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Abstract
Purpose Nitrogen emissions from human activities are contributing to elevated levels of eutrophication in coastal ecosystems. 
Mechanisms involved in marine eutrophication show strong geographical variation. Existing life cycle impact assessment 
(LCIA) and absolute environmental sustainability assessment (AESA) methods for marine eutrophication do not adequately 
represent this variability, do not have a full global coverage, and suffer from other limitations, such as poor estimation of 
coastal residence times. This study aims to advance LCIA and AESA for marine eutrophication.
Methods We aligned and combined recent advancements in marine eutrophication LCIA and AESA methods into one method. 
By re-running models underlying the combined methods and incorporating additional data sources, we included marine regions 
missing in previous methods and improved fate modeling, with the inclusion of denitrification and plant uptake in the air 
emission-terrestrial deposition pathway. To demonstrate and validate our method, we applied it in a case study.
Results The developed method allows the assessment of marine eutrophication impacts from emissions to soil, freshwater, and air at 
high resolution (0.083° and 2° × 2.5° for inland and air emissions, respectively) and spatial coverage (all ice-free global continents). 
In the case study, we demonstrate the added value of our method by showing that the now quantified spatial variability within 
spatial units, e.g., river basins, can be large and have a strong influence on the modeled marine eutrophication from the case study. 
Compared to existing methods, our method identifies larger occupations of safe operating space for marine eutrophication, mainly 
due to the high resolution of the coastal compartment, reflecting a more realistic areal extent of marine eutrophication impacts.
Conclusions Although limited by factors such as simulations based on a single reference year for modeling inland and air fate, 
our method is readily applicable to assess the marine eutrophication impact of nitrogen emitted to any environmental compart-
ment and relate it to the safe operating space. With substantial advancement of existing approaches, our method improves the 
basis for decision-making for managing nitrogen and reducing emissions to levels within the safe operating space.

Keywords Marine eutrophication · Absolute sustainability · Nitrogen emission · Planetary boundaries · Life cycle impact 
assessment · Life cyle assessment

1 Introduction

An escalating global production of food and energy has 
led to an increase of nitrogen emissions from applying 
fertilizers and manure and burning fossil fuels (Beusen 

and Bouwman 2022). Consequently, increasing amounts 
of nitrogen are transported to freshwater bodies and 
coastal waters (Beusen et al. 2016), causing eutrophication 
impacts. Marine eutrophication refers to the ecosystem 
response to input of excess nutrients in the coastal water, 
causing excessive algal growth, leading to oxygen decline 
at the seabed in bottom layers and, ultimately, altering 
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the ecosystem balance (EC-JRC 2010). The loss of oxy-
gen in coastal waters is a leading threat to coastal marine 
ecosystems (Breitburg et al. 2018; Diaz and Rosenberg 
2008; Johnson et al. 2021). Improved and reliable tools are 
needed for scientists and decision-makers to address the 
challenges of eutrophication (Morelli et al. 2018).

Life cycle assessment (LCA) is a tool to evaluate envi-
ronmental impacts (such as marine eutrophication) of a 
product or process across its lifecycle. In an LCA, life 
cycle impact assessment (LCIA) methods can be used to 
calculate characterization factors that translate quantified 
inputs and outputs of the product system into potential 
impacts (Hauschild and Huijbregts 2015). LCIA methods 
consist of characterization factors (CFs) which are the 
product of a fate factor (FF), exposure factor (XF), and 
effect factor (EF). These combine to link a substance’s 
emission to its impacts along an impact pathway (i.e., 
the cause-effect chain from emission to impact). Marine 
eutrophication is a regional environmental problem, mean-
ing that impact pathway elements are prone to spatial var-
iability (Henryson et al. 2018; Wowra et al. 2020) and 
that impacts usually happen relatively close to emission 
sources. Variability arises notably in fate factors (FFs) 
(Henderson et al. 2021; Henryson et al. 2018; Payen et al. 
2021), representing quantitative modeling of the environ-
mental fate of nitrogen compounds and accounting for 
nitrogen removal in its journey from emission source to 
the receiving compartment. Multiple factors contribute to 
this spatial variability. For example, soil retention depends 
on factors like soil type and weathering, while ocean cur-
rents and bathymetry influence coastal residence time.

The spatially differentiated LCIA method of Cosme and 
Hauschild (2017) is recognized as the best available LCIA 
method for marine eutrophication (Morelli et al. 2018; 
UNEP 2019). However, it suffers from several limita-
tions. One concern lies in level of spatial differentiation of 
the inland fate component that models export of nitrogen 
compounds from soil and freshwater to coastal water. The 
inland fate component relies on the global Nutrient Export 
from WaterSheds (NEWS) 2 model that operates at river 
basin resolution. Particularly in larger river basins with 
varying fate mechanisms, this coarse river basin resolution 
can potentially reduce accuracy (Henderson et al. 2021; 
Payen et al. 2021; Zhou et al. 2022). Moreover, at least one 
inland fate component (commonly the fraction exported 
from soil) is lacking for 680 of 5773 watersheds due to 
missing input data in NEWS 2, (Bjørn et al. 2020b). In 
relation to the coastal fate component, modeling the per-
sistence of nitrogen in the coastal compartment, the LCIA 
method of Cosme and Hauschild (2017) relies on few and 
uncertain data about coastal water residence times in the 
66 large marine ecosystems (LMEs) that it covers (Cosme 
and Hauschild 2017; Morelli et al. 2018; Vea et al. 2022). 

In addition, the method of Cosme and Hauschild (2017) is 
missing fate and impact models for airborne emissions of 
nitrogen compounds and is limited to 66 LMEs (Morelli 
et al. 2018). Finally, the method excludes certain coastal 
areas that are not considered within the LME definition 
such as the northern Wharton Basin and Western Pacific 
Warm Pool (Morelli et al. 2018).

Since the publication of Cosme and Hauschild  (2017) 
method, various studies have contributed with important 
improvements to marine eutrophication modeling which address 
several of the limitations mentioned above. Jwaideh et al. (2022) 
and Zhou et al. (2022) increased the spatial resoltion of the inland 
fate component from river basins to 0.083 and 0.5°, respectively, 
and created a complete set of FFs for soil and freshwater nitrogen 
emissions based on the global nutrient model, IMAGE-GNM 
(Beusen et al. 2015). Zhou et al. (2022) focused only on the 
fate and transport to freshwater systems, while Jwaideh et al. 
(2022) also covered transport to the marine environment. Vea 
et al. (2022) improved the marine fate modeling by introducing 
refined estimates on coastal water residence time based on Liu 
et al. (2019), ensuring consistent residence time estimates with 
high resolution and global coverage. Bjørn et al. (2020b) and 
Henderson et al. (2021) integrated atmospheric fate modeling 
from Roy et al. (2012) with Cosme and Hauschild (2017) 
developing a spatially resolved method allowing to quantify 
impacts caused by nitrogen emissions to air.

In addition to integrating air emissions into marine 
eutrophication LCIA modeling, Bjørn et al. (2020a, b, c) 
introduced an absolute environmental sustainability assess-
ment (AESA) method. This AESA method allows for the 
comparison of impact estimates with regional safe operating 
spaces in coastal waters, defined as the difference between 
threshold values and reference values for oxygen concentra-
tions. AESA builds on LCA, as it assesses the environmental 
impact of an activity (product or system) and compares this 
impact to an assigned environmental safe operating space 
(SOS) delineated by biophysical limits such as the planetary 
boundaries (Richardson et al. 2023; Rockström et al. 2009; 
Steffen et al. 2015). The purpose of AESA is to assess if an 
activity’s environmental impacts exceed its allocated share 
of the SOS and thereby qualify as unsustainable (Bjørn et al. 
2020a). In relation to the SOS, the marine eutrophication 
AESA method of Bjørn et al. (2020b) has a resolution of 
the coastal compartment that is too coarse (being based on 
the LMEs of the Cosme and Hauschild (2017) method) to 
reflect the geographical variability in the SOS adequately. 
This coarse resolution introduces the risk of overlooking 
the potential exceedance of regional scale SOS due to the 
inherent averaging of impacts and thresholds over relatively 
large coastal areas. Moreover, Bjørn et al. (2020b) assumed 
that natural reference oxygen conditions (used to calculate 
the SOS) correspond to an oxygen saturation of 100% in the 
benthic zone, which is not realistic in all coastal areas (Bjørn 
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et al. 2020b; Vea et al. 2022). Vea et al. (2022) improved the 
estimation of SOS by refining the marine compartment’s 
resolution and adjusting relevant parameters to this scale, 
including the natural oxygen concentration.

