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Abstract
Purpose The present work aimed to fill some knowledge gaps on the effects on non-target natural soil microbial communi-
ties of the sulfamethoxazole (SMX) antibiotic potentially found in cattle manure digestate. Both soil prokaryotic and fungal 
community under different conditions were analyzed using molecular ecology methods.
Methods A previous microcosm experiment with a soil amended with a cattle manure digestate (3% dry mass) and spiked 
with SMX (20 mg/kg soil) was used for this in-depth study. Microbial live cell abundances were assessed by direct epif-
luorescence microscope methods. The microbial community structures were studied by DNA extraction and amplification 
using 16S rRNA primers targeting the V3-V4 region (for prokaryotes) and ITS1 (for fungi); Alpha-diversity indices (Chao1, 
Shannon and Evenness) were also estimated. Moreover, a prediction functional analysis was performed on prokaryotic 16S 
rRNA amplicon data with PICRUSt2 in order to predict possible variations in some microbial functioning.
Results Adding digestate to soil promoted both microbial abundance and some bacterial groups. The co-presence of SMX 
initially lowered these positive effects and decreased diversity. However, at day 61, the antibiotic was almost all removed 
and the microbial abundance and prokaryotic and fungal diversity showed increased values.
Conclusion The antibiotic detrimental effects on prokaryotic cells were transient and some resistant bacteria (e.g., Sphin-
gomonas, Skermanella), presumably introduced into the soil with the digestate, were able to remove SMX. Moreover, the 
digestate long-term effect was to favor some fungal groups such as Basidiomycota. The presence of the genus Trichoderma 
(Ascomycota), able to transform antibiotics, does not exclude also as possible involvement of this fungus in SMX removal.

Keywords Sulphonamide antibiotics · Microbial nitrogen metabolism · Microbial oxidative stress · Prokaryotic and fungal 
community

1 Introduction

The European Commission has recently promoted the 
European Green Deal, a series of actions aimed at boost-
ing the efficient use of resources, with a view to achiev-
ing the clean, circular economy; restoring biodiversity; 
and reducing pollution (COM/2021/400 final). For exam-
ple, a sustainable agriculture using zootechnical waste 
(e.g., manure, digestate) as organic fertilizers and limit-
ing the application of chemicals meets these objectives. 
In this regard, the EU Fertilizing Product Regulations 
(EU 2018, 2019) discipline the use of organic fertilizers 
by establishing threshold limit concentrations in nutrients 
(e.g., nitrogen, phosphourous), organic carbon, trace ele-
ments, and pathogens. However, both initiatives do not 
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consider any potential emerging contaminants which can 
be found in organic waste. For example, it is generally 
recognized that by adding cattle manure, antibiotic resi-
dues from treating cattle infections can be introduced into 
soils (Huygens et al. 2021; Wang et al. 2014). In particu-
lar, sulphonamides are found in manure at relatively high 
concentrations (from 0.1 to 91 mg/Kg, Martínez-Carballo 
et al. 2007; Qian et al. 2016). Cattle manure can be also 
used for feeding anaerobic digestion plants, enabling its 
use beyond the carrying capacity of adjacent fields (Shi 
et al. 2018).

Anaerobic digestion (AD) is a well-established 
technology with significant growth potential and a key 
role in the development of a sustainable society (Kougias 
and Angelidaki 2018), addressing several agricultural 
sustainability aspects. The AD process anaerobically 
degraded and stabilize biogenic wastes by microbial 
communities of the AD plants, reducing emissions of 
greenhouse gasses to the atmosphere, compared to storage, 
landfilling, or composting. Biogas is one of the product of 
this process; it is a sustainable bioenergy with the potential 
to replace fossil carbon in the generation of electricity, heat, 
and motor fuel (Kougias and Angelidaki 2018). Digestate 
is the other important product of AD process. Thanks to 
its high content in vital plant nutrients and organic carbon, 
it is widely used as soil fertilizer (Scarlat et  al. 2018). 
Digestate use as fertilizers not only replaces chemicals, but 
also improves soil structure and quality (Barra Caracciolo 
et al. 2015; Egene et al. 2021; Möller 2015), increasing 
also microbial biomass and decreasing pathogens (Gilbert 
et al. 2020). However, its physico-chemical composition 
can vary depending on the feed materials and operational 
conditions of the AD plant (Barampouti et al. 2020). The 
direct land application of digestate is a good agricultural 
practice for recycling organic waste, in line with the circular 
economy principles and sustainable agroecosystems 
(Chojnacka et al. 2020); responds to growing demand for 
nutrients in the agricultural sector; and combats organic 
carbon loss in soils (European Biogas Association 2020).

Although the use of digestates is in line with the green 
economy, the potential presence of antibiotics in it is not 
currently considered. Even though new EU soil strategy 
highlights the importance of soil biodiversity, the knowledge 
of how antibiotics can affect natural microbial communities, 
in particular those related to important ecological functions, 
needs to be better understood (e.g., nitrogen transformation, 
methanogenesis, sulfate reduction, nutrient cycling, and 
organic matter degradation). For example, significant 
concentrations of sulfonamides in the environment could 
inhibit denitrification and the application of manure to soil 
containing antibiotics can negatively influence the nitrogen 
cycle in soil (Grenni et al. 2018; Laverman et al. 2015; 
Roose-Amsaleg and Laverman 2016; Grenni 2022).

