers and burning of fossil fuels can increase the amount 
of N gas emissions to the atmosphere (Aber et al. 1998; Choi 
et al. 2020; Wang et al. 2020a, b, c). However, to date, unlike 
the C cycle, there is limited understanding of increasing 
bushfire impacts on the N cycling in terrestrial ecosystems 
(Lavorel et al. 2007; Wang et al. 2018, 2020a, b, c; Nessa 
et al. 2021; Taresh et al. 2021).

Due to high N inputs from the N depositions, most of 
the deposited N in the soil would be lost via soil nitrifica-
tion—denitrification and leaching, resulting in higher δ15N 
values in soil ammonium N and nitrated N (Wang et al. 
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2015, 2020a, b, c). The δ15N in the soil (plant ecosystems) 
is closely linked to the important N cycling processes and 
the N balance in the context of climate change and increas-
ing bushfires (Perakis et al. 2011; Wang et al. 2015, 2020a, 
b, c). Increasing δ15N in the soil is associated with losses 
of isotopically depleted nitrate and trace N gases and these 
processes can enable modelling of δ15N dynamics with 15 N 
mass balance and identify potential pathways of N inputs 
and losses. This would be much easier to measure than 
direct measurements of N deposition and losses of N gases 
by denitrification (Perakis et al. 2011); Masse et al. 2016).

The δ15N can be used to evaluate the bushfire events and 
major site disturbances (such as logging and thinning) to 
understand the N balance and dynamics in terrestrial eco-
systems. However, there is still uncertainty of the long-term 
effects of such disturbances on N balance in an ecosystem 
(Perakis et al. 2011). The N availability is an important indi-
cator of forest health (Aber et al. 1998). The N deposition in 
the 11% of the world’s forest ecosystems has exceeded the 
critical threshold (Delwiche 1970; Cleveland et al. 1999). 
From 1980 to 2010, the average N bulk deposition increased 
in China by 60% (Liu et al. 2021). Given the limited supply 
of N in terrestrial ecosystems (Delwiche 1970; Aber et al. 
1998), N deposition is an important driver for ecosystem res-
piration across all biomasses. Water stress can also influence 
N limitations, reducing tree capacity to assimilate atmos-
pheric CO2. With this in mind, understanding the effects of 
major bushfires on δ15N and N cycling in terrestrial ecosys-
tems has become increasingly important (Wang et al. 2015, 
2020a, b, c; Succarie et al. 2020).

Previous studies have reported that an indicator of long-
term bushfires can be observed in tree ring δ15N, via looking 
at the fire history reconstruction by comparing long-term, 
sedimentary charcoal with nearby fire scar chronologies 
(Holz et al. 2012). There is little literature on relationships 
among tree ring δ15N, total N concentration and bushfires, 
with most of the research that has been done about bushfire 
impacts on δ15N and N cycling processes in the soils (Wang 
et al. 2015, 2020a, b, c). In our preliminary study (Figs. 2 
and 3), we have successfully used tree rings δ15N to finger-
print the 1986 bushfires in Da Xin An Ling mountains of 
Northern China, with tree ring δ15N higher when the trees 
samples were closer to the burned areas.

Our results have given insights into the current gaps in N 
depletion due to major bushfires as well as the high and low 
peaks of N availability in the recorded lifespan of the cho-
sen species in boreal forests. The results answered both our 
questions that were made in the study aims to test whether 
the neighbouring forest would record the 1987 major bush-
fires in the affected area by tree ring δ15N. When measuring 
the tree ring δ15N in each 3-year interval of each sample tree 
for each species, they all had increases and decreases in tree 
ring δ15N, indicating that N depletion was not only shown in 

the soil but also in the tree rings (Figs. 3 and 4). In this study, 
tree ring δ15N and total N concentration of Pinus species 
were more sensitive to ecosystem N availability, which could 
be significantly influenced by major forest disturbances such 
as harvesting, thinning and bushfires (Fig. 4).

