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Long-term impacts of global climate change (GCC) and
local forest management on important biogeochemical
cycles of carbon (C) and nutrient cycling in the soil–plant
ecosystems are complex and difficult to assess (Oren et al.
2001; Reich et al. 2006; Xu and Chen 2006; Davidson
et al. 2007; Chen and Xu 2008; Clark and Tilman 2008; Xu
et al. 2008a, b), particularly under gradually and continu-
ously rising atmospheric carbon dioxide concentration
[CO2] and warming in the real world with multiple limiting
factors (Hui et al. 2002; Savard et al. 2004; Büntgen et al.
2007; Feeley et al. 2007; Engelbrecht et al. 2007). In this
editorial, as a part of the journal editorial series (Förstner
and Salomons 2008), we highlight the recent developments
and applications of advanced stable isotope, nuclear
magnetic resonance (NMR), and biomolecular techniques
in an integrated approach with innovative rhizosphere and
tree ring methods, for improving our understanding and

management of above- and below-ground C and nutrient
cycling processes in forest ecosystems, particularly in
response to GCC and local management practices as well as
mitigation/adaptation strategies. The opportunities and
limitations of these techniques for investigating C and nutrient
cycling processes in forest ecosystems are discussed, in the
context of both short- and long-term impacts on the above-
and below-ground processes. Improved understanding and
knowledge of environmental fingerprints of the biogeochem-
ical cycles embedded in tree rings can be effectively used to
account for long-term forest productivity and C stocks at local,
regional, and global scale in response to the future GCC and
management options.

1 Global climate change and forest management

Over the last century, atmospheric [CO2] has increased
globally by nearly 30% and temperature by approximately
0.6°C, and these trends are projected to continue more
rapidly (Xu and Chen 2006), particularly with more
extreme climatic conditions. The impacts of GCC on future
structure, composition, and C and nutrient cycling in forest
ecosystems deserve particular attention and further
research. Little is known about the impacts of GCC and
forest management on plant–soil–microbe interactions.
Plant–soil–microbe interactions mainly occur in the rhizo-
sphere, which is defined as the zone of soil that is affected
by the root activity of any plant species. The rhizosphere is
suggested here as the “hotspot” for plant–soil–microbe
interactions—the most chemically and biologically active
microsite in soil (Seguin et al. 2004)—and represents a
complex integrated ecosystem. The ecology in the under-
world, particularly below-ground processes and their
interactions with above-ground processes, has been high-
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lighted in the Science (Volume 304, 1613–1637, 11 June
2004). There is growing need for improving the under-
standing and management of important below-ground
processes. Understanding rhizosphere C and nutrient
cycling processes in relation to rising [CO2] and tempera-
ture is crucial for predicting the response of forest
ecosystems to GCC (Xu and Chen 2006; Hyvönen et al.
2007).

Annual tree ring width measurements can be used to
study tree growth indices of different species at scales from
years to decades/centuries in seasonally distinguished
growth environments, particularly in response to the
changing climate and historical episodes (Duquesnay et al.
1998; Penninckx et al. 1999; Saurer et al. 2004; Savard et
al. 2004; Büntgen et al. 2007). Together with tree ring
growth measurements, tree ring stable isotope (particularly
13C, 18O, and 15N) compositions (Duquesnay et al. 1998;
Elhani et al. 2003; Saurer et al. 2004; Savard et al. 2004;
Treydte et al. 2006; Helliker and Richter 2008) and element
concentrations (Penninckx et al. 1999; Drouet et al. 2005a, b)
may be used to reconstruct past, long-term climate
change (particularly atmospheric [CO2], temperature, and
rainfall) in different regions of the world. These methods
can also be used to assess the impacts of historical
episodes (e.g., acid deposition and fertilization) on long-
term productivity and biodiversity of forest ecosystems
(Horz et al. 2004; Reich et al. 2006; Davidson et al. 2007;
Magnani et al. 2007; Clark and Tilman 2008). Hence,
these environmental fingerprints of the biogeochemical
cycles embedded in tree rings can be effectively used to
account for the long-term forest productivity and C stocks
at local, regional, and global scale in response to the future
GCC and management practices.

2 Rhizosphere study techniques

The quantitative understanding of rhizosphere processes is
poor since the rhizosphere is a difficult system to physically
sample and manipulate (Xu and Chen 2006). Currently
there are two commonly used methodologies to physically
separate rhizosphere soil from bulk soil. One is the hand-
shaking method (Seguin et al. 2004). The second approach
involves direct (in situ) sampling of soil adjacent to roots
by thin sectioning and/or placement of different sized mesh
materials around roots (Xu and Chen 2006). It is challeng-
ing, but necessary to develop sampling techniques and
protocols building on the promising hand-shaking method
(Seguin et al. 2004), which takes into account the spatial
and temporal variability in the rhizosphere of forest
ecosystems. In addition, modeling of rhizosphere will be
able to upscale the uptake of nutrients to the whole plant
scale (Darrah et al. 2006).