Sulfamethoxazole (SMX) is a sulfonamide antibiotic with 
a bacteriostatic effect on both Gram-positive and Gram- 
negative bacteria. It has been used since the 1960s in both 
livestock and human medicine for the treatment of various 
deseases such as pneumonia and urinary tract infections 
(Thiebault 2020) and it is actually one of the most commonly 
prescribed and consumed sulfonamide antibiotic. The average 
use is 350  mg/head/day for disease control and growth 
promotion in cattle (Congilosi and Aga 2021). A high SMX  
percentage is excreted unchanged (15–25%) or as acetylate 
(43%) or glucosinate (9–15%) metabolites by treated 
organisms (Radke et al. 2009). Consequently, its residues 
and antibiotic resistance genes (ARGs) reach soil and water 
in different ways and are found as ubiquitous emerging 
contaminants (García-Galán et al. 2011; Wang et al. 2014).  
Antibiotics are aimed at killing pathogenic bacteria; however, 
once in the environment, they can also affect non-target natural 
microbial communities and alter their structure and functioning, 
such as the nitrogen cycle (Grenni et al. 2018; Grenni 2022). 
However, current knowledge of antibiotic biodegradation and 
effects on natural microbial communities (including fungi) 
in soil is limited. Moreover, whether anaerobic digestate can 
also be a significant antibiotic source in soil and its possible 
effects on both prokariotic and fungi communities still needs 
to be thoroughly investigated (Bailey et al. 2016; Congilosi 
and Aga 2021). Recent studies report SMX degradation 
during an anaerobic digestion process (Mazzurco Miritana 
et al. 2020; Visca et al. 2022). However, few papers have 
studied the potential for antibiotics to enter soil if digestate 
is used as an organic fertilizer (Barra Caracciolo et al. 2020; 
Congilosi and Aga 2021). For example, Deng et al. (2020) 
reported SMX residues (from 21.7 to 51.9 µg/L) in a liquid  
digestate from cow manure.

A recent study investigated the effect of SMX contamina-
tion on soil and found a reduction in soil bacterial diversity 
and change in the composition of the bacterial and fun-
gal community (Cheng et al. 2020). Moreover, our previ-
ous microcosm experiment (Rauseo et al. 2019) showed 
SMX halved in few days in a soil spiked with this antibi-
otic (20 mg/kg) and amended with anaerobically digested 
cattle manure. The intI1 gene was also found in both the 
digestate and amended soil, suggesting that the application 
of cattle manure digestate might be a potential source of 
antibiotic-resistant bacteria (ARBs) and genes (ARGs) in 
agroecosystems.

The present work aims to extend our previus work 
(Rauseo et al. 2019) providing new aspects related to the 
effects of adding a cattle manure digestate and SMX on 
a natural soil microbial community in terms of structure 
and functioning. The present study focuses in particular on 
direct effects on the prokariotic cells (e.g., decrease in SMX 
susceptible bacterial genera with some key functioning such 
as those related to nitrogen cycle).
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Moreover, the possible effects on fungal community 
structure were evaluated. For this purpose, the prokaryotic 
and fungi communities of soil were assessed by 16 s rRNA 
sequencing using Miseq Illumina. PICRUSt2 was used for 
predicting functional abundances in prokaryotic commu-
nity based on 16S rRNA gene amplicon datasets. Moreover 
microbial abundance (DAPI counts) and viability (live/dead 
method) were assessed using epifluorescence direct count 
methods.

2  Materials and methods

2.1  Characteristics of digestate and soil 
and microcosm set‑up

As reported in detail in the previous work (Rauseo et al. 
2019), the anaerobic digestate was derived from a digestion 
plant that produces biogas by using fed-in biomass from a 
mix of dairy cattle manure (70%) and energy crops (maize 
silage up to 30%) and waste from the agro-food industries in 
the area surrounding the digestate plant. The main charac-
teristics of the digestate were total solids (TS) 6.44% w/w; 
volatile solids (VS): 3.74% w/w; chemical oxygen demand 
(COD): 1.16 g  O2/g TS; and organic carbon: 5.5 g/L.

The pristine soil (0–20 cm) was taken from an uncultured 
land (48% clay, 24% silt, 28% sand) located in Montelibretti 
(Rome, Italy). The organic carbon (OC) and total nitrogen 
(N), measured by a CHNS analyzer (Carlo Erba NA 1500 
series 2 C/H/N/O/S, Milan, Italy), were 1.47% and 0.16%, 
respectively. The soil reaction was slightly alkaline (pH in 
 H2O: 7.6) and the electrical conductivity was 0.10 dS/m.

Prior to setting up the microcosms, the soil was air-dried 
in order to better sieve it (2-mm), and to uniformly add 
digestate and SMX solution. The digestate/soil ratio was 
3% (dry mass) in line with agricultural practices (Christian 
et al. 2003). SMX was not detected in the pristine soil.

Soil microcosms were performed in accordance with pre-
vious works (Barra Caracciolo et al. 2015; Rolando et al. 
2021). A total of nine microcosms (three replicates for each 
condition) were set up. Six microcosms were filled with 
the digestate-amended soil (600 g) and three of them were 
spiked with a antibiotic solution (final concentration: 20 mg/
kg), using a SMX standard (purity 99%, Sigma-Aldrich) dis-
solved in ultrapure water (18 MΩ/cm quality). After SMX 
solution addition, the soil was homogenated using a steri-
lized glass rod to distribute homogeneously the antibiotic 
using ultrapure water. The water added to soil was appro-
priate for reaching 60% of the maximum soil water holding 
capacity (30% soil moisture), which maintains optimal con-
ditions for activity of aerobic soil microorganisms (Atlas and 
Bartha 1997). Finally, three microcosms (600 g of pristine 
soil with no SMX addition) were used as microbiological 

controls (TQ). In the latter, only ultrapure water was added 
to reach the same soil moisture.

Each test condition was named as follows:

– D-Soil: soil amended with cattle manure digestate (three 
replicates).

– D-Soil + SMX: soil amended with cattle manure digestate 
and spiked with SMX (three replicates).

