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Abstract
Purpose  The intensive application of nitrogen and phosphorus fertilisers on agricultural land to fertilise crops has caused 
eutrophication, the nutrient enrichment of waterbodies leading to excessive growth of algae, deoxygenation and loss of aquatic 
biodiversity. Life cycle impact assessments (LCIA) are often used to determine the environmental impacts of fertiliser use. 
However, the lack of suitable methodologies to estimate the fate and transport of nutrients from soils makes crop and regional 
impact comparisons challenging. Using a newly devised, spatially explicit nutrient fate and transport model (fate factor, FF) 
within an LCIA framework, this study estimates the global spatial-variability of nutrient loss from fertilisation of crops and 
their relative impact on aquatic biodiversity, specifically species richness.
Method  The newly devised FFs are based on the global spatially explicit nutrient model IMGE-GNM. The FF’s enable us 
to assess N and P’s fate and transport from indirect soil emissions (arable land, grassland and natural land) to freshwater 
environments. Additionally we improve the spatial resolution of existing soil FFs for N within marine environments from 
basin scale to 5 arcmin resolution. We applied our FF’s within current LCIA methodologies to assess the nutrient loading 
(midpoint indicator) and final aquatic biodiversity impact (endpoint indicator) from 17 crops.
Results and discussion  Our results identify strong variability in inputs, loadings and impacts due to differences in the fate, 
transport and impact of nutrients within the local environmental context. Such variability is translated into large differences 
between the popularly used nutrient use efficiency (NUE) indicator and final aquatic impacts caused by specific crops. Heavily  
produced crops (maize, rice, wheat, sugarcane and soybean) with the highest loading rates to receptors did not necessarily 
have the highest aquatic impacts. We identified rank variability exists at different metric stages (fertiliser inputs, receptor 
loadings, aquatic impacts) specifically for wheat and sugarcane. Our results showed high global spatial variability in aquatic  
biodiversity impacts with significant biodiversity loss outside of the highest production regions.
Conclusion  Our study identified, global hotspots for biodiversity impacts depend on the local context that exist beyond the 
field (e.g. the fate and transport of nutrients to receptor environments, and the receptor environment's vulnerability). Aquatic 
impacts from fertiliser use for specific crop commodities should be considered in decision-making for strategic fertiliser 
pollution control and environmentally sustainable crop-commodity trade sourcing. The development of the improved FFs 
should be used to aid spatially explicit and site-specific LCIA nutrient studies from soils.
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PAF	� Potentially affected fraction
LEF	� Linear effect factor

1  Introduction

Crop production to support a rapidly growing human popu-
lation and demand per capita has led to intensive fertiliser 
use (Tilman et al. 2011). Fertilisers, namely nitrogen (N) and 
phosphorus (P), cause 78% of the global marine and fresh-
water eutrophication (Poore and Nemecek 2018), the nutrient 
enrichment of waterbodies causing excessive growth of algae, 
deoxygenation and biodiversity loss. Both fertiliser use and 
areas of eutrophication have grown rapidly since the 1950s 
and 1960s, respectively (Diaz and Rosenberg 2008; Morari 
et al. 2011). Identifying eutrophication hotspots and their 
sources from unsustainable fertiliser use, for specific crop 
commodities, is imperative to inform effective policies for 
reducing aquatic pollution from fertilisers and enable sustain-
able crop commodity trade financing and sourcing decisions.

Due to their extensive eutrophication impact, fertilisers 
have been typically modelled within life cycle impact assess-
ments (LCIA) (Khan and Mohammad 2014). LCIA is one 
of the four main phases to a life cycle assessment (LCA), a 
popular tool for evaluating the environmental consequences 
caused by a product’s life cycle (from resource extraction, 
through all subsequent processes involved in production, 
up to the end of the product’s life). As a regional phenom-
enon, eutrophication is heavily dependent on the nutrients’ 
transport, fate, exposure and effect in the local environment, 
rather than solely the fertiliser input and emission at the field 
(Rosenbaum 2018). The LCIA approach is to devise charac-
terisation factors (CF) that may depend on the:

•	 Nutrient proportion transferred through the environment 
and the residence time within a receptor (Azevedo et al. 
2013a) (fate factor, FF) measured in units of time. The 
FF allows the calculation of a midpoint impact indicator 
representing a nutrient increase in water.

•	 Exposure of the local environment to nutrient enrichment 
(exposure factor, XF)

•	 Effect of nutrient loading on aquatic species (effect fac-
tor, EF). The EF allows for the calculation of an endpoint 
indicator relating to environmental damage.

The CF converts emission inventory data (collated at the 
inventory analysis phase of an LCA) into potential impact (I) 
by applying nutrient-specific (N or P) CFs for each elemen-
tary flow:

CF = FF × XF × EF

I = E × CF

Current LCIA methods differ in their emission inventory 
requirements, impact stage (midpoint or endpoint), geographi-
cal coverage, spatial resolution and emission pathways mod-
elled. Hence, existing eutrophication cause and effect chains 
have variable levels of detail which have evolved over time. 
Previously, site generic indicators of freshwater and marine 
eutrophication typically occur at the midpoint between emis-
sion and environmental damage (endpoint). Midpoint indicators 
are used within several LCIA methods, such as ReCiPe 2008 
(Goedkoop et al. 2008), EDIP 2003 (Hauschild and Potting 
2004), IMPACT 2002+ (Jolliet et al. 2003) and CML 2002 
(Guinée and Lindeijer 2002). More recently, endpoint indicators 
have been incorporated into spatially explicit LCIA method-
ologies (ReCiPe 2016 (Huijbregts et al. 2016), LC-IMPACT 
(2016) and Impact World+ (Bulle et al. 2019)) that represent 
eutrophication damage to ecosystems. Even with current spa-
tially explicit LCIA models identifying significant variability 
in the CF, most crop LCA databases and practitioners still use 
site generic models to estimate emissions of N and P fertilisers 
to waterbodies (Henryson et al. 2020; Notarnicola et al. 2017; 
Schmidt Rivera et al. 2017). Whilst site generic models simplify 
and reduce the data and modelling requirements for LCA prac-
titioners, spatially explicit LCIA models offer opportunities to 
improve the quality and relevance of LCA studies, particularly 
with the growing demand to quantify environmental impacts 
from commodities to support sustainable trade and supply chain 
investing (Baitz et al. 2013; Patouillard et al. 2018).

Recent research on the CF has focused on the spatially 
explicit development of the FF, XF and EF (Azevedo et al. 
2013b; Cosme et al. 2015; Cosme and Hauschild 2016; 
Payen et al. 2021). However, critical reviews of FF models 
have identified gaps in availability and spatial resolution 
of FFs for indirect emissions (e.g. fertiliser application to 
soils; non-point source) to surface waterbodies (Morelli 
et al. 2018). For indirect emissions, regionalised LCIA 
methods handle the transport of nutrients inconsistently 
and have inherent limitations (Morelli et al. 2018) (S.I 1 
Part 1.1). These limitations include inconsistent method-
ologies (Helmes et al. 2012; Cosme 2018), coarse spatial 
resolutions (Payen et al. 2021; Helmes et al. 2012; Cosme 
2018), FFs being estimated from globally unvalidated 
nutrient models (i.e. models not assessed against observed 
measurements) (Bulle et al. 2019) and lack of considera-
tion for non-point source emissions to rivers (e.g. ferti-
liser application to soils) (Bulle et al. 2019). For marine 
environments, ReCiPe 2016 (Huijbregts et al. 2016) and 
recently LC IMPACT (2016) LCIA methodologies provide 
basin scale soil FFs for N, based on the Global NEWS2 
Nutrient Model (Mayorga et al. 2010) through Cosme and 
Hauschild (2017). Current global freshwater LCIA FF 
methods developed by Helmes et al. (2012) are not based 
on validated nutrient models and only provide estimates 
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from direct emissions to rivers (Helmes et al. 2012); they 
do not consider indirect soil emissions. Based on Helmes 
et al. (2012) methodology, ReCiPe 2016 assumes that 10% 
of P released to soil reaches freshwater, whilst IMPACT 
World+ (Bulle et al. 2019) makes no adjustments to FFs 
for indirect emissions. LC IMPACT (2016) updated FFs 
for P soil emissions using estimates from the SALCA 
model, through works by Scherer and Pfister (2015). 
Although the SALCA model was adjusted to the global 
scale (Scherer and Pfister 2015), it remains less accurate 
for regions outside of Switzerland, for which the model is 
programmed and validated to (Willmann et al. 2014). More 
recently, Payen et al. (2021) developed basin-scale FFs for 
N and P in freshwater using the Global NEWS 2 nutrient 
model. However, their results have not been implemented 
within any LCIA methodologies. Henderson et al. (2021) 
also developed fine resolution freshwater and marine 
eutrophication CFs using FFs by Helmes et al. (2012) and 
Cosme (2018) for the USA only. However, although the 
methodology is global in scope, only country level fac-
tors are provided at the global scale. Zhou et al. (2022) 
developed FFs for N in freshwater using IMAGE GNM (a 
global nutrient model) (Beusen et al. 2015) N emissions 
and loadings to freshwater as inputs. However, they did not 
provide FFs for P in freshwater or N in marine environ-
ments. Studies have identified that globally applicable and 
spatially explicit models for calculating soil emissions (i.e. 
leaching, erosion and runoff), which are more dependent 
on climate and soil conditions (e.g. temperature, pH, clay 
content and slope), are lacking in both N and P FF models 
(Notarnicola et al. 2017).

