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Abstract
Purpose  This research aims to critically assess the suitability of current ISO life cycle assessment standards and practices 
for the challenges of decarbonisation through the use of carbon capture and the circular economy. Currently, the handling of 
wastes, including carbon dioxide, in life cycle assessment varies from sector to sector. We propose several methodological 
innovations to improve transparency and comparability of life cycle assessments to aid in the decarbonisation transition.
Methods  Three approaches have been used to analyse the shortcomings of life cycle assessment for carbon capture and 
circular practices: Recent standards and practices have been assessed to determine their suitability for decarbonisation; Life 
cycle assessment and industry experts were consulted through a workshop held at the University of Bath in September of 
2022; Case studies of industrial decarbonisation projects funded by IDRIC have been conducted to apply solutions to the 
shortcomings identified through the former methods. The issues identified have been categorised into three key areas: (i) 
guidelines and standards; (i) temporal and regional issues and (iii) data quality analysis.
Results and discussion  The methods of handling carbon capture, waste valorisation and circular practices were found to 
vary significantly from sector to sector. Temporal aspects are frequently aggregated in a specific point of time, leading to 
low resolution by neglecting emissions over the duration of the process that creates them. Regionalisation was found to be 
hampered by regional characterisation factors being representative of larger regions but unsuitable at county or state scale. 
Uncertainty and sensitivity analyses, which are key to assessing the validity of the impacts of new and emerging technolo-
gies, were found to be neglected or only partially conducted.
Conclusions and recommendations  The ISO life cycle assessment standards require updating to provide consistency in meth-
odologies to make them suitable for use with carbon capture and circular systems and to avoid ambiguity. We recommend 
that the life cycle assessment community focuses on developing more consistent standards and practices between sectors to 
address carbon capture and circularity; improving the implementation of temporal aspects of impacts; increasing the number 
of studies including uncertainty and sensitivity analyses and moving towards global uncertainty in favour of local sensitivity.
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ALCA	� Attributional LCA
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GHG	� Greenhouse gas emissions
LCA	� Life cycle assessment
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LHV	� Low heat value
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MC	� Monte Carlo simulation
OAT	� One-at-a-time SA
PEFCR	� Product Environmental Footprint Category 

Rules
PLCA	� Prospective LCA
RLCA	� Regional/geographical LCA
SA	� Sensitivity analysis
TEA	� Techno-economic analysis
TH	� Time horizon
TRL	� Technology readiness level
UA	� Uncertainty analysis

1  Introduction

Life cycle assessment (LCA) is a tool used to understand the 
potential environmental impact of products and services by 
tracking different carbon sources and CO2 emissions. Its use 
is widespread within industry, academia, policy and govern-
ment (Bergerson et al. 2019; McManus and Taylor 2015). 
New technologies and strategies are rapidly being devel-
oped to meet global carbon reduction targets, such as the 
UK’s goal of net zero by 2050 (CCC 2020). Assessing the 
environmental and life cycle impacts is essential to ensure 
that they are viable carbon reduction strategies. However, a 
methodological change for LCA is required to effectively 
model carbon over several life cycles, address the impact of 
moving from a linear into a circular economy and precisely 
account temporal and spatial aspects associated with carbon 
capture, utilisation and storage (CCUS) technologies.

In this paper, we have identified three key areas that need 
to be addressed to improve LCA for application to CCUS 
and circular practices: (i) inconsistent guidelines and stand-
ards; (ii) lack of temporal and regional considerations and 
(iii) inconsistency when conducting data quality analysis. 
This paper is structured so that each of these key areas is 

discussed as a standalone part, with a shared conclusions 
and future perspectives section, as shown in Fig. 1. These 
areas were identified through consultation with LCA experts 
from industry and academia at a workshop held at the Uni-
versity of Bath, Bath, UK, in September 2022, by assess-
ing the recently published standards and guidelines, and by 
conducting case studies of emerging industrial decarboni-
sation technologies. Here, we discussed how these aspects 
are currently being handled in practice and in the current 
guidelines and offered recommendations to improve these 
aspects and allow consistent allocation of carbon. Several 
areas for further work were identified as critical for carbon 
modelling, including inconsistent use of terminology, lack 
of clarity in the descriptions of methodological choices or 
assumptions, time frame resolution, regional representative-
ness, technology readiness level and data quality. Tools and 
recommendations for the best practice are also provided.

2 � PART I: Guidelines for carbon capture 
and storage, and circularity

Carbon modelling is critical to decarbonisation, but also 
to the success of several industries and businesses as they 
develop to meet carbon targets, and therefore in recent 
years several guidelines have emerged. Indeed, guidelines 
and case-study frameworks can be helpful to model the 
potential environmental impact of different products from 
specific manufacturing processes. However, the diversity 
of estimates, approaches and scopes of different guidelines 
could limit the precision of LCA outcomes, misdirecting 
investments or causing serious issues for comparing the 
environmental performance of technologies/products with 
previous studies. Six guidelines were reviewed in the next 
sections and their application for moving forward a circu-
lar economy were critically discussed.

Fig. 1   Structure of this paper. 
Each of Parts I–III are able to 
be read independently of each 
other with shared conclusions 
and perspectives covered in 
Part IV
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2.1 � Life cycle assessment frameworks

Along the years many guidelines and frameworks were 
reported by specialists. The following sections shows a 
non-exhaustive presentation of the most recent/established 
guidelines. Table 1 summarises the key modelling aspects 
of some common and recent guidelines that have been used 
for industrial and academic assessments.

2.1.1 � International Organization for Standardisation, ISO

ISO 14040 (2006) and ISO 14044 (2006) are commonly 
used and followed within LCA. ISO standards are generic 
working methodologies for best practices which allows flex-
ibility of use over different applications. However, on the 
interpretation stage, there is a lack of guidance for the uti-
lisation of uncertainty (UA) and sensitivity analyses (SA) 
(Igos et al. 2018). Both UA and SA are critical as products 
manufacturing is moving forward a circular economy since 
novel technologies requires the prospection of their environ-
mental impacts. On one hand, assess the uncertainty of the 
environmental performance could support accuracy on com-
parisons of emerging technologies with the well-established 
production systems. On the other hand, the SA could identify 
the core of uncertainties or select the environmental bottle-
necks to be optimised for enabling environmental gains over 
fossil-based products, for instance. Certainly, evaluation of 
uncertainties becomes more significant for low than high 
technology readiness level (TRL) since the data availability 

and quality are usually poor on the early stage of a process 
development. Regarding on environmental performance 
evaluation, a simplest LCA approach truncated on a linear 
modelling without uncertainty and temporal aspects of the 
technology deployment becomes obsolete due to low repre-
sentativeness of impacts prospection of circular production 
systems. LCA modelling systems have developed rapidly 
since the ISO standards conception to address key issues of 
using LCA as a tool towards global net-zero targets, allowing 
the development of other guidelines and policies alongside in 
an effort to account for this rapid change and cover some of 
the modelling aspects associated with circularity and carbon 
capture and utilisation (CCUS).

2.1.2 � Techno‑economic assessment and LCA guidelines 
for CO2 utilisation

Reported by the global CO2 initiative (Langhorst et al. 2022) , 
this guideline aims to solve the lack of standardisation for 
CO2 utilisation and provide methodologies for overcoming 
common challenges in LCA modelling for CCU. Aligned 
with ISO standards and attributional LCA approach, it could 
be applied for both the academic and industry sectors. The 
guideline is actively being updated on a biennial basis, the 
third and most recent iteration, which builds on the previous 
versions released in 2018 (v1.0) and 2020 (v1.1) is described 
here. The book offers recommendations to lessen the ambigu-
ity of TEA and LCA for CCUS techniques. The lack of cohe-
siveness, openness and comparability of CCU investigations 

Table 1   Summary of LCA modelling and guidelines. [1] Generic, 
applicable to many processes/products. [2] ‘Shall, should, and may’ 
guidelines are used. [3] The socio-economic aspects are mentioned 
and described, but the regionalisation modelling of the LCA char-

acterisation impacts is just mentioned. [4] Dynamic characterisation 
factors are fully described for the TEA combined with LCA guide-
lines. [5] The circularity is regarding new strategies for mitigating 
environmental impacts. [6] Sector-specific guidelines.

