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Abstract
Purpose  Potentially contradictory indicators in Life Cycle Assessment cause ambiguity and thus uncertainty regarding the 
interpretation of results. The weighting-based ecological scarcity method (ESM) aims at reducing interpretation uncertainty 
by applying policy-based normative target values. However, the definition of these target values is uncertain due to different 
reasons such as questionable temporal representativeness. By means of an uncertainty analysis, this paper examines if ESMs 
are an appropriate approach to support robust decisions on multidimensional environmental impacts.
Methods  To assess the effect of uncertain target values (inputs) on environmental indicators (output), the ESM based 
Life Cycle Impact Assessment (LCIA) is combined with a Monte Carlo Analysis. The comprehensive uncertainty analysis 
includes the following steps: (1) sample generation, (2) output calculation and (3) results analysis and visualisation. (1) To 
generate a sample, moderate and strict limits for target values are derived from laws, directives or strategies. Random input 
parameters are drawn from a uniform distribution within those limits. (2) The sample is used to conduct several LCIAs lead-
ing to a distribution of total impact scores. (3) The results’ robustness is evaluated by means of the rank acceptability index 
to identify stable ranks for energy generation systems taken from ecoinvent v. 3.7.1.
Results and discussion  Applying moderate and strict target values in the ESM, results in substantial differences in the weight-
ing sets. Even though the application of stricter target values changes the contribution of an environmental indicator to the 
total impact score the ranking of the energy generation systems varies only slightly. Moreover, the Monte Carlo Analysis 
reveals that displacement effects in ranks are not arbitrary: systems switch at most between ranks next to each other and most 
of the analysed systems dominate at least a single rank. Technologies with high shares of land use, global warming and air 
pollutants and particulate matter show a higher rank variance.
Conclusions  The weighting schemes, deduced from target values, provide a meaningful ranking of alternatives. At the same 
time, the results are not excessively sensitive to the uncertainties of the target values, i.e. the inherent uncertainty of the target 
values does not result in arbitrary outcomes, which is necessary to support robust decisions. The ESM is able to effectively 
facilitate decision making by making different environmental issues comparable.

Keywords  Life cycle impact assessment · Weighting · Distance-to-target · Uncertainty assessment · Monte Carlo analysis · 
Decision making · Energy transition

1  Introduction

Life Cycle Assessment (LCA) is a comprehensive method 
considering multiple impact indicators with different met-
rics, which often leads to contradicting outcomes, that may 
cause ambiguity in decision support (Itsubo 2015). To 
facilitate the interpretation of LCA results normalisation 
and weighting methods are at hand (Laurent and Hauschild 
2015), which enable the aggregation of the impact assess-
ment results (e.g. Sala et al. (2018)). For decision-making 
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Huppes et al. (2012) even consider weighting to be an inevi-
table step. Although the complexity of models increases as 
a result of adding new parameters, overall uncertainty could 
even decrease as the environmental relevance is considered 
(Hauschild and Potting 2005).

In LCA applied weighting methods are amongst oth-
ers panel weighting, monetarisation or distance-to-target 
weighting, which have been reviewed in several publications 
such as Ahlroth (2014), Finkbeiner et al. (2014) or Pizzol 
et al. (2015, 2017). Distance-to-target methods set the cur-
rent environmental situation in relation to the target situation 
and are usually characterised by a transparent documenta-
tion and a relatively high simplicity (Pizzol et al. 2017; Sala 
et al. 2018). According to Castellani et al. (2016) the weight 
in distance-to-target methods can either be derived from a 
science-based target as a physical threshold (e.g. in Tuomisto 
et al. (2012) or Bjørn and Hauschild (2015)) based on the 
planetary boundaries concept (Rockström et al. 2009) or from 
a politically legitimised target. Although, the uncertainty of 
the choice of the target is estimated as high, no uncertainty 
assessment of distance-to-target methods were identified by 
Pizzol et al. (2017). A representative of distance-to-target 
weighting is for instance the developed Ecological Scarcity 
Method (ESM) for Switzerland (Müller-Wenk 1978), which 
applies normalisation and weighting factors based on politi-
cally legitimised targets (Frischknecht et al. 2021; Frischkne-
cht and Büsser Knöpfel 2013). As those targets depend on 
nationally and regionally varying legislations, different coun-
try- or continent-specific distance-to-target methods (e.g. for 
China (Miao et al. 2021) or Europe (Castellani et al. 2016)) 
as well as ESM (e.g. for Europe (Muhl et al. 2019), Ger-
many (Ahbe et al. 2014; Lambrecht et al. 2020), Russia and 
Germany (Grinberg 2015), Switzerland (Frischknecht et al. 
2021) or Thailand (Lecksiwilai and Gheewala 2019)) have 
been developed.

Although, the ESM prescribes the utilisation of the 
strictest target value for normalisation and weighting 
(Frischknecht and Büsser Knöpfel 2013) the target value 
definition is still subject to individual choices such as: (1) 
varying temporal and spatial validity, (2) different degrees 
in legitimacy, (3) the type and (4) prohibitive character of 
the target values. Grinberg (2015) suggests for instance a 
harmonisation of the temporal validity of politically legiti-
mised target values as it causes uncertainty and may result 
in multiple possible weighting sets for a country or con-
tinent. For instance, in Miao et al. (2021) weighting sets 
for 2020 and 2030 are determined on the basis of target 
values valid for these years for all environmental issues 
considered. Even further weighting sets can be derived 
by the utilisation of non-binding targets as in Muhl et al. 
(2019). An additional source of uncertainty are different 
types of target values, which are either an environmen-
tal quality standard (e.g. a concentration in water or air) 

or an explicit environmental target load (e.g. annual lead 
emissions into air) (Ahbe et al. (2014, 2018)). Moreover, 
Lambrecht et al. (2020) stress that the handling of prohibi-
tive target values varies in different national ESM (e.g. 
Ahbe et al. (2014) and Muhl et al. (2019)) and thus further 
increases the parameter uncertainty of the target value. 
An additional source of uncertainty is described by Muhl 
et al. (2021), who identify a significant influence of the 
spatial perspective on the LCA results: As the supply chain 
is distributed over several countries target values of the 
consumer countries differ to the target values of the pro-
ducing regions. Additionally, Muhl et al. (2023) compare 
policy-based targets with science-based targets and apply 
them complementary to increase the comprehensiveness 
of the environmental performance of a product.

