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Abstract
Purpose Life cycle assessment (LCA) is a widely used method for the evaluation of buildings’ environmental impacts, but 
these analyses contain high levels of uncertainty. Decarbonization of electricity production is key to reach climate goals, 
influencing all sectors including construction The objective of this paper is to study the sensitivity of the environmentally 
optimum building design solution to a changing electricity mix to assist decision-making.
Methods In this paper, multi-objective optimization was applied to minimize the life cycle global warming potential and 
life cycle costs of a building at the same time, using dynamic energy simulation and LCA. The variables include building 
envelope parameters such as window ratio, insulation type and thickness in a typical new multi-family apartment building 
heated with a heat pump. A static, largely fossil-based electricity mix and a dynamic, gradually decarbonizing alternative 
are considered, as well as two electricity price increase scenarios. New metrics have been introduced to explore the results 
and describe the Pareto-optimal solutions, for example the improvement potential to contextualize the achievements through 
the optimization.
Results and discussion The results show that, with the current electricity mix, building envelope optimization can improve 
the design by 18% on average in terms of the life cycle greenhouse gas emissions compared to typical new designs and by 
10% with a dynamic mix in Hungary. With today’s static electricity mix, the optimization proved that the minimum energy 
efficiency requirements in force are close to cost optimality. However, from an environmental point of view, much higher 
insulation thicknesses have been shown as justified (U-values of less than 0.1 W/m2K).
Conclusions Optimization of building design based on LCA is still not widely applied and the effect of a decarbonizing elec-
tricity mix on the optimum has not been studied before. The results of the paper demonstrate the importance of this question. 
Optimal solutions are different depending on the applied mix but an energy-efficient building envelope remains important: 
today’s cost-optimal building envelope proves to be both cost- and environmentally optimal in the long run.
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1 Introduction

In 2018, 42% of worldwide  CO2 emissions stemmed from 
electricity and heat producers (IEA 2021). The reduction 
potential of power generation is very large with investments 

into renewable energy and other low-emission sources, such 
as nuclear power plants and fossil fuel power stations with 
carbon capture and storage technology (European Com-
mission 2011). Decarbonization of electricity is a key step 
towards a low-carbon future as it influences the environmen-
tal impact of all sectors, including buildings. Besides the 
electricity consumption of appliances, increasing electrifica-
tion of space heating and cooling with heat pumps will play 
a major role (Thomaßen et al. 2021).

There are numerous studies in the literature that evalu-
ate the environmental impacts caused by buildings with 
the help of the life cycle assessment (LCA) (Nwodo and 
Anumba 2019). There is also a limited but growing number 
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of studies that apply optimization algorithms to automati-
cally find building solutions with a minimum life cycle 
emission (Longo et al. 2019). The reliability of LCA results 
is highly dependent on how the inherent uncertainty and 
variability is handled. Uncertainties may relate for example 
to the construction materials (Hoxha et al. 2017), service 
lives (Goulouti et al. 2020), modelling options (Häfliger 
et al. 2017) or user behaviour during the use phase (O’Brien 
et al. 2020). For the assessment of the operational impacts, 
the common practice is to convert the final energy con-
sumption into environmental indicators with static, average 
conversion factors (European Commission-Joint Research 
Centre-Institute for Environment and Sustainability 2010). 
With the foreseen decarbonization of electricity, these con-
version factors will change dynamically in the near future, 
yet this effect is seldom considered in building LCA stud-
ies (Roux et al. 2016). Decarbonization of electricity will 
reduce the indirect operational emissions of buildings and 
shift the balance between the embodied and operational 
environmental impacts. This will also affect the results of 
building optimization, as different solutions may prove to 
be environmentally optimal depending on the conversion 
factors of the energy source. This question has not been 
analysed in detail earlier.

This paper aims to investigate the sensitivity of LCA results 
and the environmentally optimum building design to electricity 
scenarios with the help of multi-objective optimization. The 
two objectives are the minimization of life cycle  CO2 emis-
sions expressed in terms of Global Warming Potential (GWP) 
and the minimization of life cycle costs (LCC). Four distinct 
electricity scenarios are analysed: a static mix usually applied 
in life cycle assessment (LCA) studies, a dynamic, gradually 
decarbonizing mix based on an electricity market model and 
both combined with two different assumptions for the increase 
in electricity prices. In addition, the ‘business as usual’ (BAU) 
new buildings are also assessed using a novel approach to 
determine the improvement potential achieved by the optimi-
zation algorithm. The research is applied to a new residential 
case study building in Hungary, where the current electricity 
supply relies heavily on fossil fuels with a GWP above the 
European average but a significant decarbonization is foreseen 
in the coming years in line with the European policies.

The paper is organized as follows: Sect. 2 introduces the 
background and relevant literature on electricity modelling 
in building life cycle assessment and building optimization 
studies. Section 3 presents methods for the optimization, 
energy demand, LCA and LCC calculations and describes 
the case study building. The optimization results for different 
electricity scenarios are reported and discussed in Sect. 4. 
The Pareto front is analysed and new evaluation metrics are 
introduced for an easier interpretation. The optimal solutions 

are clustered and visualized and their performance is com-
pared. Finally, Sect. 5 summarizes the conclusions.

2  Background

2.1  Electricity modelling in building LCA

In LCA studies, electricity use in buildings is measured, derived 
from statistics or calculated with steady-state and dynamic 
methods. The total annual final electricity demand is then multi-
plied with life cycle–based emission factors to obtain the impact 
assessment results. The current approach in building LCA is to 
apply a static, average national electricity mix. There are only 
few studies on the effect of electricity modelling on building 
LCA. For example, in a survey of the Nordic building indus-
try, stakeholders named emission factors for energy sources 
and electricity as an important knowledge gap in building LCA 
(Schlanbusch et al. 2016).