Few global LCIA studies exist for fertiliser use and 
their eutrophication impact. Scherer and Pfister (2015) 
showed large impact variability between crops for P  
use, with soybean causing the largest global impact to 
freshwater ecosystems per kilo produced. They addi-
tionally found that the highest emissions zones did not 
necessarily have the highest impacts on species rich-
ness. To our knowledge, global LCIA studies for N are 
lacking. However, nutrient transport and biophysical 
crop models have found high N and P emission hotspots 
in China, India, eastern USA, and central Europe (Liu 
et al. 2016). According to Diaz and Rosenburg (2008), 
these regions also show considerable marine eutrophica-
tion impacts. The nutrient use efficiency assessment has 
also been widely used to inform policymakers of regions 
where potential excessive fertiliser application is found 
(Brentrup and Lammel 2016; Zhang et al. 2015, 2020). 
However, its use is limited, as it does not consider the 
environmental differences between regions or quantify 
nutrient losses to vulnerable receptors. Such limitations 
for LCIA fertiliser studies mean they have rarely been 

studied beyond the field edge and lack consideration for 
nutrient transportation to surface water environments and 
their associated eutrophication impacts (Schmidt Rivera 
et al. 2017; Liu et al. 2016, 2018).

To summarise, current global LCIA studies, quantify-
ing eutrophication impacts for crop products, have been 
limited by nutrient-type (Scherer and Pfister 2015), crop-
type (Cosme and Niero 2017) and/or spatial-resolution. 
To our knowledge, no study has utilised current spatially 
explicit LCIA methods to analyse the effects of N and 
P emissions from crops worldwide. In addition, current 
LCIA methodological limitations make it difficult to 
assess the emission, transport and fate of fertilisers from 
soils through the local environment. Hence this study’s 
key contributions to the existing literature aims to provide 
the following:

1.	 To assess the impacts of eutrophication caused by N and 
P fertiliser use from crop commodities worldwide. We 
assessed impacts beyond the field edge to understand 
the aquatic biodiversity impact within receptor environ-
ments, which has rarely been studied in previous LCIA 
research.

2.	 To achieve objective 1 and fulfil current LCIA FF limita-
tions, we developed a new spatially explicit FF model. 
This model fills gaps in current FF models (Morelli et al. 
2018; Helmes et al. 2012; Cosme and Hauschild 2017), 
through developing spatially explicit, indirect soil emis-
sion FFs for N and P to fresh and marine water envi-
ronments. Our FF model is based on concepts from a 
global nutrient model (IMAGE GNM) which has been 
validated against observed measurements. Additionally, 
our methodological framework is consistent across N 
and P to provide uniformity across FF methodologies, 
as recommended by many international initiatives, such 
as LEAP (FAO 2017) and UNEP/SETAC (Frischknecht 
et al. 2016).

2 � Methodology

This study applies the four main phases of a standard LCA 
study to assess the eutrophication impact caused by 17 dif-
ferent crop products globally:

•	 Phase 1: Goal and scoping–define the purpose and meth-
odological specifications of the study.

•	 Phase II: Inventory analysis–data collection and model-
ling of all inputs and outputs of the process making up a 
product’s system.

•	 Phase III: Impact assessment–translate inventory data 
into their contribution to the impact category. Quantify 
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resource intensities and emissions that potentially cause 
environmental effects such as climate change, ozone 
depletion, acidification and eutrophication.

•	 Phase IV: Interpretation–evaluating data quality and 
results to draw conclusions relating to the study's goal 
and scope.

2.1 � Goal and scoping

2.1.1 � Goal

The goal defined for this study was to determine the criti-
cal regional hotspots for eutrophication impacts caused 
by N and P fertiliser-use from 17 different crop com-
modities globally. The study evaluates fertilisers beyond 
the field edge, taking into consideration the importance 
of the local context (factors) that impact the removal of 
fertilisers and vulnerability of the environments they pass 
through. As such, we also compare our impact results 
to nutrient use efficient assessments conducted at the 
field. Due to data limitations and extensive requirements 
on data, we considered fertiliser emissions and aquatic 
biodiversity impacts associated with crop production for 
the farm stage only (i.e. we exclude other stages of food 
production along the supply chain that may be consid-
ered in studies focusing on a smaller area or particular 
commodity).

2.1.2 � Eutrophication methodological scoping

The eutrophication methodological scoping for this study 
was done through a literature review. We wanted to iden-
tify the regional link between fertiliser emissions found 
at the field and the biodiversity loss in surface waterbod-
ies through eutrophication. Current global LCIA method-
ologies still assume freshwater algae growth is limited by 
P and marine algae growth is limited by N (the limiting 
nutrient concept) (Finnveden and Potting 1999). Some 
recent studies have considered co-limiting N and P sur-
face waterbodies; however, these are applied at national 
or regional scales (Henryson et al. 2018; Gallego Schmid 
et al. 2010). We adopted current global LCIA practices by 
applying the limiting nutrient concept due to the extensive 
literature review requirements and lack of adaptation of 
current global LCIA methodologies to cater for co-limiting 
or varying N and P-limiting surface waterbody assessment 
(Huijbregts et al. 2016; LC IMPACT 2016). For freshwa-
ter environments, we adopt the LC IMPACT (https://​lc-​
impact.​eu/) methodology and for marine environments we 
adopt the methodology by Cosme and Hauschild (2017). 

These LCIA approaches assess the nutrient loading (mid-
point indicator) and final aquatic biodiversity impact (end-
point indicator). Nutrient loading represents the amount  
of nutr ient reaching receptor environments and 
their duration of persistence, yielding a unit of kg 
·yr. The final aquatic biodiversity impact is measured by 
the potential disappeared fraction of species (PDF). LC 
IMPACT quantifies the relative global species loss by put-
ting regional species loss in perspective of the global spe-
cies pool, leading to a globally normalised PDF of species 
(Verones et al. 2020). For freshwater, we solely consider 
fish species, as per LC IMPACT, whilst for marine envi-
ronments, we consider demersal marine species (includ-
ing fish, crustaceans, molluscs, echinoderms, annelids, 
and cnidarians), as per Cosme and Hauschild (2016). This 
study assumes global species pools for freshwater envi-
ronments account for 15,000 fish species (LC IMPACT 
2016), whilst marine environments account for 626 demer-
sal (benthic and benthopelagic) fish and invertebrates  
species (Cosme et al. 2017).

The adopted spatially explicit LCIA approaches use 
devised CFs (formed from the FF, XF and EF) to convert 
inventory fertiliser emissions into potential biodiversity 
impacts. For freshwater, impacts (Ifreshwater) are estimated 
by:

where Ep reflects the P emissions (kgP) and CFp (P char-
acterisation factor) relates to the potential disappeared 
fraction (PDF) of species lost during a year due to 1kg of  
P loaded (PDF∙yr∙kgP

−1). The CFp is defined by the newly 
devised FFp (fate factor, yr) and updated EFp (effect fac-
tor, PDF∙kgP

−1). FFp is the transported fraction of P from 
source to receptor and persistence in freshwater systems. 
EFp describes the potential decrease in fish species rich-
ness due to the P concentration in a specific freshwater  
type and ecoregion (Azevedo et al. 2013b). EFp is updated 
with improved hydrological data from PCR-GLOBWB 2 
(Sutanudjaja et al. 2018). Spatially explicit XFs have not 
been devised for freshwater environments; only marine 
environments have spatially explicit XFs relating to oxy-
gen depletion (Morelli et al. 2018). Further methodological 
details on the EFp is provided within the S.I 1 Part 2.2.

For marine environments, regionalised marine eco-
system potential impacts (Imarine) due to N emissions are 
estimated through marine eutrophication CFs (Cosme and 
Hauschild 2017):

If reshwater = Ep × CFp

CFp = FFp × EFp

Imarine = EN × CFN
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The EN (KgN) is the emissions of N. The CFN (N charac-
terisation factor) is the potentially affected fraction (PAF) 
of species during a year (PAF yr kgN

−1) defined by the 
updated FFN (yr) and the existing XFN (exposure factor, kg 
O2 kg N−1) and EFN (PAF kg O2

−1) (Cosme and Hauschild 
2017). XFN and EFN vary globally between 66 large marine 
ecosystems (Cosme and Hauschild 2017). The improved 
FFN uses nutrient emissions fractions (fzN(i,j))  from this 
study based from IMAGE-GNM (Beusen et al. 2015) with 
marine persistence rates taken from Cosme (2018). XFN 
reflects N’s conversion to organic matter (phytoplankton 
biomass) to dissolved oxygen consumption in the bot-
tom waters (Cosme et al. 2015). The EFN is the effect on 
biota due to dissolved oxygen depletion measured as the 
Potentially Affected Fraction (PAF) of species (Cosme and 
Hauschild 2016). To harmonise the endpoint scores in the 
LCIA framework, a conversion of the marine eutrophi-
cation endpoint CF from PAF to PDF is made using the 
conversion factor of 0.5 (Cosme and Hauschild 2016). The 
conversion factor assumes one-half of the species affected 
above their sensitivity to the hypoxia threshold (PAF met-
ric) would disappear (PDF metric). This value is assumed 
based on the seasonality of planktonic production and bio-
logical processes, water temperature and stratification, and 
nutrient flows (Cosme and Hauschild 2016). The relative 
PDF metric was translated to an absolute metric through 
multiplying the PDF by species density distributions as 
per Cosme et al. (2017). We divided the demersal species 
densities by the global demersal species pool of 626 to 
obtain a global relative metric and harmonise our marine 
species impact results with our freshwater species result, 
following LC IMPACT (Verones et al. 2020).