To assess the robustness of their results Muhl et al. (2019) 
and Castellani et al. (2016) conducted a sensitivity analysis 
of their applied target values and derive further weighting 
sets. Displacement effects in weights are visualised and 
compared to the original set. Castellani et al. (2016) apply 
their developed distance-to-target method to assess a product 
system and identify a relatively small impact on the results, 
when utilising alternative weighting sets. Frischknecht et al. 
(2021) and Lambrecht et al. (2020) classify the legitimacy 
of the applied target values but do not evaluate the resulting 
uncertainty. A different type of sensitivity analysis is per-
formed by Lecksiwilai and Gheewala (2019), who developed 
an ESM based on Thailand’s targets: They compare Thai-
lands’ current environmental impacts to its future impacts in 
case that all policy targets are met. If the ESM is applied to 
assess a product system, the impact results are compared to 
other national ESM (e.g. Lecksiwilai and Gheewala (2020) 
and Grinberg (2015)) to evaluate the influence of different 
normalisation and weighting factors.

The ESM has been adapted for several countries (e.g. 
Ahbe et al. (2014), Lecksiwilai and Gheewala (2019)) and 
applied for instance in Gebler et al. (2023) and Bach et al. 
(2022) to provide decision support. The possibility of deriv-
ing multiple target values from laws, directives or strategies 
allows individual decisions, which cause the existing param-
eter uncertainty in the application of ESM and questions 
the robustness of the results. To assess the robustness of 
the ESM results this study conducts an uncertainty analysis 
to evaluate the parameter uncertainty of the German ESM 
published by Lambrecht et al. (2020). Thereby, effects on 
the LCA results are analysed and the ability of the ESM 
to provide robust decision support evaluated. By deriving 
possible target values an uncertainty analysis is conducted, 
including legitimacy, varying temporal and spatial validity, 
restrictiveness as well as different types of target values. Due 
to its topicality and the partly controversy debate about the 
German energy transition the analysis is exemplarily per-
formed for different electricity generation systems and thus 
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the impact on the LCA results is illustrated (Agora Ener-
giewende 2022).

The paper is outlined as follows: First the applied method 
and the used materials are explained, which includes the 
mathematical formulation of the ESM, the uncertainty 
analysis and the derived target values. After presenting the 
results, these are discussed, limitations elaborated and con-
clusions drawn.

2 � Methods and materials

In a first step the structure of LCA is explained, which is fol-
lowed by the general methodology of the ESM including the 
definition of parameters (e.g. target values). The uncertainty 
analysis is conducted for the parameter uncertainty of the 
target values defined in the ESM. To determine the uncer-
tainty, multiple possible target values are derived from laws, 
directives and strategies valid for Germany. Applying these 
values in the ESM, allows the generation of multiple pos-
sible weights, which are used to conduct the LCA. The LCA 
results in form of multiple single scores are then compared.

2.1 � Life cycle assessment: ecological scarcity method

Comparative LCA allows the assessment of environmental 
impacts of processes or product systems considering mul-
tiple impact indicators following the subsequent steps: (1) 
Goal and Scope Definition, (2) Life Cycle Inventory, (3) 
Life Cycle Impact Assessment and (4) Interpretation of the 
results. The ESM is a specific Life Cycle Impact Assess-
ment Method (LCIA), following the step of the Life Cycle 
Inventory calculation. The Life Cycle Inventory contains all 
necessary elementary flows taken from or emitting into the 
ecosphere (ISO 14040:2006 2006; ISO 14044:2006 2006). 
Life Cycle Impact Assessment Methods characterise the 
elementary flows of the Life Cycle Inventory and allow the 
calculation of impact indicator results. Characterisation fac-
tors, which describe the relative environmental impact of 
different substances as compared to a reference substance, 
are based on different methods depending on the respective 
midpoint indicator, e.g. IPCC (2013) for global warming.

The basis for our assessment is the ESM for Germany 
as published in Lambrecht et al. (2020). For normalisation 
and weighting it relies on target values (T) , normalisation 
values (NV) , current values (A) and the constant (z) , which 
are applied to calculate eco-factors. Normalisation values 
are taken from annual German emission data. Current values 
correspond to the physical property of the defined target val-
ues and sometimes equal the normalisation values. Weights 
are defined by the squared ratio of the current to the pur-
sued environmental situation (A

T
)
2
 . The applied constant (z) 

ensures practical numerical values and equals 1E12 (as both 
in Frischknecht and Büsser Knöpfel (2013) and Lambrecht 
et al. (2020)).

Depending on the availability of target values, the ESM 
applies normalisation and weighting either to impact indi-
cator results (including characterisation, e.g. global warm-
ing) or to elementary flows (excluding characterisation, 
e.g. lead) (Frischknecht and Büsser Knöpfel 2013). Thus, 
there are two ways of calculating the impact score of an 
environmental indicator (uv) either with characterisation or 
without characterisation requiring the application of Eqs. 1 
or 2, respectively.

With characterisation: Following Eq.  (1) uv is calcu-
lated by first aggregating the elementary flows ( ex ) from 
the Life Cycle Inventory using substance specific char-
acterisation factors (CFv,x) . The summation index refers 
to the set V  , which corresponds to v (e.g., if v = HMIW  , 
V = HMIW = {Ni,Pb, Zn,…} , compare Table  1). The 
resulting midpoint indicator value is then normalised and 
weighted using the environmental indicator specific param-
eters NVv , Av and Tv.

Without characterisation: In Eq. 2 the elementary flows 
(ex) are directly normalised and weighted with substance 
specific parameters NVx , Cx and Tx.

The total impact score (u) results from the aggregation of 
the impact score of all environmental indicators (X) follow-
ing Eq. (3). The application of the ESM results in a dimen-
sionless score (i.e. with unit = 1 ). To give it nevertheless a 
name, we adopt the common practice of ESM and use the 
unit eco-points for Germany [EPG] , which should not be 
misunderstood as physical (SI) unit though.

Table 1 presents 12 environmental indicators (v) covered 
by the German ESM published by Lambrecht et al. (2020). 
For environmental indicators that involve characterisation, 
the substances (x) involved are not explicitly listed. Instead, 
the reference is made to the applied characterisation method 
(e.g. IPCC (2013) for global warming). For environmental 
indicators directly based on substance specific target values 
(e.g. “heavy metals into water”), all contributing substances 
are explicitly listed (e.g. lead).