Future energy mix scenarios are occasionally explored 
in a sensitivity analysis in building LCA, but this is still not 
common practice (Vilches et al. 2016). Among the relevant 
precedents in the literature, De Wolf et al. (2017) showed 
that four industry experts out of 12 took grid decarboniza-
tion into account when calculating the carbon dioxide equiv-
alent of buildings. Another attempt concerned the present 
and future Swedish mix for 2035 for electricity and heating 
when analysing rebuilding vs. new construction of a multi-
family house (Erlandsson and Levin 2005). Blom et al. (2011) 
studied the effect of policy-based and theoretical electricity 
mix scenarios in a sensitivity analysis of a Dutch apartment 
dwelling and concluded that changing the environmental 
impact of the electricity supply may be more effective than 
changing user habits. In an Austrian residential case study, 
the impact of future energy scenarios was used among many 
options to identify the refurbishment scenario with the lowest 
environmental impact (Passer et al. 2016). It was shown that 
the environmental benefit of applying photovoltaics will be 
reduced in the long term with the shift towards renewables 
in the mix. Rasmussen et al. (2013) took into account the 
average of the Danish grid mix between 2010 and 2060 in a 
sensitivity analysis of an office building. In a dynamic LCA 
study incorporating time-dependent factors, 3 single family 
houses were analysed with a pessimistic and a very optimistic 
future energy mix scenario (Fouquet et al. 2015). In the lat-
ter scenario, a technological breakthrough is assumed where 
oil power plants are replaced by gas and coal technologies 
with Carbon Capture and Storage (CCS). Roux et al. (2016) 
developed an hourly model to include the long-term evolution 
of the electricity mix and the effect of climate change on the 
demand. The results showed a high variation depending on 
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the long-term scenarios, and the energy mix evolution had a 
greater influence on the results than climate change showing 
the relevance of this topic. Vuarnoz et al. (2020) also came to 
the conclusion that the use of hourly conversion factors has a 
significant influence on the LCA results.

2.2  Environmental optimization of buildings

In mathematical optimization, one or more objective func-
tions are minimized or maximized with respect to some vari-
ables. Optimization techniques are increasingly applied to 
building design, for example to minimize costs and energy 
demand or maximize thermal comfort (Evins 2013; Kheiri 
2018) or the performance of building elements (Nagy 2019). 
There are studies on the environmental optimization based 
on LCA but still in a limited number (Longo et al. 2019). 
In these studies, energy calculation is linked to existing or 
self-developed LCA modules to find the design options with 
the lowest environmental impact, usually with a focus on 
greenhouse gas emissions. The optimal design will be dif-
ferent depending on whether only the operational perfor-
mance is assessed or also the trade-off between embodied 
and operational impacts (Pal et al. 2017). In some cases, life 
cycle costs are also selected as an objective function to find 
both environmental and cost optimums (Sharif and Hammad 
2019a; Schmidt and Crawford 2018).

Both new buildings and retrofit designs have been assessed 
(Hollberg and Ruth 2016; Sharif and Hammad 2019b). For 
example, Amani and Kiaee (2020) combined energy simula-
tion with DesignBuilder and LCA in SimaPro to rank internal 
insulation systems for the retrofit of existing buildings with 
maximum energy saving and minimum environmental impact. 
Besides residential buildings, non-residential buildings have 
also been optimized (Azari et al. 2016; Sharif and Hammad 
2019a). A new approach is to connect environmental optimi-
zation with Building Information Modelling (BIM) (Najjar 

et al. 2017; Najjar et al. 2019; Shadram and Mukkavaara 
2018; Tushar et al. 2021; Abbasi and Noorzai 2020).

Commonly evaluated variables include the insulation 
material and thickness, glazing and window type, window-
to-wall ratio, heating system, heat recovery and lighting 
system. Mayer et al. (2020) also considered different hybrid 
renewable energy systems and their components. In rare 
cases, the building shape is also a variable, for example to 
maximize solar radiation incidents on the building envelope 
with a parametric design approach (Lobaccaro et al. 2018; 
Monteiro et al. 2021).

As seen from the literature review, most LCA studies 
still apply static, current electricity emissions factors but an 
increasing number assess the sensitivity of the results to future 
scenarios as well. LCA-based building optimization is still 
scarce but gaining in popularity. To the best of the authors’ 
knowledge, no studies analysed the effect of a decarbonizing 
electricity mix on the building design optimum considering 
both life cycle environmental impacts and costs.

3  Methodology

The assessment is carried out in an optimization framework 
developed earlier and described in detail in (Szalay and Kiss 
2019; Kiss and Szalay 2020). This framework has been fur-
ther developed to enable dynamic energy simulation as well 
as life cycle cost calculations and time-dependent modelling 
of the environmental impacts of electricity. The electric-
ity scenarios will be tested on a multi-storey representative 
apartment building, heated with a heat pump.