We aggregated the biodiversity loss of freshwater and 
marine species to obtain the aquatic biodiversity loss found 
across receptors. To do so, we took the average PDF of spe-
cies between marine and freshwater environments; this is 
one of the four aggregation methods suggested by Verones 
et al. (2015).

2.1.3 � Fate factor methodological scoping

Our literature review showed that current FF models 
were not suitable for our spatial study regarding fertiliser 
impacts from specific crop products. Hence, we developed 
new FFs and applied them within our adopted LCIA meth-
odologies. Here we develop new spatially explicit FFs that 
enable us to assess the fate and transport of N and P from 
indirect soil emissions (via surface runoff, erosion and 
leaching) from different landcovers (arable land, grassland 

CFN = FFN × XFN × EFN
and natural land) to freshwater environments. Additionally, 
we improve the spatial resolution of existing soil FFs for 
N within marine environments (Cosme 2018) from basin 
scale to the 5 arcmin resolution. The newly devised FFs are 
based on the global nutrient model IMAGE-GNM (Beusen 
et al. 2015).

The IMAGE-GNM model is coupled with PCR-
GLOBWB (van Beek et al. 2011) (a global hydrological 
model) to estimate global and spatially explicit nutrient 
delivery of N and P to freshwater systems, via point and 
diffusive sources, at 30 arc-minute resolution (Beusen 
et al. 2015). This study develops a new FF model by using 
IMAGE-GNM equations within an FF model structure. 
The FF model structure, methodology, validation, results 
and user application are presented in the S.I. 2: Devel-
opment of a Spatially Explicit Fate Factor Model at the 
5 Arcmin Resolution. We updated datasets used within 
IMAGE-GNM which are now available at the 5-arcmin 
resolution, (e.g. soil data (Batjes 2012), hydrographic 
information through PCR-GLOWBWB 2 (Sutanudjaja 
et al. 2018), aquifer thickness (de Graaf et al. 2017), poros-
ity and permeability (Gleeson et al. 2014), Appendices 1  
and 2). The updated datasets have a finer spatial reso-
lution and reduce the number of assumptions within 
IMAGE-GNM, e.g. aquifer thickness. Each process  
in the development of the FF is driven by distinct local 
characteristics (e.g. slope, landcover, texture, temperature, 
soil loss, precipitation, soil drainage, soil organic carbon 
content) that alter the fate and transportation of nutrients. 
These processes have been described in detail by Beusen  
et al. (2015) for IMAGE-GNM.

2.1.4 � Analysis scoping

Log regression analysis was used to identify whether the 
E, FF, XF or EF caused greater variability to the overall 
environmental impact found in fresh and marine waters 
as per Cosme and Hauschild (2017). To coincide with the 
previous LCIA literature (Payen et al. 2021; Cosme and 
Hauschild 2017), we assessed sensitivity through sensitiv-
ity ratios on primary, secondary and tertiary parameters 
that influence the final impact in marine and freshwater 
environments and build the FF, EF and XF as described 
by Strandesen et al. (2007). The sensitivity ratio is calcu-
lated as the ratio between the relative change in the model 
output and the relative change in the input parameters. We 
further assess some tertiary parameters to the FF which 
include arable land cover, temperature, precipitation, resi-
dence time, discharge and nitrogen load in rivers (Cosme 
and Hauschild 2017). These input variables were chosen 
based on their ability to be segregated easily within the 
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model without impacting other input variables heavily. 
Annual temperature, precipitation and discharge between 
2000 and 2015 were obtained from PCR-GLOBWB 2. We 
assessed the secondary parameter existing P soil content’s 
impact on the FF using historical annual phosphorus soil 
contents between 1970 and 2000 which were obtained 
from IMAGE-GNM. For temperature, precipitation, dis-
charge and P soil content, we varied each grid cell value 
by one standard deviation of the variable’s annual distribu-
tion over the given time period. For all other variables, the 
input was varied by 10%.

2.2 � Emission inventory analysis

Nutrient input and crop yield data were taken from http://​
www.​earth​stat.​org, as it provides data for 17 different crop 
commodities at the 5-arcmin resolution circa 2000 (Mueller 
et al. 2012; West et al. 2014; Monfreda et al. 2000). Although 
Earthstat provides the highest resolution available for global 
crop specific datasets, it is limited by data availability to 17 
crops and to the year circa 2000 (1997–2003 period) solely.

Based on nutrient input data (Mueller et al. 2012; West 
et al. 2014) (kg N or P) for each crop type c, the soil nutri-
ent balances for each 5-arcmin grid cell (i) is the difference 
between inputs and outputs of N and P:

N inputs include biological N fixation (Nfix), atmospheric 
N deposition (Ndep), synthetic N fertiliser (Nfert) and animal 
manure (Nman). Outputs include N removed via crop uptake 
(Ncrop) and N lost via volatilisation (Nvol).

P has no fluxes with the atmosphere; therefore, only syn-
thetic fertiliser (Pfert), manure (Pman) and phosphorus uptake 
(Pcrp) are included. Positive soil balances give potential for 
nutrient to escape into the environment. Further information 
on the individual elements of the mass balance and their 
calculation can be found in the S.I 1 Part 2.1. Information on 
linking the emission inventory data to the FF can be found 
in the S.I 2 Part 2.

3 � Results and discussion

Here our results and discussion present phases III and IV of 
an LCA study. Our results show:

1.	 The total aquatic impacts, nutrient loadings and inputs 
due to crop fertilisation. Unlike previous LCA studies, 

Nbudget = Nfixi,c,
+ Ndepi,c,N

+ Nferti,c,N
+ Nmani,c,N

− Ncrpi,c,N
− Nvoli,c,N

Pbudget = Pferti,c,P
+ Pmani,c,P

− Pcrpi,c,P

we identify eutrophication hotspots caused by the total 
production of crop commodities (i.e. not per unit mass 
or area but rather the total within a grid cell or region). 
Through this, we identify whether variability existed due 
to the local context or whether higher production and 
fertiliser inputs necessarily lend themselves to higher 
nutrient loadings and aquatic impacts.

2.	 The intensities of aquatic impacts, nutrient loadings and 
inputs per dry mass unit (tonne) of crop produced. This 
helps inform the trade-off between the amount of food 
produced and biodiversity impact, whilst fairly compar-
ing performance across various crop types and regions. 
Although this is similar to previous LCA studies, here 
we assessed intensity by dry matter due to crops with 
high water contents, such as sugarbeet and potato, being 
disproportionately heavy. Assessment of intensities per 
dry mass makes crops more relatable to their end use 
as food, feed, fibre or fuel and support trade and supply 
chain risk analysis.

3.	 An assessment of our developed FF model to evaluate 
dominant pathways (runoff, erosion or leaching) for 
aquatic pollution/loading of nutrients, the influence of 
the local environmental context, sensitivity of distinct 
local characteristics and potential nutrient management 
strategies.

3.1 � Total global aquatic impacts, nutrient loadings 
and inputs

3.1.1 � Crop specific

Maize, rice, wheat, sugarcane and soybean production 
account for 76% of the global dry mass for the 17 crops 
considered in this study (Table  1). Accordingly, ferti-
liser inputs (anthropogenic only) and nutrient loadings to 
aquatic receptors (freshwater and marine) for four of these 
five crops (excluding sugarcane) consistently ranked the 
highest against other crops. However, variability existed 
within (e.g. rice and wheat) and outside (e.g. potato) of 
these top five crops for their input, loading and impact 
rankings.

Nutrient load to receptors and aquatic impact ranking 
showed a greater reliance on the fertiliser input than the 
total production (e.g. cotton and rapeseed). This suggests 
differences in crop fertilisation application and require-
ments influence the environmental impact more so than 
total production. Sugarcane, although ranked within the 
top five for production, ranked within the middle of the 
total crop distributions for fertiliser inputs, loads and 
impacts. For the top five impacting crops, sugarcane 
was replaced by barley which, whilst having 88% greater  
aquatic species impacts than sugarcane, only had 46% of 
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sugarcane’s dry mass but 35% greater fertiliser inputs. 
Sugarcane’s total aquatic impacts were in a similar range 
to rye production, even though rye production is fifteen 
times less than sugarcane. Some crops showed large rank 
variability between different metric stages (fertiliser 
inputs, receptor loadings, aquatic impacts). Rye and sug-
arbeet had the highest raise in rank (6 rank difference) 
between nutrient input and aquatic species impacts, sug-
gesting high nutrient delivery and vulnerability in their 
growing regions. Other crops showed a decline in rank 
from fertiliser inputs to aquatic impacts (e.g. cotton and 
groundnut) suggesting reduced nutrient delivery and low 
vulnerability within their growing regions. The least 
impactful crops, due to total production, included ground-
nut, cassava and oilpalm. Oilpalm’s production had the 
least impact within the whole crop distribution and ranked 
7th highest for dry production.