Source
ISO 

14040 & 
14044

Techno-Economic 
Assessment & Life 
Cycle Assessment 

Guidelines for CCU

Life Cycle 
Assessment of 

Circular Systems

Responsible 
Steel International 

Standard

Whole life 
carbon assessment 

for the built 
environment

PEFCR

Primary 
Considerations

ALCA

CLCA

Economic Allocation

Mass Allocation Legend:
Energy Allocation

Sub-division of System
Mention & 
describe

System Expansion

Circular LCA Mention only
CCUS

Temporal

Dynamic Inventory
Do not 
mention

Dynamic 

Characterisation Factors

Delayed Emissions

Regionalisation Regionalised LCA

Data Quality 
Analysis

Uncertainty Analysis

Sensitivity Analysis

Comments [1] [1,2,3,4,5] [6] [6] [6] [1] 

References

(ISO 

14040, 

2006; ISO 

14044, 

2006)

(Langhorst, 2022)
(ICCA, 2022a, 

2022b)

(ResponsibleSteel, 

2022)
(RICS, 2017) (EC, 2017)
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were addressed by the authors. The focus of this guideline is 
the technical-environmental analysis of novel technologies to 
support the transition of the linear to the circular economy. In 
this sense, the techno-economic analysis was fully described, 
and all aspects of the combined LCA-TEA were discussed. 
Combined with the TEA, a condensed, peer-reviewed paper 
with CCU guidelines has also been released (Zimmermann 
et al. 2020), where additional socio-economic issues and con-
siderations were briefly discussed.

2.1.3 � Life cycle assessment of circular systems 
by the International Council of Chemical  
Associations (ICCA)

The International Council of Chemical Associations (ICCA) 
have built on a case-study of plastics by Voulvoulis et al. 
(2020) to provide a critical overview of LCA methodolo-
gies (ICCA 2022a) and a guide accompanied by case studies 
(ICCA 2022b). The overview aims to increase the acces-
sibility of LCA for circular systems by highlighting the 
major components of LCA studies and frequent problems 
addressed by analysts. The industrial case-studies offer 
examples and advice on establishing the primary LCA esti-
mates, which covers the following topics: system bounda-
ries, functional units and appropriate inventories for circular 
systems. Issues related to the development of the circular 
economy and its impact on the LCA modelling (e.g. shared 
burdens/gains of recycling) were fully described and dis-
cussed. Although the examples are briefly communicated, 
the ICCA framework offers a strong foundation for LCA 
analysts who are new to modelling circular systems.

2.1.4 � Product Environmental Footprint Category Rules 
(PEFCR)

Market-based PEFCR methodology is currently being 
developed for use in public communication reports and 
does not consider projections of future scenarios (EC 2017; 
Zampori and Pant 2019). This guidance is focused on well-
established technologies and products, as it requires a lot 
of information about the supply chain, details about the 
production, use and waste management phases. All waste 
streams generated during the manufacturing, distribution, 
use and end-of-life phases are modelled with the Circular 
Footprint Formula (CFF), as well as all recycled or recycla-
ble materials entering or leaving the system (i.e. recycled 
materials used in the manufacturing phase and recyclable 
materials generated at the end of the product’s life). The CFF 
consists of three parts which are: material formula, energy 
formula and disposal formula. All results are summed to 
calculate the total amount of emissions and resources that 
are part of the system’s inventory due to all stages. The 
PEFCR method widely describes decision making guidance 

based on different literature documents, which includes 
ISO (14,040; 14,044; 14,067; 14,046; 14,020; 14,021, 
14,025;14,050;14,071;14,024) and ILCD (International 
Reference Life Cycle Data System). The PEFCR method 
does not focus on carbon sequestration, but some aspects 
of LCA modelling may be helpful and are discussed in the 
following sections.

2.1.5 � Responsible Steel International Standard, 
(Responsible Steel 2022)

The Responsible Steel is a non-profit organisation that 
operates a global multi-stakeholder programme to certify 
and standardise the steel industry with the objective of 
achieving sustainability. The programme evaluates steel 
producers based on 13 principles one of which is climate 
change and greenhouse gas emissions. Although it is not an 
LCA guideline, it provides recommendations for monitor-
ing scope 1, 2 and 3 GHG emissions in line with the Paris 
Agreement’s global goals. It has been included in this article 
as it serves as a point of reference for some of the indus-
try experts invited to the aforementioned LCA workshop. 
Similar criteria exist for the other 12 principles, including 
responsible sourcing of input materials, noise, emissions, 
effluents and waste, water stewardship and biodiversity. The 
initiative is relevant amongst major steel manufacturers and 
consumers such as ArcelorMittal, POSCO, Tata Steel and 
Mercedes-Benz, which are all full members of the standard. 
Full membership is open to direct steel producers, consum-
ers and entities with environmental interests in sustainable 
steel, whilst associate membership is open to government 
organisations, trade associations and standard bodies. How-
ever, the guideline is sector-specific for steel industry and 
users, which renders the application of the recommendations 
and guidance not suitable for other industrial processes.

2.1.6 � Whole life carbon assessment for the built 
environment, RICS (2017)

The Royal Institution of Chartered Surveyors (RICS) devel-
oped a methodology known as a Professional Statement (PS) 
for the evaluation of whole life carbon for buildings. The 
PS is based on worldwide environmental impact assessment 
and sustainability standards, including ISO 14040 (2006) 
and ISO 14044 (2006) as well as European requirements. 
The system boundaries taken into account by the PS include 
every stage of a building project, including the extraction 
and transportation of raw materials, the building phase, 
operation and maintenance, and the end of life of the prod-
uct (EoL) to calculate the global warming potential (GWP). 
GWP was the only indicator considered within this meth-
odology, and it was evaluated exclusively for the building 
sector—which eventually limits the LCA scope, especially if 
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the system boundaries are broad. The PS provides an exten-
sive description of what should be relevant and included 
on the LCIA at each stage of the assessment and carbon 
sequestration accounting methods for various construction 
materials, which may be useful to LCA analysts looking at 
reuse and recycling of products.

2.2 � Technology deployment of CCUS, circularity 
and LCA modelling

LCA can be used to identify critical points during the design 
of novel manufacturing processes by comparing them with 
commercial products/processes (Langhorst et al. 2022). 
Multiple scenarios can be considered through the system 
operating from small to large operational scale (Cucurachi 
et al. 2018). At the early stage of the technology develop-
ment, designers can create long-term strategies to reduce 
emissions and compare different scenarios to evaluate the 
environmental performance of different products, opera-
tional conditions and processing strategies. However, the 
comparison of LCIA of CCUS processes can produce mis-
leading results due to the lack of representative data to build 
the mass and energy inventories, resulting in high uncer-
tainty and misleading decisions (Moni et al. 2020).

The reproducibility of an LCA or even the re-use of tech-
nology information is limited by the lack of mass and energy 
datasets or enough details of the process’ mechanisms, kinet-
ics or estimates. Alongside, lack of transparency in the LCI, 
whether deliberately (e.g. to protect commercially sensitive 
information) or not, makes replication of the study challeng-
ing and in turn limits the future applications of the LCA in 
question such as using it as an upstream process in another 
LCA. This leads to an overall reduction in the quality of the 
study (Bisinella et al. 2021). Quality examples of this are 
Blume et al. (2022) where the authors provide the material 
flows required to build an industrial-scale battery in a con-
cise flow chart and Sharma et al. (2021) who provide the 
inventory in tables to identify material and energy flows for 
different foreground processes of a pharmaceutical manu-
facturing process. The comparison of the environmental 
performance is especially important for emerging technolo-
gies to produce commodities since they should provide high 
beneficial impacts to be considered as an alternative to the 
current production process. Although the comparison of the 
assessments and/or comparative assertions are the focus dur-
ing the scope definition phase for all CCUS frameworks 
(EC 2017; ICCA 2022b; Langhorst et al. 2022), a variety of 
LCA modelling options are available, also hampering the 
comparability of LCIA of different studies.

The considerations of specific LCA guidelines vary at 
different levels, which includes fundamentals adjustments. 
Assumptions and estimates during the LCA modelling start 
at goal and scope definition, in which not only reference 

flows and functional unit are defined but also system bound-
aries, cut-offs, spatial–temporal considerations, co-products 
and waste management strategies might be established. The 
complexity of the model and the number of assumptions 
required can increase substantially as the model becomes 
circular, accounting for the reuse and recycling integrated 
with carbon capture and waste management under temporal, 
regional and supply–demand constraints. Indeed, the appli-
cation and/or comparison of different LCA is not a straight-
forward task and could be challenging due to conflicting 
outcomes that depend on primary assumptions and inter-
pretations. ‘Traditional’ LCAs are modelled with a linear 
approach, in which some cut offs are applied in the system 
boundary to determine the environmental outcomes of a spe-
cific manufacturing process or product. Qualitatively, the 
linearity of products manufacturing is used to simplify the 
complex ‘carbon web’ of the circular economy, which was 
represented by the diagram from Fig. 2.