3.1  Optimization framework

The framework is capable of minimizing the life cycle envi-
ronmental impact of a building design through automated 
optimization (Fig. 1). The workflow can be described in three 

Fig. 1  Structure of the calcula-
tion framework and illustration 
of the workflow steps
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major steps. (1) Setup: first, an initial simulation model is 
developed with additional information (construction mate-
rial names) linked to cost and environmental impact datasets. 
Design parameters are defined to serve as optimization vari-
ables and background data is prepared about the information 
that is not included in the initial model (environmental data, 
cost data and material physical data). (2) Optimization: the 
parametric model definition accumulates the initial model 
and the design parameters so that the model can be recre-
ated with different parameter values (including geometrical 
aspects, materials and constructions or heating, ventilation 
and air conditioning (HVAC) systems). Calculations use this 
model and the previously linked background data to perform 
energy demand calculation, extract the bill of quantities and 
calculate the environmental impact along with the life cycle 
cost. The result (single-objective) or results (multi-objective 
case) are used by the optimization module as objectives to 
define a new set of parameter values (optimization varia-
bles). The model is recreated with the new parameters and 
the loop is continued until a certain stop criterion (e.g. maxi-
mum number of loops) is met. (3) Evaluation: in the last 
step, the optimization results are analysed using different 
models and data visualizations with regard to the objectives 
as well as the optimal values of the design parameters. The 
framework is developed in a modular manner so individual 
modules can be easily replaced. For example, energy demand 
can be calculated with a steady-state method or a dynamic 
simulation and different optimization algorithms can be con-
nected. The framework has been implemented in the Python 

programming language, combining self-developed compo-
nents with existing tools (DesignBuilder, EnergyPlus and 
OpenLCA).

3.2  Case study building

The case study building is a schematic model of a typical 
multi-storey apartment building located in Hungary. Similar 
models have been applied by other researchers (for exam-
ple see (Lavagna et al. 2018; BPIE 2011)). The four-storey 
building has a total net heated floor area of 768  m2 with 
a ceiling height of 3 m, a central (heated) staircase and 
no basement. It has a slab-on-ground and a flat roof and 
the mass is simplified to a rectangular shape (Fig. 2). The 
reference study period is 50 years for both LCA and LCC, 
considering the product stage, construction process, the use 
stage as well as the end-of-life stage.

3.2.1  Materials and constructions

The main composition of the building elements is fixed (Table A1 
in the Annex), assuming ceramic block walls with an external 
thermal insulation composite system (ETICS). Internal slabs 
and the flat roof have a monolithic reinforced concrete struc-
ture. Opaque material properties are summarized in Table A2 
(Annex). The internal partition walls are considered as a fixed 
mass of wall constructions as thermal storage. Other elements not 
influencing the operational energy demand (e.g. foundation) are 
not modelled, as these represent a constant impact and hence do 

Fig. 2  Illustration of the build-
ing model
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not influence the optimization results. Windows have two options 
for glazing (triple or double), and two options for frame material 
(wooden, plastic) (Table A3 in the Annex). A moveable horizon-
tal aluminium blind is considered as an option for each window, 
on each façade as separate a variable.

3.2.2  Variables

Variables are specific design parameters that are changed by the 
optimization algorithm. The variables can be classified into three 
categories: building envelope (wall, floor and roof insulation 
type and thickness, window areas); fixtures (shading, glazing 
type, window frame type) and HVAC and equipment (Table 1). 
Variables in an optimization may be continuous or discrete but, 
in this case, the continuous design parameters are discretized by 
defining a sufficiently small step size (1% for fenestration ratio 
and 1 cm for insulation thickness). The ranges are determined 
considering physical and engineering limits extended to extreme 
values (e.g. 80 cm of insulation) to cover theoretical optima too.

In addition to the optimization runs, a Monte Carlo sim-
ulation was also performed to define the buiness as usual 
(BAU) for new buildings. This will be used to quantify the 
improvement potential that can be achieved by the optimi-
zation algorithm. The parametric building definition is the 
same as for the optimization case, but the parameter values 

are characteristic for the current practice. The values have 
been identified based on Zöld et al. (2012) and are summa-
rized in Table 1. The insulation material thicknesses were 
defined so that any possible envelope constructions satisfy 
the current requirements for the U-values.

3.2.3  HVAC system

The end-uses of space heating, cooling and lighting were con-
sidered. Energy use of domestic hot water and appliances is a 
user-dependent parameter, therefore excluded from the opti-
mization (Zöld and Szalay 2007; Lützkendorf et al. 2015). 
Lighting is also user-dependent, but it was included since 
window size is also an optimization variable affecting the 
lighting energy demand.

The building has a central heating and cooling system 
with a heat pump with a seasonal efficiency of 3.33 for space 
heating and 2.8 for space cooling. The modelling of the sys-
tem is simplified, the energy calculation module calculates 
the net demand of the systems and the gross demand is cal-
culated from the seasonal efficiency values. Auxiliary power 
(electricity) is calculated as a percentage of the net demand. 
Distribution and storage losses are omitted in the model. No 
mechanical ventilation is used in the building.

Table 1  Design parameters used as variables of the optimization with their limits and the values representing the BAU case
Value limits / op�ons Business As Usual (BAU) values

N 1 - 80 % 13 - 24 %
W 1 - 80 % 23 - 34 %
S 1 - 80 % 33 - 44 %
E 1 - 80 % 23 - 34 %
N
W
S
E
N
W
S
E

Frame type plas�c / wooden plas�c / wooden

material EPS white / EPS graphite / PUR / rock wool
thickness 20 - 25 cm
material EPS white / EPS graphite
thickness 10 - 15 cm
material EPS white / EPS graphite / rock wool
thickness 4 - 10 cm

double / triple

yes / no

EPS white / EPS graphite / PUR /
rock wool / wood wool / ICB

1 - 80 cm

Roof 
insula�on
Wall 
insula�on
Floor 
insula�on

Design parameter

yes / no

double / triple

Fenestra�on 
ra�o

Glazing type

Shading
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3.3  Energy demand calculation

The energy demand (heating, cooling, lights) is calculated 
with dynamic energy simulation based on EnergyPlus v 
8.9.0 (National Renewable Energy Laboratory 2018) and 
DesignBuilder v6.1.0 (DesignBuilder Software Ltd. 2019). 
Each storey is modelled as one zone, as multi-zone model-
ling would significantly increase the optimization time. This 
is a simplification, but as the goal is to determine the energy 
demand of the whole building and not of individual spaces 
and the setpoint temperatures are the same in the rooms and 
they are supplied by the same service systems, this is accept-
able (Klimczak et al. 2018; EN ISO 52016 2017; EnergyPlus 
Documentation 2018). Thermal mass is modelled accurately 
as internal slabs and the mass of internal walls was included 
in the model.