We applied the nutrient use efficiency (NUE) indicator 
which is the ratio of nutrient applied to the crop uptake 
of nutrients. It is a well documented indicator of envi-
ronmental sustainability (Brentrup and Lammel 2016; 
Zhang et al. 2015). Here the NUE is calculated using 
both fertiliser and natural nutrient inputs to understand 
the efficiency of fertiliser applied. Very low NUEs below 
50% develop surplus N and P on fields, increasing the 
risk of nutrient delivery to vulnerable environments and 
economic costs (Brentrup and Lammel 2016). Thirteen 
of the 17 crops showed NUEs below 50% and included 
the top six most produced crops. Potato, sugarbeet and 
cassava had the worst NUEs below 20%. Optimal NUE’s 
operating space is around 70–80%. Global groundnut and 
sunflower production were closest to this optimal range. 
NUEs above 90% (oilpalm) suggest soil mining and deg-
radation potential due to insufficient nutrient inputs for 
crop production.

We compared crop ranking of the global NUE indicator 
to aquatic impact. The R ratio, which is the ratio between 
the fertiliser aquatic impact (RImpact) or load (RLoad) to the 
fertiliser application, identifies the highest impact or load per 

unit of fertiliser applied to fields. Sugarbeet, rye, potato and 
soybean had the highest RImpact values suggesting the great-
est inefficiencies, nutrient loadings and impacts to receptors 
are found for production of these crop commodities. Large 
ranking differences can be found between the NUE indicator 
and the RImpact for sugarcane, soybean, sorghum, millet and 
rye. Soybean and rye production are particularly impact-
ful per unit of nutrient applied due to rye’s vulnerability 
of receptors within its growing regions (seen by the RImpact 
value), soybean’s high transport of nutrients to receptors in 
growing regions (seen by the RLoad value) and soybean’s 
high natural inputs through biofixation.

Our results identify strong variability between different 
metric stages (fertiliser inputs, receptor loadings, aquatic 
impacts) even when considering total production. This 
variability is translated into large differences between the 
NUE indicator, RLoad and RImpact ratios at the global scale. 
The cause of this variability is due to differences in nutrient 
efficiencies on the field and variance in the fate, transport 
and impact of nutrients within the local environmental 
context (modelled through the various CF factors; S.I. 1 
Part 3.3).

3.1.2 � Eutrophication regional hotspots

Half of the world’s total crop production considered in this 
study is found in North America, Europe, Central-Eastern 
South America, Eastern and Southern Asia. These regions 
have inherently much higher total fertiliser inputs than oth-
ers, lending to substantial nutrient receptor loadings and 
considerable species richness impacts (Fig. 1a). The Yang-
tze, Mississippi and Ganges–Brahmaputra are specific basins 
within these regions with high biodiversity impacts from 
both N and P fertiliser use (Fig. 1d and e). In general, bio-
diversity impacts were higher in marine environments than 
in freshwater environments and did not necessarily coincide 
spatially (Fig. 1b–e).

Differences in the LCIA characterisation factor (CF) 
caused spatial variability in freshwater and marine envi-
ronments (S.I Part 1 3.3 Fig 3). In marine environments, 
spatial variability was mainly caused by the farming pro-
cesses and transportation of N from field to marine receptors 
(input-loading correlation; R2 = 0.516; Fig. 2d), rather than 
the vulnerability of marine species (loading-impact corre-
lation; R2 = 0.99; Fig. 2d). Stronger correlations between 
P input-loading were observed in freshwater (R2 = 0.754; 
Fig. 2e), however weaker loading-impact correlations (R2 
= 0.564; Fig. 1e) reflect that freshwater impact variability 
was influenced by fish species vulnerability. Hence, high 
freshwater species impacts were additionally found in basins 
with lower receptor loadings (e.g. Orange basin, Southern 

Fig. 1   Global maps of total aquatic biodiversity impacts from ferti-
liser use on all crops (a) assessed for nitrogen in marine environments  
(b) and phosphorus in freshwater environments (c). Each cell identi-
fies the environmental impact to respective receptors (freshwater or 
marine) through fertiliser application at the cell’s location. Total fer-
tiliser inputs on the field (tonne), fertiliser loadings (tonne) to water 
bodies and impacts on aquatic species for nitrogen (d) and phospho-
rus (e) at the basin scale level are presented along with linear regres-
sions and R2 values. Names of basins refer to the top 5 basins with 
the most impact to species richness. Shape size represents the quan-
tity of total crop production. Colours identify the biodiversity impact 
measured as the potentially disappeared fraction of species (PDF∙yr); 
a commonly used LCIA biodiversity metric unit

◂
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Fig. 2   Dominant surface and subsurface processes causing nitrogen 
(a) and phosphorus (b) to freshwater environments removal for all 
17 crops based on modal nutrient loss pathway. In N, surface run-
off dominated 14.4% of the arable land surfaces, erosion dominated 

18.2% and leaching dominated 67.4%. In P, surface runoff dominated 
18.5%, erosion from new nutrient inputs dominated 0.5% and erosion 
from existing P in soils dominated 81.0% of the earth’s arable land 
surfaces
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Africa). The Tigris-Euphrates basin is another clear exam-
ple of this loading and impact variability, which identified 
as having the second highest loading rates for P, yet envi-
ronmental impacts to fish species ranked 18th. Overall, low 
input-impact correlations in N (R2 = 0.5; Fig. 1d) and P (R2 
= 0.607; Fig. 1e) meant high biodiversity impacts were addi-
tionally found outside of regions with the highest production 
and fertiliser application.

3.2 � Local context and nutrient transportation; fate 
factor

The fate factor model includes three nutrient transport pro-
cesses (surface runoff, erosion and leaching) that influence 
the emission of nutrients from fields to waterbodies. Figure 2 
shows the spatially dominant emission pathways for N and 
P to freshwater bodies. Whilst both N and P are emitted via 
surface runoff and erosion, only N is considered to leach, as 
P is easily absorbed by soils (Beusen et al. 2015).

As nutrients are applied to a field, surface runoff is 
considered to take a fraction of nutrient application (both 
natural and anthropogenic) before it has potential use for 
crop growth in IMAGE GNM. Surface runoff dominated 
14.4% of the global arable land surface for N and 18.5% 
for P and was found mainly in North America, Central 
South America, Central Africa and South, East and South-
East Asia.

Erosional processes for N and P are related to the quan-
tity of soil loss per year in IMAGE GNM. N soil loss only 
takes account of existing N in the soil (i.e. without addi-
tional human or natural nutrient application) and is related 
to the amount of carbon found in soil loss. Therefore, it is 
unrelated to the quantity of fertiliser applied to fields. In P, 
erosional processes are related to the mass balance from 
new P inputs, historical P inputs and existing P found in the 
soil. Consequently, for both N and P, an inherent quantity of 
nutrient is lost via erosion from arable fields that is uninflu-
enced by the quantity of N and P fertilisers applied on the 
field. The inherent quantity of nutrient loss via erosion for N 
dominated 18.2% of the earth’s surface, whilst for P, inherent 
soil loss dominated 81.0% of arable land surface and 0.5% 
was dominated by new P inputs to soil loss.

Existing erosion was the primary cause of P removal 
from agricultural soils and leaching was the primary cause 
of N removal. N leaching dominated 67.4% of arable grid 
cells and existed in most major agricultural basins (e.g. 
the Mississippi, Ganges–Brahmaputra, Danube and Yang-
tze). N fertiliser is leached into the groundwater where it 
can persist over many years before leaching into rivers. 
Although IMAGE GNM models nitrogen persistence in 
groundwater up to 50 years, this could be much longer due 
to storage within the vadose zone, which is not modelled 

within IMAGE GNM (Ascott et al. 2017). Ascott et al. 
(2017) showed that global storage volumes of nitrate in the 
vadose zone are between 605 and 1814 teragrams. Storage 
of nitrate in the vadose zone may delay the transient delivery 
of nitrates through groundwater to rivers, thereby delaying 
eutrophication impacts. The uncertainty in the quantity and 
length of storage time within the vadose zone and ground-
water can create negative implications on nutrient manage-
ment strategies applied to fields or receptors as leaching 
rates into river receptors are dependent on the historical 
fertiliser inputs, the quantity of denitrification in soils and 
riparian zone and the length of time of storage in the vadose 
and groundwater. Globally variable historical fertiliser use 
means that whilst some regions have increased their fertiliser 
use, others have decreased use over time. Here we factor in 
transient (variable) historical fertiliser use by developing a 
transient state (TS) versus steady state (SS, constant input 
of fertiliser over time) factor which increases, or decreases, 
N loads for the year 2000, depending on the historical load 
existing within aquifers. We applied a maximum TS/SS fac-
tor of 2 due to high uncertainties found within groundwater 
datasets (Sutanudjaja et al. 2018).

For more details on the FF model methodology, vali-
dation, results and comparisons with other FF models, 
we direct the reader to the supplementary material S.I 2: 
Development of a Spatially Explicit Fate Factor Model at 
the 5 Arcmin Resolution. The FF results for all land covers 
(arable, grassland and natural) are found in this supplemen-
tary material.