This study aims to unify recent advances in marine 
eutrophication LCIA and AESA methods into a single and 
consistent method with a global coverage (i.e., extending 
coastal coverage beyond 66 LMEs). The new method cov-
ers emissions of nitrogen compounds to air, soil, fresh-
water, and coastal water and their marine eutrophication 
impact, allowing for comparisons to regional SOS. The 
new marine eutrophication method is applied to a case 
study with a highly spatialized inventory to demonstrate 
its application and compare it to existing methods.

2  Method 

2.1  Development—characterization factors

As illustrated in Fig. 1, this study adapted and integrated 
residence time in coastal waters (Ƭ), exposure factors (XF), 
and SOS as presented in Vea et al. (2022) with fractions 
exported (FE) to coastal water of a nitrogen compound emit-
ted to soil or freshwater based on Jwaideh et al. (2022), or 
to air based on Roy et al. (2012). In addition, we included 
the fraction of plant uptake (FPU), reflecting the removal by 

vegetation of nitrogen that is deposited on agricultural land 
based on Schulte-Uebbing et al. (2022a, b).

2.1.1  Characterization framework

The parameters illustrated in Fig. 1 constitute components 
of the CFs for emissions to air, soil, freshwater, or coastal 
water emissions that were calculated according to Eqs. 1 
and 2. Note that these CFs cover the cause-effect chain from 
nitrogen emission to reduced  O2 concentration in coastal 
bottom waters, hence spanning the FF and XF of the LCIA 
framework. This allows comparison of the estimated reduc-
tion in  O2 concentration to regional SOS within an AESA. 
As this comparison is the focus here, an EF (though useful 
in other contexts) is not required.

Equation 1 links the emission to an environmental com-
partment (coastal water, freshwater, or soil), with its impacts 
in coastal water subsegments:

where.

• CFm
i,ss

(

kgO2

kgNj∕year

)

 translates the emission to compartment 
m in cell i that is exported to marine receptor cell j, lead-
ing ta o decrease in oxygen levels in the benthic zone of 
subsegment ss encompassing cell j.

(1)CFm
i,ss

= FFm
i,j
× XFss = FEm

i,j
× Tj × XFss

Atmosphere

Coastal water

O2

Freshwater

FEAir

(Roy et al., 2012)

FEsoil/fw

(Jwaideh et al., 2022) Ƭ

XF

SOS**

(Vea et al., 2022)*

Ƭ

Open ocean
FPU

(Schulte-Uebbing et al. (2022) 

Soil

Fig. 1  Overview of the marine eutrophication characterization fac-
tor (CF) model and its key parameters. The CFs combine fractions 
exported  (FEsoil/fw) from soil and freshwater to coastal water (blue 
arrows), atmospheric fractions exported  (FEair) expressing the frac-
tion (dimensionless) of an air emission  (NOx or  NHx) that deposits 
on any spatial unit (gray arrows), a fraction of plant uptake (FPU) 
reflecting the fraction of nitrogen depositing on soil that is taken up 
by vegetation (green arrow), marine fate component (Ƭ) expressing 

nitrogen residence time in coastal water (black arrow), exposure fac-
tors (XF) translating presence of nitrogen in the coastal water subseg-
ment to a decrease in oxygen in the benthic zone (red stippled arrow), 
and safe operating space (SOS) reflecting the difference between a 
boundary for minimum  O2 levels and the natural reference level of 
 O2. *Builds on Cosme and Hauschild (2017) and Bjørn et al. (2020b) 
methods. **SOS is not a part of the CFs but is used in AESA
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• FEm
i,j

(

kgNj

kgNi

)

 is the fraction of the emissions to compart-
ment m in cell i that is exported to marine receptor cell 
j.

• Tj

(

kgNss

kgNj∕year

)

 is the residence time of nitrogen exported 
to marine receptor cell j in the coastal water subsegment 
(defined by the 200-m isobath) before it exits to the open 
ocean.

• XFj,ss

(

kgO2

kgNss

)

 is the exposure factor, i.e., the oxygen 
decrease in the benthic zone in response to the presence 
of nitrogen in coastal waters in the marine subsegment ss 
associated with the marine receptor cell j.

The product of FEm
i,j

 and Tj constitutes the FF of the CFs, 
representing the inland and marine fate components, respec-
tively. Figure 2A illustrates the spatial link between an inland 
emission (emission to soil or freshwater) and the geographi-
cal location of its associated impact. The coastal area where 
the marine eutrophication impacts take place depends on 
which river basin emission cell i is located in and the loca-
tion of the associated marine receptor cell j , which corre-
sponds to the cell where the river mouth of the specific river 
basin is located. The marine receptor cell j is situated in a 
coastal large marine ecosystem (cLME) subsegment ss , 
which is the estimated area in which a nitrogen emission can 
propagate and cause eutrophication impacts. Refer to Vea 
et al. (2022) for more details on the cLME subsegments.

Figure 2B illustrates the spatial link between emis-
sions to air in cell i and their deposition in cell k, which is 
located in a river basin connected to marine receptor cell 
j. The impact of marine eutrophication finally occurs in 
the cLME subsegment associated with marine receptor cell 
j. Note that Fig. 2B only illustrates deposition in a single 
cell. This is a simplification, as emissions from one cell 
are actually deposited in all grid cells globally.

Equation 2 ( CFair,c
i,ss

 ) links emissions to air with deposition 
and final environmental impacts in coastal water subsegments 
drawing on the method of Bjørn et al. (2020b). This CF is 
composed of one direct (first term of Eq. 2) and two indirect 

pathways (second and third term of Eq. 2), where the direct 
pathway involves nitrogen depositing directly on coastal or 
ocean water, whereas indirect pathways involve nitrogen 
depositing on another surface (i.e., soil or freshwater) and 
undergoing additional fate processes before reaching the coast:

Where:

• CF
air,c

i,ss
 
(

kgO2

kgNj∕year

)

 translates the emission of the reactive 

nitrogen compound c  (NOx or  NHx) to air in cell i to decrease 
in oxygen levels in the benthic zone of subsegment ss.

• FE
air,c

i,k
 
(

kgNj

kgNI

)

 is the fraction of the emissions of reactive 
nitrogen compound c to air in cell i exported to the inter-
mediate deposition cell k.

• F
ocean
k,ss

[-] is the surface area fraction within deposition 
grid cell k covered by ocean (including coastal and open 
ocean) with coastal residence time in subsegment ss.

• F
fw
k,ss

 [-] and Fsoil
k,ss

[-] are surface area fractions within depo-
sition cell k covered by freshwater or soil respectively, 
within a river basin discharging to subsegment ss.

• FEsoil
k,j

(

kgNj

kgNi

)

 and FEfw
k,j

(

kgNj

kgNi

)

 are fractions of depositions 
to soil or freshwater onto deposition cell k to marine 
receptor cell j.

• Tk andTj

(

kgNj

kgNj∕year

)

 are residence times in the coastal 

water of nitrogen transported to ocean deposition cell k 
or marine receptor cell j.

• XFss

(

kgO2

kgNss

)

 is the exposure factor, i.e., the oxygen 
decrease in the benthic zone in response to the presence 
of nitrogen in coastal waters in the marine subsegment ss 
associated with the marine receptor cell j or k.

(2)

CF
air,c

i,ss
=
∑

k∈ss

FE
air,c

i,k
× F

ocean
k,ss

× Tk × XFss

+
∑

k∈ss

FE
air,c

i,k
× F

fw
k,ss

× FEfw
k,j

× T × XFss

+
∑

k∈ss

FE
air,c

i,k
×
(

1 − FPUk

)

× F
soil
k,ss

× FEsoil
k,j

× Tj × XFss

Fig. 2  A Spatial link between 
an emission to soil or freshwater 
in cell i, marine receptor cell j 
(river mouth) and its associated 
marine eutrophication impact in 
a cLME subsegment. B Spatial 
link between an emission to 
air in cell i, deposition in cell 
k, marine receptor cell j (river 
mouth), and its associated 
marine eutrophication impact in 
a cLME subsegment

1

Emission cell 

Marine receptor cell 

cLME subsegment 
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• FPUk is the fraction of plant uptake of nitrogen deposit-
ing in cell k considering nitrogen taken out of the impact 
pathway through crop harvesting or livestock grazing.

Note that for the direct pathway (first term of Eq. 3), 
depositions on both coastal waters and open ocean and their 
subsequent impacts in coastal areas are considered. How-
ever, nitrogen deposition on the open ocean will typically 
have very low coastal residence times, reflecting that only 
a small share of nitrogen deposition on the open ocean will 
be transported to the coastal domain and spend time here.