3 Microbiological methods

Soil microbial properties such as biologically regulated
nitrogen (N) transformations, microbial biomass C, N, and
phosphorus (P), respiration, metabolic quotient, and enzyme
activity can be very sensitive to GCC and forest management
(Xu and Chen 2006; Chen and Xu 2008; Huang et al. 2008a,
b, c; Pan et al. 2008; Xu et al. 2008a, b). However,
information about the impacts of GCC and forest manage-
ment on soil microbial properties is rather limited (Chen et
al. 2004; Chen and Xu 2006; Burton et al. 2007a, b; Zhao et
al. 2007; He et al. 2008a, b). Conventional culture-dependent
methods have been used for the measurement of soil
microbial composition for more than a hundred years.
Nevertheless, only 0.1–1% of soil microorganisms are
accessible by these approaches.

4 Biomolecular techniques

Recent advances in biomolecular techniques make it
possible to apply culture-independent and DNA/RNA
nuclear acid-based techniques to analyze the targeted
sequences of bacterial or fungal DNA directly extracted
from soil (He et al. 2005a, b, 2006; Bastias et al. 2006a, b;
Xu and Chen 2006; Bastias et al. 2007; Ge et al. 2008a, b;
He et al. 2008a; Zhang and Xu 2008; Zheng et al. 2008).
The determination of 16S ribosomal RNA (rRNA) genes
and 18S rRNA genes has proved most useful for investi-
gating the diversity and composition of bacteria and fungi,
respectively, since these molecules are composed of highly
conserved regions and also of regions with considerable
sequence variation. The applications of microbial functional
genes (e.g., pmoA and amoA) have greatly improved our
understanding of the abundance and composition of specific
groups (e.g., methanotrophs and ammonia oxidizers) of
microorganisms involving in the biogeochemical cycling
(Leininger et al. 2006; He et al. 2007; Shen et al. 2008;
Zheng et al. 2008).

5 Stable isotope and NMR techniques

Stable isotope techniques are considered as a critical
component in the studies of GCC (e.g., elevated [CO2]) and
forest management on soil C and N dynamics (Blumfield et
al. 2004; Xu and Chen 2006; Chen and Xu 2008; Huang et al.
2008b; Pan et al. 2008). Stable isotope techniques have been
found to be a very powerful tool for advancing the
understanding of important C and N cycling processes in
terrestrial ecosystems (Xu et al. 1993a, b; Guinto et al. 2000;
Pu et al. 2001, 2002; Blumfield et al. 2004; Pu et al. 2005;
Huang et al. 2008b; Pan et al. 2008). Recent applications of
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stable isotope techniques to soil biological studies have
resulted in significant advances in the understanding of soil
microbial processes regulating the C and N cycling in
terrestrial ecosystems. It is very exciting to see the combined
use of stable isotope and biomolecular techniques in recent
studies (Xu and Chen 2006), which have identified specific
microorganisms that are actively involved in particular
metabolic processes.

NMR techniques have been increasingly used in soil
science, geochemistry, and environmental science (Mathers
et al. 2000; Mao et al. 2002; Blumfield et al. 2004; Chen et
al. 2004; Johnson et al. 2005; Xu and Chen 2006; Chen and
Xu 2008). In particular, 13C NMR has been widely used
to improve the understanding of soil organic matter
(SOM) quality and composition in relation to terrestrial
C and N cycling processes. Natural abundance 15N cross-
polarization/magic angle spinning NMR spectra of SOM
have been obtained by Knicker et al. (1993), indicating
that almost all signal intensity is in the chemical shift
region assigned to peptide/amide N. In the first applica-
tion of 14N NMR to soil humic acid (HA) studies, Mao et
al. (2002) have discovered the surprising existence of
nitrate-N in soil HA, with the HA nitrate-N closely
related to soil N availability and rather responsive to
ecosystem management. The advanced NMR techniques
need to be assessed for their potential in improving the
understanding of rhizosphere C and nutrient cycling,
particularly when combined with stable isotope and
biomolecular techniques (Knicker 2002).