Other key-decisions could diverge significantly, such as 
the allocation of burdens and benefits due to the implemen-
tation of circular strategies.

2.2.1 � Allocation and circularity issues

Potential environmental impacts can be affected by the choice 
of allocation methods (Lauri et al. 2020). The decision hier-
archy for multifunctional processes generally follows the next 
steps: (1) subdivision, (2) system expansion, (3) allocation 
based on physical relationship and (4) allocation based on other 
relationship (ISO 14044 2006; Langhorst et al. 2022; Zampori 
and Pant 2019). Subdivision and system expansion can be used 
to prevent allocating (ISO 14044 2006); however, the CO2 pro-
duction in CCU processes makes this unfeasible (Langhorst 
et al. 2022; Zampori and Pant 2019). This method can also be 
used to ease complications when data is limited (Langhorst 
et al. 2022). Theoretically, the system expansion process should 
be extended to model the whole technosphere. However, only 
major flows and processes are included due to the application 
of the cut-off criteria (Langhorst et al. 2022; Zampori and Pant 
2019). Physical causality, economics or other non-causal physi-
cal association can be merged with system augmentation to 
demonstrate multifunctionality subdivision.

Normally, the allocation of a multiproduct system is 
based on physical (e.g. mass and energy content) and eco-
nomic properties, having each of them different applications. 
For example, allocation using mass criteria enables an easy 
comparison between different systems, due to its access to 
readily available data. It can be used broadly with most pro-
cesses aside from modelling power plants, where the energy 
allocation is suggested. However, when it comes to CCUS, 
energy allocation is not strongly recommended for processes 
with different low heat values LHV (e.g. O2, CO2) or by-
products with high content of water (as the digestate from 
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biodigestion processes) where the LHV is zero (Langhorst 
et al. 2022). In these cases, an economic approach should be 
taken for allocating multifunctional systems.

The economic allocation gives more realistic impacts to 
low valuer by-products (Lauri et al. 2020), facilitates the 
comparison of both technologies and products, providing 
a fast analysis of different scenarios. The practical aspect 
of this approach could be valuable for policy makers, but 
it should be used carefully due to the dynamic nature of 
the process economics. In fact, the fluctuation of prices 
and inflation rates might impose a period of validity for the 
environmental study with this approach, which results are 
very sensible to the timeframe and product’s market. Addi-
tionally, the carbon source can be modelled as a waste or 
as a by-product (Freitas et al. 2021). At the former LCA 
scope, Jensen et al. (2016) considers the effects of CO2 from 
waste treatments being released directly to the atmosphere 
whereas the latter modelling could be explained by consider-
ing CO2 as a feedstock at the cement production for enabling 
its capture and storage on the final product, as proposed 
by McDonald et al. (2022). Economic allocation could also 
be influenced if recycled streams in LCA are modelled as 
wastes (by neglecting previous environmental burdens) or as 
by-products from background processes (by including envi-
ronmental burdens of the previous processing). The recov-
ery of wastes into products by CCUS technologies could 
under valorise eco-friendly products since lower impact 
burdens could lead to lower prices than ones that uses raw 
materials. From an industrial stakeholders’ perspective, the 

green premium value of eco-friendly production pathways 
could be lost. The market value from CCUS manufactur-
ing products might be misjudged since the ‘main’ product 
has a much higher price compared to other coproducts from 
‘wastes’(Ardente and Cellura 2012).

The comparison of the environmental performance 
of different CCUS technology systems could be also 
facilitated by a standardised allocation of the functional 
unit for multiproduct and system boundary. In this 
context, the PEFCR guideline limits the LCA scope in 
three categories: (a) single application/function; (b) single 
function with different applications or (c) technologies/
materials. The system boundary is also limited to cradle-
to-gate (only for intermediate products manufacturing) or 
cradle-to-grave. Alternatively, the pre-stated scopes can 
be used as constraints for the functional unit. Langhorst 
et  al. (2022) guideline has two main scopes: (a) CCU 
product or (b) energy storage. Then only mass, energy 
content, energy/technical services or satisfaction of 
energy demand are options for the function unit. The 
suggested system boundaries for this guideline consider 
chemical composition and benchmark of the products. 
Cradle-to-gate system boundary is appropriate for CCU 
products with similar chemical structure and composition. 
Otherwise, a cradle-to-crave approach should be 
employed. Likewise, other guides are malleable and allow 
definition of distinct function units, allocation approaches 
and system boundaries according to various potential 
scopes (ICCA 2022b). The allocation decision could be 

FIG.  2: Conceptual difference between linear and circular LCAs, where the links among inputs/outputs were 

qualitatively designed.

Fig. 2   Conceptual difference between linear and circular LCAs, where the links among inputs/outputs were qualitatively designed
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more complex for systems with more than one product, 
which requires an especial attention.

Allocating the environmental credits and burdens to 
producers and users in a complex multifunctional process 
involving re-used or wasted products, can be challenging. 
Consider, for example, a primary industry (e.g. steel, alu-
minium or polymers manufacturing), the products might 
be produced by using either virgin or recycled materials 
(EoL). By modelling life cycle assessments (LCA), we 
can understand better how to account for these credits and 
burdens, allowing us to compare traditional fossil-based 
production with greener alternatives or simply accounting 
for different waste management solutions at the EoL such 
as recycling, incineration and landfilling.

LCA allows us to view the system from a window which 
is movable thus taking into consideration different meth-
ods of waste management with or without its transforma-
tion back into usable products. The circularity aspect of 
the system expansion approach regards on sharing the ben-
efits/burdens between the primary and secondary product 
(ICCA 2022b). For academic purposes, the issues of dou-
ble counting the benefits of the eco-friendly alternatives 
could be avoided easily and the comparison of results is 
practical if all assumptions are stated at the same study. 
However, the waste generation and its management could 
be deployed by different stakeholders—here the system 
boundaries are shared, and the environmental aspects must 
be split to benefit all parts. Issues as the double account-
ing of the benefits of recycling for different industries can 
arise. In this context, a hybrid allocation can be effective 
as an alternative to other strategies.

Circular Footprint Formula (CFF) is a hybrid allocation 
formula that combines material, energy and disposal ele-
ments to measure the emissions and resources connected 
with a process including recycling, disposal and energy 
recovery (EC 2017; Zampori and Pant 2019). The system 
boundaries are flexible for applying the CFF, which could 
be cradle-to-grave or cradle-to-gate (limited to intermedi-
ate products); nevertheless, the differences of the mod-
elling shall be accounted. Intermediate chemicals, for 
instance, can be transformed in a large variety of products 
with distinct applications, which hampers the EoL mod-
elling during the LCA study and changes the CFF (EC 
2017; Zampori and Pant 2019). To facilitate its commer-
cial application, some flexibility can be considered based 
on negotiations amongst policy institutions and industrial 
clusters. The lack of temporary and permanent carbon 
storage and/or delayed emissions aspects (EC 2017; Zamp-
ori and Pant 2019) can be an issue of the application of 
this strategy for comparing CCUS technologies. Figure 3 
summarises the main aspects of the LCA modelling for a 
linear approach.

2.2.2 � Time and space limitations

Temporal aspects in guidelines are more concerned with the 
technology development (EC 2017; Langhorst et al. 2022; 
Zampori and Pant 2019), rather than the dynamic aspect 
of the inventory or emissions. The credits for the CCUS 
application are not considered, which means that all 
emissions and removals are not discounted over time as 
default (EC 2017; ISO 14067 2018; Langhorst et al. 2022; 
Zampori and Pant 2019), especially for fuels due to low 
significant effect is expected—short life cycle (Langhorst 
et al. 2022).The timeframe of the emissions during all life 
cycle of the product, as well as the delayed emissions resulted 
from different technologies or disposals during the EoL, 
for instance, are recommended as additional information. 
It may be reported when the chemical structure of the 
products leads to different emission time profile over the 
conventional product for cradle-to-grave analysis (EC 2017; 
Langhorst et al. 2022; Zampori and Pant 2019). Although 
these temporal considerations are usually not mandatory 
on the carbon footprint modelling default (EC 2017; ISO 
14067  2018; Langhorst et  al.  2022; Zampori and Pant 
2019), they are key factors for comparing the environmental 
performance of CCUS technologies.