(1)uv =

(

∑

x∈V

CFv,x ∗ ex

)

∗
1

NVv

∗

(

Av

Tv

)2

∗ z

(2)uv =
∑

x∈V

(

ex ∗
1

NVx

∗

(

Ax

Tx

)2
)

∗ z

(3)u =
∑

v�X

uv
[

EPG

]
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2.2 � Uncertainty analysis: Monte Carlo analysis

According to Rosenbaum et al. (2018) uncertainty analysis aims 
to enhance the interpretation of results by assessing their robust-
ness. It allows the probabilistic calculation of results once the 
uncertainty of the input parameters (in our case target values 
T ) are quantified and thus evaluates the impact of uncertain-
ties of model parameters (input) on model results (output) 
(Campolongo et al. 2011). Thereby the likelihood of a certain 
product system to be preferable to another one can be deter-
mined. Although uncertainty analysis is a recommended step in 
LCA according to ISO14040/44, less than 20% of LCA studies 
include an uncertainty analysis (Bamber et al. 2020). Addition-
ally, Lo Piano and Benini (2022) specify, that most uncertainty 
analyses are performed on the Life Cycle Inventory, whereas 
other LCA phases, such as normalisation and weighting, are 
neglected.

Several methods to quantify uncertainty in LCA are at 
hand: e.g. the pedigree matrix approach, analytical or numeri-
cal uncertainty propagation, and fuzzy sets (Rosenbaum et al. 
2018). Amongst others Lloyd and Ries (2007) analyse quanti-
tative uncertainty assessment approaches applied in LCA e.g. 
the Monte Carlo simulation or the fuzzy set theory. To conduct 
the uncertainty analysis in this study the numerical uncertainty 
propagation method Monte Carlo Analysis (MCA) is applied, 
which is recommended by Michiels and Geeraerd (2020) and 
has already been applied in combination with LCA (Heijungs 
2020; Igos et al. 2019). According to Rosenbaum et al. (2018) 
the MCA follows the subsequent steps:

•	 Step 1: Sample generation: Calculate random values for 
all input variables

•	 Step 2: Output Calculation: Application of input vari-
ables in the model

•	 Step 3: Results analysis and visualisation

2.2.1 � Step 1: sample generation: definition of alternative 
target values

In Step 1 a sample of input parameters is defined. As the 
focus of the study is the analysis of the applied target values 
used in the ESM for Germany, a sample of different target 
values is generated. Therefore, alternative target values are 
defined by literature research of laws, directives and strate-
gies. The time dependency of target values is considered 
by applying different target values valid for different years. 
Different degrees of legitimacy are taken into account by 
taking target values from national or international binding 
laws or treaties, respectively. Furthermore, the prohibition 
of emissions is considered by using the strictest published 
target values, which does not equal the value zero.

From the collected target values, a moderate Tmoderate and a 
strict target value Tstrict are derived, which represent the upper 
and lower limit of a target value applied in the distribution 
function. Based on Tmoderate and Tstrict the boundary weighting 
sets are calculated by (A

T
)
2
 . To compare these with for other 

in literature existing weighting sets, the published eco-factors 
of e.g. Muhl et al. (2019) or Lambrecht et al. (2020) are mul-
tiplied by the current environmental German situation (NV). 
Subsequently, the Monte Carlo analysis is performed for 
N = 10, 000 trials. As only upper and lower target values are 
known and no information about the distribution in between 
is available, the random values are drawn over the uniform 
distribution in the interval (Tstrict, Tmoderate) (Gieck and Gieck 

Table 1   Environmental indicators in the ESM for Germany (Abb. = Abbreviation)

Abb. Environmental Indicator (v) Characterisation
(yes / no)

Substance (x)

GW Global warming yes IPCC (2013)
CSIA Carcinogenic substances into air yes Henderson et al. (2011)
HMIA Heavy metals into air no Lead, cadmium, mercury, nickel, arsenic
APP Main air pollutants and particu-

late matter (PM)
no Non-methane volatile organic compounds (NMVOC), nitrogen monoxide, 

sulphur dioxide, particulate matter, ammonia
OD Ozone layer depletion yes UNEP (2019)
HMIW Heavy metals into water no Nickel, zinc, lead, cadmium, copper
WP Water pollutants no Nitrogen, phosphor, chemical oxygen demand, polycyclic aromatic hydrocar-

bons (PAH)
MR Minerals and metals yes van Oers et al. (2019)
WR Water resources no Water
LU Land use yes de Baan et al. (2013)
ER Energy resources yes Frischknecht and Büsser Knöpfel (2013)
WTD Non-radioactive waste to deposit no Total organic carbon, volume occupied underground deposit
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2005). For each Monte Carlo run (n) a random target value 
( Tn ) is determined within the limits Tmoderate and Tstrict and 
applied to calculate the total impact score.

2.2.2 � Step 2: output calculation

After defining a sample of input parameters, these are 
applied in the model to calculate the output, which corre-
sponds to the LCIA results (total impact score). A sample 
of already existing systems in ecoinvent 3.7.1 is exemplary 
analysed. As the goal of this study is the assessment of the 
robustness of the ESM results, no full contribution analysis 
of the used electricity generation systems listed in Table 2 is 
provided. Therefore, systems with substantial differences in 
their Life Cycle Inventory and Impact Assessment (UNECE 
2022) are chosen resulting in a sample of different renewable 
and conventional power plants and the German Electricity 
Mix. All characteristics concerning the systems like assumed 
yield, lifetime or included life cycle stages are documented 
in Wernet et al. (2016). The LCA of the electricity genera-
tion system is conducted with a functional unit of 1 kWh 
generated electricity and performed with the open source 
LCA framework Brightway (Mutel 2017) as it provides a 
flexible integration and parametrisation of LCIA methods. 
It is written in Python (van Rossum and Drake 2009) and 
therefore allows connections to other Python libraries e.g. 
for data analysis and plotting. Furthermore, MCA in the 
context of LCA is already integrated within the Brightway 
framework (Mutel et al. 2013).

2.2.3 � Step 3: result analysis and visualisation

To analyse and visualise the results, the Rank Acceptability 
Index ( RAI ) is applied, which is a common applied method 
to evaluate the robustness of results (Corrente et al. 2014; 

Greco et al. 2018; Prado et al. 2020; Tervonen et al. 2011) 
and assists in stochastic results visualisation (Bertola et al. 
2019). The RAI describes the relative frequency of how 
often an electricity generation system reaches a certain 
rank over all Monte Carlo runs. As we are examining nine 
systems, it is possible to have ranks ranging from 1 to 9 
in each MCA run. As a minimal total impact score is the 
overall goal, rank 1 corresponds to the most and rank 9 
to the at least environmentally favourable technology 
( rank = {1,… , 9}).