5.3 � Floods

Considerable evidence of high temperature has led to pre-
cipitation extremes increasing in magnitude and frequency, 
further leading to flood hazards (Veijalainen 2010; Nolin 
2021). Floods account for 84% of all-natural disaster 
global death, and with the increase of temperature it has 
been recorded with increasing flooding events (Takai and 
Kamura 1966; Milly 2002; Panahi 2021). There has not been 
a clear definition, as to whether the floods are caused by 
climate change or natural process. Whether climate change 
has caused and increased flood intensity and frequency, and 
how this is affecting the ecosystems have also not been fully 
understood. Current literature has measured flood hazards 
with high levels of seasonal precipitation within various for-
est types and climate zones such as tropical, subtropical, 
temperate, boreal, Mediterranean and arid zones ( Escher 
et al. 2004; Nolin 2021), indicating more of a historical 
flooding, rather than floods that have been increased by cli-
mate change. Flooded soil has the potential losses of N due 
to high levels of denitrification a major source of greenhouse 
gases (Reddy 1990; Bei et al. 2013; Zhou 2020). Saturation 
of water due to flooding affects the supply of oxygen within 
soil and oxygen is generally decreased (Davidsson 1996; Pu 
et al. 2002). Oxygen is the main factor to regulate denitrifi-
cation, soil nitrification and when there is a lower supply of 
oxygen the second important factor is NO3

− N as an external 
source, which requires a larger amount of energy, and with 
the lack of C and energy sources this can prove detrimental 
(Kozlowski 1984; Davidson et al. 1996; Zhou 2020). In the 
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absence of oxygen which may occur when roots are flooded, 
flooding can induce oxygen deficiency because oxygen is 
difficult to diffuse in water (Unger et al. 2009; Shen and 
Chui 2021).

Flooding is one of the dominant mechanisms leading 
to the O2 depletion and low redox conditions, by greatly 
retarding the diffusion of soil matrix, while flooding 
can cause O2 demand to exceed that of diffusive resup-
ply leading to anaerobic conditions (Unger et al. 2009; 
McNicol and Silver 2014). Flooding can change the soil 
pore-space phase gas to liquids and alter the physico-
chemical environments (Mitchell and Soga 1993; McNi-
col and Silver 2014). Increased soil matrix connectivity 
under flooded conditions could connect microbes to dis-
solve solutes, which could enhance lower soil tortuos-
ity and stimulate NO3 reduction and increase N2O pro-
duction (Patrick and Reddy 1976; McNicol and Silver 
2014; Fujiyoshi et al. 2019). In short, flooding events 
would be expected to result in major N losses via deni-
trification and leaching, leading to much higher soil and 
plant δ15N; thus, it is important to further understand if 
the intensity and frequency of floods have been increased 
due to climate change, which possibly can be recorded 
and shown in tree ring δ15N.

The study of the anatomy of growth rings in trees 
directly expose to seasonal floods can provide quanti-
tative and continuous predictors of seasonal climate in 
forestry ecosystems (Nordin et al. 2001; Nolin 2021). 
The traditional understanding of this proxy is through 
observing flood ring which is an anatomical change in 
earlywood vessels associated with the physiological 
responses to anoxia during persistent flooding (Nordin 
et al. 2001; Oh 2008; Nolin 2021). As shown in Fig. 3a-
d, there are various peaks of tree ring ẟ15N indicating a 
change in N availability and N losses. Once comparing 
the precipitation high peaks with the ẟ15N high peaks 
it gives an indication that these peaks are due to high 
precipitation essentially flooding, these high peaks show 
the intensity of flooding within the area, causing high N 
loses within the soil via denitrification and leaching as 
mentioned above (Figs. 2 and 3), each individual plant 
can have a slight variation of the peaks due to ageing and 
where they were positioned within the forest due to the 
soil N variability, some species/individuals that are more 
sensitive could indicate a higher exposure to the flood-
ing as shown in Fig. 3a, d, which show larger peaks than 
Fig. 3b, c. Our preliminary tree ring δ15N study represents 
the first attempt to use tree ring δ15N for fingerprinting 
the climate extremes of droughts and floods as well as 
bushfires, but more research would need to be done in dif-
ferent forest ecosystems to confirm the potential of using 
tree ring δ15N to reconstruct the past climate extremes 
and bushfires as compared with the other approaches 

(Figs. 2 and 3). It is also interesting to note that there 
would be negative, nonlinear relationships between tree 
ring δ15N and tree ring N concentration or N availability, 
highlighting higher tree ring δ15N due to higher N losses 
and lower N availability (Fig. 4).

6 � Conclusions

The literature review and our preliminary research find-
ings have highlighted that the δ15N in soil–plant system is a 
very powerful indicator of major biotic and abiotic factors 
influencing the ecosystem N losses and availability, and tree 
ring δ15N offers exciting and novel approach for fingerprint-
ing the climate extremes (particularly drought and floods) 
and bushfires in forest ecosystems. It has the great potential 
to use tree ring δ15N for quantifying the intensity and fre-
quency of climate extremes (particularly drought and floods) 
and bushfires in the context of intensifying climate change 
and land use.
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