Alongside temporal aspects, spatial characteristics can 
have a major impact on the outcome of an LCA and must be 
highlighted. Moving resources across different regions can 
lead to different impacts depending on the origin and des-
tination. For example, the method of transportation, popu-
lation density of regions, resources available, etc., can all 
change the final impact assessment for each geography. Fur-
thermore, different regions may use different impact CFs, 
the resolution of which can be on a continental, country or 
county scale. Considering two identical processes with the 
same resource flows in Europe and South America would 
yield different impacts as these regions have their own CFs 
(Yang 2016).

2.2.3 � Opportunities for circular life cycle assessments

To enhance the circularity and resolution of LCA studies, 
attributional (ALCA) or consequential (CLCA) are com-
bined with economic analysis (Faber et al. 2022), dynamic 
inventories/emissions and market supply/demand (Aldaco 
et al. 2019; Ryu et al. 2022). On the industrial scope, the 
retrospective approach fits well-established technologies. 
Here the data availability is large, and the analysis usually 
considers commercial products or technologies. In contrast, 
the prospective approach uses limited data from research 
and development stages to assess potential impacts of new 
products or technologies, especially for CCUS. Indeed, the 
market of some products from CCU relies on the future and 
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their deployment or comparison with well-established mar-
kets could be biassed and uncertain. In this context, foresight 
studies for exploring future LCA scenarios have been used to 
evaluate potential environmental impacts of emerged tech-
nologies by exploring future situations in policy decisions, 
business strategy and resource management (McDonald 
et al. 2022; Pinto et al. 2022).

Consequential, dynamic and prospective market demand 
are some of the methodologies available on the literature for 
future-oriented LCA modelling (van der Giesen et al. 2020). 
The future scenarios methodologies to assess the LCIA is com-
plex and difficult to generalise due to a variety of possibilities, 
archetypes (input, output, hybrid), estimates (e.g. time-frame) 
and absence of systematic interpretation (Bisinella et al. 2021). 
According to Bisinella et al. (2021), the divergence on the defi-
nitions of these approaches in different guidelines (e.g. ISO, 
ILCD) and the non-existence of standards resulted in multiple 
approaches for future-oriented LCA modelling (Bisinella et al. 
2021). Besides, the uncertainty of the inventory could be rep-
resentative on the outputs of the prospective LCA.

The main sources of uncertainty on the inventory phase are 
data quality, TRL and market maturity (Bergerson et al. 2019). 
Although the complete material and energy balances are required 
to estimate the life cycle of CCUS products, a novel process 
depends on low-quality data from experimental proof of con-
cept, or validation on pilot-scale or even lab-scale (Cucurachi 
et al. 2018; Piccinno et al. 2016). To avoid future misleading 
results and support the industrial-like scenarios of chemical 
processes with low uncertainties, the stoichiometric balances, 
thermodynamics and other physico-chemical relationships (e.g. 
mass-, energy-, exergy- and entropy balances) shall be considered 
on the inventory development (Langhorst et al. 2022). An abso-
lute best-case scenario shall be used to assess the environmental 
impacts by assuming efficiency of 100% (Langhorst et al. 2022), 
always following the physico-chemical limitations of the system. 
Piccinno et al. reported qualitative and quantitative estimates for 
LCA practitioners when only data from laboratory experiments 
are available—estimates for energy use, batch reactions, puri-
fication and isolation steps were reported for different scales  
(Piccinno et al. 2016). Additional, performance indexes for tech-
nical, economic, environmental, health and safety hazards were 

reported by Sugiyama and collaborators (2008). Indicators help 
to model how much unwanted substances are produced in the 
reaction or how much energy is lost based just on the reaction 
information, for example (Sugiyama et al. 2008).

The maths behind the LCA plays an import role on uncer-
tainty assessments. Both consequential (CLCA) and attributional 
(ALCA) approaches could be used to evaluate the environmen-
tal impacts (Schaubroeck et al. 2021) of different operational 
conditions or technologies through the aggregation of the emis-
sions in a fixed time-frame (Brondi et al. 2021; McDonald et al. 
2022; Pinto et al. 2022). Regarding the mathematical models, 
ALCA and CLCA concept should not be mixed (Schaubroeck 
et al. 2021) because adopting one or another strategy to the LCA 
modelling will change the resolution and scope of the study, 
which plays an important role for assessing industrial emissions 
or forecasting the performance of novel CCUS technologies. 
Some guidelines are based specifically on attributional funda-
mentals (Langhorst et al. 2022), whilst others just state some 
interpretation differences between them (ICCA 2022b). The con-
sequential approach should be explored to enhance the circularity 
representativeness on LCA modelling. Figure 4 summarises the 
conceptual characteristics of the LCA according to resolution, 
circularity level, TRL and uncertainty of processes.

In fact, to ensure early design improvements in a circular 
economy, the LCA study shall be supported by representa-
tive information of LCIA modelling, system inventory (both 
foreground and background), technological landscape (e.g. 
TRL, spatial representativeness), clear definitions of tempo-
ral aspects and standardised conceptualisation /interpretation.

2.3 � Summary

Frameworks for the best practice of LCA for both industrial 
processes and emerged technologies were reviewed and the 
key-aspects of its application on the context of a circular 
economy were highlighted. Temporal and regional aspects 
were identified as key modelling considerations that are not 
clearly covered on former guidelines, then their practical mod-
elling was critically reviewed in PART II. Moreover, LCIA 
uncertainties and the system sensitivity under process can be 
decisive drivers for technologies screening on an industrial 
decarbonisation scope. Both uncertainty and sensitivity are 
strongly associated to the quality of data that is used for LCA 
modelling, as discussed in PART III.

3 � PART II: Temporal and regional modelling 
for high‑resolution LCAs

3.1 � Time in circular systems

Temporal aspects reflect the complexity of the circular econ-
omy; if correctly accounted, they could provide important 

Fig. 3   Summary of the LCA modelling (EC 2017; ICCA 2022b; 
Langhorst et al. 2022). A Polluters are responsible for the waste gen-
eration, even if that waste is recycled by another manufacturer. B 
All the carbon savings associated with the valorisation of the waste 
into new products are allocated to manufacture that is responsible 
for recycling it. C The system expansion approach is used to account 
potential environmental credits and burdens of different disposals 
strategies, where sharing credits and burdens are possible. D Tempo-
ral aspects include the delayed emissions for CCUS, and environmen-
tal benefits or drains could be shared amongst stakeholders with the 
CFF. E Emissions of stored carbon are delayed in recycled product 
systems leading to higher end of life disposal emissions

◂
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information related to delayed emissions, and recycled prod-
ucts over time, helping to build management and mitiga-
tion strategies to avoid depletion of natural resources. The 
gradual accountability of captured emissions over the prod-
uct lifetime are required to explain CCUS systems and its 
modelling can be complex (Beloin-Saint-Pierre et al. 2020; 
Lueddeckens et al. 2020). Then, simplifications are settled 
by the guidelines (such as those in Table 1) to facilitate both 
LCA modelling and LCIA interpretation. For comparison 
purposes, a straightforward and simple LCIA evaluation is 
possible by aggregating emissions over time or neglecting 
some system dynamics. However, the loss of time resolution 
could lead to misleading conclusions, which could hamper 
the development of a circular economy based on CCUS. In 
this context, policy makers and stake holders might identify 
the emissions profile along the years (with high temporal 
resolution) to meet policies targets and/or carefully address 
the future generations impacts.

Circular systems consider the valorisation of alternative 
carbon sources to avoid emissions in the production of materi-
als and products that would be otherwise produced from non-
renewable resources, preventing with this the release of green-
house gases (CO2 eq.) into the atmosphere (ICCA 2022b). The 
accountability of these factors is dynamic and then, strongly 
related to temporal assumptions on LCA. According to the 
most frequent guidelines (EC 2017; Langhorst et al. 2022; 
Zampori and Pant 2019), the amount and duration of car-
bon storage should be reported as additional information at 
LCIA. Following the LCA principals from ISO 14067 (2018), 
to calculate the climate change impact, the discounting of 
emissions over time and temporary/permanent carbon stor-
age and/or delayed emissions shall not be included. Another 
approach is to consider the avoided emissions as additional 
to or independent of climate change indicators (Langhorst 
et al. 2022) and to assume that it does not contribute to cli-
mate change during a specific period. The lack of temporal 

resolution refers to the assumption that all input and output 
emissions are released at the present time (EC 2017; ICCA 
2022a; Langhorst et al. 2022) by averaging the characterisa-
tion factors scores over 20, 100 or 500 years—as suggested 
by the IPCC guidelines. On bioenergy systems, for instance, 
the delayed emission of the CO2 into the atmosphere is often 
relatively short due to their life cycle which is often between 
3 and 30 years depending on crop type. Then, the advantage 
of the renewable sources for energy production relies on the 
carbon-savings compared to the fossil fuels options. Under 
the Langhorst et al. (2022) guidelines, the comparison of fuels 
and energy storage systems shall include each temporary stor-
age on their cradle-to-grave LCIA; no significant effect is 
expected. It is important to highlight that the modelling of 
biofuels production provides a straightforward analysis of 
the whole life cycle of the final product since its final use/
disposal at the EoL is not as complex as for other chemicals 
as in general, the carbon is released at point of use. In the lat-
ter case, different applications/uses are available to transform 
chemicals into new products that regards on different EoL 
modelling for each potential application.