The simulation was made for the Budapest climate. The 
climate file was downloaded from the TMY tool of the PVGIS 
system with the following parameters: Latitude: 47.43; lon-
gitude: 19.182; period: 2007–2016 (Huld et al. 2012). Ther-
mal bridges were omitted in the calculation because of the 
simplified simulation model. No external shading obstacles 
were assumed.

Fixed simulation parameters and schedules are sum-
marized in Table A4 (Annex) for each HVAC system and 
activity. User behaviour was out of the scope of this study, 
and default DesignBuilder profiles were applied harmonized 
with the ‘standard user’ according to the Hungarian energy 
regulation (TNM 2006). This means a fixed rate of internal 
gains of 4.7 W/m2, and a minimum continuous air change 
rate of 0.5 1/h. In the summer, when natural cooling is pos-
sible (during night), a higher, 4.0 1/h air change rate was 
assumed for cross-ventilation of the building.

3.4  Life cycle assessment (LCA) calculation

The environmental impacts are calculated with the stand-
ardised Life Cycle Assessment methodology according to 
the general standards (ISO 14040 2006) and the standard for 
buildings (EN 15978 2011). The functional equivalent is the 
apartment building for a study period of 50 years.

In LCA studies of buildings, environmental data for materi-
als and products taken from generic databases or Environmen-
tal Product Declarations (EPD) are aggregated to calculate the 
embodied impacts (EN 15978 2011). In this study, the widely 
used and renowned database, ecoinvent v3.6, was applied to 
generate the required LCIA data (Wernet et al. 2016). The 
generic datasets contained in ecoinvent are location-specific, 
which means they are valid only in a specific region/country. 
In order to create localized datasets, a localization process is 
used for the products primarily produced in Hungary. This 

localization is achieved by changing the electricity and gas 
providers in the product system from the original location to 
a specific for the new location (see Table A5 in the Annex for 
the localized GWP value of the applied materials).

The following life cycle stages are considered: product 
stages (A1–3), transport and construction process (A4–5), 
use stage (B2–B4 and B6 operational energy use) and end-
of-life (C2–C4). Other modules are not considered either 
because they are expected to have little impact on the final 
environmental performance or data availability is low. The 
optional Module D was not considered. To account for trans-
port from the factory to the construction site, building mate-
rials were classified into four transport categories based on 
the number and location of the factories in Hungary, and 
standard distances were applied in the background database. 
For the construction phase, very little information is avail-
able; hence, only the cutting of waste was accounted for 
(Kellenberger and Althaus 2009). Reference service life data 
is used to calculate regular maintenance and replacements 
of building components (EN 15978 2011; BBS 2009); see 
Table A6 in the Annex. In the case that a material has lower 
estimated service life (ESL) than the reference study period 
(RSP) of the building, the materials need to be replaced. The 
number of replacements is calculated with the floor division 
of ESL/RSP for each material and system (EN 15978 2011). 
The values were modified in some cases depending on the 
position of the material in the building element, for exam-
ple underground bitumen membranes were not exchanged. 
In the end-of-life phase, the most probable scenario for 
reuse/recycling/disposal was taken into account. The basic 
assumptions were that wood and plastics are incinerated, 
minerals are landfilled and metals are recycled. The trans-
portation of waste (C2) was calculated using a standard dis-
tance of 30 km.

The LCIA data for each stage of materials or systems can 
be expressed on a per kg,  m2,  m3 or piece basis. Within the 
calculation, the unitized impact is always multiplied with the 
amount depending on the available LCIA data, calculated 
from the building model automatically. For example, for the 
production stage:

where
Ip is the production impact of the material or system,
Im is the unit impact of the material or system included in 

the LCIA database,
am is the weight/area/volume/number of the material or sys-

tem used in the model.
Apart from the electricity in the dynamic scenarios, impact 

data was assumed to be constant during the lifetime of the 

(1)Ip = Im ⋅ am
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building. The impact assessment method of CML 2001, Cli-
mate Change-Global Warming Potential (GWP 100a) was 
applied. While this paper focuses only on a single issue, in a 
previous study, other environmental indicators were also ana-
lysed (Kiss and Szalay 2020). This study showed that not all 
environmental impact categories are conflicting; hence, it is 
acceptable to focus on a limited number of categories. GWP 
and cost proved to be conflicting in a preliminary analysis, 
hence suitable for multi-objective optimization.