The RAIp,rank for an electricity generation system is calcu-
lated following Eq. (4): First, for all analysed energy genera-
tion systems ( p ) and Monte Carlo runs (n) the total impact 
score un,p is calculated. In a next step we consider the rank 
( rn,p ) instead of the absolute indicator value un,p . Finally, the 
number of times a system takes a certain rank is counted 
using the Kronecker delta function and normalized by the 
total amount of Monte Carlo runs (N = 10000).

Complementary, the average contribution ( s ) of each 
environmental indicator ( v ) to the total impact score is cal-
culated as follows: The product system dependent impact 
score of an environmental indicator per Monte Carlo run 
( uv,n,p ) is divided by the total impact score un,p for all Monte 
Carlo runs (Eq. (5)). To receive the total average share ( sv,p ) 
the environmental indicators sv,n,p of each run are aggre-
gated and divided by the total amount of Monte Carlo runs 
( N = 10000 ) following Eq. (6).

(4)RAIp,rank =
1

N

N
∑

n=1

�rank,rn,p

(5)sv,n,p =
uv,n,p

un,p

Table 2   Analysed electricity generation systems

Technology / Electricity Mix Name of the ecoinvent product system Abbreviation

photovoltaics cadmium telluride rooftop electricity production, photovoltaic, 3kWp slanted-roof installation, CdTe, 
laminated, integrated, [CH]

PV-Cdte rooftop

photovoltaics multi Silicon rooftop electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, 
panel, mounted, [DE]

PV-Si rooftop

photovoltaics multi Silicon open range electricity production, photovoltaic, 570kWp open ground installation, 
multi-Si, [DE]

PV-Si open range

1–3 MW offshore wind power electricity production, wind, 1-3 MW turbine, offshore, [DE] Wind power
geothermal power plant electricity production, deep geothermal, [DE] Geothermal PP
biogas combined heat and power heat and power co-generation, biogas, gas engine, [DE] Biogas CHP
hard coal power plant electricity production, hard coal, [DE] Hard Coal PP
lignite power plant electricity production, lignite, [DE] Lignite PP
German electricity mix market for electricity, low voltage, [DE] German Electricity Mix
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In the supplementary information all information to 
reproduce the analysis are documented: “SI_2__python_
code” contains the full python code, the text file “SI_1__
python_packages” lists all necessary python packages, the 
excel files “SI_3__characterisation_factors_ESM_Ger-
many” and “SI_4__parameter_T_MCA” contain the needed 
parameter for the assessment. “SI_5__ecological_scarcity_
method_2021” contains a compilation of all parameters for 
the ESM for Germany.

2.3 � Model parametrisation and target value definition

To parametrise the model strict ( Tstrict ) and moderate target 
( Tmoderate ) values are identified (see Table 3). To illustrate the 
ranges, these are set in relation to the average target value 
( Taverage ) as depicted in Fig. 1. In case no ranges are depicted, 
no alternative T  could be identified in the review of laws, 
directives and strategies. Most of Tstrict and Tmoderate are in 
the range of 1.5 to 0.5 normalised to Taverage . Relative high 
deviations of T can be identified for “lead into air” (HMIA-
Pb) and for “polycyclic aromatic hydrocarbons (PAH) into 
water” (WP-PAH) ranging from 0.1 to 2 in relation to Taverage.

To gain a deeper understanding of these variations in the  
target values, the sources and the specific type of exem-
plary target values are explained: For instance, in Lambre-
cht et al. (2020) the environmental target value for “lead into 
air” (HMIA-Pb) of the United Nations (UNITED NATIONS 
2014) is applied ( THMIA−Pb = 2, 285

tLead

a
 ). Alternatively, T  

can also be derived from an environmental quality standard 
originally defined by a directive of the European Parliament 
(EP 2008) (THMIA−Pb = 0.5

�gLead

m3air
 ). Its regulations and target 

values are translated into the Federal Immission Control Act 
(German: BImSchG) (German Bundestag 2021) setting envi-
ronmental quality standards for maximum yearly concentra-
tions of e.g. monitored lead (Federal Environment Agency 
Germany 2019). The different units of the target values do not 
pose a problem, as they are reduced when calculating the eco-
factor. Compared to the German law, upper limits for maximal 
environmental loads defined by the United Nations result in a 
stricter target and consequently in a higher eco-factor.

Target values for substances in the environmental indicator 
“main air pollutants and particulate matter” (APP) are defined 
in the Federal Immission Control Act (German Bundestag 
2021) and in a European Directive (EP 2016). The maxi-
mal environmental loads are defined with different temporal 
validity. For the assessment the target values for 2020 and for 
2030 are utilised to reflect the problem of temporal validity 
explained in e.g. Castellani et al. (2016). Table 4 in the Appen-
dix depicts the target values for the regulated substances.

(6)sv,p =

∑N=10000

n=1
sv,n,p

N

For the water pollutants “nitrogen” (N) and “phos-
phorous” (P), the target values are based on the Ger-
man water discharge combined with the maximum 
concentration allowed by the Surface Water Regula-
tion (German: OGewV) (German Bundestag 2016) 
(TWP−N = 2.6

mgN

l
, TWP−P = 0.05

mgP

l
) and compared to the 

limitations defined by the International North Sea Protec-
tion Conference (OSPAR 1998) for N and Ahbe et al. (2014) 
for P ( TWP−N = 515

ktN

a
, TWP−P = 9

ktP

a
) . Emissions for “heavy 

metals into water” (HMIW) are also regulated by the Sur-
face Water Regulation but also in regulations defined by the 
International Commission for the Protection of the Rhine 
(ICPR) (ICPR 2011). The concentrations are measured, 
monitored and published for several stations by the Federal 
Environment Agency (Federal Environment Agency Ger-
many 2019). The alternative environmental quality standard 
value based on the Surface Water Regulation results in a 
less strict target value compared to the defined target by the 
ICPR. Table 5 in the Appendix depicts the target values for 
the regulated substances.