– TQ: pristine soil with no SMX (three replicates).

The experimental set was kept in an incubation cham-
ber under dark conditions and 20 °C for 2 months. Each 
microcosm was closed with a sterile cotton plug enveloped 
in a gauze. Soil moisture was maintained constant (replacing 
possible daily water loss). At days 1, 7, and 61, aliquots of 
soil were sampled from each microcosm; in each replicate, 
SMX concentration and microbial analyses were performed. 
Each datum was the average of chemical or microbiological 
analyses obtained from each replicate-microcosm. Finally, 
digestate alone was also analyzed.

2.2  Chemical analyses: SMX determination

SMX was extracted from the pristine soil (TQ), D-Soil, and 
D-Soil + SMX samples (about 1 g for each replicate con-
dition) by Pressurized Liquid Extraction (PLE, Thermo 
Scientific Dionex ASE™ 150), as reported in Rauseo et al. 
(2019). The operating PLE conditions were a mixture of 
methanol (VWR, Radnor, PA, USA) and ultrapure water 
(50:50, v/v) as extraction solvent, pressure: 1500 psi; tem-
perature: 100 °C; static time: 5 min; number of cycles: 3; 
flush volume: 120%; purge time: 60 s. The final extract was 
successively purified by Solid Phase Extraction (SPE) as 
reported in Göbel et al. (2005). The analytical SMX con-
centration in the purified extracts was obtained using high-
performance liquid chromatography (HPLC, Micro Pump 
Series 200, Perkin Elmer, USA) coupled to a UV detector 
(UV/Visible Spectrophotometer Detector, mod. LC95, Per-
kin Elmer, USA) following the method described in Rauseo 
et al. (2019). The recovery of SMX from soil was in the 
range of 90–95%. The limit of detection (LOD), calculated 
in accordance with the IUPAC method (Thompson et al. 
2002), was 0.4 µg/kg and the limit of quantification (LOQ) 
was set at three times of the LOD.

2.3  Microbial live cell abundances

Microbial live cell abundance evaluation was performed in 
order to detect if SMX presence had an effect on the over-
all microbial community. Total microbial abundance and 
cell viability were analyzed using direct epifluorescence 
microscope methods (without any DNA extraction from 
soil). The total microbial abundance (N. cells/g soil) was 
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assessed performing total direct counts using the DAPI dye 
(4′,6-Diamidino-2-phenylindole dihydrochloride) as the 
DNA fluorescent intercalant. The DAPI method can detect 
all microbial cells in a sample regardless of their physiologi-
cal status and metabolic activity. Formaldehyde-fixed soil 
samples (1 g for each replicate condition) were processed as  
reported in detail in Barra Caracciolo et al. (2005, 2015).

The cell viability (% live cells/live + dead) was evalu-
ated in fresh soil samples (1 g each experimental condition 
replicates). The two dyes used for measuring the ratio of 
live to dead cells were propidium iodide and SYBR Green 
II (Sigma-Aldrich, Germany) respectively, as described in 
detail in previous works (Grenni et al. 2012).

The microbial live cell abundance (N. live cells/g) was 
obtained by multiplying each total microbial abundance with 
DAPI count by the corresponding cell viability datum, as 
reported in other works (Amalfitano et al. 2008).

2.4  Microbial community composition: DNA 
extraction and sequencing of 16S rDNA and 18S 
rDNA amplicons

The prokaryotic and fungal community was analyzed 
from microcosms (three replicates) at each sampling time 
and experimental condition (including TQ and digestate 
samples).

The total DNA was extracted from 0.25 g of soil (for each 
replicate) using the DNeasy PowerSoil kit (Qiagen, Valen-
cia, CA, USA), following the manufacturer’s recommenda-
tions. A DNA-free sample was also analyzed as the negative 
control during the whole workflow. The extraction yield and 
quality of the DNA were assessed using spectrophotometric 
measurements (Multiskan Sky Microplate Spectrophotom-
eter, Thermo Fisher Scientific, USA). DNA extractions were 
stored at −20 °C until sequencing.

The DNA extracted was used as the template for 
sequencing the hypervariable V3-V4 region of 16S rRNA 
(for Prokaryotes) and for the region ITS1 and ITS2 (for 
fungi) with the MiSeq Illumina. The 341F and 805R primers 
for Prokaryotes and the ITS3tagmix and ITS4ngs primer 
for fungi were used and are reported in the Supplementary 
Material, Table S1. The raw sequences were imported and 
demultiplexed using QIIME2 next-generation microbiome 
bioinformatics platform v2019.11 (Bolyen et al. 2019) and 
denoised with the DADA2 plug-in described by Callahan 
et al. (2016). The primers were removed using the “trim-
left-f” (forward) and “trim-left-r” (reverse) primer DADA2 
functions (Mazzurco Miritana et al. 2020). These functions 
remove the sequences from the beginning of a sequence 
to a specific position. The exact length of the primers 
was 17 nucleotides for the forward and 21 nucleotides for 
reverse for the prokaryotic primers and 28 nucleotides for 
the forward and 21 for reverse for the fungal primers. The 

amplicon sequencing variants (ASV) obtained were sorted 
using the Silva 132 database (https:// www. arb- silva. de) for 
Prokaryotes and UNITE database (version 8.2) for fungi 
(Abarenkov et al. 2020) with a naive Bayes classifier trained 
on the amplified regions with 80% confidence (Bokulich 
et al. 2018).