3.5  Life cycle cost (LCC) calculation

Life cycle cost calculations are carried out in line with the 
European calculation procedures (EN 15459 2017; EU 2012). 
The structure and methodology of the LCC calculation are 
very similar to the LCA calculation. Life cycle cost, also 
referred to as global costs, is the sum of the costs during the 
life cycle of the building (initial investment costs, running 
costs, replacement costs and disposal costs if applicable), 
referred to the starting year and expressed as present value:

where
τ is the calculation period;
CI initial investment costs for measure or set of measures j;
Ca,i (j) annual cost during year i for measure or set of meas-

ures j;
Vf, τ (j) residual value of measure or set of measures j at 

the end of the calculation period (discounted to the starting 
year);

Rd (i) discount factor for year i based on discount rate r.
Since construction costs are very dependent on the actual 

economic situation, the best option is to rely on up-to-date 
statistical data. Therefore, the cost data was collected from 
an annually published database of manufacturer-specific 
and average construction costs (HUNGINVEST 2019). 
For materials that were not available, manufacturer and 
market values were compiled. Installation costs are based 
on standard hourly wages in the construction sector spe-
cific to different worker types, and the standard installation 
time is extracted from the online construction budgeting 
platform TERC(TERC 2020). Energy prices are based on 
EUROSTAT statistics for electricity (EUROSTAT 2020). 
All prices are consumer prices and include local VAT (27% 
in the Hungarian context), and are expressed in EUR, with 
an exchange rate of 330 HUF/EUR. The background data 
on cost can be found in Table A6 (Annex). A discount rate 
of 3% is applied for all cost items (EU 2012).

(2)Cg(�) = CI +
∑

j

�

∑T

i=1

�

Ca,i(j) ⋅ Rd(i)
�

− Vf ,�(j)

�

3.6  Optimization

Heuristic techniques prove to be a good option for building 
optimization that utilize many different steps during the calcu-
lation of the objective function (Longo et al. 2019). The major 
advantage of these techniques is that nothing other than the 
numeric value of the objectives is needed for the evaluation 
of the solution and any type of numeric parameter (continu-
ous or discrete) can be optimized. This makes them appropri-
ate for such “black-box” optimizations as presented in this 
paper where the evaluation of a solution includes a simulation.  
Also, Nguyen et al. (2014) identified that stochastic population- 
based algorithms (evolutionary algorithms, genetic algo-
rithms, particle swarm optimization and hybrid algorithms)  
are the most frequently used for building performance opti-
mizations. One disadvantage of such “black-box” techniques 
is that the variables cannot be directly explained in the fitness 
function, and consequences can be derived only implicitly. 
Another disadvantage of these techniques is that the entire 
solution space is not evaluated; therefore, a global optimum 
is not guaranteed. However, if the purpose of the optimization 
is to support decision-making and to improve building design, 
this is not a problem if a “good enough” solution or a range 
of such solutions can be determined by the algorithm. Also, 
if the optimized variables are meaningful from the engineer-
ing perspective, they can be directly adopted in design solu-
tions. Based on the above considerations, the NSGA-II (Deb 
et al. 2002) genetic algorithm was used in this research for 
the optimization of the building design. Since NSGA-II is 
a multi-objective optimization algorithm, its fitness function 
takes the objective values (in this case the GWP and LCC) 
as arguments to derive the fitness. One of the advantages of 
NSGA-II is that the Pareto-optimal solutions are well distrib-
uted along the Pareto front thanks to the consideration of the 
so-called “crowding distance” within the fitness function (Deb 
et al. 2002). The settings of the algorithm are summarized 
in Table 2. An important feature of the above-defined model 
is that any combination of the variables (within the defined 
ranges in Table 1) corresponds to a valid design, so no other 
constraints need to be set to the optimization.

Table 2  Settings of the NSGA-II optimization algorithm

Single-objective Multi-objective

Population size 100 100
Max population number 30 50
Crossover probability 0.6 0.6
Mutation probability 0.2 0.2
Number of evaluations 6000 10000
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3.7  Electricity scenarios

For the assessment of decarbonization, two different elec-
tricity scenarios were used:

• The default Hungarian low-voltage electricity mix con-
tained in the ecoinvent database v3.6 (Wernet et  al. 
2016), which relies on statistical data and does not 
change over time (the same GWP value is assumed dur-
ing the whole reference study period (RSP)). This sce-
nario represents the usual practice in LCA and is referred 
to as static in the following.

• The “Decarbon” scenario targets an emission reduction 
of 94% for 2050-compared to 1990 emission levels-in 
line with the long-term indicative EU emission reduc-
tion goals for the electricity sector as a whole (European 
Commission 2011). This scenario was developed in the 
South East Europe Electricity Roadmap (SEERMAP) 
project (Szabó et al. 2017). The projection was carried 
out by the interaction of the European Electricity Mar-
ket Model (EEMM) and the Green-X model (Capros 
et al. 2014; Mezősi and Szabó 2016), and life cycle–
based emission factors were calculated until 2050 (Kiss 
et al. 2020). No further changes are assumed after 2050 
(until the end of the RSP). This scenario is referenced as 
dynamic in the following.

Figure 3 compares the evolution of the GWP of 1 kWh 
grid electricity in the two scenarios. There is a significant 
difference in GWP already at the beginning of the analysis 
period because of the different data sources for the share of 
each technology. The ecoinvent dataset is based on statistics 
from the year 2016, while the modelled period in the EEMM 
starts in 2018 and there are significant improvements until 
2020. Moreover, there is a major decrease in the GWP in 

the dynamic scenario due to the fulfilment of the emission 
reduction goals by 2050.

For the electricity price increase, two scenarios are estab-
lished as well (Fig. 4):

• Three percent yearly price increase. This is a moderate 
assumption considering no radical change in the energy 
sector. Applying the 3% discounting rate together with 
the price increase results in a constant discounted price 
over the analysis period.

• Zero percent price increase. This is an extreme assump-
tion considering that the production of renewable energy 
is very cheap (after the initial investment is made).