The temporary or permanent carbon storage could vary 
according to different waste management strategies. Waste-
products could be valorised by recycling or refurbishing at 
their EoL. Materials such as steel, aluminium or polymers 
can be produced from virgin, recycled or recovered mixed 
materials, causing or not changes on the chemical property 
of the final product. For a cradle-to-grave approach, the tem-
porary storage is required for comparing final products with 
different composition (chemicals, material and others). Emis-
sion time profiles may be recommended as additional data 
by other guidelines (ICCA 2022b; Langhorst et al. 2022), 
but no standard practice is provided. Langhorst et al. (2022) 
discussed the delayed benefits of CCU and CCS. The CCU 
affects the emission time profile just if the conventional 
counterparts are replaced by CO2-based products. For CCS 

Fig. 4   Summary of LCA concept, TRL and uncertainty. LCA characteristics according to its resolution (A). Relationship amongst the l uncer-
tainty of modelling, and TRL (B)
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technologies, the EoL emission never occurs, which math-
ematically means permanent storage with zero emission.

In fact, intrinsic differences of the systems might include 
temporal decision on the LCA in diverse levels by establishing 
short- or long-term analysis, dynamic function units, different 
time horizons for the emissions, as well as covering the period 
of data validity or technological obsolescence. The indirect 
factors largely relate to the source, deployment and current 
coverage of the technology, as well as the age and source of 
data. Figure 5 shows a quick-reference for the key-temporal 
aspects and tools for LCA application. Considering the com-
plexity of dynamic modelling and the lack of standards to its 
practice, an overall of the temporal modelling in LCA and the 
available tools were briefly reviewed in the following sections.

3.2 � Time dimension

The transition towards a circular economy can only take place 
over a specific time frame, thus high temporal resolution on 

LCA modelling is essential. The lack of a precise temporal 
definition partly derives from the lack of consensus on how 
to define temporal estimates and dynamic methods (Beloin-
Saint-Pierre et al. 2020). The definition of time on a LCA 
starts on the goal and scope phase. The first decision regards 
to Time Horizon (TH) of a consistent system boundary. The 
TH could be associated to the length of the life cycle of the 
product or service, to the inventory modelling, and, finally, 
to the TH of the characterisation factor, as shown in Fig. 6.

The temporal estimates and considerations are often 
related to LCA drawbacks because they are usually lost dur-
ing the inventory calculation (if the static approach is used) 
or during the impact assessment where the potential dam-
ages/gains can be aggregated in a specific time (Levasseur 
et al. 2010). In a static approach, for instance, we can assume 
that all emissions are taking place at the time where the eval-
uation of the potential environmental drawbacks and benefits 
is made by aggregating emissions at one point (Langhorst 
et al. 2022; Levasseur et al. 2010). Time can be included on 

Fig. 5   Temporal considerations in relation to their purposes on the phases of the LCA methodology. Adapted from (Beloin-Saint-Pierre et al. 
2020; Lueddeckens et al. 2020)

Fig. 6   Variations of the THs during LCA
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LCA directly by dynamic calculations where input and out-
puts flows change over time and gradual impact of emissions 
are estimated by dynamic characterisation factors (CF). Fig-
ure 7 summarises the conceptual representation of the LCIA 
outcomes for both static and dynamic approaches.

Adapted from Pigné et al. (2019) and Langhorst et al. 
(2022).Indirect temporal aspects could be related to technol-
ogy development and deployment, age of data sources and 
lifetime of the project. The time could also appear indirectly 
and limit the systems analysis by their boundaries. In this 
case, the end-of- life of one product can be settled outside 
the boundaries by using a cradle-to-gate approach, which 
consider just part of the emissions of the life cycle of a prod-
uct. A cradle-to-gate approach is usually used to compare 
difference environmental performance due to changes in the 
production processes (e.g. efficiency or technologies) of the 
same products (Fernández-González et al. 2022; Pinto et al. 
2022). Other cut-off approach is related to the waste process-
ing, where just the first grave (recycled content) is accounted 
on the LCA modelling (ISO 14044 2006). Clearly, the real 
benefits over time of additional recycling are lost, leading 
to underestimation of environmental gains.

The inclusion of technosphere and biosphere exchanges 
with a CLCA, dynamic CFs or inventory increases the 
time representativeness of the LCA. These estimates/mod-
els could be combined or not, which means that the study 

can consider the temporal aspects of the inventory with 
or without dynamic CFs. To reduce the model complex-
ity of the inventory resolution, Beloin-Saint-Pierre et al. 
(Beloin-Saint-Pierre et  al. 2014) suggests that it is not 
necessary that the whole inventory to be dynamic, espe-
cially if there are very small emissions. On the scope of 
the CFs, the TH is important due to the temporal delay 
of several years between releases and the effective start of 
the potential environmental damage. The greenhouse gas 
emissions, for instance, show different behaviour depend-
ing on the TH considered and the IPCC provides estimates 
of 25, 100 and 500 years for the global warming potential 
(GWP). On the perspective of the LCA practice, 25 years 
would obviously be too short, underestimating the poten-
tial impacts of CO2 emissions when compared to CH4 on 
the GWP, which are 72 times higher than the former in 
a 20-year TH (Guest et al. 2012; Levasseur et al. 2012). 
The afore mentioned difference is reduced by 25 times in a 
100-year TH, which is the most usual timeframe for GWP 
(Langhorst et al. 2022). Moreover, the GWP-500 can be too 
long leading to high complexity and uncertainty scenarios, 
as well, ignore the urgency of environmental problems, as 
an excuse for no action. Clearly, the scope has a key role for 
settling this timeframe in all situations and the GWP-500 
are still demanded for inferring how the current technolo-
gies/strategies will impact the future generations survival, 

Fig. 7   Conceptual representation of inventory and LCIA for static (A) and dynamic (B) approaches
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for instance. On a dynamic approach, the correct TH should 
be chosen carefully to avoid misleading results due to reso-
lution loses (Levasseur et al. 2010).

The temporal aspects could be used to improve the time 
resolution by accounting the cycle in which the CO2 is cap-
tured during the growth of crops and released after years 
to produce bioenergy or on the EoL of different products 
(Guest et al. 2012). For energy crops, the carbon storage in 
the technosphere benefits are far less pronounced for low 
rotation periods and high TH (Guest et al. 2012). Almeida 
et al. (2015) concluded that the increase of the DLCA model 
complexity did not add value for the analysis of GWP emis-
sions during the energy production from perennial energy 
crops–short-lived product. The authors also suggested that 
the period of temporary carbon sequestration in the biomass 
is short and immediate metrics (e.g. IPCC GWP) should 
be used (Almeida et al. 2015). It is worth to mention that, 
traditionally, the impact over time is neglected and the use 
of biomass as a renewable source is discounted (biogenic 
contribution) by the difference between the carbon that is 
captured and the carbon that is released during the harvest-
ing or at the EoL of the product (SETAC 2011).

Briefly, DLCA allows for an increase in temporal resolu-
tion in several aspects that include (but are not limited to) 
the definition of the functional unit (e.g. one year of energy 
consumption), the temporal distribution of elementary flows 
over time (foreground and/or background processes—supply 
chain (Aldaco et al. 2019) and marked demand (Ryu et al. 
2022)), datasets (Sacchi et al. 2022), technology deployment 
(Faber et al. 2022) and dynamic CFs (Beloin-Saint-Pierre 
et al. 2020; Lueddeckens et al. 2020). To achieve the goals of 
industrial decarbonisation, a specific TH might be set by gov-
ernment policy. In this sense, increasing the temporal resolu-
tion at LCA will enable a clear understanding of the carbon 
capture efficiency of different CCU and CCS technologies.