2.5  Predictive soil functional analysis 
of Prokaryotes

The PICRUSt2 software tool (https:// github. com/ picru st/ 
picru st2) made it possible to predict several genes in the 
functional profiling of the prokaryotic community, using the 
16S rRNA gene amplicon datasets (Douglas et al. 2020). In 
particular, the ASV table of prokaryotic cells generated by 
DADA2 was the input. The prediction of Kyoto Encyclope-
dia of Genes and Genomes (KEGG) Orthologs (KO, https:// 
www. genome. jp/ kegg) and Enzyme Commission number 
relative abundances was performed with hidden-state pre-
diction (Louca and Doebeli 2018) and used to infer pathway 
abundances (Ye and Doak 2009). Several genes were pre-
dicted. In particular, those related to nitrogen cycling (nitro-
gen fixation, complete nitrification, Supplementary Material, 
Table S2) and those associated with reduction of oxidative 
stress (ROS detoxification), such as superoxide dismutases, 
superoxide reductase, thioredoxin-disulfide reductase, and 
peroxidases, were also evaluated (Supplementary Material, 
Tables S3 and S4). The data are reported as EC (Enzyme 
Commission number) relative abundances (%).

Moreover, the folic acid superpathway based on the Meta-
Cyc pathway database, comprising the dihidroperoidate syn-
thase enzyme, which is the SMX target inside a cell (Sköld 
2000), was also verified by the pathway-level inference. The 
MetaCyc pathway abundances were estimated by regrouping 
the EC and identified with MinPath of PICRUSt2 (Franzosa 
et al. 2018; Ye and Doak 2009).

2.6  Statistical analyses

The diversity of both the prokaryotic and fungal commu-
nity was analyzed using the Evenness and Shannon diver-
sity indices, while the Chao 1 index (Chao et al. 2004) was 
used as an estimator of potential richness. All the statisti-
cal analyses were performed using R (4.0.4 version https:// 
www.r- proje ct. org). Pairwise PERMANOVA based on the 
Bray–Curtis dissimilarity matrix (Anderson and Willis  
2003) was performed using the function pairwise.perm.
manova from the package RVAideMemoire (Hervé 2021) in 
order to evaluate the significance of ASV changes in the 
prokaryotic and fungal community composition in the dif-
ferent experimental conditions. The Kruskal–Wallis test 
(a non-parametric one-way ANOVA using the kruskal.test 
function) together with the pairwise.wilcox.test function, as 
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the post-hoc test (Benavoli et al. 2016), was performed to 
find any significant differences within the Alpha-diversity 
indices (Chao1, Shannon, and Evenness), microbial live cell 
abundance, and prokaryotic (genera and classes) and fungal 
(phyla and genera) groups, and within predicted functional 
genes (EC numbers) in the different experimental conditions.

Relative abundances of the prokaryotic and fungal gen-
era most detected were displayed in heatmaps generated by 
the pheatmap function using the pheatmap package from 
R program. In the heatmaps, bacterial or fungal genera and 
experimental conditions were grouped in accordance with a 
hierarchical clustering dendrograms, which are shown at the 
top and on the left side of the heatmaps. Finally, all histo-
grams and stacked bar plots were made with MS Excel 2013.

3  Results

3.1  Soil chemical analysis

Adding digestate, both organic carbon (OC) and total nitrogen 
(N) significantly increased from 1.47 to 2.63% and from 0.16 
to 0.2%, respectively (p < 0.01). Digestate did not have any 
influence on soil reaction (pH) and electrical conductivity.

SMX in the digestate was negligible (below the limit of 
detection). The antibiotic spike into the soil decreased rap-
idly; in fact, its initial concentration (20 mg/kg dry soil) 
halved after only 7 days, and at the end of the experiment 
(day 61) only 5% (1 mg/kg) was found.

3.2  Microbial live cell abundances

The microbial live cell abundance (N. live cells/g) in the 
digestate was 4.4 ×  108 ± 9.7 ×  105. The microbial numbers 
were significantly (p < 0.01) higher at day 1 in both diges-
tate-amended soils (D-Soil and D-Soil + SMX), if compared 
to TQ (Fig. 1). However, the microbial growth stimulation of 
digestate at days 1 and 7 was significantly lower (p < 0.01) 
with the antibiotic presence. On the other hand, at day 61, 
the live cell abundance increased (p < 0.01), with a peak in 
D-Soil + SMX.

3.3  Microbial community diversity and composition

Rarefaction curves (Supplementary Material, Fig. S1) were 
plotted to compare the number of DNA reads with the identi-
fied ASV. These graphs show that the sequencing was able 
to capture the entire diversity found in both the prokaryotic 
and fungal community in the different conditions; in fact, 
a clear asymptote was reached (Gotelli and Colwell 2001).

The Alpha-diversity indices (Chao1, Shannon, and Even-
ness) for the prokaryotic community are reported in Table 1. 

All these indices for digestate were much lower (p < 0.01) 
than for soil samples (TQ). As expected, the Chao1 diversity 
value was significantly higher (p < 0.05) in the digestate-
treated soil (D-Soil) if compared to the untreated soil (TQ), 
but this difference was not found in the presence of both 
digestate and SMX (D-Soil + SMX). The Shannon (H) and 
Evenness (E) indices were significantly lower (p < 0.05) in 
both digestate-amended soils (D-Soil and D-Soil + SMX) 
than in TQ, showing an initial effect on some microbial 
groups of adding digestate and this result was particu-
larly evident in the antibiotic presence. At day 7, a further 
decrease in both the H and E indices was observed only in 
D-Soil. At the end of the experiment (day 61), the H and 
E indexes increased in both D-Soil and D-Soil + SMX and 
their values were similar in both conditions.