3.3 � Global aquatic impacts, nutrient loadings 
and inputs per tonne dry crop

3.3.1 � Crop specific

To fairly compare performance across various crop types, 
we assessed the inputs, loadings and impacts of crop pro-
duction per dry mass unit (tonne) of crop produced (Fig. 3). 
The FF model suggests there is an inherent loss of nutri-
ents from fields without additional anthropogenic fertiliser 
input. Hence, we separated natural arable inputs, loads and 
impacts from those associated with anthropogenic fertilisa-
tion inputs. Whilst natural inputs include N deposition and 
fixation inputs, natural arable loadings include loadings from 
natural inputs and N and P erosion from arable soils (using 
natural landcover as a baseline for erosion; see S.I Part 2 
2.4). Separating fertilisation flows from natural flows allows 
us to assess the impact of anthropogenic fertiliser within any 
given year. Crops are ordered based on their fertiliser impact 
to fertiliser input ratio (RImpact, Table 1).

Across aquatic environments (marine and freshwater), the 
potential disappeared fraction (PDF) of species was highest 
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for rapeseed, potato and rye. Rapeseed impacts from ferti-
liser use were over four times higher than the mean impact 
from fertilisers across crop commodities (2.78 × 10−12 
PDF∙yr/tonne crop). The lowest impacting crops included 
cassava, sugarcane and oilpalm and were related to low 
fertiliser inputs per tonne of dry crop. Fertilisation inputs 
and receptor fertiliser loadings for rapeseed were the high-
est across all crop distributions. Rapeseed fertilisation rates 
were sixteen times greater than the lowest fertilised crop, 
oilpalm. This resulted in loading rates over 40 times higher 
for rapeseed than oilpalm. Rapeseed is an oil crop; therefore, 
switching from rapeseed to another oil crop (e.g. soybean, 
sunflower or oilpalm) may reduce global eutrophication 
impacts. However, it is important to note that increasing the 
production of another crop may exacerbate their eutrophi-
cation impacts or have other environmental consequences 
such as deforestation and terrestrial biodiversity loss (Qaim 
et al. 2020).

Soybean’s atmospheric nitrogen fixation abilities 
increased soybean’s natural N inputs, which had over 10 
times greater natural inputs and more than double the 
quantity of nutrient loadings (not considering fertiliser 

loadings) to receptors, than any other crop. However, 
fertiliser loading rates and overall marine impacts of N 
for soybean were low compared to N inputs, suggesting 
soybean benefited from strong nutrient use efficiencies in 
N found on the field, low N nutrient delivery to marine 
receptors and low marine species vulnerability in soy-
bean’s growing region. Opposingly, and coinciding with 
previous literature, soybean had the highest freshwater fish 
species impacts due to high vulnerability of freshwater 
receptors within soybean’s growing regions (Scherer and 
Pfister 2015) (S.I. 1 Part 3.1). This indicates nutrient man-
agement strategies should be directed towards protecting 
freshwater environments for soybean production.

N fertiliser application rates were on average five times 
greater than P fertiliser application rates and N loading to 
marine environments was an order of magnitude or two 
greater than P loading to freshwater (S.I. 1 Part 3.1). Conse-
quently, marine species impacts were greater than freshwater 
fish species impacts. For example, rye and rapeseed caused 
104- and 116-times greater impacts in marine environments 
compared to freshwater environments, respectively. This was 
due to greater nutrient loading rates to marine environments 

Fig. 3   Global production weighted averages of N and P fertiliser 
field application (blue), aquatic receptor loadings (green) and aquatic 
impacts (red) per tonne of crop for seventeen different crops. Crops 
are ordered ascending based on their ratio of fertiliser aquatic impact 
to fertiliser inputs (RImpact); high ratios mean better use of nutrients 

on the field for crop production and reduced nutrient transport to 
aquatic receptors, low ratios suggest inefficient use of nutrients on the 
field and increased nutrient transport to receptors. Separate graphs for 
N and P are found in the S.I. 1 Part 3.1
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and higher marine vulnerability where rye and rapeseed are 
grown, specifically in Europe. Whilst rapeseed, potato and 
rye identified as having the highest impacts to marine spe-
cies, soybean, rice and potato showed the greatest impacts 
to freshwater fish species. Additionally, greater variability 
existed in freshwater impacts between loadings and impacts 
(e.g. groundnuts versus barley), indicating strong spatial 
variations in freshwater fish species vulnerability in spe-
cific growing regions. For P fertilisation, we identified mul-
tiple cropping systems having low RImpact values given their 
high P fertilisation inputs (e.g. sorghum, sunflower, millet 
and rapeseed). This is due to lower nutrient delivery and, in 
some cases, lower freshwater receptor vulnerability, e.g. for 
rapeseed in Europe.

3.3.2 � Country level performance

At the country level, we assessed the performance for spe-
cific crop commodities per unit of dry mass produced and 
applied the NUE indicator. We assessed the relationships 
between production, NUE, loading and impact metrics for 
all crops and countries. We show the relationships which 
were significant (P > 0.05) in Table 2.

One would expect countries with high production to 
benefit from economies of scale and have suitable NUEs 
that translate into lower impact intensities within water-
body receptors. However, at the country scale, we found 
no significant relationship existed between production 
quantities and intensities of inputs, loading or aquatic 
impacts. Similarly, no strong relationships were identified 
for the combined NUE indicator with loading or impact 
metrics. For N and P individually, no strong relationship 
(< −0.2 or > 0.2) existed between receptor impacts and 
the NUE indicator (−0.11 for N and 0.15 for P). The lack 
of a strong correlation between the NUE indicator and 
aquatic impact metrics makes the NUE indicator unsuit-
able to assess environmental sustainability from fertiliser 
use at the country scale. This solidifies the need for end-
point indicators that measure biodiversity impacts rather 
than indicators related to resource use efficiencies or 
intensities.

Strong positive relationships were identified between 
aquatic impacts and combined loadings (0.59). However, 
considering N and P individually, a notably stronger rela-
tionship was identified in marine environments (0.67) than 
in freshwater environments (0.19), indicating strong vari-
ability in freshwater vulnerability. For N and P in freshwa-
ter, a strong positive relationship between N and P loading 
existed (0.32). However, only N freshwater loading showed 
significant relationships with N marine loading (0.37). Our 
results show strong variability between all metrics (produc-
tion, NUE, loading and impact metrics) suggesting the local Ta
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environmental context (transportation of nutrients and vul-
nerability of receptors) plays a major role on the variability 
of aquatic impacts at the country scale.

For each crop, country level scatterplots using pro-
duction, NUE, loading and impact metrics were devised. 
Although the results for all 17 crops can be found in the 
S.I 1 Part 3.2, we present here (Fig. 4) for illustrative pur-
poses, the results for the two most heavily produced crops 
worldwide, maize and rice. The impact presented here is 
the overall impact including the underlying natural impacts 
measured in PDF∙yr/tonne dry crop. We assessed the global 
median rather than mean due to the strong positive skew-
ness of the data.

At the country level, the global combined median NUE, 
for both N and P, was below 50% (48.65%). This suggests 
surplus N and P on fields increases the risk of nutrient deliv-
ery to vulnerable environments and economic costs. Most 
crops showed country level NUEs above and below the 
global median. However, some specific crops showed almost 
all countries performed with NUEs below this value (e.g. 
potatoes) or above (e.g. oilpalm). Many African countries 
had combined NUEs well above 100% such as Madagascar  
(oilpalm NUE = 3278%; cotton 578%), Niger (rice NUE = 
1829%) and Ghana (Groundnuts NUE = 289%). The NUE 
indicator is a suitable indicator to understand resource use 
and efficiencies found on the field. However, its use to assess 

Fig. 4   Intensities of nitrogen and phosphorus loadings and impacts to 
waterbody receptors per unit ton of yield at the country level. Coun-
tries with the smallest production (for a total of 0.01% of global total 
production of each crop) are discarded; shapes represent different 

continents; sizes represent production of each country; colour repre-
sents NUE (%); dashed red line represents the global mean of load-
ings and impacts
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emissions and environmental impact is limited as the NUE 
indicator does not consider the inherent loss of nutrients 
from soils, the reduction of nutrients during their deliv-
ery to receptor environments from fields and the varying 
level of biodiversity vulnerability found within receptor 
environments.