The impact indicators “global warming” (GW), “land 
use” (LU) and “energy resources” (ER) are characterised by 
prohibitive targets in 2045 (GW) or 2050 (LU and ER) with 
target values corresponding to zero. According to the 
Eqs. (1) and (2) the term 

(

A

T

)2

 does not allow a division by 
zero and would result into infinitely high eco-factors for 
GW, ER and LU for target values which strive to zero. As a 
result, these environmental indicators would dominate all 
other indicators and finally result in a binary weighting 
scheme (Pizzol et al. 2017). To avoid this effect and to still 
integrate these environmental indicators, target values for 
Tmoderate are considered reflecting the 2030 target value. For 
Tstrict a target value, which is not resulting to a binary weight-
ing, is applied: The target value valid for 2040 is applied for 
GW, LU and ER respectively (see Appendix Table 6). A 
summary of all defined Tstrict and Tmoderate is given in the 
Table 3 and contains information about applied characterisa-
tion, reason for uncertainty as well as references for the strict 
and moderate target value.

3 � Results

The results section is organised in two parts: First, the 
boundary weighting sets corresponding to Tstrict and Tmoderate 
are compared with other weighting sets available from the 
literature. Additionally, LCA results of the analysed energy 
generation systems obtained by applying Tstrict and Tmoderate 
are described without, at this point, taking uncertainty into 
account. Second, the results of the uncertainty analysis are 
presented by the rank acceptability index and average envi-
ronmental indicator contribution.
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3.1 � Resulting weighting sets and life cycle 
assessment results for strict and moderate 
target values

Figure 2 illustrates the contributions of the environmen-
tal indicators to the total impact score resulting from the 
defined targets Tstrict and Tmoderate , compared to those pub-
lished by Lambrecht et al. (2020), Frischknecht and Büsser 
Knöpfel (2013), and Muhl et al. (2019). To allow the com-
parison of the resulting weighting sets those are normalized 
with the current environmental situation in Germany. The 
ESM for Germany of Lambrecht et al. (2020) is the basis of 
the developed weighting sets Tstrict , Tmoderate . However, data 
updates for normalisation and current values and changes in 
regulation with new target values explain the difference of 
Tstrict to TLambrecht.

As depicted in Fig. 2, the variations in target values alter 
the contributions of environmental indicators. In weighting 
set Tmoderate , “energy resources” (ER) is marked with a rela-
tive high contribution of more than 20%, which is substan-
tially lower in the other weighting sets. Nevertheless, with 
increasing relative weight contributions of “global warming” 
(GW) and “land use” (LU) the share of ER decreases. A 
similar effect occurs for GW in TLambrecht : Although the same 
target value for GW is applied in Lambrecht et al. (2020) and 
the weighing set Tstrict , the share of GW reduces from 55% 
(Lambrecht et al.) to 33% (Tstrict ). This effect is driven by the 

steep rise of the weight of LU, which increases from 4 to 34 
and is amplified by “heavy metals into water” (HMIW) 
and “water pollutants” (WP): Exemplary, the weight of the 
water pollutant PAH increases by orders of magnitude from 
0.005 to 18. Consequently, the relative share of GW is lower 
in Tstrict compared to TLambrecht.

To illustrate the influence of utilising the weighting sets 
of Tmoderate and Tstrict Fig. 3 depicts the resulting total impact 
score for both sets. As a smaller target value T  increases 
the calculated eco-factor ( EF ), the application of Tmoderate 
results in a substantially lower total impact score compared 
to the results of the Tstrict set. In contrast, the system ranking 
in terms of the total impact score is less distinctive: only 
PV-Si open range, Lignite PP, PV-Si rooftop and Biogas CHP 
exchange its ranks. In line with Fig. 2 the total impact score is 
stronger influenced by the environmental indicator ER, when 
applying the weighting set Tmoderate . Nevertheless, hard coal 
and Lignite PP are characterised by a high share of GW and 
reach comparable results as PV-Si open range (14–17 EPG

kWh
 ), 

which is dominated by the environmental indicator LU. The 
other renewable technologies reach scores of 2–7 EPG

kWh
 , with 

PV technologies being marked with relatively high shares 
of “heavy metal into water” (HMIW), whereas the environ-
mental indicator “main air pollutants and PM” (APP) con-
tributes substantially to all analysed systems. When apply-
ing the weighting set Tstrict , Lignite PP, PV-Si open range 
and Hard Coal PP still reach the highest total impact scores 

Fig. 1   Ranges of T; GW = global warming, CSIA = carcinogenic sub-
stances into air, HMIA = heavy metals into air, HMIW = heavy met-
als into water, APP = main air pollutants and PM, OD = ozone layer 
depletion, WP = water pollutants, MR = mineral resources, LU = land 
use, ER = energy resources, WTD = waste to deposit; Pb = lead, 
Cd = cadmium, Hg = mercury, Ni = nickel, As = arsenic, Zn = zinc, 

Cu = copper, NMVOC = non-methane volatile organic compounds, 
NOx = nitrogen monoxide, SO2 = sulphur dioxide, NH3 = ammo-
nia, PM2,5 = particulate matter 2,5  mm; N = nitrogen, P = phosphor, 
CSB = chemical oxygen demand, PAH = polycyclic aromatic hydro-
carbons, TOC = total organic carbon
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(93–101 EPG

kWh
 ) followed by German Electricity Mix (59 EPG

kWh
 ), 

Biogas CHP (30 EPG

kWh
 ) and PV-Si rooftop (29 EPG

kWh
 ), Geother-

mal PP (17 EPG

kWh
 ), PV-Cdte rooftop (16 EPG

kWh
 ) and Wind power 

reaching the lowest total impact score (6 EPG

kWh
 ). However, the 

total impact score of Hard Coal, Lignite PP, Biogas CHP and 
the German Electricity Mix is marked by either high shares 
of GW or in the case of PV-Si open range by LU. In con-
trast, the contribution of the environmental indicators to the 
remaining systems is more diverse. The weighting set Tstrict 
can be interpreted as the desired ESM because it applies the 
highest possible eco-factors as demanded in Frischknecht and 
Büsser Knöpfel (2013).

3.2 � Results of the Monte Carlo analysis: rank 
acceptability index and mean average 
environmental indicator contribution

The application of the MCA allows the presentation of 
the average total impact score as well as the calculation 
of error bars showing the standard deviation as depicted 
in Fig. 4. Besides a rank change of PV-CdTe rooftop and 
Geothermal PP, the ranking of systems in terms of their 
total impact score equals the application of the weighting 
set Tstrict (see Fig. 3). The impacts of lignite, Hard Coal 
PP (34 and 37 EPG

kWh
 ), the German Electricity Mix (22 EPG

kWh
 ) 

as well as PV-Si open range (34 EPG

kWh
 ) have relatively high 

standard deviations, which are mainly caused by GW and 
LU. The weights of these indicators have a particularly 

high uncertainty due to the prohibitive character of their 
target value ( T  strives to zero).