Regarding microbial community composition, Proteobac-
teria (36.4%) and Bacteroidetes (33.5%) phyla dominated 
the digestate microbial community (Supplementary Mate-
rial, Fig. S2). Deinocococcus (5.9%) together with Teneri-
cutes (2.6%), Firmicutes (2.4%), Gemmatimonadetes (1.5%), 
and Verrucomicrobia (0.5%) was also found. The most abun-
dant genera were Pseudomonas (Gammaproteobacteria), 
Truepera (Deinocococcus), and Proteiniphilum (Bacteroi-
detes), which are bacteria commonly found in mesophilic 
digestate from dairy manure. Moreover, Methanosarcina 
(Archaea), involved in methanogenesis (Fernandez-Bayo 
et al. 2020), was also found.

The dominant phyla of the TQ soil (Supplementary Mate-
rial, Fig. S2) were Actinobacteria (41.8%) and Proteobac-
teria (36.4%). Acidobacteria (7.6%), Chloroflexi (7%), and 
Planctomycetes (2.9%) were also detected.

Although no genera detected in the digestate were found 
in the TQ soil (except for the ubiquitous Alphaproteobacteria 
Devosia), the addition of digestate alone and together with 

Fig. 1  Microbial live cell abundance (N. live cells/g soil) in the 
non-treated soil (TQ) and in the soil amended with digestate 
(D-soil) and with both digestate and the antibiotic sulfamethoxazole 
(D-soil + SMX). Data are means of 3 independent replicates. The ver-
tical bars represent the standard errors. * refers to significant differ-
ences (p < 0.05 by Kruskal–Wallis)
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SMX affected the soil microbial community differently 
at day 1 (Fig.  2). A significant (p < 0.05) decrease in 
Acidobacteria (D-Soil: 3.9% and D-Soil + SMX: 0.8%) and 
Actinobacteria (D-Soil: 24.7% and D-Soil + SMX: 19%) and 

an increase in Firmicutes (D-Soil: 26.3% and D-Soil + SMX: 
41.4%) were observed. Moreover, in D-Soil + SMX, the 
lowest percentages (p < 0.05) of Acidobacteria (0.8%), 
Proteobacteria, and in particular Alphaproteobacteria 

Table 1  Alpha-diversity 
indexes for the prokaryotic 
community calculated 
based on ASV (Amplicon 
Sequences Variant) expressed 
as means of three independent 
replicates ± standard errors 
(*p < 0.05, Kruskal–Wallis)

Prokaryota Reads filtered Chao1 Shannon (H) Evenness (E)

 Digestate 279,180 299 ± 52 8.92 ± 0.00 0.92 ± 0.001
Day 1 TQ 217,586 1786 ± 430 10.62 ± 0.00* 0.97 ± 0.001*

D-Soil 329,398 1894 ± 210* 9.73 ± 0.70* 0.96 ± 0.003
D-Soil + SMX 89,080 1732 ± 240 8.41 ± 0.36 0.94 ± 0.000

Day 7 D-Soil 116,479 1709 ± 112 6.83 ± 0.38 0.92 ± 0.003
D Soil + SMX 102,268 1683 ± 139 8.58 ± 0.37 0.95 ± 0.000

Day 61 D-Soil 233,367 1893 ± 200 9.77 ± 0.22 0.96 ± 0.003
D-Soil + SMX 278,845 1763 ± 137 9.89 ± 0.48 0.96 ± 0.002

Fig. 2  Prokaryotic relative abundances (%) at class level with an average presence > 1% in each experimental condition and experimental time, A 
Day 1, B Days 1, 7, and 61. Data are means of 3 independent replicates
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and Planctomycetes were found; at the same time, other 
microbial groups such as Saccharimonadia (Candidatus 
Saccharibacteria), Euryarchaeota, and Clostridia 
(Firmicutes) were detected in higher percentages (p < 0.05) 
with the antibiotic presence than in D-Soil (Fig. 2A).

Although Alphaproteobacteria were initially negatively 
affected where the antibiotic was present (D-Soil + SMX), 
a subsequent significant increase (p < 0.05) in their percent-
ages was observed at days 7 and 61. Moreover, Saccharimo-
nadia and Clostridia decreased and were significantly lower 
in D-Soil + SMX than in D-Soil (Fig. 2B).

Figure  3 reports a heatmap of the most abundant 
prokaryotic genera (top 40 genera, net of “unclassified” 
one) detected in the overall samples, which covers 49–64% 
of total identified sequences (ASV). Sphingomonas 
(Alphaproteobacteria) was the most abundant genus found 
in all soil samples; at day 1, this genus was significantly 
higher (p < 0.05) in D-Soil (10%) than TQ soil (3.9%). 
Adding the antibiotic initially affected Sphingomonas (3.9% 
in D-Soil + SMX1 day); however, at day 7 (corresponding 
to the SMX  DT50), this percentage increased (9%) and, at 
the end of the experiment, was comparable (5%) in both 
digestate-amended soils (D-Soil and D-Soil + SMX at day 
61). Initial detrimental effects of adding the antibiotic on 
prokaryotic diversity were also significant (p < 0.01) for 
several Alphaproteobacteria genera such as Bradyrhizobium 
(TQ: 1.1%; D-Soil + SMX: 0.2%), Microvirga (TQ: 
1.15; D-Soil + SMX: 0.8%), and Dongia (TQ: 1.1%; 
D-Soil + SMX: 0.1%), which declined 80%, 27%, and 
91%, respectively. In addition, two Acidobacteria genera 
(Bryobacter and Blastocatella) initially diminished by 86% 
if compared to TQ. However, all the above genera were 
found in higher percentages at day 61 (between 1.5 and 
2.7%). Other four bacterial genera (KD4_96, FFCH7168, 
Gitt_GS_136, and TK10, belonging to the Chloroflexi) 
were found to be in D-Soil + SMX 61–94% significantly 
(p < 0.01) lower than TQ. Finally, several Actinobacteria 
genera (IMCC26256, Aeromicrobium, Streptomyces, 
Mycobacterium, Iamia, and Micromonospora) were also 
detected in D-Soil + SMX significantly (p < 0.01) lower 
than TQ.

