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1  Introduction and context

Over the last few decades, there has been a large growth 
in the number of publications that have used the sediment 
source fingerprinting (SSF) technique to identify the domi-
nant sources of fine-grained sediment in a range of environ-
ments. Reviews by Walling (2005) and Collins et al. (2020) 
show that the number of journal publications has increased 
from < 5 each year in the 1970s to > 40 per year today. The 
recent paper by Evrard et al. (2022) suggests that now is 
a good time to assess where the technique lies in terms of 
its evolution and what developments are required for future 
improvement. This article contributes to this discussion.

As Walling (2005, 2013) and others have identified, the 
SSF technique was developed in the 1970s. Early studies 
focused on determining the sources of sediment trans-
ported in rivers (e.g., Klages and Hsieh 1975; Wall and 
Wilding 1976; Oldfield et al. 1979; Walling et al. 1979; 
Grimshaw and Lewin 1980). Initially, results were mainly 
qualitative, in the form of plots and simple comparisons, and 
used color, mineralogy, geochemical, and mineral magnetic 
properties of materials as fingerprints. Over time, the tech-
nique has (i) become more quantitative, using increasingly 
advanced statistical and modeling techniques; (ii) utilized 
new properties as fingerprints; and (iii) expanded to include 
new environments and applications. Useful reviews of the 
history and principles of the SSF technique are provided by 
Walling (2005, 2013), Haddadchi et al. (2013), Owens et al. 
(2016), and Collins et al. (2017, 2020).

2  A shift in focus?

Sediment source fingerprinting was developed as a “tool” 
to help answer research questions about how landscapes 
function. Early applications were concerned with assessing 
erosion of the landscape, such as soil and channel bank ero-
sion, especially in agricultural areas (e.g., Peart and Walling 
1988; Walling and Woodward 1995; Collins et al. 1997). 
Additional applications included (i) determining the impacts 
of forest harvesting and wildfires on landscape erosion (e.g., 
Motha et al. 2003; Blake et al. 2006; Owens et al. 2012); 
(ii) assessing how urban development supplied additional 
sources of sediment (and contaminants) to aquatic systems 
(e.g., Charlesworth et al. 2000; Carter et al. 2003; Poleto 
et al. 2009); (iii) identifying sources in estuaries and coastal 
zones (e.g., Yu and Oldfield 1989; Gibbs 2008; Douglas 
et al. 2010); and (iv) reconstructing source changes over time 
using lake, floodplain, and estuarine sedimentary deposits 
(e.g., Dearing 1992; Foster et al. 1998; Owens et al. 1999). 
There is no doubt that these studies have greatly enhanced 
our understanding of earth surface processes and landscape 
evolution.

A second application addressed issues of watershed 
management. There is a vast literature that has discussed 
the problems associated with excessive soil erosion and 
with sediment and associated chemicals in aquatic sys-
tems (e.g., Montgomery 2007; Owens et al. 2005; Bilotta 
and Brazier 2008; Poesen 2018), i.e., the on-site and  
off-site consequences on landscape erosion. As such,  
the SSF technique provided an excellent means to assem-
ble important information that could be used to develop 
advice to mitigate such problems. In other words, the SSF 
technique provided the scientific evidence to underpin 
management decision-making and policy development. 
In the earlier years of the technique, the attractiveness of 
SSF as a tool to the non-academic community (i.e., land 
owners, watershed managers and advisors, environmental 
regulators, policy developers) was that it was (i) concep-
tually simple and (ii) cost-effective. In terms of (i), the 
premise is that the properties of the problem sediment 
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are compared to those of the potential sources and a link 
is established between the two types of materials. In 
the case of (ii), most of the properties used were easy 
to obtain in academic and commercial laboratories. For 
example, analysis of a soil or sediment sample for a suite 
of geochemical properties (> 30 elements) now typically 
costs in the range of US$10–$50. Thus, a study using 30 
source samples (10 from three main source types) and 
10 suspended samples might cost US$400–$2000. It was 
also cost-effective in that it did not require long-term 
monitoring of erosion and sediment transport dynamics; 
sampling and laboratory analysis could be done in a mat-
ter of months.

Over time, there has been a shift in the focus of many 
SSF studies. Numerous investigations are now concerned 
with “method development”, which represents a natural 
progression of scientific inquiry for what is a relatively 
new technique. There are many excellent studies that 
have:

• examined the potential of new fingerprint properties, 
including compound-specific stable isotopes (CSSIs), 
eDNA, and spectral reflectance properties (e.g., Martinez-
Carreras et al. 2010; Blake et al. 2012; Barthod et al. 
2015; Evrard et al. 2019a; Reiffarth et al. 2019; Frankl 
et al. 2022);

• assessed ways to better sample and characterize sediment 
and source materials (e.g., Wilkinson et al. 2015; Du and 
Walling 2017; Boudreault et al. 2019; Haddadchi et al. 
2019; Lake et al. 2022);

• developed protocols, statistical approaches, and numer-
ical models that provide a more realistic and accurate 
estimate of source contributions and their uncertainties 
(e.g., Smith et al. 2018; Blake et al. 2018; Lizaga et al. 
2020a; Upadhayay et al. 2020); and

• evaluated the accuracy and precision of the results 
derived from these models using artificial and virtual 
mixtures (e.g., Gasper et al. 2019; Batista et al. 2022).