Equation 3 ( CFair,c
i

) accumulates the CFs for all receiving 
coastal subsegments (ss) into a set of CFs for each emission 
cell (i):

2.1.2  Model components and refinements

A summary of parameters, sources, substance flows, com-
partments, resolution, and main refinements associated with 
each method component compared to previous studies is 
presented in Table 1.

(3)CF
air,c

i
=
∑

ss

CF
air,c

i,ss

Inland fate component We adapted the work of Jwaideh 
et al. (2022) to create inland FEs (fractions exported from 
soil and freshwater). Jwaideh et al. (2022) used the Inte-
grated Model to Assess the Global Environment-Global 
Nutrient Model (IMAGE-GNM) (Beusen et al. 2015) to 
develop a new spatially explicit FF model representing the 
fate and transport of nutrient emissions to and in coastal 
waters. Rather than directly using these FFs of Jwaideh et al. 
(2022), in our study, we extracted and adapted the underly-
ing FEs. We did this as the original FFs encompassed ero-
sion and leaching of background nitrogen compounds. In 
regions with steep terrain (e.g., Norway, Chile, the Alps, and 
Northern Spain), the FEs derived in Jwaideh et al. (2022) 
exceeded 1 (some even up to 6), implying more nitrogen was 
exported than introduced to the soil due to natural nitrogen’s 
erosion and leaching. In this study, we are interested in the 
impacts that can be attributed to human-caused emissions. 
Hence, we adapted the original FEs to account exclusively 
for new nitrogen added to the soil by dividing the original 
FEs by the historical fertilizer transient state fraction used 
in Jwaideh et al. (2022) to account for historical nitrogen 
inputs.

Table 1  Summary of characterization factor components and SOS, including their parameters, source, substance flows, resolutions, and main 
refinements necessary for the model coupling of this study

a CRT and PCR GLOBWB 2 river mouth location maps do not completely overlap, and there are missing CRT datapoints for some fjords or deep 
bays. Therefore, a buffer of using the average CRT within 25, 50, 75, or 100 km distance from the river mouth location in combination with a 
criterion of a minimum of 5 CRT data points was set. River mouths that did not meet these conditions were assigned a CRT value according to 
their closest neighbor
b Area fractions of soil freshwater or ocean calculated using the intersection function in ArcGIS Pro v.2.6.2 (ERSI 2020) on shape files represent-
ing deposition grid cells (Bey et al. 2001), freshwater (rivers (Lehner and Döll 2004) and lakes (Messager et al. 2016)), and ocean cover (Natural 
Earth 2023)

Component Parameters Source Substance flow Resolution Refinements in this study

Inland fate (soil and 
freshwater)

FE
fw

FE
soil

(Jwaideh et al. 2022) DIN 5 arcmin (0.083°) -Global coverage
-Excluding export of background/

inherent N
-Coupling between FE and marine 

components based on PCR 
GLOBWB 2 (Sutanudjaja et al. 2018)

-Determination of terminal basins
Air fate FE

air

FPU

F b

(Roy et al. 2012), 
(Schulte-Uebbing et al. 
2022a, b)

NHx,  NOx 2° × 2.5° -Global coverage
-Including impacts of deposition in the 

open ocean
-Including plant uptake
-Including denitrification

Marine fate T (Vea et al. 2022) N 1/8°a -Global coverage
-Coastal residence time (CRT) at its 

original resolution (1/8°), using CRT 
at the river mouth and not average 
CRT over  subsegmenta

Exposure XF (Vea et al. 2022) cLME subsegment -Global coverage
Safe operating space SOS (Vea et al. 2022) cLME subsegment -Global coverage
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We linked inland grid cells to the coastal compartment, 
using river basins and their respective river mouths based 
on the hydrological model PCR GLOBWB-2 (Sutanudjaja 
et al. 2018). The original FFs (Jwaideh et al. 2022) had a 
resolution of 5 arcmin, but the river basin delineation relied 
on an older version of the model (PCR GLOBWB-1) with a 
30-arcmin resolution. This created issues when connecting 
inland grid cells to river mouths, resulting in 187 instances 
where no connection could be established due to map mis-
alignment, especially near the North Pole. In this study, we 
utilized PCR GLOBWB-2 to resolve these issues, while also 
providing other modeling enhancements, such as improved 
basin shape delineation and drainage network characteriza-
tion (Sutanudjaja et al. 2018).

To identify terminal basins (water bodies not flowing into 
oceans), we also relied on PCR GLOBWB 2. Groundwater 
and evaporation flows are not considered in terminal basin 
classification (Wang et al. 2018) and are not considered in 
the PCR GLOBWB 2 model. Wang et al. (2018) emphasize 
substantial water storage changes in terminal basins, with 
groundwater discharge being a significant flux (possibly 
around 80% of net endorheic water loss). To consider uncer-
tainties in the PCR GLOBWB 2 model and potential export 
to the ocean via groundwater flows, we assumed that a por-
tion of nitrogen lost to groundwater in basins with a river 
mouth located less than 100 km from the coast is exported 
to coastal regions. This assumption and 100-km buffer are 
consistent with assumptions in IMAGE-GNM.

Air fate component For air emisions and their associ-
ated FEs, we employed the environmental fate model and 
associated source-receptor matrices of Roy et al. (2012). 
These matrices quantify the fraction (dimensionless) of air 
emissions  (NOx or  NH3) deposited on any spatial unit in a 
2° × 2.5° grid (13,104 grid cells). This renders 13,104 source-
receptor matrices, each representing the deposition from one 
emission cell in the 2° × 2.5° grid resolution.

While past studies considered the impact of the nitrogen 
deposition directly on the coastal domain and the indirect 
impact from nitrogen depositing on land and later transported 
to coastal areas (Bjørn et al. 2020b), we extended our method 
to include nitrogen deposition on the open ocean and its sub-
sequent impact in the coastal zone. The CRT model of Liu 
et al. (2019) estimates the time a water parcel in the coastal 
zone or open ocean spends in any part of the coastal domain. 
Hence, the nature of the model and CRT parameter allowed 
us to include nitrogen deposition on the open ocean, by con-
necting atmospheric deposition grid cells with the CRT for 
open ocean water parcels from Liu et al. (2019). However, 
information about the specific transportation path and in 
which coastal subsegment a water parcel spends time is not 
explicitly given by the model. Therefore, we approximated 

that the water parcel in a specific ocean grid cell will be 
present in the part of the coastal domain closest to the ocean 
grid cell. Based on this approximation, we attributed values 
to the XF and SOS components according to the values of 
the subsegment closest to the ocean deposition grid cells.

In Bjørn et al. (2020b), denitrification and uptake by 
vegetation were disregarded in the air emission impact 
pathway as the underlying NEWS-2 model considers the 
boundary between the technosphere (the anthroposphere) 
and ecosphere (the biosphere) at the point where nitrogen is 
leaching from the soil in the agricultural field. This means 
that all nitrogen deposited on soil was assumed to enter into 
the environment through surface runoff or leaching (i.e., 
disregarding removal by denitrification and plant uptake), 
and hence, the impact from nitrogen emissions was overes-
timated (Bjørn et al. 2020b).

In contrast, our study coupled soil deposition with 
IMAGE-GNM-based FEs, defining the technosphere-
ecosphere boundary where nitrogen is available for 
leaching after plant uptake, volatilization, and nitrification. 
Therefore, denitrification in the air emission pathway was 
included in our CFs. In addition, we considered nitrogen 
removed through crop harvesting or livestock grazing by 
incorporating the fraction of plant uptake (FPU) parameter 
(refer to Fig. 1). This was an area-weighted average of 
the plant uptake fractions on arable and intensively and 
extensively managed grassland, calculated from Schulte-
Uebbing et al. (2022a, b) data. FPU indicates the proportion 
of nitrogen taken up by plants relative to total nitrogen 
inputs, accounting for fertilizer, manure, fixation, and 
deposition. Our underlying assumption is that nitrogen 
deposited on arable and managed grassland and taken up 
by vegetation is removed through harvesting and grazing, 
while nitrogen deposited on natural land remains within the 
system and impacts pathway.

Marine fate component For the marine fate component ( T ), 
we adapted the Vea et al. (2022) approach, which relies on 
coastal residence times (CRT) from Liu et al. (2019). CRT 
represents the time a parcel of water is spending in the coastal 
domain (defined by the 200-m isobath) before it exits to the 
open ocean. Vea et al. (2022) aggregated the Ƭ into 289 cLME 
subsegments, approximating the geographical scale of eutroph-
ication and hypoxia. Nevertheless, Ƭ at a specific site (e.g., 
river mouth) might not be representative of other locations 
along the shelf, as noted by Liu et al. (2019).