On the contrary, the two genera Lachnospiraceae 
NK4A136 group (Firmicutes, Clostridium) and Saccharimo-
nadales (Saccharimonadia) were initially stimulated by the 
antibiotic presence and they were the most abundant ones 
(16 and 12%, respectively) (see D-Soil + SMX 1d in Fig. 3).

However, in soil merely amended with digestate (D-soil 
1, day), few genera reductions were observed and several 
genera, such as Sphingomonas (Alphaproteobacteria), 
Bradyrhizobium (Alphaproteobacteria), and Microvirga 
(Rhizobiales), were significantly (p < 0.05) higher than those 
found in TQ. Lachnospiraceae NK4A136 bacteria were also 
found in digestate (D-soil 1, day), but at lower percentages 

than in D-Soil + SMX and were not present in TQ, suggest-
ing their digestate origin.

3.4  Predictive soil functional analysis 
of Prokaryotes

Several functional genes were identified in the prokaryotic 
community using PICRUSt2. Although it has some 
limitations (Douglas et al. 2020) and could underestimate 
functions if compared to shotgun functional profile (Toole 
et al. 2021), it is one of the main tool used for this purpose 
and displays the highest precision, compared to other 
prediction methods (Douglas et  al. 2020). The relative 
abundances of the predicted functional genes related to 
nitrogen cycle in the pristine soil (TQ) and in the digestate-
amended soil (D-Soil and D-Soil + SMX) are shown in 
Fig. 4A. The three genes related to the nitrogen fixation (all 
corresponding to the 1.18.6.1 EC number), that is nifDKH 
for Nitrogenase I (Fe-Mo), Nitrogenase II (Fe-Mo), and 
Nitrogenase (Fe), are reported as a sum, in accordance 
with Sickerman and Hu (2019). As it is possible to see in 
Fig. 4A (blue columns), digestate presence had a positive 
effect (p < 0.05) on bacterial species associated with nitrogen 
fixation at all sampling times (days 1, 7, and 61). However, 
the antibiotic partially lowered (p < 0.05) this positive effect. 
In fact, the EC number relative abundance (i.e., the value 
of the EC number analyzed divided by the sum of all EC 
numbers in the same condition) was higher in D-Soil than 
in D-Soil + SMX.

Moreover, the digestate also promoted an increase in 
prokaryotic cells potentially able to perform a complete 
nitrification (Fig. 4A, orange columns); this effect was 
significant (p < 0.05) at day 7. In a similar way to the 
nitrogen fixation, SMX partially lowered the positive 
digestate effect.

Among the predicted functional genes associated with 
oxidative stress (Fig.  4B), significant differences were 
found only for superoxide reductase (SOR) and thioredoxin-
disulfide reductase (TrxR). In particular, in accordance 
with the presence of a high SMX concentration at the start 
of the experiment, SOR (red columns) and TrxR (purple 
columns) were significantly higher in D-Soil + SMX than 
D-Soil (p < 0.05) at day 1. They subsequently (days 7 and 
61) decreased in both amended conditions.

Figure 4C reports the relative abundances of the predicted 
folic acid pathway of prokaryotic cells (superpathway of 
tetrahydrofolate biosynthesis). An initial increase in this 
pathway was observed in the digestate-amended conditions, 
with significantly (p < 0.05) higher percentages with the 
antibiotic presence. At day 61, no significant differences 
were found between presence and absence of SMX.
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3.5  Fungal DNA sequencing results

The deep DNA sequencing generated 3,538,000 reds and 
after trim and quality edit, 858,000 reads were retained. The 
Alpha-diversity indices (Chao1, Shannon and Evenness) 
for the fungal community are reported in Table 2. The 
Chao1, Shannon, and Evenness indices of the digestate 
were significantly lower (p < 0.01) than those for all soil 
samples. At the start of the experiment, adding digestate 
and, to a lesser extent, digestate plus SMX significantly 
increased the Chao1 index, but these differences were not 
found at the end (day 61) of the experiment. At day 7, 
Chao1 in soil with digestate and antibiotic was the least 
value found among the amended soils. Regarding H and E, 
these indexes were similar at the start and at day 7 of the 
experiment, but at day 61, their values in D-Soil + SMX 
were significantly higher than D-Soil.

The two main phyla found in all samples (including the 
digestate) were Ascomycota and Basidiomycota (Fig. 5). 
The Ascomycota group was the most abundant in the TQ 
condition (72%) and at days 1 and 7 in both amended 
and SMX-treated conditions (day 1: 46% in D-Soil and 
52% in D-Soil + SMX; day 7: 61% in D-Soil and 51% in 
D-Soil + SMX). However, at day 61, Basidiomycota became 
the dominant phylum in the amended conditions (D-Soil: 
56%; D-Soil + SMX: 41%) and Ascomycota decreased 
(D-Soil: 34%; D-Soil + SMX: 38%).

Based on the current available taxonomic reference data-
base, the thirteen fungal genera identified are reported in 
a heatmap (Fig. 6). They covered on average 56% of the 
total fungal sequences identified in all conditions. SMX 
promoted an initial increase in the Ascomycetes Urnula, a 
genus known as producer of bioactive compounds that can 
inhibit the growth of other fungi (Poveda 2021). Regarding 
the other genera, Trichoderma (Ascomycetes) was initially 
(days 1 and 7) the most detected genus in all conditions 
and it was the most abundant genera (14.7%) at day 1 in 
the antibiotic presence (D-Soil + SMX). The fungal genus 
Aspergillus (Ascomycota) was also present (average values 
of 8.9 ± 1.1%) in both D-Soil + SMX and D-Soil at days 
1 and 7. However, at day 61, Aspergillus decreased sig-
nificantly in both conditions, while other Basidiomycetes 
genera, such as Tomentella (D-Soil: 26%; D-Soil + SMX: 
28%) and Lacrymaria (D-Soil: 24%; D-Soil + SMX: 26%), 
increased (Fig. 6).