3.3 � Regionalisation approaches

A Generalised structure for regional LCA has been provided 
by Yang and Heijungs (2016). Their method allows an ana-
lyst to determine the regionalised impacts ( hr ) based on the 
production of input materials from other regions, which is 
defined by the next equation:

For hr, each element of the equation is defined by the 
next expressions
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Note that each of the elements of hr , � r, �r , �r and fr is 
a vector or matrix representing j regions. Even though �r 
might appear square in the generalised form shown above 
the constituent matrices, �11 to �jj may be non-square, result-
ing in �r being non-square. By applying this methodology 
to LCA, analysts are able to assess the impacts of a product 
or process in different regions with greater precision based 
on local impacts such as manufacturing trends and electric-
ity grid mixes. LCA databases such as Ecoinvent contain 
regionalised datasets for the majority of their processes mak-
ing this method widely implemented. However, the regions 
used in the datasets are often broad groupings of countries 
and geographies such as Europe (designated as ‘RER’ in 
Ecoinvent) which is not technologically, geographically or 
ecologically homogeneous.

Regional scales vary between LCI and LCIA which is one 
of the major challenges in regionalised LCAs due to each 
being based at different regional scales (Mutel et al. 2012). 
For example, LCI data may be based on political borders 
between countries, states and regions, whereas LCIA scales 
are often derived from ecological factors such as population 
density, water courses.

The most commonly applied regionalisation method is 
the regional outputs approach (ROP) described by Yang 
(2016) which uses the basic matrix representation of LCIA 
with some modifications:

where � is the technology matrix and a column repre-
sents a process and a row a product, � is the environmental 
matrix that represents the quantity of emissions or natural 
resources emitted/consumed by the processes in � , f  is the 
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R is the regional output percentages, T  transposes R and hr 
consists of row vectors where each row is the quantity of a 
products life cycle emissions that occur in different regions. 
If R was representative of three regions contributing to the 
production of 10 kg of product with 10 kg from region 1, 
8 kg from region 2 and 2 kg from region 3 it would be of 
the form:

More complex and spatially accurate models exist that 
use Input–Output based approaches such as the interregional 
input output model (IRIO) also described by Yang (2016):

where �i denotes environmental emissions from process in 
region i , Aij denotes commodity flows from processes in 
region i to processes in region j . f i denotes final demand 
in region i.

A hybrid approach combining IRIO and ROP models is 
also available:

where Ri(i is 1, 2, …, n ) contains regional output percent-
ages for the subregions defined within region i . The ROP 
and hybrid approaches provide greater granularity than the 
method in Eq. 1, albeit with a larger input data requirement 
and computing time. Therefore, the application of these 
methods may not be suitable when running multiple LCAs 
such as when conducting Monte Carlo analysis.

3.4 � Tools and perspectives

Regionalisation has been implemented into most of the 
commercially available LCA software. It is generally 
handled in two ways: flow-based or geo-spatially based. 
Flow-based approaches use elementary f lows which 
are extended to include regional information whereas 
the geo-spatial approach uses GIS data to derive LCI  
datasets.

One alternative for increasing the temporal resolution 
on the LCA is addressing dynamic conditions in both the 
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inventory and the LCIA phases with the Temporalis software 
tool. It supports 3 types of CFs that could be static (which 
means no changes over time), dynamic (where the values 
change over time and the impact still occur along emissions) 
and extended (which provides the decays rates of each CF 
over time) (Cardellini et al. 2018). In all approaches of this 
methodology, no carbon neutrality is assumed for biogenic 
carbon, which means its emission is accounted immedi-
ately. The dynamic impact assessment method spreads the 
environmental impact over time and a best-first explora-
tory strategy is applied to organise them as function of 
their priority (Cardellini et al. 2018; Zhang and Korf 1993). 
Then, the technosphere exchanges that contribute the most 
receive the highest priority and those with low relevance are 
neglected, as a cut-off strategy. The time of occurrence of 
all environmental interventions is added to a timeline sat-
isfying the requirement of the DLCA even when the static 
CF are selected. The Temporalis methodology is efficient 
in increasing the dynamic resolution of both inventory and 
dynamic characterisation of emissions. The main advan-
tage of the Temporalis approach remains on an open source 
generic method and tool for DLCA implementation available 
in Brigthway2 with framework (Cardellini et al. 2018).

Other exploratory methods are available on the literature 
to account the temporal aspects on LCA (Beloin-Saint-
Pierre et al. 2014; Tiruta-Barna et al. 2016), but with some 
software limitations on running time and memory require-

ments. Methodological improvements considering the 
impact propagation over time and additional background 
data were suggested by (Pigné et al. 2019). The dynamic 
outcome of this approach considers a clear reference to pro-
cess and supply chain functioning, as well as a proper tem-
poral database linked to the background LCI (Pigné et al. 
2019). Another tool software is available online for testing 
purposes (DyPLCA), but the access to the temporal database 
is protected by property rights (Pigné et al. 2019).

Temporally differentiated life cycle inventories and time-
dependent, or at least TH-dependent, characterisation improve 
the accuracy of the LCA. DLCA are attractive for companies 
because the calculation results are more accurate and often 
lower than the static ones. However, the practical use of the 
former methods and tools presents barriers for their imple-
mentation in different contexts of the framework application 
since they are not yet available as user-friendly platforms.

Related to different perspectives, although the temporal rep-
resentativeness of the supply chain have been modelled by the 
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DyPLCA tool (Pigné et al. 2019), the fluctuation on the market 
demand have not been considered during the modelling. Moreo-
ver, the existing market and surrounding product systems are 
not considered on the LCI of static models because they operate 
under steady-state conditions where the average demand and 
supply is generally covered in any scale (Marvuglia et al. 2013). 
From an industrial decarbonisation perspective, different sce-
narios with this scope could support the decision making pro-
cess for complex systems (Marvuglia et al. 2013). The literature 
suggests the application of prospective modelling, where the 
CLCA is usually used on their calculations to project potential 
environmental impacts to the future and cover the interconnec-
tivity between product system -environment. The fundamental 
differences on modelling can be used to classify the prospective 
approach in three different categories: economic models, historic 
trends and future scenarios (Beloin-Saint-Pierre et al. 2020). 
Albers et al. (2019) applied this approach to evaluate conse-
quences of policy-driven transport strategies with time-sensitive 
supply–demand and dynamic CF (Cbiogenic). Aldaco et al. (2019) 
used the prospective approach to compare the environmental 
outcomes of formic acid production from carbon capture and 
storage CCS (geological) by evaluating the potential evolution of 
the energy’s supply system under different climate change sce-
narios (Aldaco et al. 2019); nevertheless, the interference of the 
final product on the market was not accounted by this approach. 
At the best of our knowledge, any tool for the application of the 
prospective modelling mentioned here before is available. Fur-
thermore, the literature presents applications that are not limited 
to CCS and CCU (Beloin-Saint-Pierre et al. 2020), which are 
beyond the scope of this paper.

3.5 � Summary

The inherent variations of the systems could consider time 
within their scope by setting short- or long-term analysis, 
dynamic function units and TH, and also by covering the 
period of validity of the data or technology obsolescence; 
nevertheless, the inclusion of temporal aspects in LCIA 
could have direct or indirect affectations to it. The indirect 
aspects are related mainly to the age and source of the 
data that is used, the technology deployment and the up-
to-date coverage. Related to direct affectations, decisions 
regarding to LCA methods (e.g. consequential), dynamic 
or static inventories and CFs affect the analysis of the 
environmental outputs and can be assessed by different 
programming tools.

The complexity of the modelling, the availability of 
dynamic data, and the tools utilised during the study ham-
pers the temporal calculation on LCA. Only the DyPLCA 
and Temporalis frameworks are available as tools. Fur-
thermore, a limited selection of environmental categories 
has dynamic CFs. The process network modelling is com-
plex due to the interaction of extensive timespans of the 

foreground (analysed process) and background (all supply-
chain) data (Pigné et al. 2019). The temporal uncertainty 
and model complexity must be reduced by choosing the best 
compromise between accuracy and computational practical-
ity (Pigné et al. 2019). Although the DLCA outcome pro-
vides high-quality information, its interpretation could not 
be as straight forward as the static approach. In this sense, 
the LCIA’s scope, the technological state of the art, and the 
accessibility of the data should all be carefully considered 
when evaluating the inclusion of temporal aspects.