In our study, we calculated Ƭ by averaging areas closer 
to the original CRT resolution (1/8°), encompassing spa-
tial variability within each subsegment. For connecting 
PCR GLOBWB-2 river mouths with Ƭ, we employed the 
spatial join function in ArcGIS Pro v.2.6.2 (ERSI 2020). 
However, CRT and PCR GLOBWB-2 river mouth location 
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maps did not fully align, resulting in some missing CRT data 
points for fjords or deep bays. This is because the original 
CRT map’s non-uniform tripolar grid, which distorts into 
two poles in the north while being regular in the southern 
hemisphere. We re-gridded the CRT tripolar grid to a uni-
form regular grid by the help of the geoloc2grid function 
in Matlab. However, there were still some issues with pro-
jecting this CRT map close to the North Pole. To address 
this mapping discrepancy and potential river mouth location 
inaccuracies, we introduced a buffer while joining the maps. 
We utilized the average CRT within 25, 50, 75, or 100 km 
from the river mouth, combined with a minimum CRT data 
point criterion. River mouths not meeting these conditions 
received a CRT value based on the nearest neighbor.

Global coverage To achieve global coverage including areas 
omitted by earlier marine eutrophication LCIA methods lim-
ited to LMEs, we re-ran the model of Jwaideh et al. (2022), 
computing FEs for previously excluded inland grid cells. 
Marine fate components (Ƭ) for these areas were calculated 
based on the raw CRT data from Liu et al. (2019) as previ-
ously mentioned. Global coverage is defined as covering all 
ice-free continents globally; i.e., Greenland and Antarctica 
and remote islands such as Hawaii are not included.

The marine area not yet included in any LCIA methods 
was segmented by limiting it to the coastal part (200 m 
isobath) and dividing the coastal part into subsegments 
with an area similar to the global average area extent 
of marine eutrophication (refer to Vea et al. (2022) for 
further details). By applying this approach, we comple-
mented the existing 289 subsegments from Vea et  al. 
(2022) with 16 new coastal subsegments, yielding a 
comprehensive 305 subsegments covering the global 
coastline. XFs, SOS, and pertinent parameters for these 
new subsegments were computed following the procedure 
described in Vea et al. (2022). Please refer to Supple-
mentary Information (SI)-1, Fig. S1 for an overview of 
the additional subsegments and SI-3, Table S1 for their 
corresponding XF and SOS data.

2.2  Sustainability assessment and method 
comparison

To demonstrate the use of the method and to compare it 
with existing models, we apply it on a sustainability assess-
ment case study. For the method comparison, we contrast 
our approach with that of Bjørn et al. (2020b), which is the 
only existing method that encompasses emissions to all com-
partments (soil, freshwater, coast, and air) and compares 
environmental impacts with SOS.

Our case study centers on open-field tomato production 
destined for processing (e.g., tomato sauce and paste). In order 

to best demonstrate the large spatial resolution and global cov-
erage of our method, we selected this case study because it 
has a large coverage (covers 197 farms distributed across nine 
countries and five continents) and has a high spatial speci-
ficity (with specific GIS-coordinates). Moreover, open-field 
tomato production emits nitrogen to both soil and air, hence 
enabling a demonstration of both the inland and air emission 
pathways of the method. Taking a focus on spatial differen-
tiation, we exclusively account for direct emissions of nitro-
gen compounds from these farms, omitting emissions stem-
ming from the production of fuels and agrochemicals used 
in tomato cultivation. For each of the 197 farms, we covered 
nitrogen oxides  (NOx) and ammonia  (NH3) emissions to air 
and nitrate  (NO3

−) to soil from fertilizer application, as well 
as  NOx emissions from the operation of agricultural machin-
ery. Our reference flow is 1 t of tomatoes at the farm gate. 
Data sources are primarily drawn from Bjørn et al. (2020b), 
with some adaptations. Specifically, we excluded two farms 
from New Zealand due to imprecise coordinates locating them 
in the ocean. Furthermore, our model diverges from Bjørn 
et al. (2020a, b, c) in the interface between the ecosphere and 
technosphere. Bjørn et al. (2020b) considered the agricultural 
field as part of the technosphere and calculated nitrogen leach-
ing from the agricultural soil in the inventory part. In contrast, 
our study encompassed leaching within the ecosphere and our 
CFs (see Sect. 2.1.2). To prevent double counting, we omitted 
leaching calculations in the inventory.

The environmental impacts (EI 
(

kgO2

)

 ) in cell j due to 
a nitrogen emission from a farm in cell i were calculated 
according to Eq. 4:

where Mm
i

 (kg N/year) represents the total nitrogen emis-
sions to compartment m in cell i and CFm

i,j
 (kg  O2/kg N/year) 

the characterization factor for calculating its impact in cell j 
(as described in Eqs. (1) and (2)).

Finally, the environmental impact was compared to the 
SOS, to assess the occupation of the SOS according to Eq. 5:

where the SOSj
(

kgO2

)

 is the safe operating space repre-
senting the difference between a boundary for minimum  O2 
levels and natural reference level of  O2 in the coastal subseg-
ment where receptor cell j is located.

Normally, to do an absolute sustainability assessment of 
a product or system, the SOS has to be assigned to the func-
tional unit of the study. However, for simplicity, we did not 
assign SOS in this demonstrative case study, as the focus is 
on demonstrating the application of the new CFs of this study 
and comparing them to CFs from existing LCIA methods.

(4)EIm
i,j
= M

m
i
× CFm

i,j

(5)occ.SOSm
i,j
=

EIm
i,j

SOSj
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3  Results and discussion

3.1  Method results

3.1.1  CFs for soil emissions

Figure 3 shows global coverage CFs for emissions to ara-
ble soil, representing the estimated marine eutrophication 
impact (reduced  O2 concentration) for an emission of a nitro-
gen compound to soil. Refer to SI-1 Figs. S2–S3 for SOS 
and CFs encompassing emissions to all soils (weighted aver-
age of arable, grassland, and natural land CFs) and freshwa-
ter respectively.

Low CFs (green and light green in Fig. 3) are typically 
inland, while high CFs (orange and red in Figure) are closer 
to the ocean. This trend is due to reduced export of nitrogen 
compounds to the ocean from inland areas far from the shore, 
owing to removal processes during transportation (e.g., 
denitrification, nutrient uptake, and advection). Exceptions 
exist, such as low CFs near coasts like the northern Brazil 

coast, Ivory Coast, and west India coast. For instance, grid 
cell #4,935,175 on the northern Brazil coast (highlighted in 
Fig. 3a) displays low CFs (7.00*10−8 versus global median of 
1.06*10−2) due to relatively low FEs (i.e., fractions exported) 
(6.84*10−5 versus global median of 1.71*10−2). This can be 
explained by human obstructions such as dams causing low 
hydraulic loads. Furthermore, the marine fate component (Ƭ) 
is relatively low here (6.62*10−4 versus global median of 
0.16) due to short coastal residence times. XF is also below 
the median (1.63 versus global median of 6.70) due to lower 
primary production potential.

The highest CFs are observed, e.g., near the coast of Gulf 
of Mexico, the Baltic Sea, and East China and Yellow Sea. 
In grid cell #3,269,522 (East China Sea, Fig. 2c), the CF is 
notably elevated (3.77 vs. global median of 1.06*10−2) due 
to a high FE (0.74 versus global median of 1.71*10−2). By 
comparison, the Ƭ and XF are close to the global median in 
that location, with Ƭ at 0.38 (vs. global median of 0.16) and 
XF at 10.02 (vs. global median of 6.70).