4  Discussion

Adding digestate to soil had a prompt positive effect on the 
overall microbial live cell abundance. This result was in 
line with the fact that digestate is a microbial and organic 
carbon source, as also found in previous works where organic 
amendments were added to soil (Barra Caracciolo et al. 2015; 
Di Lenola et al. 2018). Although the microbial abundance 
increased, this effect was initially lower with the antibiotic 
presence due to its biocide effect. Interestingly, both the 
digestate and antibiotic caused a soil microbial community 
shift and an initial decrease in the bacterial diversity (H and 
E indices) and an increase in fungal diversity (Chao1) was 
observed. This phenomenon was presumably due to the mixing 
of the microbial populations of the digestate with those of the 
soil, as found in other works (Barra Caracciolo et al. 2015) 
and on the bactericidal effect of the antibiotic, which favored 
fungal species. This antibiotic effect was also found by other 
authors in a soil treated with both sulphonamides and manure 
(Gutiérrez et al. 2010), but still not reported in the literature 
for both sulphonamide and digestate addition to soil (Congilosi 
and Aga 2021).

The acute effect (day 1) of the antibiotic was evident 
with a decrease in some prokaryotic sensitive genera, such 
as Bradyrhizobium, Microvirga, Dongia, Bryobacter, Blas-
tocatella, and Chloroflexi, and an increase in others (e.g., 
Lachnospiraceae NK4A136 and Saccharimonadales) able to 
resist sulphonamides, as also found by other authors (Sabino 
et al. 2019; Zhang et al. 2017).

However, the initial detrimental effect of the antibiotic 
was mitigated in the long term, and at day 61 the microbial 
abundance and diversity of both prokaryotic cells and fungi 
were higher in the antibiotic-treated soil (D-Soil + SMX) 
than in D-Soil. This can be due to SMX decrease (higher 
than 95%) as found in other works (Müller et al. 2013; Shen 
et al. 2018). The increase in microbial abundance at the end 
of the experiment was also probably due to an initial (1 d) 
SMX selective effect on microbial community. The antibi-
otic presence probably promoted the growth of resistant/deg-
radative microbial cells, as already found by other authors 
(Cycoń et al. 2019). In accordance with a reduction in SMX, 
Alphaproteobacteria increased at days 7 and 61. The latter 
class includes several bacterial genera capable of degrad-
ing sulphonamides (Cheng et al. 2020; Reis et al. 2020), 
such as Sphingomonas and Skermanella, which increased in 
D-Soil + SMX. The presence in the soil of bacteria able to 
degrade SMX was presumably due to adding the digestate, 
as this antibiotic is frequently present in this organic amend-
ment (Visca et al. 2022).

The predictive soil functional analysis made it possible to 
highlight the potential effects of adding digestate and anti-
biotic on the prokaryotic community. In accordance with 

Fig. 3  Heatmap for prokaryotic relative abundances at genus level 
in the different conditions (D-Soil + SMX and D-Soil) and sampling 
times (days 1, 7, and 61). Genera and conditions were grouped in 
accordance with a hierarchical clustering dendrogram, at the top and 
the left side of the heatmap. Data are means of 3 independent repli-
cates. * refers to significant differences (p < 0.05) by PERMANOVA, 
based on Bray–Curtis distance

◂
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an increase in nitrogen content in the amended soil, micro-
bial groups involved in nitrogen metabolism such as fixing 
atmospheric nitrogen and nitrifying bacteria increased at 
day 7, as found by other authors (Möller 2015; Safronova 
et al. 2017). On the other hand, in line with the antibiotic 
effect, this increase was less evident in D-Soil + SMX than 

in D-Soil. An inhibition of natural microbial community 
nitrification due to SMX has been reported in other works 
(Chen et al. 2021; Grenni et al. 2018).

Reactive oxygen species (ROS) such as superoxide  (O2
−), 

hydrogen peroxide  (H2O2), and hydroxyl (•OH) radicals 
are reactive natural by‐products of oxygen during aerobic 
metabolism. A ROS excess can cause oxidative intracel-
lular damage to DNA, proteins, lipids, and other cellular 
components (Johnson and Hug 2019) and ultimately cell 
death. ROS have also been found as a response to lethal 
stress, such as metal and antibiotic exposure (Schütze and 
Kothe 2012; Mourenza et al. 2020). However, prokaryotic 
cells can have detoxification strategies against ROS, such as 
the protective protein (superoxide dismutases, superoxide 
reductase, thioredoxin-disulfide reductase, and peroxidases), 

Fig. 4  Relative abundances of predicted functional genes and folic 
pathway of prokaryota. A Functional genes involved in nitrogen fixa-
tion (blue columns) and complete nitrification (orange columns). 
B. Functional genes involved in oxidative stress. SOR: superoxide 
reductase (red columns); TrxR: thioredoxin-disulfide reductase (pur-
ple columns). C Relative abundances of predicted folic acid pathway 
(superpathway of tetrahydrofolate biosynthesis) of prokaryota. Data 
are means of 3 independent replicates. * refers to significant differ-
ences (p < 0.05) by Kruskal–Wallis

◂

Table 2  Alpha-diversity 
indices for the fungal 
community calculated on 
the basis of ASV expressed 
as means of 3 independent 
replicates ± standard errors. * 
refers to significant differences 
(p < 0.05) by Kruskal–Wallis

Fungi Reads filtered Chao1 Shannon index (H) Evenness (E)