6 Tree ring technique

Most terrestrial ecosystem studies (Oren et al. 2001; Reich
et al. 2006; Xu and Chen 2006; Hyvönen et al. 2007; Piao
et al. 2008) on GCC impacts have been undertaken over
short periods (<10 years) with one or two factors of
contrasting treatments (e.g., with and without N additions)
and large step increases (e.g., ambient [CO2] 350 ppm and
elevated [CO2] 700 ppm). These would be very different
from the real world with gradually rising [CO2] and
warming as well as changing rainfall patterns in the context
of atmospheric deposition over periods from decades to
centuries, particularly for forest ecosystems (Duquesnay et
al. 1998; Saurer et al. 2004; Drouet et al. 2005b; Büntgen et
al. 2007; Feeley et al. 2007). Tree ring growth (Duquesnay
et al. 1998; Penninckx et al. 1999; Saurer et al. 2004;
Savard et al. 2004; Büntgen et al. 2007), stable isotope
composition (Duquesnay et al. 1998; Elhani et al. 2003;
Saurer et al. 2004; Savard et al. 2004; Treydte et al. 2006;
Helliker and Richter 2008), and element concentration
(Penninckx et al. 1999; Drouet et al. 2005a, b) over decades
or centuries can provide exciting opportunities to investigate

the impacts of GCC and historical episodes (e.g., acid
deposition and prescribed burning or wild fires) on important
biogeochemical cycles of C and nutrients (Xu and Chen
2006; Gruber and Galloway 2008; Heimann and Reichstein
2008), underpinning the long-term tree growth and water-use
efficiency (WUE) as well as biodiversity of forest ecosys-
tems (Saurer et al. 2004; Savard et al. 2004; Büntgen et al.
2007; Engelbrecht et al. 2007; Clark and Tilman 2008).
However, this type of research approach is not without
significant problems and requires complementary short-term
laboratory and field experiments to help tease out the
complex interactions among multiple factors of gradual
GCC (Duquesnay et al. 1998; Hui et al. 2002; Saurer et al.
2004; Büntgen et al. 2007; Feeley et al. 2007) and historical
episodes (Savard et al. 2004; Magnani et al. 2007; Clark
and Tilman 2008). While rising [CO2] and atmospheric
warming are well-recognized GCC phenomena (Davidson
and Janssens 2006; Xu and Chen 2006), their long-term
impacts on biogeochemical cycles, ecosystem productivity,
and biodiversity can differ with locations and species/
ecosystems (Horz et al. 2004; Davidson and Janssens 2006;
Büntgen et al. 2007; Feeley et al. 2007; Hyvönen et al. 2007)
as well as historical episodes (Savard et al. 2004; Magnani
et al. 2007; Clark and Tilman 2008), in the context of local
rainfall, temperature, atmospheric deposition/air pollution,
and soil fertility.

In addition, rising [CO2] is expected to result in
increased plant photosynthesis and reduced stomatal con-
ductance, hence higher plant WUE and δ13C (Duquesnay et
al. 1998; Prasolova et al. 2000, 2001; Xu et al. 2000; Saurer
et al. 2004; Long et al. 2006; Hyvönen et al. 2007), but this
can be counteracted by decreasing plant photosynthesis and
δ13C due to acid deposition (Savard et al. 2004) and
decreasing atmospheric δ13C from increasing fossil CO2

emissions (Keeling et al. 1979), respectively. Plant WUE
and growth can be increased by elevated [CO2] and N
availability (Oren et al. 2001; Prasolova and Xu 2003; Xu
et al. 2003; Prasolova et al. 2005; Long et al. 2006; Reich et
al. 2006; Hyvönen et al. 2007; Magnani et al. 2007; Huang
et al. 2008d, e, f), at least in the short term, but their long-
term levels may be counteracted by age-related biologically
declining trends (Duquesnay et al. 1998; Penninckx et al.
1999) and progressive nutrient limitations (Oren et al. 2001;
Drouet et al. 2005a, b; Long et al. 2006; Reich et al. 2006;
Hyvönen et al. 2007). The mobility of elements (Penninckx
et al. 1999; Elhani et al. 2003; Drouet et al. 2005a, b; e.g., N)
between adjacent tree rings and differences in stable isotope
composition between components (Duquesnay et al. 1998;
Elhani et al. 2003; Saurer et al. 2004; Treydte et al. 2006) of
tree ring material (e.g., cellulose against whole tree ring
material) can also pose problems in interpreting these ring
data, with increasing margins of error. Furthermore, there are
limited long-term records of local atmospheric [CO2],
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temperature, rainfall, and acid deposition for many parts of
the world and either re-constructed or global averages of
these parameters would need to be used from ice core
(Mayewski and Whitlow 1996; Etheridge et al. 1998) and
tree ring data (Keeling et al. 1979; Duquesnay et al. 1998;
Saurer et al. 2004; Treydte et al. 2006; Büntgen et al. 2007)
for assessing the long-term impact of gradual GCC and
historical episodes. These would need to be calibrated and
tested by well-controlled and focused studies as well as
sophisticated mathematical and ecosystem modeling across
the diversified regions of the world.
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