CF [kg O2 /kgN/year] 

Gridcell #4935175

CF_arable: 7.00*10-8  

FE: 6.84*10-5

Ƭ: 6.62*10-4

XF: 1.63 

a)

c)b) Gridcell #3269522

CF_arable: 3.77

FE: 0.74

Ƭ: 0.38

XF: 10.02

≤ 1*10-4

≤ 1*10-3

≤ 1*10-2

≤ 1*10-1

≤ 1

≤ 24.4

Fig. 3  a CFs (kg  O2/kg N/year) for emissions to arable soils repre-
senting the estimated marine eutrophication impact (reduced  O2 
concentration) of a nitrogen emission to soil. b Zoom on grid cell 
1,237,786 and information on associated CF components (i.e., inland 

fractions exported (FE), marine fate component (Ƭ), and exposure 
factor (XF)). c Zoom on grid cell 4,935,175 and information on asso-
ciated CF components
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3.1.2  CFs for air emissions

In Fig. 4a, CFs for  NOx are shown in each emission cell, repre-
senting the cumulative CFs for associated deposition cells (as 
calculated by Eq. 4). For example, the cell highlighted with 
a blue star in Fig. 4a (near Hudson Bay in North America) 
displays a higher-end CF (orange color) because large shares 
of emissions from this cell deposit onto cells with high par-
tial CFs (pCFs). The pCF translates nitrogen deposition on 
soil, freshwater, or ocean to impacts by considering nitrogen 
transport and subsequent coastal fate and exposure. Figure 4b 
illustrates this, depicting deposition shares (size of beige cir-
cles) in cells receiving > 0.1% of  NOx emissions from the cell 
highlighted with a blue star along with pCF values in each 
deposition cell. Notably, deposition shares are highest in cells 
close to the emission cell where the pCFs are also large (red 
color). Large pCFs in these deposition cells are primarily due 
to high coastal residence times and absence of plant uptake 
removal in cells without agricultural land.

In contrast, the cell highlighted with a black star in Fig. 4a 
and c (south of India) exhibits lower-end CFs due to low pCFs 
in deposition cells receiving significant shares of nitrogen 
emissions from this source (green and yellow color in Fig. 4c). 

Low pCFs in these deposition cells result from short coastal 
residence times and high plant uptake in cells containing agri-
cultural land.

Note that air emission CFs represent impact per kg 
 NOx-N or  NHx-N. To convert inventory emissions (e.g., 1 kg   
NO2 emitted to air) to nitrogen mass in the  NO2 form, a 
stoichiometric conversion (by multiplying with 0.304) 
is needed. Similarly, for emissions to soil and water, CFs 
reflect potential impact of 1 kg reactive nitrogen. Hence, if 
the emission is reported as, e.g., kg  NO3

− in the inventory, 
a stoichiometric conversion is needed by multiplying the 
 NO3

− emissions of the inventory by 0.226.

3.2  Case study and comparison to similar method

3.2.1  Occupation of safe operating space of nitrogen 
emissions from tomato production

In Fig. 5a, each of the 197 tomato production farms’ loca-
tions and coastal occupation of SOS (occ.SOS) resulting 
from nitrogen emissions from all farms to soil and air are 
depicted (blue pins). The largest occ.SOS is found in sub-
segments receiving emissions from soil (indicated by black 

CF [kg O2 

/kgN/year]

≤ 0.01

≤ 0.05

≤ 0.1

≤ 0.5

≤ 1

≤ 4.4

CF_dep [kg O2 

/kgN_dep/year]

≤ 1*10-4

≤ 1*10-3

≤ 1*10-2

≤ 1*10-1

≤ 1

≤ 10

≤ 38.9

b) c)

a)

CF_dep [kg O2 

/kgN_dep/year]

≤ 1*10-4

≤ 1*10-3

≤ 1*10-2

≤ 1*10-1

≤ 1

≤ 10

≤ 38.9

Fig. 4  a Map showing the  NOx CFs (kg  O2/kg N/year) in each emis-
sion cell, i.e., cumulative CFs for deposition cells associated with 
each emission cell. Maps of North America (b) and India (c) show 
deposition shares in cells receiving > 0.1% of  NOx emissions from 
cells marked with a blue and black star, respectively. The size of 

deposition shares is indicated by the size of the beige circles (10 to 
0.1%). Color scales in maps b and c show partial CFs’s values for 
nitrogen deposition in each grid cell (kg  O2/kg N_dep). Refer to SI–1, 
Fig. S4 for CFs for emissions of  NHx to air and to SI-3–Supplemen-
tary Data for data underlying this figure
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lines in Fig. 5b–d); particularly in subsegments #42.1 and 
#25, the occ.SOS is large (2.6*10−5 and 7.2*10−6 respec-
tively). This substantial occ.SOS stems primarily from large 
amounts of nitrate emissions to soil and nitrogen export (i.e., 
FEs). However, in some subsegments that receive emissions 
from soil, the occ.SOS is low. For example, subsegment 
#34.1 has a low occ.SOS with a value of 1.3*10−9 (Fig. 5c). 
This is attributed to minimal environmental impact resulting 
from low emissions from the nearby farms and low fractions 
exported (FE). Figure 5c illustrates the spatial relationship 
between locations of farms and coastal segments where 
nitrogen is exported (thick gray line outlining river basin 
areas containing farms that drain into subsegments #34.1). 
As explained in Sect. 3.2.2, greater travel distance from the 
point of emission to coastal segment generally leads to lower 
nitrogen export fractions to the ocean, owing to removal 
processes during transportation.

As shown in Fig. 5a, all coastal subsegments receive 
nitrogen due to air emissions from the tomato farms 

transported and depositing all over the globe. Nonetheless, 
occ.SOS remains quite low in most coastal subsegments 
(196 of 305 subsegments have an occ.SOS below 1*10−8) 
due to the widespread dilution of the air emissions. In spe-
cific cases, larger occ.SOS driven by air emissions is noted, 
such as in subsegments #24.4 and #22.6 (Fig. 5c) with an 
occ.SOS of 2.8*10−7 and 5.0*10−7, respectively, caused by 
air emissions from the opposite side of the continent (i.e., in 
Spain and Portugal about 1500–1900 km away). The larger 
occ.SOS is due to relatively large nitrogen emissions from 
these farms (20 t compared to 76 t from all farms) and that 
a relatively large share deposits directly on these coastal 
subsegments where the marine fate component is high. For 
example, about 2% of the nitrogen emissions from the farms 
located in Spain and Portugal deposit on subsegment #22.6, 
compared to 0.03% if emissions were distributed equally 
across all grid cells. Globally, the accumulated total environ-
mental impact of air emissions from the 197 farms leads to a 
similar level of impact as caused by soil emissions (1.2*104 

c)

a)
b)

c)

d)

d)b)

Occ.SOS
≤ 1*10-10
≤ 1*10-9
≤ 1*10-8
≤ 1*10-7
≤ 1*10-6
≤ 2.5*10-5
n.a.

Fig. 5  occ.SOS resulting from nitrogen emissions to soil and air from 
the 197 tomato production farms, accumulated into relevant coastal 
subsegments. The farms are located in six different regions of the 
world (pins in Fig. 5a). b–d Maps showing selected zooms where the 

thick gray delineations illustrate the river basins in which the farms 
are located in and their connection to the coastal subsegments and the 
thick black lines indicate coastal subsegments that are directly con-
nected with the river basins receiving nitrogen from soil emissions
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kg  O2, compared to 3.0*104 kg  O2, respectively). However, 
due to the widespread global transportation of the air emis-
sions, they contribute less than soil emissions to coastal sub-
segments’ occ.SOS (subsegments receiving soil emissions 
are marked with a thick black line in Fig. 5b–d).

3.2.2  Comparison of the method developed here 
to a reference method

Soil emissions Table 2 presents nitrate emissions from the 
case study farms to soil and their associated environmental 
impacts, SOS, and occ.SOS using our method (Table 2a) 
and the method of Bjørn et al. (2020b) (Table 2b). The color 
shades from green, yellow to red indicate increasing emis-
sions, impact, SOS, or occ.SOS.

The first columns of Table 2a and b display the amount of 
nitrate emissions to soil in river basins or watersheds discharg-
ing to the different coastal segments, using our method and the 
method of Bjørn et al. (2020b), respectively. Our study gener-
ally reports higher emissions (1.4–3.3 times), due to different 
soil CFs’ inventory input calculation detailed in Sect. 2.1.2. 
In our study, we consider nitrogen from fertilizer and manure, 

adjusted for plant uptake, volatilization, and nitrification  (NH3 
and  NOx). In Bjørn et al. (2020b), the inventory input com-
prises  NO3

− leaching, calculated by an empirical model. This 
approach disregards the actual nitrogen remaining for potential 
leaching after other loss mechanisms. Consequently, 47 out 
of 199 farms in Bjørn et al. (2020b) demonstrated a negative 
nitrogen inventory mass balance (inputs-outputs < 0). By inte-
grating leaching into the ecosphere and CF model (as in this 
study), we address this issue of negative mass balance resulting 
from using individual models to calculate the different parts 
of the nitrogen cycle in the inventory. Regarding ranking of 
emission quantities, there is a general agreement between this 
study and that of Bjørn et al. (2020b). For example, farms in 
river basins discharging to cLMEss 25 and LME 25 have the 
highest emissions, while those discharging to cLMEss 26.3 
and LME 26 have the lowest emissions.