Regionalisation requires regional inventories and CFs 
which can be difficult to obtain at the same regional resolu-
tion. Given this, the onus of improving regionalisation relies 
on data collectors to improve the resolution of regional data 
and regional CFs, although this may be a monumental task 
involving the geopolitics of regions as regional CFs are often 
provided by state bodies. This can lead to different impacts 
when considering the regional impact of a process operating 
near and trade over international and intranational borders.

When circularity and regionalisation are considered 
in tandem, the processes remain the same. However, the 
regional vector or matrix (depending on the approach) needs 
to be adjusted to include a greater number of product trans-
ports between sub-regions leading to a more demanding 
analysis that also require temporal analysis as ‘wastes’ are 
generated and consumed cyclically.

4 � PART III: Data quality analysis

4.1 � Significance

In this section, we aim to address the shortcomings of the 
ISO guidelines with regards to data quality analysis and pro-
vide LCA analysts with methodologies to conduct UA and 
SA to improve the quality of their LCAs. All input data to 
an LCA model has some degree of uncertainty. Whether 
that uncertainty arises during experimental data collection, 
extrapolating data through time and across geographical 
boundaries, unverified data or from many other sources, it 
must be accounted for in the LCA output to accurately con-
textualise the importance of the results. Sensitivity analy-
sis (SA) is then applied to the uncertainty analysis (UA) 
to model how the system responds to the uncertain values 
in the system. Properly applied, uncertainty and sensitivity 
analyses provide information on the predicted distribution 
of outputs and how a system reacts to perturbations in the 
inputs from a base case (Cucurachi et al. 2021).

Considering the environmental impacts of emerging 
technologies, it is essential to evaluate both the uncertainty 
associated with the technology and the sensitivity of the sys-
tem to perturbations in the inputs. However, uncertainty is 
rarely included in published LCA studies. A meta-analysis 
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of papers published in leading LCA journals conducted by 
Bamber et al. (2019) found that only 19% of ALCA and 
15% of CLCA studies included some form of UA. Lo Piano 
and Benini (2022) found similar results as well, identify-
ing that many authors confuse UA with SA or conduct only 
UA or SA, but rarely both. Most major LCA software have 
built in UA, SA, Monte Carlo simulations (MC) for UA, and 
one-at-a-time (OAT) SA (Igos et al. 2018). Bamber et al. 
(2019) attribute the absence of UA to several factors: a lack 
of understanding of the importance of UA; the time required 
to conduct a thorough UA; and insufficient uncertainty data 
available to the analyst. Additionally, the amount of informa-
tion presented in the ISO 14040 and 14,044 guidelines on 
data quality analysis is scarce, leaving the analyst to conduct 
UA and SA without any specific guidance as to which meth-
ods are appropriate; therefore, many analysts choose not to 
conduct UA or SA.

4.2 � Uncertainty analysis

4.2.1 � Sources of uncertainty

In a recent review of UA in LCA studies, Lo Piano and 
Benini (2022) found that LCA analysts do not include all 
sources of uncertainty. Typically, when UA is conducted, 
only the uncertainty of the input parameters and/or CFs are 
considered. Commonly disregarded sources of uncertainty 
include model uncertainty and uncertainty in the context of 
the study; for example, two identical processes, one based 
in the UK and one based in mainland Europe, will have dif-
ferent associated geographical uncertainties when using a 
dataset produced from a Swiss case study. A typical LCA is 
traditionally done with low spatial resolution using regional, 
country-wide, continental or world-wide CFs during the LCI 
or LCIA phase depending on the availability of spatial data. 
Regional impacts are dependent on the impact category 
being applied. For example, Yang (2016) states that for the 
case of CO2 the emissions, X , from producing a product, 
Z , in region Y would be identical when Y is varied. How-
ever, if human health were a major concern, the impact of an 
emission would vary with factors such as population density. 
For example, if benzene were emitted in Central London, it 
would result in a more severe human health impact com-
pared with the same emission in Cheddar, a significantly 
less-dense village 180 km to the west of London.

To properly represent the uncertainty of a process, all 
sources must be quantified. A common approach in LCA to 
account for this is the use of pedigree matrices, which were 
introduced by Functowitz and Ravetz (1990). For example, 
many the datasets found in popular LCA databases, such 
as Ecoinvent (Wernet et al. 2016) and GaBi (Kupfer et al. 
2021), are accompanied by a pedigree matrix which consid-
ers six sources of uncertainty: the reliability of the data; the 

completeness of the data; temporal correlation; geographical 
correlation; technology correlation; and a basic uncertainty 
based on the type of process of the dataset. A value from 1 
to 5 is assigned to the first five uncertainty sources, with one 
being completely representative of the process and 5 being 
loosely representative. For example, a geographical corre-
lation of 1 indicates that the data is from the area studied, 
whilst 5 indicates that the data is either from a distinctly 
different area, such as another continent, or is unknown. The 
scores are then combined to calculate the geometric stand-
ard deviation with a 95% prediction interval which can be 
used for the UA (Ciroth et al. 2012). The benefit of using a 
pedigree matrix for uncertainty representation is that it can 
be easily produced for a given input and, to some extent, it 
accounts for unknown data by assigning a pedigree of 5, 
leading to a high uncertainty distribution.

Applying spatial data from one region to another reduces 
the quality of the data and increases the geographical com-
ponent of the pedigree matrix and in turn adds uncertainty. 
The same logic can be applied to other sources of uncer-
tainty such as temporal relevance, technology used and reli-
ability of data.

4.2.2 � Uncertainty methodologies

When considering methodologies for UA, LCA analysts 
should also consider the software they are using to conduct 
the LCA. Igos et al. (2018) compared the functionalities of 
LCA software suites and found that the methods, charac-
terisation and probability distributions differ. MC simula-
tion propagation of the uncertainty is the most implemented 
method for LCA; the method iteratively calculates the LCIA 
scores with pseudo-randomly generated parameters based 
on the input distributions. MC also provides reliable outputs 
to users and allows the utilisation of different parameters, 
making it one of the best methods for uncertainty propaga-
tion. However, there are two major issues with MC in cur-
rent LCA software suites. First, it is time-consuming as it 
requires to conduct a determine amount of iterative LCIA 
calculations to be statistically significant, and second, mass 
balance preservation is rarely, if ever, done in MC. The lack 
of mass balance preservation leads to a non-representative 
distribution outcome of the actual response of the system 
to perturbations.

We strongly suggest the continued use of MC for UA, in 
agreement with the methodology described in Langhorst et al. 
(2022), but encourage the LCA software developers to imple-
ment mass balance preservation and speed ups to complete 
a statistically significant number of iterations—typically 
10,000 according to Langhorst et al. (2022) and possibly up 
to 1,000,000 as shown by Wei et al. (2016)—in a reasonable 
time frame. One such speed up is implemented in Brightway2 
(Mutel 2017) where the first guess for the LCI calculation 
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in subsequent MC iterations is the previous iterations results 
allowing the Brightway2 software to calculate more than 100 
iterations per second. Other methodologies that give similar 
level of information but with faster computation times include 
quantitative stochastic uncertainty (Taylor series), fuzzy logic 
(Agarski et al. 2016) and regression analysis. However, to 
our knowledge, these methods have not been implemented 
in LCA tools yet.

4.3 � Sensitivity analysis

SA is the process of determining how the uncertainty in the 
inputs affects the output uncertainty of a process, model or 
system. SA is generally conducted by recalculating outputs 
with small changes to two or more inputs and quantifying 
the impact that each varied input causes, in contrast to UA, 
which does not identify the assumptions responsible for 
uncertainty in the output (Saltelli et al. 2019). Similarly, 
ISO 14044 (2006) suggests to LCA analysts to conduct SA 
as part of their analysis but do not give a definitive method 
to do so.

4.3.1 � Local sensitivity analysis

In a study conducted by Ferretti et al. (2016), it was found 
that local SA is more widely applied than global SA, as for 
every 100 SA studies that were reviewed, only 4 were global, 
with one-at-a-time (OAT) sensitivity analysis the most com-
monly used method, as such OAT and local SA have become 
near synonymous. OAT sensitivity varies one factor at a time 
whilst keeping the other factors at the base scenario value. 
The output, y (where y = f (x) and x is a vector containing 
all inputs), local SA is more commonly applied than global 
SA. Along with an input, xi , can be used to calculate the 
sensitivity index, Si:

This method can be quick to calculate the sensitiv-
ity of many parameters compared to other methods, 
hence its popularity. However, OAT does not give any 
insight into how each variable of a model changes with 
another. Because of this the results of OAT SA quickly 
become very limited as the number of varied param-
eters increases. This concept is represented graphically 
in Fig. 8.