These studies and developments have greatly helped 
the SSF technique provide more rigorous and robust 
apportionment results and have increased its reputation 
within academia, in part, demonstrated by the growth of 
studies published in high-ranking journals. That said, the 
SSF community does need to be aware of the fact that too 
much method development can lead to a divergence of 
approaches and a lack of standardization. Perhaps more 
importantly, it can be argued that a change in focus to 
method development has resulted in a departure from the 
original objectives of the technique, namely, (i) improving 
our understanding of landscape evolution; and (ii) address-
ing the needs of watershed managers and regulators in 
terms of sediment-related problems.

3  Addressing Earth’s urgent environmental 
problems

Numerous reports and publications have identified a series 
of global-scale environmental crises—including the cli-
mate change emergency and concerns associated with  
food and water security—and identified that the scien-
tific community needs to address these challenges (e.g., 
McLaughlin and Kinzelbach 2015; Wheater and Gober 
2015; Owens 2020a; Ripple et al. 2020). As such, the SSF 
technique offers great potential in answering a range of 
important questions that include (i) evaluating multiple 
stressors on sediment sources and sediment dynamics in 
large and/or complex landscapes and watersheds (e.g., 
Gateuille et al. 2019); (ii) assessing the degree and rate  
by which landscapes are responding to global environ-
mental changes like climate change and land use change  
(e.g., Wynants et al. 2021); and (iii) determining whether 
management and remediation actions are effective (e.g., 
Evrard et al. 2019b). In this context, the power of the 
SSF technique is likely to be greatly increased when it 
is combined with other lines of evidence, such as sedi-
ment flux monitoring, sediment budget investigations, 
remote sensing, landscape modeling, and incorporation 
of indigenous and community knowledge (e.g., Dambroz 
et al. 2022). Thus, it is recommended that SSF should be 
part of a larger framework of research which involves a 
transdisciplinary approach to science and its utilization 
(Owens 2020b).

Evrard et al. (2022) also advocate the need for forward-
thinking, broader-scale projects that look to identify regional 
environmental patterns. In other words, a move away from 
applications in yet another watershed or landscape—unless it 
is in environmental settings where existing data are not avail-
able (e.g., Gholami et al. 2017; Navas et al. 2020; Sellier et al. 
2020)—to applications that provide a mechanistic understand-
ing of earth surface processes and determine landscape-scale 
patterns of responses to change.

4  Addressing the utilization of findings

In many respects, the SSF technique has not been utilized 
by watershed managers and regulators as much as hoped. 
Many publications justify the research that they describe 
in the context of its application to help managers and regu-
lators to solve problems. But in reality, the up-take of the  
technique has not met its potential, which suggests that 
there may be a disconnect. There are several reasons for  
this disconnect between the academic and practical appli-
cations of SSF. One relates to the departure from the origi-
nal attractiveness of the SSF technique; its conceptual sim-
plicity and its cost-effectiveness compared to alternatives. 
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The technique is now more advanced than its earlier incar-
nations, which has likely made it less appealing to those 
who wish to use it as an operational tool (Mukundan et al. 
2012) and not a research tool or an intellectual exercise 
(i.e., method development). There are several ways for-
ward. One is to allow the use of simple versions of the 
tool, and not be fixed upon the use of the most recent, 
state-of-the-art version. As others have recently advocated 
(e.g., Evrard et al. 2022; Pulley and Collins 2022), some-
times simple bi-plots of property values of source materi-
als and sediments can be enough to provide the informa-
tion needed for decision-making. Indeed, often watershed 
managers and regulators are looking for the rank order of 
the “main” sediment sources (e.g., topsoil erosion vs chan-
nel banks; agricultural land vs forested land) so as to make 
a decision and do not require accurate percent contribu-
tions. However, it should be recognized that quantitative 
scientific evidence is sometimes needed to leverage the 
incentive and funding required to implement management 
actions.

Another development is to provide ways that users can 
input the required data and obtain outputs without them-
selves having to perform complicated statistics and mod-
eling. Thus, several recent modeling tools have been devel-
oped to enable this, many of which are open-access and with 
a user-friendly interface (e.g., Gorman Sanisaca et al. 2017; 
Pulley and Collins 2018; Lizaga et al. 2020b).

An important issue lies with knowledge transfer. It is likely 
that the information being generated from many SSF studies 
is not reaching those that need the information for manage-
ment decision-making and policy development (Collins et al. 
2020). There are several ways to address the issue of lack of 
communication. As Slob et al. (2008), Evrard et al. (2022), 
and others have advocated, one way is to engage stakehold-
ers and end-users in the project development and application 
process. This will help the project to meet its objectives and 
generate the information required by end-users. Another is 
to have bi-directional knowledge exchange identified as a key 
objective of the project. This is a subtle, yet important, dis-
tinction from knowledge transfer in a single direction from 
researcher to end-user.

5  Concluding comments

The comments above are not meant to discourage research-
ers from further developing and improving the SSF tech-
nique. Indeed, such advancements are required to increase 
its value and will ultimately enhance its reputation. Recent 
reviews and position articles by Koiter et al. (2013), Laceby 
et al. (2017), Collins et al. (2020), Evrard et al. (2022), and 
others provide excellent guidance on what developments 
and considerations are required. However, it is important 

to recognize that we should not ignore the fact that the SSF  
technique is ultimately a tool that should be used to (i) 
answer fundamental questions about how landscapes, and 
especially modified landscapes, function in a changing world 
and (ii) provide local communities, managers, and regula-
tors with the information that they require to make decisions 
and develop policy. The request comes amid warnings (e.g., 
IPBES 2018; IPCC 2022) that society needs to act quickly to 
address the global environmental crises that we are facing.
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