In the second columns of Table 2a and b, we observe dif-
ferences in EI between our study and Bjørn et al. (2020b). 
In our study, EI is higher in three cases (subsegments #13.3, 
25, and 42.1), while Bjørn et al. (2020b) reports higher EI 
in five cases (subsegments #26.3, 26.4, 32.6, 32.8, and 34.). 
The overall ranking of EI across the ten coastal segments is 
similar in both studies, with three exceptions. Subsegment 

Table 2  Amount of nitrate emissions to soil, environmental impact 
(EI), safe operating space (SOS) and occupation of SOS (Occ.SOS) 
from the 197 farms, accumulated into relevant subsegments or LMEs 

calculated by the method presented in this study and by the method of 
Bjørn et al. (2020b), respectively. Color shades from green, yellow to 
red, indicate increasing values.

a) This study b) Bjørn et al., 2020b 

Sub-

segment 

Emissions 

(kg 

N/year) 

EI  

(kg O2) 

SOS  

(kg O2) Occ.SOS LME 

Emissions 

(kg 

N/year) 

EI  

(kg O2) 

SOS  

(kg O2) Occ.SOS 

          

3a  0  0 4.2E+09  0 3 3.2E+03 2.9E+02 1.1E+11 2.6E-09 

13.3 3.5E+04 1.5E+03 6.6E+09 2.2E-07 13 1.9E+04 4.4E+02 1.2E+11 3.7E-09 

14.10b 2.9E+03  0 4.3E+09  0 14 2.0E+03 4.5E+01 4.2E+10 1.1E-09 

25 2.2E+05 7.2E+03 1.0E+09 7.0E-06 25 1.4E+05 5.6E+03 1.2E+10 4.6E-07 

26.3 6.6E+02 1.0E+01 2.1E+09 4.7E-09 26e 2.5E+02 2.2E+02 1.0E+11 2.2E-09 

26.4c 9.0E+03 8.9E+02 1.9E+09 4.7E-07 26e 3.4E+03 3.1E+03 1.0E+11 3.0E-08 

32.6 6.2E+03 3.6E-04 2.4E+09 1.5E-13 32e 4.5E+03 4.8E+02 2.4E+11 1.9E-09 

32.8d 1.3E+03 4.9E+01 3.4E+09 1.7E-08 32e 9.3E+02 7.4E+01 2.4E+11 3.0E-10 

34.1 1.5E+03 2.4E-03 2.3E+09 1.1E-12 34 9.1E+02 4.4E+02 2.1E+11 2.1E-09 

42.1 1.5E+05 2.1E+04 8.2E+08 2.5E-05 42 4.6E+04 1.1E+02 6.2E+10 1.7E-09 

a There are no  NO3
− emissions (leaching) from the farms located in grid cells exporting to subsegment #3 in this study according to the inventory 

calculations required by our method
b There is no export of nitrogen from the grid cells where the farms located in the river basin discharging to subsegment #14.10 are located
c Our method did not consider impacts of emission from three farms exporting to subsegment 26.4 because the resolution in this study fails to 
include and provide CFs for some parts of the land area very close to the ocean
d Our method considers no export from the grid cells where four farms exporting to subsegment #32.8 are located
e For comparison, the results of Bjørn et al. 2020b for LME 26 and 42 were divided into subsegments according to the portion of environmental 
flows exported to the subsegments calculated by our method
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#42.1 has the highest EI in our study but ranks among the 
lowest in Bjørn et al. (2020b). Conversely, subsegments 
#32.6 and 34.1 have low EI in our study but high EI in LME 
34 according to Bjørn et al. (2020b). The differences in EI 
and their ranking can be attributed to the spatial resolution 
of our study, which uses finer spatial grids for fractions 
exported (FE) and marine fate components (Ƭ) compared 
to Bjørn et al. (2020b), who use watershed-level FEs and 
LME-level Ƭ. In cases with significant spatial variability, 
this difference in resolution can lead to vastly different EI 
estimations. For example, the EI estimated in LME 34 is 
five orders of magnitude higher in Bjørn et al. (2020b) com-
pared to our study. The FEs in grid cells discharging to LME 
34 vary greatly between the two studies, with Bjørn et al. 
ranging from 1.4*10−1 to 3.8*10−3, while ours spans from 
6.7*10−5 to 9.6*10−19. As discussed in Sect. 3.2.1, low FE 
in our study is due to their location far west in the river 
basin exporting to subsegment #34.1. In contrast, Bjørn 
et al. (2020b) employ water-shed level FE and, consequently, 
overlook these differences within the watershed. The marine 
fate component (Ƭ) in segment 34 also differs significantly, 
with Bjørn et al. (2020b) estimating 1.74 years, while our 
study calculates values of 0.004, 0.039, 0.535, and 0.547 
depending on to which river mouth to which the nitrogen 
is transported. In addition to being associated with a high 
level of uncertainty (discussed in Vea et al. (2022)), the Ƭ 
estimates in Bjørn et al. (2020b) do not consider such spatial 
differences in residence time within the LME. It is important 
to note that the Ƭ values derived in this study are not directly 
comparable to Bjørn et al. (2020b) as they denote the dura-
tion a nitrogen load stays in the coastal part of an LME seg-
ment in our study, as opposed to the entire LME segment. 
Hence, larger values are expected in Bjørn et al. (2020b).

Column three of Table 2a and b shows that the SOS is 
smaller in this study compared to Bjørn et al. (2020b) due 
to adjusted parameters and refined resolution of the marine 
compartment (for details, see Vea et al. (2022)). The overall 
ranking of SOS across the ten coastal segments is generally 
consistent between both studies, except for cLMEss 14.10, 
ranking as the second largest in this study and as the second 
lowest in Bjørn et al. (2020b). This discrepancy is linked to 
the relatively high  O2 reference value in our study (9.2 kg  O2/l 
compared to the average of 4.9 kg  O2/l across the ten seg-
ments) compared to the one estimated in Bjørn et al. (2020b) 
(9.5 kg  O2/l compared to average of 8.3 kg  O2/l across the ten 
segments).

As displayed in the fourth column of Table 2a and b, the occ.
SOS calculated in our study is larger than Bjørn et al. (2020b) 
in six subsegments (#13.3, 25, 26.3, 26.4, 32.8, 42.1), primar-
ily due to the smaller SOS. In two subsegments (#32.6, 34.1), 
the occ.SOS is higher in Bjørn et al. (2020b), provided by the 
larger EI in these subsegments explained above. Comparing 
rankings of occ.SOS across coastal areas reveals there is general 

agreement when using our method and Bjørn et al. (2020b). 
However, while our study identifies subsegment #42.1 as hav-
ing the highest occ.SOS, using Bjørn et al. (2020b) places LME 
42 as the third lowest due to the low EI discussed above.

Air emissions Given the complexity of the air emission 
model (involving three different deposition pathways and 
13,104 deposition cells for each emission cell), this compari-
son focuses on a single farming area. Moreover, a thorough 
comparison of the CF components (i.e., the FEs, Ƭ, and XFs) 
and SOS involved in the different deposition pathways was 
already conducted in the previous section. Therefore, this 
section focuses on the fundamental differences between our 
method and Bjørn et al. (2020b) specific to the air emission 
pathway, encompassing (1) plant uptake fraction, (2) deni-
trification, and (3) deposition on open ocean.

In Bjørn et al. (2020b), denitrification and vegetation 
uptake loss mechanisms were disregarded in the impact path-
way for air emissions, as the authors considered the techno-
sphere-ecosphere boundary at the point of leaching. This 
means that all nitrogen that deposits on soil was assumed 
to enter into the environment through surface runoff or 
leaching. Figure 6 shows a zoom on the area around grid 
cell 4076 in Chile (highlighted with a purple star), where 
ten farms are located emitting a total of 446.0 kg N-NOx 
and 1945.8 kg N-NHx per year causing a cumulative global 
reduction of 447 kg  O2, according to the method developed 
here. Figure 6a shows the portion of nitrogen deposition 
on each cell associated with the emission cell. Figure 6b-d 
shows the fraction of plant uptake, denitrification rate, and 
CFs associated with the receiving cells. Our method reveals 
that a cumulative 16.3% of nitrogen emitted by farms in grid 
cell 4076 is removed through plant uptake, and 10.1% is 
removed via denitrification upon soil deposition (summing 
removal amounts from each deposition cell in Fig. 6a and b). 
Incorporating these removal mechanisms reduces the total 
estimated impacts of emissions in grid cell 4076 by 34.2%. 
Hence, including these removal mechanisms in the emis-
sion pathway as done in this method is important to avoid 
substantial overestimation of impacts.