In marine environments, the greatest impact to marine 
demersal species, on orders of 3.00 × 10−10 to 1.00 × 
10−11 PDF∙yr/tonne, was mainly found in East Asia by 
multiple crops (e.g. soybean, rye, rice and cotton) and 
in Europe along the North Sea by rapeseed, potato and 
rye production in countries such as Latvia, Sweden and 
Belgium. Most NUEs for N in these regions were below 
50%, suggesting poor nutrient use efficiencies are found 
for multiple cropping systems. However, additionally 
strong nutrient delivery and receptor vulnerability play 
major roles in increasing the environmental impact in 
these regions. One example is the Baltic Sea in Europe 
which  has  a residence time of 21.83 years, 9.4 times 
greater than the average residence time found glob-
ally in large marine ecosystems (Cosme and Hauschild 
2017). The residence time increases the nutrient persis-
tence in receptors, increasing eutrophication potential.   
Additionally,  in East Asia the seas surrounding Korea 
have high marine vulnerability (S.I. 1 Part 3.3). For nitro-
gen loading to marine environments, the highest load-
ings were found in Europe (e.g. Bulgaria, Turkey, Italy 
and Latvia) and South Asia (Bhutan and Bangladesh) for 
mainly rapeseed and soybean production. The highest 
loading to marine environments was by cotton produc-
tion in Bulgaria, where 41.93 kg N/tonne dry crop reaches 
marine environments causing high marine impacts (4.84 
× 10−11 PDF∙yr/tonne). The lowest marine impacts were 
mainly found in Africa, in particular Uganda, Niger and 
Mali, on orders of 1.00 × 10−15 to 2 × 10−18 PDF∙yr/
tonne, for multiple production systems such as millets, 
maize, sugarcane and cassava. This is mainly due to coun-
tries being inland where emissions are heavily reduced, 
through retention in soils and river systems, before reach-
ing the coastal environments and low vulnerability of 
marine receptors surrounding Africa. Countries in Central 
Asia such as Turkmenistan, Azerbaijan and Uzbekistan 
showed zero impact to marine species, as hydrological 
flows belonging to these countries are not connected to 
large marine ecosystems.

Unlike marine impacts, freshwater fish species impacts 
in Northern Europe were some of the lowest, particularly in 
the Netherlands, Denmark, Sweden and Belgium, for crops 
such as barley, wheat, sugarbeet and potato. Low NUEs in P 
suggest the low freshwater fish species vulnerability (char-
acterised through the EF) plays a major part in reducing the 
freshwater impact (S.I. 1 Part 3.3). The highest freshwater 
species impacts were found in Lebanon, Israel and Lesotho, 

on the order of 3.5 × 10−10 to 1.03 × 10−10 PDF∙yr/tonne. 
These countries are all semi-arid, sub-humid climates and 
hence have increased receptor vulnerability. The vulner-
ability of freshwater fish species (characterised through the 
EF for P) is dependent on the fish species richness, climate, 
volume of water and waterbody type (river or lake/reser-
voir) found within ecoregions; see S.I. 1 Part 2.2 for the 
EF methodology and LC impact for further information. 
As such, ecoregions with a dry subhumid or semi-arid cli-
mate, with lower water volumes and greater quantities of 
lakes and reservoirs, increase fish species densities and their 
inherent vulnerability within water-scarce regions.

Our results suggest fertiliser inputs for specific crops vary 
across countries and production scales. The local context 
(fate and transport of nutrient and vulnerability of receptor 
environments) plays a great part in enhancing or diminishing 
environmental impacts from fertiliser use, suggesting a strong 
reliance on regionality of environmental impacts rather than 
quantity of fertiliser use, or type of crop grown.

3.4 � Global regression analysis and sensitivity 
analysis

A spatial regression analysis was used to identify whether 
the emission inventory (E), fate and transport factor (FF), 
exposure factor (XF, in marine environments only) or spe-
cies vulnerability in aquatic receptors (EF) caused greater 
variability to the overall impact (I) caused by the production 
of wheat globally (S.I 1 Part 3.5). We chose wheat as it is 
the most heavily produced crop globally with the greatest 
spatial coverage. The analysis showed that whilst the intrin-
sic spatial variability of the CF within marine environments 
was primarily driven by the FF, in freshwater environments 
the FF and EF had equal influence. The emission inventory 
had a low influence for both N and P. Drivers of spatial 
variability are indicated through high coefficients of deter-
mination (R2), relatively low sum of squares, mean square 
and standard error.

The LCIA impact study sensitivity to the four main input 
parameters, i.e. E, FF, XF and EF, was assessed through 
sensitivity ratios (SR) to coincide with previous LCIA lit-
erature (Cosme and Hauschild 2017) (S.I 1 Part 3.6). As 
the impact found in marine or freshwater environments is a 
linear multiplication function, each of the primary param-
eters showed an expected SR = 1. We assessed sensitivity 
to primary parameters that build the FF, EF and XF. The 
FF model showed neutral sensitivity ratios (SR = 1.00) 
to the soil emission fraction along all emission pathways. 
For the downstream retention reduction factor, strong 
positive SR ratios suggest increasing retention in streams 
increases the FF value by over 5 times in freshwater and 9 
times in marine environments. The persistence rate showed 
an almost equal negative SR (SR = −1.1). The EF in P 
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showed neutral sensitivity (SR = 1.00) to fish species rich-
ness within ecoregions. However, the volume of water (all 
rivers, lakes and reservoirs) within an ecoregion had an 
average negative SR of −0.91 (S.I 1 Part 3.6). This suggests 
freshwater-scarce regions such as Lebanon have increased 
fish species vulnerability. Lebanon had the greatest impact 
to freshwater fish species richness per tonne of groundnut, 
potato, sugarbeet and wheat produced globally (S.I 1 Part 
3.2). Cosme et al. (2015) and Cosme and Hauschild (2016) 
studied the sensitivity of the XF and EF to parameters 
in marine environments respectively. They found LME-
dependent primary production rates (photosynthesis rate 
to convert nutrients to organic plant mass), secondary pro-
ducer assimilation fraction (transfer of organic plant mate-
rial grazed by other trophic levels e.g. zooplankton) and 
primary producer sinking fractions (plant material sinking 
to the ocean floor) had the highest positive SRs contributing 
to the XF in marine environments (Cosme et al. 2015). For 
the EF, species sensitivity to hypoxia (as a lowest-observed-
effect-concentration) showed little sensitivity (Cosme and 
Hauschild 2016).

We additionally assessed secondary and tertiary param-
eters that build the primary parameters for the FF model 
(S.I 1 Part 3.6). For secondary parameters, we assessed 
SRs for different emission pathway fractions. The greatest 
sensitivity was identified in the erodibility of P in soils 
(SR = 0.99) and for N the greatest sensitivity existed for 
leaching (SR = 0.37–0.54) and soil erodibility (SR = 
57–0.72).

For tertiary parameters, we split parameters based on 
their impact to soil or water compartment of the FF. For the 
FF soil compartment, average SRs ranged between −0.03 
and 0.15. Suggesting small changes to the FF occurred 
from changing individual parameters such as temperature, 
land cover and groundwater depth. Whilst temperature 
in the soil compartment showed a small positive ratio 
(0.016–0.13) for its impact to the leach fraction, tempera-
ture showed strong negative SRs in the water compartment 
of the FF, with an average range across receptors from 
−3.97 to −0.83. The highest sensitivity to temperature 
were found along a band in the Northern Hemisphere, 
crossing over Canada and Russia, where some of the 
highest FFs currently exist. Studies have shown Canada 
and Russia will be prime agricultural countries under the 
impacts of climate change in years to come (Frischknecht 
et al. 2016). Although a rise in temperature may cause fate 
and transportation of N and P to waterbodies to decrease 
(due to an increase of nutrient uptake in waterbodies and 
increased N losses to the atmosphere through denitrifica-
tion in the soils, riparian zone and waterbodies), a rise 
in temperature may have an adverse effect on the eco-
system's vulnerability and other environmental impacts. 

Under the influence of climate change, clear trade-offs 
exist between nutrient runoff reductions and increasing 
greenhouse gas emissions which develop positive climate 
change feedback loops. Opposingly, temperature and other 
climatic factors (rainfall) may also impact the vulnerability 
of the waterbody receptor, through adverse variations in 
exposure and effect factors, that may increase the over-
all impact on species richness. Discharge showed a strong 
positive SR impact in marine environments whilst having 
negative SRs in freshwater environments, identifying the 
strong influence of advection to increase the removal of 
nutrients from freshwater systems and loading to marine 
environments. Hence, obstructions to river flow paths, such 
as dams, significantly impact the FF in marine environ-
ments. The hydraulic load and residence time also had a 
strong influence in marine environments. Whilst increas-
ing the hydraulic load reduced retention which increased 
nutrient delivery to marine environments, reducing the 
residence time reduced the nutrients persistence in fresh-
water environments thereby increasing nutrient delivery 
downstream. Overall, marine environments showed greater 
sensitivity to tertiary parameters. We urge caution around 
the sensitivity of results, as input parameters have strong 
influences on other parameters which would vary in paral-
lel, particularly hydrological parameters.