The rank acceptability index is calculated to illustrate 
the frequency of a technology reaching a specific rank to 
provide information about the rank stability and robust-
ness of the LCA results (see Fig. 5). Hereby applies: The 
more the systems are distributed over the ranks the higher 
is the parameter uncertainty of the target value. Three 
main results are identified: (1) The uncertainty of the input 
parameter (the target value) is influencing the total impact 
score and consequently the ranking of the energy genera-
tion systems. (2) Besides PV-Si open range each energy 
generation system dominates at least a single rank to 50%. 
(3) Displacement effects in ranks only occur to a very lim-
ited extent: The systems switch only to ranks next to each 
other e.g. Biogas CHP is located on the ranks 3 to 5 or 
Geothermal PP on the ranks 2 to 4. For the entire range of 
weights investigated here, Wind power reaches rank 1. Fur-
thermore, there is a discernible tendency for the Lignite PP 
(Rank 7: 52%, Rank 8: 34%) and the hard coal-fired power 
plant (Rank 8: 54% and Rank 9: 46%), to dominate the 8th 
and 9th rank while the PV-Si open range reaches its highest 
shares for 7th (32%) and 9th (40%) rank.

In contrast to Fig. 2, which represents the contributions of 
environmental indicators normalised to the current environ-
mental situation in Germany, Fig. 6 displays the average con-
tributions of the environmental indicators after conducting 
the LCA, ESM, and Monte Carlo analysis for the analysed 

Fig. 2   Environmental indicator contribution to the weighted total for 
T
strict

 , T
moderate

 , T
Lambrecht

 , T
Frischknecht

 and T
Muhl

 Lambrecht = Lambrecht 
et al. (2020), Frischknecht = Frischknecht and Büsser Knöpfel (2013) 
and Muhl = Muhl et al. (2019) applied on the current environmental 
situation of Germany; GW = global warming, CSIA = carcinogenic 

substances into air, HMIA = heavy metals into air, HMIW = heavy 
metals into water, APP = main air pollutants and PM, OD = ozone 
layer depletion, WP = water pollutants, MR = mineral resources, 
LU = land use, ER = energy resources, WTD = waste to deposit
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energy generation systems. For this purpose, the environ-
mental indicator contributions to the total impact score for 
all energy system generation systems are determined and 
averaged across all Monte Carlo runs. In general the environ-
mental indicator contributions are diverse for all systems and 
not dominated by a single environmental indicator. The most 
contributing environmental indicators are “global warming” 
(GW), “land use” (LU), “energy resources” (ER), “heavy 
metals into water” (HMIW) and “main air pollutants and 
PM” (APP). The average environmental indicator contribu-
tion of APP is relatively constant for all technologies reach-
ing its peak for the Biogas CHP (26%). “carcinogenic sub-
stances into air” (CSIA) reaches contributions of 0.8–4.1%, 
“water pollutants” (WP) 0.1–2.2% and “heavy metals into 
air” (HMIA) 0.4–2.2% respectively.

Greenhouse gas intensive technologies, which are the con-
ventional electricity producers as Hard Coal (47%) and Lig-
nite PP (61%) as well as Biogas CHP (39%) show high shares 

in GW, which is mainly due to carbon dioxide emissions 
(Hard Coal and Lignite PP) and methane emissions caused by 
the digestion to produce biogas (Biogas CHP). In contrast, the 
total impact score of renewable technologies such as PV is less 
dominated by a single environmental indicator. For instance, 
the environmental indicator ER gains importance for Geother-
mal PP and Wind power due to the following reason: The 
target value of ER is based on primary energy reduction tar-
gets for Germany, which results in higher total impact scores 
for technologies with higher primary energy demand (Geo-
thermal PP = 7.1 MJprimary energy

kWhelectricity
 , Wind power = 3.9 MJprimary energy

kWhelectricity
 

(Wernet et al. 2016)). The environmental indicator LU domi-
nates to 68% the total impact score of PV-Si open range as the 
full terrain needed for the plant is sealed. In contrast, the envi-
ronmental indicators “water resources” (WR), “ozone layer 
depletion” (OD), “waste to deposit” (WTD) and “mineral 
resources” (MR) take on a subordinate role with impact con-
tributions lower than 1%.

Fig. 3   Total impact scores for T
strict

(top) and T
moderate

 (bottom) for 
the assessed energy generation systems; GW = global warming, 
CSIA = carcinogenic substances into air, HMIA = heavy metals into 
air, HMIW = heavy metals into water, APP = main air pollutants and 

PM, OD = ozone layer depletion, WP = water pollutants, MR = min-
eral resources, LU = land use, ER = energy resources, WTD = waste to 
deposit
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4 � Discussion

Muhl et al. (2019) showed that the relative shares of envi-
ronmental issues of weighting sets can widely differ: In case 

only binding targets are included, the resulting eco-factors are 
lower compared to the weighting set including non-binding 
targets. Moreover, they compare their baseline weighting 
set to weighting sets from Frischknecht and Büsser Knöpfel 

Fig. 4   Ranking of technologies showing the average total impact 
score (column sums) for the assessed energy generation systems; the 
contribution of the environmental indicators (columns) and the error 
due to the uncertainty of the target values, GW = global warming, 
CSIA = carcinogenic substances into air, HMIA = heavy metals into 

air, HMIW = heavy metals into water, APP = main air pollutants and 
PM, OD = ozone layer depletion, WP = water pollutants, MR = min-
eral resources, LU = land use, ER = energy resources, WTD = waste to 
deposit

Fig. 5   Rank acceptability index results of the assessed energy generation systems; abbreviations according to Table 2
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(2013) and Ahbe et al. (2014, 2018) and found that the rela-
tive shares of the environmental indicators global warming, 
main air pollutants and PM and heavy metals into water show 
significant changes. This is in line with our findings: The 
derived weighting sets based on Tstrict and Tmoderate (see Fig. 2) 
significantly alter compared to available weighting sets in 
literature e.g. Frischknecht and Büsser Knöpfel (2013), 
Muhl et al. (2019) or Lambrecht et al. (2020). Different coun-
try- or continent-specific legitimised target values cause var-
ying relative weights for instance of “global warming” (GW) 
or “heavy metals into water” (HMIW) (Muhl et al. (2019): 
GW 32%, HMIW 20%, Frischknecht and Büsser Knöpfel 
(2013): GW 45%, HMIW 3%, Lambrecht et al. (2020): GW 
55%, HMIW 6%).