In contrast to the approach used by Bjørn et al. (2020b), 
we included open ocean nitrogen deposition beyond the LME 
marine area. Figure 6a shows that small portions of nitrogen 
emitted from grid cell 4076 deposits in the ocean outside the 
LME boundary (dark shade in Fig. 6d). However, in total, 
approximately 29.9% of nitrogen emitted in cell 4076 depos-
its in the ocean outside the LME borders, causing 5% of the 
associated impacts through subsequent transport to an LME. 
This emphasizes the need to include open ocean deposition to 
prevent underestimating impacts. In some emission cells, the 
impact contribution of nitrogen deposition on the open ocean 
is even more significant. For instance, if farms were situated 
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close to the coast of Uruguay (e.g., grid cell 4084 denoted by a 
black star in Fig. 6c), 43.8% of emitted nitrogen would deposit 
in the open ocean, contributing to 18.6% of the total impacts 
of emissions in this cell.

4   Uncertainties, limitations and future 
research 

4.1  Method development

Our study coupled state-of-the-art nitrogen emission impact 
assessment models, for which sensitivity and uncertainty 
analysis, model validation, and discussion of limitations 
have been performed and documented in their original 
sources (refer to, e.g., Jwaideh et al. 2022; Roy et al. 2012; 
Vea et al. 2022) for details). Thus, a comprehensive param-
eter analysis and model validation fall outside the scope of 
this study. Instead, this section summarizes uncertainty and 
sensitivity assessments for the main method components and 
parameters found in the original method and model sources. 
By this, we will highlight priorities for future research to 
increase the accuracy of our method and to guide practition-
ers on how to interpret the results of our method.

4.1.1  Inland fate component

The inland fate component draws on work of Jwaideh et al. 
(2022) that used equations from the IMAGE-GNM model 
as a basis for their method. IMAGE-GNM was validated 

with observations in Beusen et al. (2015) and more recently 
in Beusen et al. (2022) where they conclude that IMAGE-
GNM shows a fair to good agreement with observations. 
Beusen et al. (2022) do not address the uncertainty of indi-
vidual model parameters, but highlight parameters with a 
high influence on the model results, including total runoff, 
temperature, uptake velocity, and parameters used to esti-
mate the in-stream retention, such as mean length of streams 
and length ratio (Beusen et al. 2022).

The inland fate component is based on simulations of 
conditions from the year 2000 (Jwaideh et al. 2022). Mean-
while, LCA and AESA generally aim to reflect yearly aver-
age conditions. Hence, we recommend future research to 
extent the datasets used within IMAGE-GNM to multiple 
years, to be able to assess inter-annual fluctuations in model 
parameters and the resulting characterization factors.

While the inland fate component contains a degree of 
uncertainty, it is based on a state-of-the-art model (IMAGE-
GNM). Hence, our method reduces uncertainties related to, 
e.g., missing inland fate components in existing methods 
relying on NEWS 2. Moreover, we have shown that the high 
spatial resolution in our method reduces the uncertainty 
related to spatial variabilities.

4.1.2  Air fate component

The atmospheric fate component in our method was based 
on source-receptor matrices from Roy et al. (2012). A study 
applying the same source-receptor matrices (Roy et al. 2014) 
estimated the spread of the 95% confidence interval of the 

Fig. 6  Zoom on the area sur-
rounding grid cell 4076 in 
Chile (highlighted with a purple 
star), where six of the case 
study farms are located. a The 
portion of nitrogen deposition 
on each cell associated with the 
emission cell. b–d The plant 
uptake fraction, denitrification 
rate, and CFs in the receiving 
deposition cells associated with 
the emission cell as estimated in 
our method. The black star in d 
indicates grid cell 4084 where 
the impact contribution of 
nitrogen deposition on the open 
ocean is large.
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probabilistic atmospheric FF to be 0.79–1.26. This uncer-
tainty assessment was done through Monte Carlo simulations 
where the variation of each FF was specified with lognormal 
distribution following accuracy observations by Roy et al. 
(2012). Model uncertainties and uncertainties due to choices 
were addressed qualitatively in Roy et al. (2014), and it was 
highlighted that due to the coarse resolution (2° × 2.5°), local 
factors favoring deposition in certain regions within the grid 
(e.g., mountains) are neglected. Philip et al. (2016) tested 
the sensitivity of different spatial resolutions in the source 
model (GEOS-Chem) and found that decreasing the spatial 
resolution from 2° × 2.5° to 4° × 5° altered the simulation 
results by an order of magnitude, indicating a high sensitiv-
ity to the spatial resolution.

Moreover, the source-receptor matrices are based on 
simulations using the GEOS-Chem model version 8–02-02 
and meteorological data for the year 2005. While Roy et al. 
(2012) consider 2005 to be representative of the average 
conditions from 1961 to 1990, variations in meteorology 
between years could impact source-receptor relationships 
(Roy et al. 2012).

Updating these source-receptor matrices with data for 
additional years should be a focus of future methodological 
advancements. A way to achieve this is to generate updated 
matrices through new simulations using the latest GEOS-
Chem model version and multiple meteorological reference 
years. Alternatively, exploring other global chemical trans-
port models for deriving source-receptor matrices is pos-
sible, although their complexity often demands substantial 
computational and expert resources (Van Dingenen et al. 
2018). Therefore, a viable option could be to use reduced-
form source-receptor models like the TM5-FASST model, 
which computes atmospheric concentrations based on emis-
sion changes. Given its current reliance on a single refer-
ence year (2000) and regional aggregation, there are plans to 
develop an updated version based on more current reference 
simulations and meteorology (Van Dingenen et al. 2018). 
When available, its potential application in LCIA should be 
explored. Furthermore, the spatial resolution of the TM5-
FASST model is at 1° × 1°; hence, the uncertainties related 
to the coarse spatial resolution of the GEOS-Chem model 
version 8–02-02 would also be reduced if applying the TM5-
FASST model to compute new source-receptor matrices.

4.1.3  Marine fate component and SOS

For the marine fate component and estimation of SOS, 
Vea et al. (2022) showed that their method exhibited good 
agreement with empirical observations identifying criti-
cal areas where the SOS is exceeded. However, several 
parameters were found to be influential and associated with 
uncertainty. These parameters include  O2 reference level, 
 O2 critical level, and benthic zone depth for estimation of 

SOS, XF, and CRT for marine fate and exposure estima-
tion (refer to Vea et al. (2022) for details). In line with 
these findings, the method developed here builds on the 
best available data for these parameters and significantly 
reduces the uncertainty associated with previous methods 
(e.g., Bjørn et al. 2020b; Cosme and Hauschild 2017). For 
example, the CRT that drives the marine fate component 
was based on extrapolation from a few and highly uncer-
tain data points (Cosme et al. 2018). In our method, we use 
high-resolution CRT derived from state-of-the-art global 
ocean‐ice models. While these models contain a degree of 
uncertainty, in particular for inland seas, island chains, or 
heavily ice-covered systems, they are based on currently 
best available data from multiple models with global cov-
erage and high resolution (Vea et al. 2022). Similarly, the 
most sensitive parameter in Vea et al. (2022) was the  O2 
reference (representing an undisturbed environment) used 
for SOS calculation. While the  O2 reference relies on the 
average of simulations from six Earth system models, which 
all involve uncertainty, they nevertheless represent state of 
the art for Earth system modeling.

A crucial step in the development of the method of Vea 
et al. (2022) was the segmentation of the global coast based 
on global average area extent of eutrophication. This seg-
mentation method does not account for spatial variations 
in the area extent of eutrophication, for example, caused by 
differences in transport mechanisms across regions. Future 
research could explore alternative segmentation approaches, 
e.g., estimating area extent of nitrogen transport from a point 
source. This would however require high-resolution data 
describing local effects such as transport flows and direc-
tions influencing freshwater plume structures, which is cur-
rently not available with global coverage for coastal seg-
ments (Vea et al. 2022). Moreover, to increase the accuracy, 
we recommend updating the sensitive parameters associated 
with a certain degree of uncertainty, when improved data 
becomes accessible.

4.2  Method application and operationalization

Our method and associated CFs may be applied in conven-
tional LCA and in AESA (the latter along with associated 
SOS), under consideration of the limitations addressed above. 
This section will outline how our method can be applied for 
decision support and aspects to be aware of when doing so.