The decarbonization and the price increase options are 
combined to produce four distinct scenarios:

• Static mix, 3% price electricity increase
• Dynamic mix, 3% electricity price increase
• Static mix, 0% electricity price increase
• Dynamic mix, 0% electricity price increase

4  Results and discussion

The objective of the optimization is to minimize both life 
cycle global warming potential and life cycle costs. Four 
electricity scenarios were considered with static or dynamic 
mix and 3% or 0% electricity price increase for heat pump 
space heating and cooling.

For all options, three optimization runs were initiated: 
one multi-objective with a limit of 10,000 function evalu-
ations and two single-objective runs, with a limit of 6000 
function evaluations each. In addition, a Monte Carlo simu-
lation was conducted for the BAU case with a limit of 5000 
evaluations.

Fig. 3  Global warming potential of the Hungarian grid electric-
ity from 2020 until 2070 in the static and the dynamic scenario (kg 
 CO2-eq/kWh)

Fig. 4  Consumer price evolution of 1 kWh grid electricity over the 
analysis period with 0% and 3% assumed price increase
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4.1  Analysis of the Pareto front

The optimization results in a set of non-dominated Pareto-
optimal solutions. However, in engineering problems, some 
of the dominated solutions located near the Pareto front may 
also be interesting as their performance is only slightly lower 
than that of the optimal solutions (Hester et al. 2018). These 
near-optimum solutions were also included based on an 
approx. 1% relative limit in impact and cost. In other words, 
solutions that have 1% higher GWP or LCC than those of 
the Pareto front are also considered. This way, the number 
of admissible solutions increases from 1–2000 to around 
9000. The term ‘optimal’ will henceforth include both the 
non-dominated and the near-optimal solutions.

Figure 5 shows the results of the four cases in the objec-
tive space. An average reduction of 25–26% can be observed 
in GWP when dynamic electricity mix is compared to the 
static mix. On the other hand, a relatively low, 1.5–3% differ-
ence occurs in the LCC of the optimal solutions if the price 
increase rate changes from 3 to 0% because running costs 

are relatively low in the whole life cycle. As expected, the 
cost-optimal solutions deliver the same LCC as their pairs 
with the same energy price increase rate because the elec-
tricity mix decarbonization only affects the GWP objective. 
The same situation applies vice versa, there is no difference 
between the GWP-optimal solutions with the same electric-
ity mix scenario.

To better describe the optimal solutions, some new 
metrics have been introduced (Table 3). The improvement 
potential (IP) describes the improvement in the objective 
values compared to a reference. The reference is defined 
here as the mean of the BAU new building set calculated 
with a Monte Carlo simulation. The relative improvement 
potential (rIP) is expressed in a percentage of the refer-
ence (mean of the BAU). The maximum relative improve-
ment potential ( rIPmax ) in terms of GWP is higher (18%) 
if the static mix is used and lower (10%) in the case of 
dynamic mix because the mean GWP of the BAU case is 
also significantly reduced when the dynamic mix is applied. 
The absolute improvement potential corresponds to 127 

Fig. 5  Optimization results for the four electricity scenarios (Pareto front and near-optimal solutions depicted by saturated colours)
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 tCO2-eq. (static mix) and 46  tCO2-eq. (dynamic mix). On 
the other hand, rIPmax is 13% in terms of LCC regardless of 
the price increase rate. This converts to between 110,950 
and 114,446 EUR in absolute value depending on the sce-
nario. Negative minimum relative improvement potential 
( rIPmin ) values would mean that the optimal solutions are 
worse than the BAU. These are only observed in LCC in the 
static mix case where some of the GWP-optimal solutions 
have a higher life cycle cost than the BAU, indicating that 
low-emission solutions would need financial support to be 
commercially viable.

The ideal point is a solution that is not feasible but most 
desired (the point at 

(

GWPmin; LCCmin

)

 in the objective 
space). The distance to ideal point (DI) indicator describes 
the Euclidean distance between a point and the ideal point. 
The objective values are normalized using IPmax values in 
terms of both dimensions. The normalization is neces-
sary because the units of the two objectives are different. 
Using IPmax for normalization expresses an equal weight 
of the improvement in both objectives instead of an arbi-
trary weighting between the absolute values. The solution 
with the lowest DI value is called the trade-off solution. 
DImin values are about two times higher (0.20–0.23 against 
0.09–0.11) for the static mix than for the dynamic mix. This 
means that the trade-off solution is closer to the ideal point 
in a dynamic scenario and most of the improvement poten-
tial can be utilized simultaneously. The relative improve-
ment potential of the trade-off solution is only 1% worse in 
both dynamic cases and for both objectives, respectively, 
than rIPmax . It can be concluded that the application of a 
dynamic electricity mix results in a smaller trade-off, which 
makes the decision-making easier.

4.2  Optimal solutions

After describing the Pareto front in general, the optimal 
solutions are evaluated in more detail. Some variables take 
similar values within all optimal solutions, regardless of 

the preference between the objectives. Adapting the nam-
ing convention used by Vallet et al. (2018) and Luukkanen 
et al. (2012), these shall be called ‘synergy’ variables. For 
numerical variables < 5% in standard deviation and for 
categorical variables > 80% in occurrence within the near-
optimal solutions was used as a limit to be classified as a 
synergy variable. These variables are presented with green 
background in Table 4. The table shows the mean and the 
standard deviation in the case of numeric variables and the 
most often occurring value with its occurrence for categori-
cal variables. Variables whose optimal values depend on 
the preference between the objectives will be called ‘trade-
off’ variables (yellow background in Table 4). Finally, vari-
ables that do not have an effect on the optimal results will 
be called ‘neutral’ variables (white background in Table 4).