3.5 � Nutrient management strategies

Under the assumption of the limiting nutrient concept (Harris 
1986), we assessed the inflection point used by Helmes et al. 
(2012) to detect the difference between longer and shorter 
FF persistence values for arable soils. For arable land cov-
ers, a persistence exceeding 0.08 and 0.11 days for P and 
N reflected longer persistence in freshwater environments 
respectively, whilst in marine environments persistence 
inflection increased to 5.06 days (S.I. 1 Part 3.7). Persistence 
hotspots for transportation of nutrients (from all land covers) 
were in every continent and depended on the geomorphol-
ogy and hydrological characteristics. Using Europe as a case 
study example, we identified the spatial location of lower 
and higher persistence values based on the inflection point 
(S.I. 1 Part 3.8). Coastal regions showed lower persistence 
for freshwater environments and higher for marine environ-
ments as nutrients are quickly transported out of the river 
system. Freshwater FFs were higher inland, within the upper 
reaches of river networks, as nutrients travel through the river 
network over the longest distance. Mountainous regions such 
as in central Russia, west of Lake Baikal, showed particu-
larly higher FF values (FFs > 100 days) (S.I 2 Part 2.2 Fig 
5). However, emissions further from the river system flow 
paths have lower persistence values, caused by the removal 
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processes (denitrification, nutrient uptake and advection) and 
reduced soil emissions (surface runoff, erosion, leaching), 
meaning less nutrients reach main river systems. River sys-
tems with dams (e.g. the Volta River in Ghana) increased 
freshwater FFs upstream of the dam and decreased FFs to 
marine environments due to small hydraulic loads (dependant 
on high residence times) passing through dams, increasing 
retention. In the extreme case of the Volta River in Ghana, 
the particularly small hydraulic load (Akosombo Dam = 
5.44 m/yr < Global median = 153.7 m/yr) passing through 
the Akosombo Dam entirely retained N nutrient, inhibit-
ing delivery to marine environments. Hence, agricultural 
activities upstream of lakes and reservoirs may cause higher 
eutrophication impacts to freshwater environments due to the 
longer persistence of nutrients within lakes and reservoirs. 
Downstream of lakes and reservoirs, nutrients may persist 
for short times in the freshwater systems. However, this may 
increase the nutrient delivery to marine environments where 
they may persist for longer periods, causing greater marine 
eutrophication impacts.

Lower inflections were identified when assessing FF 
persistence values from grassland and natural landcovers 
where arable land existed. FF differences between differ-
ent land uses are constant at the grid cell level. For ero-
sion, arable and grassland FFs are 45.3046 and 2.4138 
times greater than natural land erosion for the same grid 
cell (Beusen et al. 2015). Similarly for surface runoff and 
leaching, arable and grassland FFs are 8 and 2 times greater 
than natural lands (Beusen et al. 2015). This suggests land 
conversion to natural or grass landcovers support reducing 
the overall fate and transportation of nutrients to receiving 
waterbodies. A comparison of our FFs presented here has 
been made with previous studies (S.I 2 Part 2.3). Overall, 
our results, as well as previous studies estimations, suggest 
assuming diffusive emissions are 10% of direct emission is 
not sufficiently robust enough to estimate diffusive emission 
FFs. Additionally, large FF variations exist between studies, 
identifying the strong reliance of FF models on robust global 
nutrient models.

Going beyond the limiting nutrient concept (i.e. ignor-
ing the limiting nutrient concept), we assessed the potential 
algae production in freshwater from N and P using the Red-
field Ratio (Hecky et al. 1993). Global total potential algae 
production from N in freshwater equated to 8.66 GgAlgae/yr, 
and for P 4.23 GgAlgae/yr, in marine environments potential 
algae production from N equated to 52.7GgAlgae/yr. Specific 
hotspots for N potential algae production were in East-
ern North America, Europe, Eastern and South East Asia 
and Central South America (S.I 1 Part 3.9). This approach 
does not accurately represent global algae production as 

freshwater environments are generally P limited. However, 
research has shown freshwater and marine environments 
can display N limitation, P limitation or co-limitation and 
the limiting nutrient could change both seasonally and spa-
tially (Ngatia et al. 2019; Paerl 2009). Hence, a spatially 
explicit approach should be used for catchments that are 
co-limiting such as Lake Taupo, New Zealand (Pearson 
et al. 2016). Nevertheless, the indication of large fresh-
water N loadings, causing detrimental water quality and 
potential algae growth, suggests the need for joint nutrient 
management strategies.

3.6 � Comparison with other studies

Few global LCIA studies are comparable with our study. 
This is because our study is the first (to our knowledge) to 
use soil FFs for both N and P on individual crops. Thus, we 
estimated the emission quantity at the edge of the field to 
make our study more comparable with previous research.

For N, there are no comparable global scale LCIA stud-
ies. Huang et al. (2017) evaluated species richness impacts 
from crop production at China’s provincial level, which 
were not directly comparable to this study. We therefore 
compared our study to large scale nitrogen loss models (Liu 
et al. 2010, 2016; Bouwman et al. 2009; 2013; Mekonnen 
and Hoekstra 2015; Sutton et al. 2013). The ratio of total N 
inputs to total N outputs (0.33) at the field were within range 
of previous estimates (0.22–0.55) and were most similar to 
Beusen et al. (2015) (Table 3A). For total P input and output 
ratios, our result (0.16) is within range of previous studies 
(0.025–0.21) (Table 3B). A high input loss ratio is the result 
of accounting for the initial P content in soils, which con-
siders historical fertiliser input, when losses are calculated. 
Additionally, our initial mass balance and fertiliser inputs 
are much smaller than previous studies. Furthermore, crop 
nutrient residuals were not considered within our mass bal-
ance unlike in other studies.

For P, our emission rates are three to ten times greater 
than previous estimates for specific crops (Table  3C) 
(Scherer and Pfister 2015) and an order of magnitude 
greater than the Ecoinvent datasets. The impacts to spe-
cies richness in freshwater environments were 2 orders 
of magnitude greater in this study than Scherer and Pfis-
ter (2015). Scherer and Pfister (2015) identified soybean 
production as the single most impacting crop per mass 
of crop on relative species richness. Here we found soy-
bean impacts to be mild compared to other crops using 
Scherer and Pfister (2015), using the EF factor taken from 
Azevedo et al. (2013b) which does not consider the spatial 
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variability of fish species densities. In this study, LC 
IMPACT method incorporates fish species densities within 
the EF factor which increased vulnerability in soybean 
production regions; ranking soybean the worst impacting 
crop from P fertilisation.

3.7 � Limitations and uncertainties

Here we use annual mass balance approaches to quantify 
the emission inventory. This is to harmonise LCIA meth-
odologies with IMAGE-GNM modelling and current data 

limitations. Although mass balance approaches are popular 
methods (Bouwman et al. 2009; Sciences and of. 2013; Liu 
et al. 2010), biophysical crop-growth models (designed for 
assessing crop yields) have been used with assumptions 
for fertilisation schedules to quantify nutrient emissions at 
the field (Liu et al. 2016, 2018). Liu et al. (2016) identi-
fied three commonly used fertilisation schedules predict-
ing similar nutrient losses, with only minor differences in 
yield output, and recorded similar losses to annual mass 
balance approaches. Biophysical crop models may provide 
more robust on-field results but data limitations at a global 

Table 3   Comparison of estimated global total nitrogen (A) and phos-
phorus (B) emissions at the edge of the field, and ratio of total losses 
to total inputs with results from previous studies. Comparison of 

phosphorus inputs, emissions and impact intensities (C) for the crops 
maize (M), rice (R), soybean (S) and wheat (W) with previous litera-
ture

(A) Nitrogen–totals

Literature

Bouwman 
et al. (2009)

Bouwman 
et al. (2013)

Liu et al. (2010) Mekonnen 
and Hoekstra 
(2015)

Beusen 
et al. 
(2015)

Sutton et al. 
(2013)

Liu et al. (2016) This study

Time period 2000 2000 2000 2002–2010 2000 2000–2010 2000 2000
Number of crops 11 34 20 174 18 11 3 17
TN IN (Tg N yr−1) 184 175 85 134 130 180 59 106
TN OUT (Tg N 

yr−1)
41 57 47 53 44 95 29 35

TN (Surface Water 
and Leaching 
(Tg N yr−1)

41 57 23 35 39  ~  ~ 31

TNout /TNin 0.22 0.33 0.55 0.40 0.34 0.54 0.49 0.33

(B) Phosphorus–totals

Literature

Bouwman 
et al. (2009)

Bouwman 
et al. (2013)

Lun et al. (2017) Mekonnen and 
Hoekstra (2018)

Beusen 
et al. 
(2015)

MacDonald 
et al. (2011)

Liu et al. (2018) This study

Time period 2000 2000 2000 2002–2010 2000 2000 2000 2000
Number of Crops 11 34 178 174 18 123 3 17
TP IN (Tg P yr−1) 31 31 20.4 24 19.8 23.8 10.8 17.24
TP OUT (Tg P yr−1) 3 4 3.2 0.6 4.15 2.4 1.2 2.69
TPOUT /TPIN 0.10 0.13 0.16 0.025 0.21 0.10 0.11 0.16

(C) Phosphorus–intensities of specific crops

Literature

Ecoinvent dataset Scherer and Pfister study (2015) This study

Crop type M R S W M R S W M R S W

Emission
g/kg crop

0.10 0.15 0.31 0.31 0.88 2.14 2.10 0.57 2.34 2.67 3.23 2.63

Impacts 
PDF∙days∙m3/
kg

~ ~ ~ ~ 2.67e−08 2.94e−08 5.50e−08 3.89e−08 6.95e−06 3.14e−06 3.22e−06 5.66e−06

The International Journal of Life Cycle Assessment  (2022) 27:1058–1080 1075



scale (including, nutrient type applied, application sched-
ules, management practices and technology used) mean 
differences in nutrient losses are insignificant (Liu et al. 
2016, 2018).