4.2.1  Decision support

Applying our method in a conventional LCA can provide 
information regarding the marine eutrophication impact of a 
studied system, enabling producers or suppliers to identify hot 
spots in their production or supply chain, or to compare with 
alternative products. This will allow for informed decisions 
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and targeted optimization in terms of reducing environmen-
tal impacts. In order to support damage modeling, our CFs 
can be combined with effect factors expressing impact results 
as ecosystem damage and loss of biodiversity. For this, the 
EFs developed in Cosme and Hauschild (2016) can be used. 
Moreover, our method could be combined with LCIA methods 
for other impact categories such as climate change, in order to 
avoid burden-shifting. For example, if assessing the impact of 
fertilizer applications, climate change impacts from denitrified 
nitrogen should also be considered.

Using our AESA method would add an extra layer to the 
decision support, namely, assessing whether the production 
that is assessed can be considered environmentally sustain-
able with respect to nitrogen emissions. If the production is 
assessed to be unsustainable, actors can consider whether 
altering their operations or product design could decrease 
their environmental impact to a level below the assigned 
SOS. In addition, the spatial differentiation of our method 
could provide decision support on where companies should 
source their materials. For example, our method could help 
identifying materials associated with nitrogen intensive 
farming operations that are produced in areas with low 
export to coastal segments and that has low occupation of 
the regional SOS.

At the national level for policy decisions, our AESA 
method may be used to assess how to sufficiently reduce 
environmental impacts of nitrogen emissions caused by 
a nation’s consumption and production of goods and ser-
vices that occur within and outside that nation. For this, our 
method could be coupled with multi-regional input output 
models allowing to analyze international trade patterns and 
their associated marine eutrophication impacts similar to 
Bidoglio et al. (2023), but also considering the SOS.

Globally, our method can contribute to understanding 
how to prevent exceeding nitrogen-related SOS in coastal 
waters, while allowing humanity to thrive. The planetary 
boundary concept (Richardson et al. 2023; Rockström et al. 
2009; Steffen et al. 2015) has established SOS for Earth 
system processes essential for the functioning of the Earth 
system, including SOS for nitrogen emissions to the open 
environment. While regional variations were not initially 
accounted for, recent work related to the planetary bounda-
ries by, e.g., Rockstrom et al. (2023), integrated spatial vari-
ations into Earth system boundaries, drawing from research 
of Schulte-Uebbing et al. (2022a, b). In their estimation of 
nitrogen boundaries, they considered thresholds related to 
(1) nitrogen deposition rates (to avoid or limit terrestrial 
biodiversity loss), (2) nitrogen concentrations in surface 
water (to limit eutrophication), and (3) nitrogen concentra-
tions in groundwater (to meet the World Health Organiza-
tion (WHO) drinking water standard). The critical nitrogen 
concentration in surface water was set with the objective 

to protect coastal water. However, this critical concentra-
tion (Rockström et al. 2023; Schulte-Uebbing et al. 2022a, 
b) is spatially generic and does not account for the spatial 
variability in, e.g., coastal residence times and biological 
responses. These factors are important for the estimation 
of reduced oxygen concentration in bottom coastal waters 
driven by nitrogen inputs. To expand the scope of the nitro-
gen boundary, our method and associated CFs could be 
used to translate the spatially differentiated critical oxygen 
concentration limit to new nitrogen boundaries. Hence, this 
would render a boundary considering spatial variability in 
the whole impact pathway and with a better representation 
of the coast.

4.2.2  Delineation between ecosphere and technosphere

As discussed in Sects. 2.1.2 and 3.2.2, our method considers 
nitrogen leaching as a part of ecosphere (i.e., as a part of the 
CFs and LCIA), while the method of Bjørn et al. (2020b) 
considers the agricultural field (including leaching) as a part 
of the technosphere and LCI. However, to our knowledge, 
there is no consensus in the LCA community regarding the 
appropriate approach.

Similarly to the Glasgow consensus on the delineation 
between pesticide emission inventory and impact assessment 
for LCA (Rosenbaum et al. 2015), we propose that flex-
ibility should be allowed when determining the boundary. 
This flexibility should correspond to the study’s goal and 
scope, while also taking into account potential trade-offs. 
When LCA involves an agricultural background process, 
practitioners should verify that the inventory modeling 
matches the CFs to avoid double-counting leaching, either 
by adapting the background process or applying a set of 
CFs with the same delineation. For agricultural foreground 
processes, considering the field as a part of the LCI could 
be reasonable, especially if the goal of the study is to assess 
the effect of agricultural practices on leaching (e.g., catch 
crops or reduced tillage). However, as discussed in Sec-
tion 2.1.2, considering leaching as a part of the ecosphere 
and CF model (as in this study) eases the data collection 
on the inventory part and mitigates potential negative mass 
balance resulting from using individual models to calculate 
the different parts of the nitrogen cycle in the inventory part.

To accommodate these different applications and needs, 
we provide a set of CFs where leaching is considered a part 
of the technosphere, along with the CFs where it is con-
sidered a part of the ecosphere (SI-1, Figs. S5 and SI-3 for 
CF data). However, to ensure consistency and avoid dou-
ble counting, we propose launching an initiative akin to 
the Glasgow consensus, to establish consensus about the 
delineation between fertilizer emission inventory and impact 
assessment for LCA.
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4.2.3  Aggregation and method operationalization

As demonstrated in the case study, our CFs apply to LCA 
studies with inventory data that can be spatialized to the 
resolution of our method. To extend their use to cases where 
the inventory cannot be spatialized to this degree, we sug-
gest aggregating native resolution CFs into the relevant 
larger spatial scales (e.g., regional, national, continental, or 
global). Following UNEP-SETAC recommendations (Mutel 
et al. 2019), CFs should be aggregated using sector-specific 
emission weights. This minimizes errors from spatial vari-
ability when using large-scale aggregated CFs (Boulay et al. 
2018). Such aggregation would also facilitate the imple-
mentation of the method in LCA software tools, as most of 
these are spatially restricted to country scales (Verones et al. 
2020). The LCA software system Brightway (Mutel 2017) 
is however able to handle the fully spatially differentiated 
methods, and we recommend future studies applying our 
method to use such software if inventory data spatialized at 
a higher resolution than country scale is available.

For AESA, no guidelines currently exist on how to aggre-
gate (1) spatially differentiated AESA method components 
(including SOS) when the exact location of an inventory 
flow is unknown (i.e., to match inventories with a coarser 
spatial resolution) and (2) the results of an AESA (occ.SOS) 
into one (or fewer) indicator that reduces complexity and is 
easier to communicate. In a case study involving activities 
with impacts on a large geographical scale (e.g., our case 
study where air emissions from tomato production impacted 
the entire global coast), the occ.SOS could be aggregated to 
ease the communication of the results. However, aggregat-
ing spatial AESA results presents challenges in maintaining 
information about potential local or regional exceedances 
(Bjørn et al. 2020c; Ryberg et al. 2018). Bjørn et al. (2020c) 
considered this issue and proposed to aggregate AESA 
results into “accumulated exceedances.” Future research 
should explore whether this accumulated exceedance is the 
best approach, or if there are alternative approaches, for 
example, considering existing aggregation approaches in the 
planetary boundary literature (e.g., Richardson et al. 2023; 
Rockström et al. 2023; Schulte-Uebbing et al. 2022a, b).

5  Conclusions

This study presents a complete LCIA method for calculating 
CFs that allow assessing the marine eutrophication impact 
of nitrogen emitted to any environmental compartment in 
relation to the relevant SOS, anywhere in the world. The 
method relies on models representing state of the art of 
their fields, and it addresses current limitations in existing 
marine eutrophication modeling in LCIA and AESA, such 

as missing fate components in the inland nitrogen transport, 
poor data on fate in the coastal compartment, and a coarse 
spatial resolution. In the process of coupling the underlying 
models, we ensure global coverage by including hitherto 
missing coastal regions and integrating denitrification and 
plant uptake in the air emission pathway.

In the analyzed case study, we demonstrate that spatial 
variability within river basins greatly impacts the results, 
highlighting the significance of our method’s increased spa-
tial resolution. Similarly, the finer resolution of coastal com-
partments results in larger occupations of SOS compared to 
existing methods. Despite remaining limitations, the method 
is considered robust as it is based on the best data and models 
currently available and significantly reduces uncertainty com-
pared to existing methods. We strongly believe that our method 
can support more informed and better decisions for managing 
nitrogen and reduce emissions to sustainable levels.
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