Fenestration ratio on the South façade depends on the 
preference between LCC and GWP for a static mix but is a 
synergy variable in the case of a dynamic mix, with values 
of 23 ± 3% and 22 ± 4% in case of 3% or 0% energy price 
increase, respectively. In the static scenarios, triple glaz-
ing is preferred on the South façade, while in the dynamic 
scenarios, it is double glazing. In most of the optimal solu-
tions, no shading is required. Within the optimized solu-
tions, the windows are minimized on the North, West, and 
East façades; therefore, variables regarding glazing type and 
shading on these façades are neutral.

Variables relating to insulation material and thickness are 
mostly trade-off variables with the static mix, but the insula-
tion thicknesses are very homogenous if a dynamic mix is 
used. In conclusion, if the electricity mix is decarbonized, 
optimal insulation thicknesses can be established (17 ± 3 cm 
and 18 ± 3 cm on flat roof, 14 ± 3 cm and 15 ± 4 cm on wall 
and 4 ± 2 cm and 3 ± 2 cm on the floor to ground) regardless 
of the preference between GWP an LCC, for 3% and 0% 
electricity price increase, respectively. Please note that insu-
lation thickness is shown in this section for an easier visu-
alization of the results, but as the thermal conductivity of 
materials varies, U-values are also calculated in Sect. 4.2.5.

Table 3  Indicators describing the Pareto front

Static, 3% Static, 0% Dynamic, 3% Dynamic, 0%

GWP LCC GWP LCC GWP LCC GWP LCC

Maximum improvement potential rIPmax 18% 13% 18% 13% 10% 13% 10% 13%
Mininum improvement potential rIPmin 10%  − 11% 6%  − 14% 8% 6% 7% 5%
Absolute improvement potential IPmax 127,333

kg CO2-eq
114,446
EUR

127,241
kg CO2-eq

110,950
EUR

46,615
kg CO2-eq

114,432
EUR

46,640
kg CO2-eq

110,950
EUR

Improvement potential of the 
trade-off solution

rIPDI_min 15% 12% 15% 11% 9% 12% 9% 12%

Minimum distance to ideal point DImin 0.20 0.23 0.09 0.11
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Those categorical trade-off variables that cause a signifi-
cant shift along the Pareto front are called ‘distinguishing’ 
categorical variables (red borders in Table 4). These are used 
to group the optimal solutions into clusters in the objective 
space. Within these clusters, the trade-off variables show lit-
tle variation, so we can express the properties of the cluster 
with the average variable values. The separation of clus-
ters can be easily justified visually in the objective space. 
In the static scenarios, almost all variables that influence 
the energy performance of the envelope need to be used as 
a distinguishing variable. On the other hand, in the case of a 
dynamic mix, only the insulation and window frame mate-
rials are responsible for the position on the Pareto front. In 
other words, the design question is simplified to a trade-off 
between the cost and GWP values of some materials. In 
the following sections, the clusters are analysed in the four 
scenarios.

4.2.1  Static electricity mix, 3% electricity price increase

Table 5 summarizes the characteristics of the established 
clusters in the first scenario. The tendency is that moving 
towards the GWP-optimal end requires additional insulation 
thickness (up to an extreme of 47 cm on the wall and 32 cm 
on the roof) and a change to a less impacting material (wood 
wool on the wall). In terms of the best fenestration ratio, 
an increase up to 63% is observed. The increasing glazed 
area implies the application of shading to avoid unneces-
sary cooling demand. Also, the less impacting wooden 
frame tends to be applied. On the cost-optimal end, double 

glazed and smaller windows (20%) are applied without any 
shading and with a plastic frame. The table also shows the 
share of the embodied and operational impacts. Although 
the assessment does not include all building elements, this 
indicator shows how the ratio is changing when moving from 
LCC-optimal solutions towards GWP-optimal solutions, and 
when expressed in GWP or LCC. While the share of opera-
tional GWP as well as operational LCC decreases towards 
the GWP-optimal solutions (as a result of the increased 
energy performance of the envelope), the savings in GWP 
are much more significant than in LCC. This illustrates the 
observation that an increased energy performance shifts the 
emphasis from the operational to the embodied GWP and 
LCC. However, an extreme level is only beneficial from the 
environmental point of view (GWP), because the potential 
savings in operational impact share a more significant por-
tion in the life cycle than for LCC. This effect is one of the 
keys in understanding the trade-off between GWP and LCC 
within the optimized solutions.

4.2.2  Static electricity mix, 0% electricity price increase

Table 6 shows the characteristics of the clusters for the static 
mix and 0% electricity price increase. The tendencies are 
similar to the first case. The insulation thickness values are 
somewhat higher in some groups than in the 3% case but 
mostly because other materials with higher thermal conduc-
tivity are preferred (wood wool at the GWP-optimal end and 
EPS white).