As IMAGE-GNM has conducted a full sensitivity 
analysis on the three main components of the model 
(nutrient delivery, retention and export), it is beyond the 
scope of this study to undertake a full parameter sensitiv-
ity and uncertainty analysis of the FF. Here we provided 
a sensitivity analysis on the primary, secondary and some 
tertiary factors for the FF. IMAGE-GNM was validated 
by observed concentration data found in the Mississippi, 
Rhine and Meuse Rivers, as well as a further 125 rivers 
in Europe, for which they identified model performance 
as acceptable. For some of the observed monitoring 
data stations, poor agreement was identified and asso-
ciated with peak periods of high rainfall. Beusen et al. 
(2015) identify updating the data used within IMAGE-
GNM would improve model validation. Here we provide 
an FF model at the 5 arcmin resolution based on the 
updated datasets as Beusen et al. (2015) suggested. A 
full new sensitivity analysis is to be incorporated within 
an updated version of IMAGE GNM as per Beusen et al. 
(2015).

Temporal differences in emission pathways (e.g. sur-
face water versus groundwater) are not defined within 
the FF; this is commonly not accounted for within LCIA 
approaches (Helmes et al. 2012; Cosme and Hauschild 
2017; Scherer and Pfister 2015). Furthermore, the initial 
FFs are devised for the year 2000 and therefore may mis-
represent any other given year. Improving the datasets used 
within IMAGE-GNM equations could provide annual FFs 
between 2000 and 2015, in line with the updated hydrology 
model PCR-GLOBWB 2 (Sutanudjaja et al. 2018). Annual 
changes to environmental variables such as temperature, 
precipitation, discharge and soil nutrient content would 
impact soil loss, leaching, denitrification rates, sedimen-
tation, nutrient uptake and residence times, all of which 
impact the FF. This would provide significant improve-
ment to the development of inter-annual variations of FFs 
within LCIA methodologies. Developing FFs at other 
annual timescales does not benefit this study where indi-
cator datasets are circa 2000. Crop-specific gridded data 
on yield and harvested area, on which the fertiliser and 
emissions estimates depend on, is currently only publicly 
available for 1997–2003 period (circa 2000). Furthermore, 
current eutrophication LCIA methodologies relating to the 
XF and EF do not provide inter-annual temporal differ-
ences within their factors.

The modelling presented in this study and IMAGE GNM 
do not fully consider the positive or negative impacts of 

specific farming techniques that may reduce both inher-
ent nutrient loss and additional fertiliser loss from arable 
soils. However, the inclusion of farming or remediation 
techniques along FF nutrient emission pathways could be 
formed at the grid cell level through applying reduction 
factors for effective agricultural nutrient management prac-
tices. To devise such factors, further research into suitable 
reduction factors for farming and remediation techniques 
are required, as well as further data collection on the effec-
tiveness of nutrient remediation practices found globally. 
Farming practices such as terracing, contour cropping and 
no-till planting are all used to reduce soil loss and runoff 
but may increase leaching processes. Applying factors for 
these farming techniques could be applied to future LCA 
studies allowing the FF model to be more practical and 
encourage nutrient loss management to leverage FF results 
at the grid cell level.

4 � Conclusion

Here we presented an LCA study to assess the eutrophica-
tion impact in freshwater and marine environments caused 
by specific crop fertiliser applications globally. To assess the 
fate and transport of fertilisers from field to aquatic recep-
tors, we developed a new spatially-explicit (5 arcmin) FF 
that could be applied within existing LCIA frameworks. The 
steps to create a new FF were necessary due to the limita-
tions existing FFs have for nutrient movement from agri-
cultural soils.

Our study goes beyond the nutrient excess found at the 
field by assessing the nutrient transportation to aquatic 
receptors and quantifying aquatic biodiversity impacts. 
Overall, our results identify strong variability at differ-
ent metric stages (fertiliser inputs, receptor loadings, 
aquatic impacts) even when considering total production. 
Although crops with the highest total production tended 
to have the highest aquatic impacts (e.g. maize, rice and 
wheat), we found differences in total crop fertilisation 
inputs influenced the environmental impact more so than 
total production (e.g. sugarcane versus barley). The vari-
ability at different metric stages (particularly the strong 
variance in the fate, transport and impact of nutrients 
within the local environmental context) goes beyond the 
popularly used nutrient use efficiency (NUE) indicator’s 
capabilities. This suggests the NUE is not a suitable indi-
cator to define environmental sustainability and impacts 
caused by fertiliser use for specific crop commodities. 
Whilst the NUE indicator alone identified potato, sugar-
beet and cassava with the worst global NUEs below 20%, 
our study’s ratio of aquatic impact to fertiliser input ratio 
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(RImpact) identified sugarbeet, rye, potato and soybean as 
having the greatest inefficiencies, nutrient loadings and 
impacts to receptors per kg of fertiliser applied.

Regions with intensive agricultural production (Yang-
tze, Mississippi and Ganges–Brahmaputra) inherently had 
much higher total fertiliser inputs, substantial nutrient 
loadings and considerable species richness impacts. How-
ever, outside of basins with the highest production, dif-
ferences in the LCIA characterisation factor (CF) caused 
spatial variability in freshwater and marine environments. 
Whilst spatial variability in marine environments was pri-
marily caused by the farming processes and N delivery to 
marine environments, spatial variations in freshwater fish 
species vulnerability had a greater influence. High marine 
impacts were identified in Europe, specifically where rye 
and rapeseed are grown. In freshwater, ecoregions with 
a dry subhumid or semi-arid climate, with lower water 
volumes and greater quantities of lakes and reservoirs, 
have higher fish species densities and inherently high vul-
nerability within water-scarce regions (e.g. Lebanon and 
Greece).

Considering the performance of crop production (i.e. 
intensities per unit of dry mass crop), rapeseed, potato 
and rye had the greatest aquatic impacts whilst cassava, 
sugarcane and oil palm had the least. Using rapeseed 
alternatives (soybean, sunflower or oil palm) may reduce 
global eutrophication impacts. Due to soybean’s atmos-
pheric nitrogen fixation abilities, soybean had the high-
est natural inputs and loadings, but low marine species 
impacts due to low marine vulnerability within growing 
regions. However, high vulnerability of freshwater fish 
species in soybean growing regions meant soybean had 
the highest impacts from P fertilisation across all crops, 
indicating nutrient management strategies for soybean 
should be directed towards protecting freshwater envi-
ronments. N fertiliser application rates were on aver-
age five times greater than P fertiliser application rates 
and N loading to marine environments was an order of 
magnitude or two greater than P loading to freshwa-
ter. Marine species impacts were higher than freshwater 
impacts due to strong nutrient delivery; however, strong 
spatial variations in freshwater fish vulnerability meant 
freshwater impacts were not necessarily where high 
loadings were found (e.g. groundnuts versus barley pro-
duction regions).

At the country level, we identified no significant rela-
tionship between crop production quantities and intensi-
ties at all metric stages (fertiliser inputs, receptor loadings, 
aquatic impacts). This suggests there is no benefit from 
economies of scale to reduce fertiliser impact of eutrophi-
cation due to more nutrient management found at all lev-
els of production. Similarly, no strong relationships were 

identified for the NUE indicator with loading or impact 
metrics, making the NUE indicator an unsuitable indica-
tor of environmental sustainability from fertiliser use. Our 
results identify a strong reliance on endpoint indicators that 
measure nutrient delivery and vulnerability of local recep-
tor environments.

Nutrient transportation was dominated by leaching for 
N and erosion for P. The underlying concepts to develop 
the FF suggest that there is an inherent loss of nutrient 
from fields to receptors. As such, improving nutrient use 
efficiencies is not sufficient to reduce aquatic impacts. 
Developing mitigation practice to reduce inherent loss 
of nutrients through surface runoff, erosion and leaching 
are important to reduce aquatic impacts caused by ferti-
liser use. Reducing production or using alternative crops 
which grow in less vulnerable regions may also reduce the 
global eutrophication impact. Under the limiting nutrient 
concept, the FF’s spatial persistence showed whilst fresh-
water persistence of nutrient was greater further inland 
and upstream of lakes and reservoirs, marine persistence 
values were high in coastal regions. However, removing 
the limiting nutrient concept, we identified large loading 
quantities of N to freshwater, suggesting better nutrient 
management practices are required on the field, particu-
larly under co-limiting freshwater environments.

Our study provided important improvements to under-
stand the spatially explicit aquatic biodiversity impacts 
caused by crop commodities beyond the field edge. Our 
results should be used to enhance and support strategic pol-
lution control policymaking and environmentally sustainable 
crop-commodity trading and sourcing decisions. The FF 
model presented here derives spatially explicit FFs for N and 
P at the global scale from soils and direct emissions using a 
single methodology at the 5 arcmin resolution. Overall, our 
results and previous studies suggest assuming diffusive emis-
sions are 10% of direct emissions,  is not a sufficiently robust 
estimate for diffusive emission FFs. Additionally, large FF 
variations exist between studies, identifying the strong reli-
ance of FF models on robust global nutrient models.

The FFs developed in this study may aid spatially 
explicit and site-specific LCA nutrient studies from 
soils. Future research should implement more co-limita-
tion LCIA methodologies, as there are clear limitations 
to understanding the true biodiversity impact from N 
and P using the limiting nutrient concept solely. Further 
research is required to develop FFs for P in marine envi-
ronments and spatially-explicit XFs and EFs for both N 
and P within all water environments under co-limitation 
scenarios. To enhance the FF’s practical use, develop-
ment of reduction factors for nutrient management strate-
gies will support LCA studies and promote good nutrient 
practices.
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