In line with the findings of Castellani et al. (2016), who 
apply their developed distance-to-target weighting for Europe 
on a product system, the LCA results show only marginal 
rank displacement effects when the moderate target values 
are compared to the stricter ones. When conducting the 
uncertainty analysis displacement effects in ranks due to the 
parameter uncertainty of the target value are revealed for the 
ESM for Germany. Additionally, the utilisation of the stricter 
target values Tstrict causes shifts in the relative contribution 
of the environmental indicators to the total impact score for 
the analysed ESM with dominating shares of GW and LU.

During the uncertainty assessment further sources of 
uncertainty have been identified influencing the defini-
tion of the target values. The federal structure of Germany 
allows the identification of region-specific target values: 
For instance, there are different targets for heavy metal 
emissions defined for Rhine, Main or for Lake Constance 
or differences for the North or Baltic Sea, which could 
also be integrated as a source of uncertainty. Furthermore, 
Muhl et  al. (2021) identify a strong regional depend-
ence of the target values: Switching from weighting sets 
derived from consumer regions to producer regions cause 
a shift of the main contributor (from acidification to water 
resources) when assessing the production of aluminium 
and steel. As the definition of target values for further 
countries is necessary the parameter uncertainty may be 
further increased and its influence needs to be analysed. 
Additionally, an enormous data pool of non-binding tar-
get value data is available due to various available reports 
from NGOs, governmental or EU strategies, which are not 
reviewed for this research as it is focused on legitimate 
sources being valid directives, laws or binding treaties.

For the different types of target values, which can be 
environmental quality standards (EQS) (e.g. maximum 
concentrations) or environmental targets (ET) (a specific 
load limit) no conclusion about the degree of strictness 

Fig. 6   Mean average environmental indicator contribution for 
the assessed energy generation systems; GW = global warming, 
CSIA = carcinogenic substances into air, HMIA = heavy metals into 
air, HMIW = heavy metals into water, APP = main air pollutants and 

PM, OD = ozone layer depletion, WP = water pollutants, MR = min-
eral resources, LU = land use, ER = energy resources, WTD = waste to 
deposit
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and consequently the influence on the eco-factor can be 
drawn. In practice the definition of an absolute load limit 
(ET) leaves less room for interpretation and thus subjec-
tive decisions. In fact, EQS often leave the choice to the 
practitioner, how to be handled.

On a methodical level, significant challenges arise from 
the relatively broad description of the ESM provided by 
Frischknecht and Büsser Knöpfel (2013), particularly 
regarding the eco-factor calculation. In contrast to most 
publications, where a single formula is provided, we found 
it necessary for the understanding of our work to distinguish 
at least two cases: eco-factor calculation on elementary 
flow and indicator level as outlined in Eqs. 1 and 2. Since 
there are e.g. different approaches to derive target values, 
which are not captured in detail by our formulation, there 
is certainly still room for improvement in the mathematical 
formulation. Further research may help to come to a more 
rigorous and explicit mathematical formulation of the ESM.

In contrast to Switzerland's ESM, we take multiple contri-
butions of elementary flows to several impact categories into 
account. This methodical adaptation is based on the following 
rationale: (a) impact assessment methods for midpoint indicators 
generally take multiple contributions of elementary flows (e.g. to 
OD and GW) into account (e.g. ReCiPe (Goedkoop et al. 2013)). 
(b) Since our objective is to calculate meaningful impact scores 
on category level (as in Eq. 3) we adopt this approach within the 
ESM context. “Double-counting” of elementary flows occurs 
for 44 substances and 185 elementary flows out of a total of 
1149. The relative deviation of our ESM results from the original 
approach (without double counting) is on the order of magnitude 
1E-5 and can therefore be neglected. Although not substantial 
in our case, it could be crucial for other product systems. The 
issue of double counting multiple impacts should therefore be 
discussed in the context of further developments of the ESM.

The results of the Monte Carlo analysis are dependent 
on the parameters used and the probability distribution 
applied. As the distribution between the moderate and strict 
target values is unknown a uniform distribution is used, 
which is a common approach (Gieck and Gieck 2005), but 
not necessarily represents the real-world data probability 
distribution. Furthermore, the number of runs in Monte 
Carlo analysis can affect the results. Generally, a number of 
1,000–30,000 runs is recommended to reach stable results 
(Cassettari et al. 2012; Gregory et al. 2016; Hongxiang and 
Wei 2013). However, Heijungs (2020) suggests to restrict 
the number of Monte Carlo runs to a number not greater 
than the sample sizes used for the input parameters. This 
corresponds to our observation, that the results do not 
change significantly with more than 200 runs.

Besides the uncertainty of the target values, LCA meth-
odology includes further uncertainties dependent on the data 
quality, data depth and data processing steps such as allocation 
procedures and characterisation factors. We do not evaluate 

the uncertainties arising from characterisation, although these 
are influencing the total impact score. As some of the environ-
mental indicators (e.g. “heavy metals into water”) are a com-
pilation of substances their relative environmental impact is 
disregarded, thus the environmental relevance of a substance 
is not included (ISO14044). The characterisation factors that 
were used for the ESM are based on midpoint LCA methods 
which can include further uncertainties.

In the scope of this study we analyse the influence of 
uncertainty in impact assessment on the robustness of LCA 
results in context of decision making. We focus on the 
weighting, as relatively strong qualitative differences were 
identified in their derivation in previous studies, e.g. in Lam-
brecht et al. (2020). However, an extension of the analysis 
to include normalisation factors would be useful, as the rel-
evant literature shows: For instance, Benini and Sala (2016) 
express the need of an in-depth uncertainty analysis of nor-
malisation factors as these may have a higher influence on 
the results than the weighting (Myllyviita et al. (2014)). Fur-
thermore, the consistency between the reference data used 
for the external normalisation and the LCA modelling are 
discussed critically e.g. in Hélias and Servien (2021).

The datasets of wind, photovoltaic and biogas power occu-
pying the first ranks are from 2000, 2005–2008 and 2007 and 
therefore can be partly outdated. Especially for technologies 
such as photovoltaic with a steep learning curve and an active, 
continuous state of development, the inventory data can change 
rapidly on a large scale. This could lead to deviating results and 
influence the rank stability. Further assessments should examine 
whether the results of this study are applicable to other systems.

4.1 � Comparison with other weighting approaches

The application of external normalisation and weighting 
to aggregate impact assessment results is a weighted sum 
based aggregation method and for instance analysed by Prado 
et al. (2020). Deficits of the weighted sum method as well 
as guidelines for the definition of weights to reflect prefer-
ences of the decision-maker are amongst others described by 
Marler and Arora (2010). Prado et al. (2020) find relatively 
stable rank acceptability index results when the weighted 
sum method is applied to aggregate the midpoint indicator 
of ReCiPe (Goedkoop et al. 2013) and CML (van Oers 2015). 
Additionally, a few impact categories dominate the results. In 
our assessment, systems with comparable total impact scores 
exchange ranks and a relative high rank stability is identified 
as well, however without a dominant environmental indicator.

In line with Pizzol et al. (2017), the parameter uncer-
tainty in distance-to-target methods based on politically 
legitimised targets is present. The application of science-
based targets as in Tuomisto et al. (2012) would be a dif-
ferent approach of distance-to-target weighting, which 
still depend on subjective choices (Muhl et al. 2023). A 



628	 The International Journal of Life Cycle Assessment (2024) 29:614–631

1 3

complementary application could lead to a more compre-
hensive basis for decision making and a better interpreta-
tion of results and is recommended by Muhl et al. (2023).

Next to distance-to-target methods further approaches to deter-
mine weights are available in literature such as panel weight-
ing or monetarisation (Pizzol et al. 2017), which are assessed 
by e.g. Ahlroth (2014) or Finkbeiner et al. (2014). For instance, 
panel weighting is applied to aggregate the environmental impact 
categories evaluated in the Environmental Footprint (Sala et al. 
2018). LCA experts and internet users are asked to weight the 
impact categories. However, a possible bias of the panellists can-
not be excluded (Pizzol et al. 2017; Sala et al. 2018). The deter-
mined weights could vary depending on the surveyed group (see 
Sala et al. (2018)) and a decision for a weighting set or a further 
weight aggregation may be necessary (e.g. merging weights of 
different surveyed groups). In contrast, normative targets are sup-
posed to be derived from a consensus-based process and already 
reflect the different positions (Pizzol et al. 2017).

In practice, there is no consensus on which weighting 
scheme is most suitable (Sala et al. 2018). By analysing 
the uncertainty of the ESM, the transparency of the target 
value definition and its influence on the LCA results is 
increased. Therefore, it enables the practitioner to better 
interpret the assessment results in terms of the underly-
ing assumptions and value choices, which is important in 
order to apply weighting schemes (Ahlroth 2014).

5 � Conclusions and outlook

This paper presents an uncertainty assessment for the tar-
get values of the ESM for Germany. The results suggest 
that the ESM is able to effectively facilitate decision mak-
ing. The weighting schemes deduced from target values 
provide a meaningful ranking of alternatives. At the same 
time, the total impact scores are not excessively sensitive 
to the uncertainties of the target values, i.e. the inherent 
uncertainty of the target values does not result in arbitrary 
results, which is necessary to support robust decisions.

Different sources of uncertainty like different types, the 
temporal and spatial validity and restrictiveness of target 
values have been taken into account in order to assess their 
influence on the LCA results. The rank acceptability index 
shows that, even though environmental indicators are of 
course affected by the resulting parameter uncertainty the 
ranking of the analysed energy generation systems turns 
out to be quite robust: for eight out of nine technologies 
it does not vary at all for at least 50% of all Monte Carlo 
runs. If rank shifting occurs, it is often connected to envi-
ronmental indicators with high spreads in target values. 
Especially, restrictive targets in “global warming” (GW) 
and “land use” (LU) amplify the effect and need to be ana-
lysed carefully.

The relatively high uncertainty for technologies with 
high shares of GW and LU is primarily due to the fact that 
those targets strive to zero. On a methodical level, target 
values that strive to zero lead to predominant weights 
and asymptotically to binary weighting. Therefore, an 
adequate method for deducing meaningful target values 
for prohibited substances is necessary. Solutions may be 
taken from the field of multi criteria decision analysis: 
e.g. the maximum weight limit or a significance test of the 
applied weights as suggested by Marler and Arora (2010).

Still, the improvement of existing target values and the 
definition of politically legitimised targets for as many envi-
ronmental issues as possible would be favourable to reduce 
uncertainty when applying the ESM. A consistent approach 
to consider prohibitive target values would be particularly use-
ful to reduce subjective methodical choices and thus uncer-
tainty. The choice of a specific ESM should adequately reflect 
the preferences of the decision maker. If possible, different 
weighting sets should be applied to ensure sound decisions. 
As uncertainty cannot be completely excluded from the ESM, 
impact assessment tools should be expanded such as to (a) 
transparently show the applied target values and their effects 
on the results to the decision maker and (b) allow for an easy 
applicable, perhaps even real time sensitivity analysis.

Appendix

Table 4   Target values for the substances NMVOC, NOx, SO2, PM2.5 
and NH3 of the environmental indicator “main air pollutants and PM” 
(APP)

Substance Target value 2020 [kt
a
] Target 

value 2030 
[kt
a
]

NMVOC 1.18E3 9.74E2
NOx 1.28E3 7.37E2
SO2 6.43E2 3.42E2
PM2.5 1.03E2 7.92E1
NH3 5.97E2 4.46E2

Table 5   Target values for the substances Ni = nickel, Pb = lead, 
Zn = zinc, Cd = cadmium, Cu = copper of the environmental indicator 
HMIW, ICPR = International Commission for the Protection of the 
Rhine, OGewV = Surface Water Regulation)

Substances Target value (ICPR) Target 
value 
(OGewV)

Ni 50 mg
kg

4 �g
l

Pb 100 mg
kg

1.2 �g
l

Zn 200 mg
kg

800 mg
kg

Cd 1 mg
kg

0.08 �g
l

Cu 50 mg
kg

160 mg
kg
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Nomenclature  A: Current value; EF : Eco-factor; N : All Monte Carlo 
runs; NV  : Normalisation value; p : Electricity generation system; 
RAI : Rank acceptability index; T  : Target value; e : Elementary flow; 
V : A subset of similar stressors; n : Monte Carlo run; r : Rank; s : Aver-
age impact contribution; u : Impact score; v : Environmental indicator; 
x : Substance; X : The set of all environmental indicators.; z : Constant
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