CORRECTION

Correction to: Facilitated destabilization of physicochemically protected soil organic matter by root-derived low-molecular-weight organic acids

Yuanshuang Yuan¹ · Ziliang Zhang² · Lijuan Chen¹ · Zhen Yang¹ · Jing Liu¹

Published online: 30 March 2022

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Correction to: Journal of Soils and Sediments https://doi.org/10.1007/s11368-022-03188-x

Table 4 in the originally published article is not correct–the last two columns are missing. The correct Table 4 is shown below.

Table 4 Absolute and relative values from comparison between oxalic acid treatment and the control [Absolute value = variable_{water}-variable_{oxalic} acid; Relative value = (variable_{water} -variable_{oxalic} acid)/ variable_{oxalic} acid]

Variables	Forests	Absolute value	Site-averaged absolute value	Relative value (%)	Site-averaged relative value (%)
Al-MOCs	Spruce-fir forest	$0.062 \ (mg \cdot g^{-1})$	$0.034 \ (mg \cdot g^{-1})$	16%	13%
	Spruce plantation	$0.006 \ (mg \cdot g^{-1})$		10%	
Fe-MOCs	Spruce-fir forest	$0.133 \ (mg \cdot g^{-1})$	$0.074 \ (mg \cdot g^{-1})$	57%	35%
	Spruce plantation	$0.015 \ (mg \cdot g^{-1})$		13%	
Al-SROs	Spruce-fir forest	$0.016 \ (mg \cdot g^{-1})$	$0.022 \ (mg \cdot g^{-1})$	29%	30%
	Spruce plantation	$0.028 \ (mg \cdot g^{-1})$		30%	
Fe-SROs	Spruce-fir forest	$0.025 \ (mg \cdot g^{-1})$	$0.025 \ (mg \cdot g^{-1})$	21%	16%
	Spruce plantation	$0.025 \ (mg \cdot g^{-1})$		12%	
Zeta potential	Spruce-fir forest	1.89 (mV)	0.9 (mV)	9%	4%
	Spruce plantation	-0.10 (mV)		0.5%	

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1007/s11368-022-03188-x.

⊠ Yuanshuang Yuan yuanys342ky@163.com

- ¹ College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- ² Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA