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1 Introduction

Forests cover ca. 42 million square kilometer in tropical,
temperate, and boreal lands (ca. 30% of the land surface),
store ca. 45% of terrestrial C, contribute ca. 50% of
terrestrial net primary production, and harbor two thirds of
terrestrial biodiversity (Bonan 2008; Purves and Pacala
2008; Xu et al. 2009). These forests not only provide
timber and nontimber forest products, but more importantly,
ecological services such as biodiversity and protection of
watershed and soil resources and sequestration of C (Dixon
et al. 1994; Chen et al. 2004a; Lamb et al. 2005; Purves and
Pacala 2008). The N, P, and C interact in their biogeo-
chemical cycles in ecosystems, and the stoichiometric
balance is essential for maintaining forest ecosystem
diversity, functioning, and stability (Wardle et al. 2004;
Chen et al. 2005; Davidson et al. 2007). Environmental
changes such as elevated atmospheric CO2 and tempera-
ture, atmospheric N deposition, land-use change, and forest
fires, have transformed much of the land surface on the
earth in the past century (e.g., Wardle et al. 2004; Pan et al.
2008, 2009). It is essential to understand the ecosystem
responses to these changes and the underlying processes
regulating the responses (Dahlgren 2006). These environ-
mental changes resulting mainly from anthropogenic
activities have altered the biogeochemical cycles of C and
N (Gruber and Galloway 2008). However, little is known
about how the increased C and N by elevated CO2 and N
deposition and the loss of C and N by fires affect
biogeochemical cycling of other elements (e.g., P; Gruber

and Galloway 2008), how the interactions among C, N, and
P cycles regulate forest ecosystem response to these
changes, how the soil microbial community responds to
these stoichiometry changes and mediate C, N, and P
cycling processes under these changes, and how the
aboveground and belowground processes are linked in
response to these changes. In addition, impacts of inter-
actions of these environmental changes on ecosystem
processes are largely unknown (Knops et al. 2007; Gruber
and Galloway 2008; He et al. 2009).

2 Impacts of environmental changes
on the belowground ecosystem processes

2.1 Elevated atmospheric CO2

The global annual emissions of CO2 have grown between
1970 and 2004 by about 80% and are projected to increase
by 40–110% between 2000 and 2030 (IPCC 2007).
Elevated atmospheric CO2 leads to enhanced photosynthe-
tic rate and growth and increased C inputs to the
underground through root exudation and turnover and
litterfall and affects ecosystem function and stability in the
long term (Oren et al. 2001; Hyvönen et al. 2007;
Lagomarsino et al. 2009). Elevated CO2 alters nutrient
concentrations of plant tissues and produces energy-rich but
nutrient-poor litter with higher C:N ratios (Norby et al.
2001; Kurz-Besson et al. 2006). However, the effects of
elevated CO2 on litter decomposition are uncertain (Knops
et al. 2007; Hyvönen et al. 2007). The impact of elevated
CO2 on the availability and turnover of soil P (particularly
organic P) and its interactions with C and N is largely
unknown. The elevated CO2 may increase root exudation
and then solubilization of soil P and tree P uptake (Delucia
et al. 1997). Increased C:P ratios in organic substrates (leaf,
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root litters, etc.) induced by elevated CO2 lead to the P
limitation, which can in turn affect ecosystem responses to
global climate changes (Hungate et al. 2003). Effects of
elevated CO2 on microbial biomass, activity, and compo-
sition are variable and far from predictable (e.g., Kao-
Kniffin and Balser 2007). Recently, Austin et al. (2009)
found that elevated CO2 had no detectable effects on
microbial community structure.

2.2 Atmospheric N deposition

Total N deposition is estimated to be nearly twofold greater
by 2050 compared with deposition in the early 1990s due to
continuous emissions of increased anthropogenic N on a
global scale (Galloway et al. 2004). Atmospheric N
deposition is known to be responsible for reduced plant
diversity in natural and seminatural ecosystems (Phoenix et
al. 2006). Atmospheric N deposition may initially increase
N availability, N mineralization, and nitrification and thus,
forest growth in the N-limiting areas (Aber et al. 1998;
Horswill et al. 2008). Chronic N deposition can cause
nutrient imbalances, acidification, base cation depletion,
nitrate leaching, and water pollution (Aber et al. 1998;
Horswill et al. 2008). At the later stage of N deposition,
mineralization rate may decrease (Aber et al. 1998) and
nutrient (e.g., P) limitation becomes a constraint to
additional increases in productivity. Atmospheric N depo-
sition modifies elemental composition of plant tissues,
litters, and soil by decreasing C:N ratios and increasing N:P
ratios (Månsson and Falkengren-Grerup 2003; Horswill et
al. 2008) and lignin content (Knops et al. 2007), but
impacts of N deposition on decomposition of litter is
uncertain (e.g., Manning et al. 2008). The enhanced N
availability induced by continued N deposition will
increase P demand, which favors depletion of inorganic P.
The availability and turnover of organic P will become
important and may regulate the effects of atmospheric N
deposition. Some temperate forests have moved from N
limitation to P limitation due to N deposition (e.g.,
Akselsson et al. 2008). Atmospheric N deposition modifies
soil microbial communities by direct effects on substrate
quality and soil chemistry (e.g., acidification) and indirect
effects by changing plant species composition and then
affecting soil microbial community. Frey et al. (2004) found
that N deposition decreased active fungal biomass and
altered the pattern of microbial substrate use. But Waldrop
et al. (2004) showed that response of microbial community
to N deposition is ecosystem specific.

2.3 Forest fire

Fire profoundly modifies the terrestrial cycle of ca. 40%
of land surface on the earth (Alexis et al. 2007) and plays

an important ecological role in shaping natural rainforest
ecosystems. Impacts of fire on soil depend upon its
intensity, frequency, forest type, the slope, and fuel load
(Knicker 2007). In general, immediate impacts of fire are
the loss of C and N as gases and particulates into
atmosphere from the ecosystem, while P remains in soil
(Hungate et al. 2003; Carter and Foster 2004: Alexis et al.
2007). Some work has also shown that low intensity fire
may have minor effects (e.g., Knicker 2007). Fire can
increase immediate N availability (increases in NO3

–-N
and/or NH4

+-N; Carter and Foster 2004). However, little is
known about the impacts of fires on the amount and nature
of soil P. Fires may increase P availability (Carter and
Foster 2004). Changes in stoichiometry (i.e., decreased C:
P and N:P ratios) induced by fires can have significant
impacts on the soil P cycling and the interactions of
biogeochemical cycles of C and N, which is still largely
unknown. Further, the long-term impacts of these stoi-
chiometric changes on the aboveground forest growth and
productivity, species composition, and the belowground
microbial community composition and activity have not
been studied. In particular, in P-limiting forests, the
increased P availability and the decreased N:P ratio
resulting from the forest fire may encourage the growth
of P-demanding species, which could not grow well
previously and further change soil microbial community
composition. Fire alters the soil microbial community
structure in the short-term primarily through heat-induced
microbial mortality. Over the long-term, fire may modify
soil community by altering plant community composition
via plant-induced changes in the soil environment (Hart et
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Fig. 1 Hypothetical framework on the impacts of environmental
changes (elevated atmospheric CO2 and N deposition, fires, and land-
use change) on forest ecosystem processes and regulation of the
ecosystem responses to the environmental changes
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al. 2005). Bacteria are more resistant to fire than fungi
(González-Pérez et al. 2004). Repeated burning signifi-
cantly reduced fungal biomass and mycorrhizal abundance
and modified the fungal community structure (Hart et al.
2005).

2.4 Land-use change

Land-use change is a global phenomenon in response to
changes in political, social, economic, or environmental
conditions (Rudel et al. 2005) and the consequences of
land-use change have been widely recognized (e.g., Rudel
et al. 2005; Chen et al. 2008; de Chazal and Rounsevell
2009; Lu et al. 2009; Pan et al. 2009). These include its
potential effects on carbon sequestration, soil quality, long-
term sustainability, and the water and environmental quality
(e.g., Fahey and Jackson 1997; Rudel et al. 2005; Richards
et al. 2007; Macdonald et al. 2009). The impact of land-use
changes on the ecosystem processes depends mainly on
plant species and associated management practices (e.g.,
Chen et al. 2008; Chen and Xu 2008; Pan et al. 2008,
2009). It has been reported that land-use change from
grassland to plantation forest enhanced the availability of
soil P and other nutrients (e.g., Chen et al. 2000; Chen et al.
2003), while other studies suggested that land-use change
from native forest to plantation forest decreased C and N
availability (e.g., Chen et al. 2004b; Burton et al. 2007; Xu
et al. 2008). Shifts in C and nutrient availability and
balance would affect soil microbial community composi-
tion and functioning (Chen et al. 2004a, b; He et al. 2005;
Macdonald et al. 2009). Land-use change is also a key
driver of biodiversity change (e.g., Fischlin et al. 2007; de
Chazal and Rounsevell 2009). Complex interactions of
land-use change and other environmental changes make it
difficult to estimate its effects on ecosystem biodiversity
and function when the land-use change effects are exam-
ined alone.

3 Biogeochemical cycling regulates ecosystem responses
to the environmental changes

Biogeochemical cycling processes play a vital role in the
establishment or degradation of forests by regulating the
natural and human impacts on forest ecosystems across a
wide range of spatial and temporal scales (Wardle et al.
2004; Dahlgren 2006). Impacts of environmental changes
on the interactions of C, N, and P biogeochemical cycles,
and the role of these biogeochemical processes in
regulating ecosystem responses to environmental changes
are largely unknown. Here, we put forward the hypothet-
ical framework (Fig. 1) in an attempt to elucidate impacts
of environmental changes and biogeochemical regulation

of ecosystem responses to these changes. Elevated CO2

and atmospheric N deposition decrease relative P avail-
ability by increasing C and N inputs to the forest
ecosystem, respectively. This results in increases in C:P
and N:P ratios in soil organic substrates and altered
biogeochemical cycles of C, N, and P, which may lead
to the shift in the soil microbial community composition
and function and thus, the aboveground species composi-
tion and growth and then regulate ecosystem responses to
the elevated CO2 and the N deposition. Fire causes losses
of soil C and N but P remains. This leads to an increase in
relative P availability by decreasing C:P and N:P ratios
and changes in the chemical nature of soil organic P. This
may cause changes in soil microbial community compo-
sition and activity and the aboveground forest growth and
species composition. Land-use change, as previously
discussed, also leads to the shifts in soil C and nutrient
availability and stoichiometric balance, which in turn will
affect soil microbial community composition and function
and then the aboveground ecosystem processes.

In conclusion, ongoing natural and anthropogenic
environmental changes such as increased atmospheric
CO2 and N deposition, fires, and land-use change have
significantly impacts on the belowground ecosystem pro-
cesses, and the forest ecosystem responses to the environ-
mental change are likely to be regulated by interactive
biogeochemical cycling processes. The environmental
changes frequently occur at the same time and the
interactions among these changes are very complicated.
The mechanisms involved in the biogeochemical regulation
of ecosystem responses to the environmental changes are
largely unknown and warrant a detailed study using
multiple disciplinary approaches, including soil chemistry,
microbial ecology, plant physiology, and molecular biology.

References

Aber J, MaDowell W, MNadelhoffer K, Magill A, Bernston G,
Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998)
Nitrogen saturation in temperate forest ecosystems. Bioscience
48:921–934

Akselsson C, Westling O, Alveteg M, Thelin G, Fransson A-M,
Hellsten S (2008) The influence of N load and harvest intensity
on the risk of P limitation in Swedish forest soils. Sci Total
Environ 404: 284–289

Alexis MA, Rasse DP, Rumpel C, Bardoux G, Péchot N, Schmalzer P,
Drake B, Mariotti A (2007) Fire impact on C and N losses and
charcoal production in a scrub oak ecosystem. Biogeochem
82:201–216

Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT (2009)
Assessment of 10 years of CO2 fumigation on soil microbial
communities and function in a sweetgum plantation. Soil Biol
Biochem 41:514–540

Bonan GB (2008) Forests and climate change: forcings, feedbacks,
and the climate benefits of forests. Science 320:1444–1449

212 J Soils Sediments (2010) 10:210–214



Burton J, Chen CR, Xu ZH, Ghadiri H (2007) Gross nitrogen
transformations in adjacent native and plantation forests of
subtropical Australia. Soil Biol Biochem 39:426–433

Carter MC, Foster CD (2004) Prescribed burning and productivity in
southern pine forests: a review. For Ecol Manage 191:93–109

Chen CR, Xu ZH (2008) Analysis and behaviour of soluble organic
nitrogen in forest soils. J Soils Sediments 8:363–378

Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of
afforestation on phosphorus dynamics and biological properties
in a New Zealand grassland soil. Plant Soil 200:151–163

Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal
dynamics of soil phosphorus and associated microbial properties
under adjacent grassland and forest in New Zealand. For Ecol
Manage 177:539–557

Chen CR, Xu ZH, Mathers NJ (2004a) Soil carbon pools in adjacent
natural and plantation forests of subtropical Australia. Soil Sci
Soc Am J 68:282–291

Chen CR, Condron LM, Davis MR, Sherlock RR (2004b) Effects of
plant species on soil microbial biomass and phosphatase enzyme
activity. Biol Fertil Soils 40:313–322

Chen CR, Xu ZH, Zhang SL, Keay P (2005) Soluble organic nitrogen
pools in forest soils of subtropical Australia. Plant Soil 277:285–297

Chen CR, Condron LM, Xu ZH (2008) Impacts of grassland
afforestation on soil phosphorus dynamics and associated
microbial processes: a review. For Ecol Manage 255:396–409

Dahlgren RA (2006) Biogeochemical processes in soils and ecosystems:
from landscape to molecular scale. J Geochem Explor 88:186–189

Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto
JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG,
Martinelli LA (2007) Recuperation of nitrogen cycling in
Amazonian forests following agricultural abandonment. Nature
447:995–998

De Chazal J, Rounsevell MDA (2009) Land-use and climate change
within assessments of biodiversity change: a review. Glob
Environ Change 19:306–315

Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997)
Mechanisms of phosphorus acquisition for ponderosa pine
seedlings under high CO2and temperature. Ann Bot 79:111–120

Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC,
Wisniewski J (1994) Carbon pools and flux of global forest
ecosystems. Science 263:185–190

Fahey B, Jackson R (1997) Hydrological impacts of converting native
forests and grasslands to pine plantations, South Island, New
Zealand. Agri For Meteorol 84:69–82

Fischlin A, Midgley GF, Price JT, Leemans R, Copal B, Turley C,
Rounsevell MDA, Duke OP, Tarazona J, Velichko AA (2007)
Ecosystems, their properties, goods and services. In: Parry ML,
Canziani OF, Palutikof IP, van der Linden PJ, Hanson CE (eds)
Climate change 2007: impacts, adaptation and vulnerability.
Contribution of working group II to the 4th assessment report
of the Intergovernmental Panel of Climate Change (IPCC).
Cambridge University Press, Cambridge, UK, pp 211–272

Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen
enrichment affects the structure and function of the soil microbial
community in temperate hardwood and pine forests. For Ecol
Manage 196:159–171

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW,
Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA,
Karl DM, Michaels AF, Porter JH, Townsend AR, Voumlosmarty
CJ (2004) Nitrogen cycles: past, present, and future. Biogeochem
70:153–226

Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H
(2004) The effect of fire on soil organic matter—a review.
Environ Int 30:855–870

Gruber N, Galloway JN (2008) An earth-system perspective of the
global nitrogen cycle. Nature 451:293–296

Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005)
Post-fire vegetative dynamics as drivers of microbial community
structure and function in forest soils. For EcolManage 220:166–184

He JZ, Xu ZH, Hughes J (2005) Soil fungal communities in adjacent
natural forest and hoop pine plantation ecosystems as revealed by
molecular approaches based on 18 S rRNA genes. FEMS
Microbiol Lett 247:91–100

He JZ, Ge Y, Xu ZH, Chen CR (2009) Linking soil bacterial diversity
to ecosystem multifunctionality using backward-elimination
boosted trees analysis. J Soils Sediments 9:547–554

Horswill P, O'Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base
cation depletion, eutrophication and acidification of species-rich
grasslands in response to long-term simulated nitrogen deposi-
tion. Environ Pollut 155:336–349

Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB (2003)
Nitrogen and climate change. Science 302:1512–1513

Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A,
Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S,
Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R,
Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen
M, Wallin G (2007) The likely impact of elevated [CO2],
nitrogen deposition, increased temperature and management on
carbon sequestration in temperate and boreal forest ecosystems: a
literature review. New Phytol 173:463–480

IPCC (2007) Fourth assessment report. Cambridge University Press,
Cambridge

Kao-Kniffin J, Balser TC (2007) Elevated CO2 differentially alters
belowground plant and soil microbial community structure in
reed canary grass-invaded experimental wetlands. Soil Biol
Biochem 39:517–525

Knicker H (2007) How does fire affect the nature and stability of soil
organic nitrogen and carbon? A review. Biogeochem 85:91–118

Knops JMH, Naeem S, Reich PB (2007) The impact of elevated CO2,
increased nitrogen availability and biodiversity on plant tissue
quality and decomposition. Glob Change Biol 13:1960–1971

Kurz-Besson C, Coûteaux MM, Berg B, Remacle J, Ribeiro C,
Romanyà J, Thiéry JM (2006) A climate response function
explaining most of the variation of the forest floor needle mass
and the needle decomposition in pine forests across Europe. Plant
Soil 285:97–114

Lagomarsino A, De Angelis P, Moscatelli MC, Grego S (2009) The
influence of temperature and labile C substrates on heterotrophic
respiration in response to elevated CO2 and nitrogen fertilization.
Plant Soil 317:223–234

Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded
tropical forest landscapes. Science 310:1628–1632

Lu J, Hu ZY, Xu ZH, Cao ZH, Zhuang SY, Yang LZ, Lin XG, Dong
YH, Yin R, Ding JL, Zheng YF (2009) Effects of rice cropping
intensity on soil nitrogen mineralization rate and potential in
buried ancient paddy soils from the neolithic age in China’s
Yangtze River Delta. J Soils Sediments 9:526–536

Macdonald CA, Thomas N, Robinson L, Tate KR, Ross DJ, Dando J,
Singh BK (2009) Physiological. Biochemical and molecular
response of the soil microbial community after afforestation of
pastures with Pinus radiata. Soil Biol Biochem 41:1642–1651

Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA,
Ellis RJ, Kandeler E, Marhan S, Tscherko D (2008) Direct and
indirect effects of nitrogen deposition on litter decomposition.
Soil Biol Biochem 40:688–698

Månsson KF, Falkengren-Grerup U (2003) The effect of nitrogen
deposition on nitrification, carbon and nitrogen mineralisation
and litter C:N ratios in oak (Quercus robur L.) forests. For Ecol
Manage 179:455–467

Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell J (2001)
Elevated CO2, litter chemistry, and decomposition: a synthesis.
Oecologia 127:153–165

J Soils Sediments (2010) 10:210–214 213



Oren R, Ellsworth D, Johnsen K, Phillips N, Ewers B, Maier C,
Schäfer K, McCarthy H, Hendrey G, McNulty S, Katul G (2001)
Soil fertility limits carbon sequestration by forest ecosystems in a
CO2-enriched atmosphere. Nature 411:469–472

Pan KW, Xu ZH, Blumfield TM, Totua S, Lu MX (2008) In situ
mineral 15N dynamics and fate of added 15NH4

+ in hoop pine
plantation and adjacent native forest in subtropical Australia. J
Soils Sediments 6:398–405

Pan KW, Xu ZH, Blumfield TM, Tutua S, Lu MX (2009) Application
of (15NH4)2SO4 to study N dynamics in hoop pine plantation and
adjacent native forest of subtropical Australia: the effects of
injection depth and litter addition. J Soils Sediments 9:515–525

Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD,
Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS,
Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in
world biodiversity hotspots: the need for a greater global perspective
in assessing N deposition impacts. Glob Change Biol 12:470–476

Purves D, Pacala S (2008) Predictive models of forest dynamics.
Science 320:1452–1453

Richards AE, Dalal RC, Schmidt S (2007) Soil carbon turnover and
sequestration in native subtropical tree plantations. Soil Biol
Biochem 39:2078–2090

Rudel TK, Coomes OT,Moran E, Achard F, Angelsen A, Xu J, Lambin E
(2005) Forest transitions: towards a global understanding of land use
change. Glob Environ Change, Part A 15:23–31

Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community
response to nitrogen deposition in northern forest ecosystems.
Soil Biol Biochem 36:1443–1451

Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties
and forest decline in contrasting long-term chronosequences.
Science 305:509–513

Xu ZH, Ward S, Chen CR, Blumfield T, Prasolova NV, Liu JX (2008)
Soil carbon and nutrient pools, microbial properties and gross
nitrogen transformations in adjacent natural forest and hoop pine
plantations of subtropical Australia. J Soils Sediments 8:99–105

Xu ZH, Chen CR, He JZ, Liu JX (2009) Trends and challenges in soil
research 2009: linking global climate change to local long-term
forest productivity. J Soils Sediments 9:83–88

214 J Soils Sediments (2010) 10:210–214


	Forest ecosystem responses to environmental changes: the key regulatory role of biogeochemical cycling
	Introduction
	Impacts of environmental changes on the belowground ecosystem processes
	Elevated atmospheric CO2
	Atmospheric N deposition
	Forest fire
	Land-use change

	Biogeochemical cycling regulates ecosystem responses to the environmental changes
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