Digestate 67,659 50 ± 0 1.32 ± 0.01 0.23 ± 0.01
Day 1 TQ 49,216 586 ± 0 6.76 ± 0.01* 0.74 ± 0.01*

D-Soil 61,458 634 ± 3* 6.32 ± 0.21 0.68 ± 0.02
D-Soil + SMX 72,991 839 ± 5* 6.52 ± 0.02 0.71 ± 0.01

Day 7 D-Soil 67,608 664 ± 63 6.52 ± 0.04 0.72 ± 0.01
D-Soil + SMX 54,227 437 ± 3* 6.38 ± 0.40 0.73 ± 0.05

Day 61 D-Soil 72,066 537 ± 26 4.81 ± 0.21* 0.54 ± 0.01*
D-Soil + SMX 73,230 548 ± 12 5.84 ± 0.19* 0.65 ± 0.01*

Fig. 5  Relative abundances (%) 
of fungal phyla in the differ-
ent conditions (D-Soil + SMX 
and D-Soil) and sampling 
times (days 1, 7, and 61). Data 
are means of 3 independent 
replicates. * refers to signifi-
cant differences (p < 0.05) by 
Kruskal–Wallis
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and they can be considered a mechanism for resisting anti-
biotics (Schütze and Kothe 2012). As mentioned, a signifi-
cantly higher percentage of superoxide reductase (SOR) was 
found in D-Soil + SMX at day 1. However, in line with SMX 
decrease from day 7, the predicted SOR gene involved in a 
protective role against oxidative stress decreased sharply.

In a similar way, the predicted TrxR, which together 
with Trx is a oxidoreductase system with antioxidant and 
redox regulatory roles (Zeller and Klug 2006), was at its 
highest percentage at day 1 in D-Soil + SMX and decreased 
significantly from day 7, in accordance with the antibiotic 
decrease.

Finally, the predicted folic acid pathway was also influ-
enced by the antibiotic being present in accordance with the 
SMX antibiotic target inside bacterial cells. All prokary-
otic cells require reduced folate cofactors for biosynthesis 
of a diverse range of cellular components. Tetrahydrofolate 
serves as a donor of one-carbon units in a variety of bio-
synthetic processes, including the formation of methionine, 
purines, and thymine. In most microorganisms, folates must 
be synthesized through the folic acid pathway. The presence 
of this pathway in many pathogenic Bacteria and its absence 
in mammals have made the folic acid pathway an attractive 
antimicrobial drug target, in particular for sulphonamides, 
including SMX (Bermingham and Derrick 2002). How-
ever, sulfamethoxazole antibiotic-resistant bacteria are able 
to restore this pathway; in fact, they have alternative genes 
(sul1, sul2, sul3) encoding variants of dihydropteroate syn-
thase (DHPS) enzymes, which are resistant to the antibiotic 
effect. Consequently, the initial increase in predicted folic 
acid pathways (sulfonamide antibiotic target) observed in 
this work can be ascribed to a prompt selection of resist-
ant bacteria when adding the antibiotic. The latter result is 
supported by our previous work (Rauseo et al. 2019), in 
which the same digestate-amended soil and SMX addition 
showed an immediate increase in the intI1 gene. The intI1 
gene is recognized to be an effective proxy for antibiotic 
resistance and it is related to sul1 (Gillings et al. 2015). 
Moreover, since in the digestate used in this study SMX 
was not detected but about 6 mg/kg of one SMX metabolite 
was found (N4-acetylsulfamethoxazole; Rauseo et al. 2019), 
the addition of digestate probably added antibiotic-resistant 
bacteria to soil.

This work has also analyzed the fungal community since 
they can coexist in soil with prokaryotic cells in both com-
petitive (e.g., nutrient and space accesibility) and synergic 
interactions. Consequently, since fungi contribute with Bac-
teria and Archaea to several regulating ecosystem services, 
it is crucial to have on overall picture of the possible direct 
and indirect effects of an antibiotic on overall soil microbial 
community (Chu et al. 2020). Really, SMX did not affect 

significantly the structure of the fungal microbial commu-
nity. However, a possible involvement of some fungal genus 
such as Trichoderma in SMX removal cannot be excluded. 
In fact, Trichoderma was found to be the most abundant 
genus and its SMX transformation might occur through 
co-metabolism (Yang et al. 2020), as found in other works 
where this antibiotic was shown to be removed up to 71% in 
7 days (Piyaviriyakul et al. 2021).

Interestingly, when adding digestate, a long-term increase 
in Basidiomycota (day 61) was observed and this might be 
ascribable to the simultaneous decrease in Firmicutes and 
Actinobacteria. In accordance with these results, some 
authors have reported that Basidiomycota are in competi-
tion with Gram-positive bacteria (Alves et al. 2012); con-
sequently, they can increase when there is a Gram-positive 
decrease.

Fig. 6  Heatmap for fungal relative abundances at genus level with 
an average presence > 1% in different conditions and sampling times. 
The genera and the conditions were grouped according to a hierarchi-
cal clustering dendrogram, which is shown at the top and on the left 
side of the heatmaps. Data are means of 3 independent replicates. * 
refers to significant differences (p < 0.05) by PERMANOVA, based 
on Bray–Curtis distance
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5  Conclusions

The overall results show how adding digestate, which 
contained allochthonous prokaryotic cells, fungi, and organic 
matter, induced a shift in the soil microbial community. 
Moreover, the overall microbial abundance and bacterial 
species involved in nitrogen metabolism also increased. 
These positive effects initially decreased with the antibiotic 
presence, which negatively affected some microbial groups. 
However, the detrimental effects of the antibiotic on some 
prokaryotic cells were transient thanks to the occurrence of 
resistant bacteria, which were presumably introduced into 
the soil with the digestate and were able to remove it.
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