A more in-depth description of the faults of local SA 
methods is given by Saltelli et al. (2019). The use of OAT 
can however be beneficial if the input consists of one (or 
few) parameters of interest due to the relative simplicity 
and low computational times compared with global SA 
methods (Cucurachi et al. 2016).

(10)Si =
�y

�xi

4.3.2 � Global sensitivity analysis

Global SA methods vary all parameters of a system pro-
portionally to each other. This allows for the interactions 
of the parameters to be determined as the system changes 
over time. When characterising global SA, a simple Monte 
Carlo method can be applied with pseudo-randomly dis-
tributed factors for model inputs, CFs and so on. More 
complex models make more efficient use of the model 
input space by implementing Latin hypercube or quasi-
random sampling methods, which distribute points more 
evenly across the space (Saltelli et al. 2008).

Global SA is appropriate in studies with large numbers 
of model inputs; nevertheless, its implementation in LCA 
is limited (Igos et al. 2018). Several studies have attempted 
to tackle this, some examples being Cucurachi et al. (2021), 
Lacirignola et al. (2017) and Cucurachi et al. (2016). How-
ever, like in the UA section above, these methods do not 
attempt to preserve the mass balance of the system during 
the variation of parameters. The co-variance of parameters 
is often assumed to be negligible and uncertainties to be 
independent of each other; thus, the correlation amongst 
variables in LCA studies is rarely investigated (Bisinella 
et al. 2016). Groen and Heijungs (2017) state that ignoring 
the effects of correlation of parameters is unknown, but that 
the risk of doing so can be quantified.

Groen et al. (2016) identify five suitable methods for 
global SA for matrix-based LCA: squared standard regres-
sion coefficients; squared Spearman correlation coef-
ficient; key issue analysis; Sobol’ indices; and random 
balance design index. Each of these methods has their ben-
efits and drawbacks related to the size of the system, num-
ber of parameters and magnitude of input uncertainties; 
therefore, special considerations should be made by LCA 
analysts as to which method of global SA to apply. Whilst 
all methods considered by Groen et al. (2016) were equally 
suitable for small input uncertainties, the Sobol’ indices 
and squared Spearman correlation coefficient were deter-
mined to be the best approach for large input uncertainties.

4.3.3 � Outcomes

The outputs from the selected SA method are typically the 
variance that each parameter contributes to the system. By 
analysing the variance, the LCA analyst can identify the 
‘hotspots’ of the system that are contributing the most to 
the environmental impact. Analysts should then consider 
future scenarios that could lead to reduction in the variance 
to improve the system in the long-term. Doing so can pro-
vide other LCA analysts, system designers and policy mak-
ers with means to implement new or developing technolo-
gies and temporally dynamic systems into the bigger picture.
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4.4 � Summary

The development of new LCA studies including both an UA 
and a SA is crucial to determine the environmental impacts of 
new and emerging technologies. Doing so will provide LCA 
analysts and policy makers with more information to under-
stand the system as it develops or changes through time, as 
well as for the systems designers to visualise the contributors 
to environmental impact and the mitigation strategies. The 
framework developed here for UA and SA is presented in 
Fig. 9. Following these four steps ensures that the data quality 
analysis is complete and consistent with the state of the art 
described in reviews of uncertainty and sensitivity in LCA 
such as Lo Piano and Benini (2022), Bamber et al. (2019) and 
Igos et al. (2018). We also encourage LCA analysts to perform 

uncertainty considering more sources of uncertainty to bet-
ter represent their systems, and to allow readers and decision 
makers to better understand the applicability of LCA studies.

Global SA methods should be considered by LCA ana-
lysts as the first choice for SA due to the quality of the 
analysis being higher than that of local methods. Local 
SA should be reserved for very simple processes with few 
inputs. Therefore, implementation of more robust SA meth-
ods should be a consideration of LCA software developers, 
such as Sobol’ indices and squared Spearman correlation 
coefficient which were determined to be the most appropri-
ate for LCA by Groen et al. (2016). Journal editors, and 
reviewers should consider the appropriateness of the sen-
sitivity methods applied in LCA studies before approving 
manuscripts for publication.

Fig. 8   Top left: The domain of 
sensitivity analysed using OAT 
with a two-parameter model. 
Top right: The domain of sen-
sitivity analysed using a three-
parameter model, note that the 
inside of the sphere should be 
filled as that whole volume is 
covered in the OAT SA but is 
left empty to show the extent 
of parameters x, y and z within. 
Bottom: Space filling ratio of 
hyperspheres within hyper-
cubes of the same number of 
dimensions used to illustrate the 
shortcomings of OAT SA. As 
the number of varied parameters 
increases, the relative volume 
of the sensitivity space analysed 
decreases (illustrated by the 
pink area/volume in the top 
images).  Adapted from Saltelli 
et al. (2019)
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5 � Part IV: Conclusions and perspectives

The ideal LCA modelling should be able to consider the 
transition to circular systems, whilst quantifying environ-
mental, social, economic and other benefits at the largest 
scale with enough temporal and regional resolution, support-
ing with this policy makers and stakeholders.

A combination of different LCA modelling methods 
could help to consider both the fine resolution and broad 
scope required to explain the circularity distribution, and the 
outcomes of an LCA. Nevertheless, this potential combina-
tion could lead to a large number of interpretations, which 
consequently could hamper a wider application of the LCA 
due to the lack of transferability and comparability.

In that regard, this work provides recommendations for 
evaluating the LCA of CCUS by combining well known 
LCA guidelines with practical assumptions and applications 
reported on the literature. As shown before, the lack of com-
parability of the LCA reports must be mitigated. To support 
industrial decarbonisation, practitioners must apply their 
expertise to provide a unified method to clarify the circular-
ity representation and to improve the representativeness of 
the LCA outcomes It is also considered that more transpar-
ency in LCA studies will enhance their reproducibility for 
other analysts, improving procedures and expanding on the 
body of knowledge, whilst reducing the need for reproduc-
ing LCIs and allowing LCAs of downstream and circular 
processes to be more agile.

Fig. 9   The stages involved for conducting data quality analysis for LCA. Note that in this proposed framework all stages are mandatory
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Considering a circular economy, the consequential 
approach of LCA seems to be more appropriate than the 
attributional one since multifunctional background processes 
are linked together in a carbon web. For CCUS studies, 
prospective approaches could help to assess the potential 
impacts of novel products or technologies. Industrial wise, 
the retrospective approach can be used for well-established 
technologies where policy makers could manage intercon-
nections amongst various sectors considering their shared 
inputs and outputs inventories. Then, the LCA could be 
modelled to share both benefits and burdens with suppliers 
and manufacturers to be implemented withing strategies like 
the circular footprint formula to enable a flexible system.

Better regional granularity in regionalised LCAs will aid 
in the incorporation of circularity and waste valorisation. 
Applying regionalisation could support optimising supply 
chains and tracking impacts over geographical boundaries. 
This will result in improving the quality of studies whilst 
making other dynamic aspects easier to model in LCA.

Temporal aspects are essential for high-resolution studies, 
providing a complete forecast of the emissions. Time in LCA 
could appear directly with dynamic inventories or CFs, for 
instance. The complexity of interpretation and modelling, 
the low availability of dynamic data, and the lack of tools 
hamper the application of DLCA. Time also appears indi-
rectly for indicating aspects as period of validity of the data 
or deployment of technology, which indicates the excellence 
level of the data and its uncertainty.

Uncertainties in LCIA relies on data quality, technology 
readiness level and market maturity. The awareness of the 
importance of data quality analysis within the LCA com-
munity is essential to address the lack of information in ISO 
14040 and 44. Uncertainty analysis should incorporate the 
mass balance preservation in processes to guarantee that ‘ran-
domised’ parameters are still physically feasible possibilities, 
ensuring high accuracy in LCIA calculations. LCA analysts 
should incorporate uncertainty and sensitivity analysis when 
submitting their work for publication and likewise editors 
and reviewers should seek these analyses when considering 
an LCA for review. For sensitivity analysis, global methods 
should be chosen over local approaches since they provide a 
better level of sensitivity domain coverage. Local sensitivity 
should be confined to studies where no more than 3 param-
eters are of interest due to the exponential decrease in resolu-
tion of these methods as the number of parameters increases.
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