Table 4  Values taken by the 
variables within the optimal 
solutions for the four scenarios 
(synergy variables are shown 
with green background, trade-
off with yellow background, 
neutral variables with white 
background and distinguishing 
categorical variables with red 
borders)

Sta�c, 3% Sta�c, 0% Dynamic, 3% Dynamic, 0%
N 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
W 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01
S trade-off trade-off 0.23 ± 0.03 0.22 ± 0.04
E 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.01
N neutral neutral neutral neutral
W neutral neutral neutral neutral
S trade-off triple (96%) double (100%) double (100%)
E neutral neutral neutral neutral
N neutral neutral neutral neutral
W neutral neutral neutral neutral
S no (82%) trade-off no (100%) no (100%)
E neutral neutral neutral neutral

Frame type trade-off trade-off trade-off trade-off
material trade-off EPS white (81%) trade-off trade-off
thickness trade-off trade-off 0.17 ± 0.03 0.18 ± 0.03
material trade-off trade-off trade-off trade-off
thickness trade-off trade-off 0.14 ± 0.03 0.15 ± 0.04
material trade-off trade-off EPS white (80%) trade-off
thickness trade-off trade-off 0.04 ± 0.02 0.03 ± 0.02

Floor insula�on

Design parameter

Fenestra�on 
ra�o

Glazing type

Shading

Roof insula�on

Wall insula�on
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The reduction of the energy price increase to 0% results 
in an even lower energy efficiency at the LCC-optimal solu-
tions than in the previous case (double glazing, white EPS 
insulation, 14 cm on the roof, 9 cm on the wall and 2 cm 
on the floor). Consequently, the net heating energy demand 

increases from about 24 kWh/m2year to 29 kWh/m2year. 
This increase in the operational energy use is responsible for 
the higher share of operational GWP, as well as a lower rIP 
(7% instead of 11%) in GWP in the LCC-optimal solutions. 
Although more energy is used during the operation of the 

Table 5  Characteristics of the clusters in the static electricity mix, 3% electricity price increase scenario

Graphical 
representa�on Parameters Pareto posi�on

GWP share and 
improvement 

poten�al

LCC share and 
improvement 

poten�al
Roof 32 ± 2 cm EPS graphite (99%)

Wall 47 ± 3 cm wood wool (100%)

Floor 17 ± 2 cm EPS graphite (55%)

Fenestra�on 63 ± 2 % wooden frame

Glazing triple shaded

Roof 27 ± 1 cm EPS graphite (90%)

Wall 23 ± 2 cm EPS graphite (99%)

Floor 10 ± 4 cm EPS white (61%)

Fenestra�on 39 ± 2 % wooden frame

Glazing triple shaded

Roof 26 ± 2 cm EPS white (52%)

Wall 22 ± 3 cm EPS graphite (86%)

Floor 11 ± 4 cm EPS white (76%)

Fenestra�on 32 ± 3 % wooden frame

Glazing triple not shaded

Roof 25 ± 2 cm EPS white (81%)

Wall 19 ± 4 cm EPS graphite (82%)

Floor 8 ± 4 cm EPS white (79%)

Fenestra�on 30 ± 3 % plas�c frame

Glazing triple not shaded

Roof 20 ± 3 cm EPS white (92%)

Wall 15 ± 3 cm EPS white (87%)

Floor 3 ± 1 cm EPS white (92%)

Fenestra�on 20 ± 4 % plas�c frame

Glazing double not shaded
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building, the share of operational costs is lower than with 
higher energy prices.

4.2.3  Dynamic electricity mix, 3% electricity price increase

The results of the scenarios with a dynamic, decarbonized elec-
tricity mix show a lower energy efficiency than the previous 

cases (Table 7). This means an insulation thickness of 17–18 cm 
on the roof, 13–19 cm on the wall and 3–6 cm on the floor. Some 
of these values would not fulfil the current requirements of the 
building energy regulation but they are close to the required 
values. In all cases, double glazing is used. The main differ-
ence between the clusters is the different material usage. On the 
GWP-optimal end, low-emission materials are preferred (wood 

Table 6  Characteristics of the clusters in the static electricity mix, 0% electricity price increase scenario
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wool and wooden window frame), in contrast to the less costly 
ones (white EPS and plastic frame) dominating on the LCC-
optimal end. There is a slight decrease in the fenestration ratio 
when moving towards the LCC-optimal end (from 28 to 22%). 
It is important to mention that, in spite of the absence of shad-
ing on the windows, the net cooling energy is kept at a low level 
(3–4 kWh/m2year) because of the moderate fenestration ratio. A 
significant reduction can be observed in the share of operational 
GWP compared to the static case, although the energy efficiency 
of the envelope is much lower in the dynamic case. This reflects 
the large difference between the static and the dynamic scenarios 
in the GWP of the electricity mix. With the reduced GWP of 
the electricity, the additional energy performance (with addi-
tional embodied impact) becomes less beneficial also from the 
environmental point of view. The share between embodied and 
operational GWP is much closer to the shares in LCC, which 
results in less contradiction between GWP and LCC within the 
optimized solutions.

4.2.4  Dynamic electricity mix, 0% electricity price increase

Table 8 summarizes the characteristics of the optimal solu-
tions in the case of dynamic mix, 0% price increase. The 
difference to the previous scenario is practically negligible. 
There is a slight decrease in the share of operational cost 
due to the lack of energy price increase, and the fenestration 
ratios are smaller by 2–3%.

4.2.5  Comparison of energy performance characteristics

Since only minor differences are observed between the dif-
ferent cases in terms of energy price increase, in the follow-
ing comparison, only the two cases with 3% price increase 
are included. To compare the two scenarios, only selected 
solutions are presented from each optimal set. In addition to 
the GWP-optimal and the LCC-optimal ones, the solution at 
DImin is also depicted. This can be called the trade-off solution, 

Table 7  Characteristics of the clusters in the dynamic electricity mix, 3% electricity price increase scenario

Graphical 
representa�on Parameters Pareto posi�on

GWP share and
improvement 

poten�al

LCC share and
improvement 

poten�al
Roof 18 ± 1 cm EPS graphite (100%)

Wall 19 ± 2 cm wood wool (100%)

Floor 6 ± 3 cm EPS graphite (46%)

Fenestra�on 28 ± 2 % wooden frame

Glazing double not shaded

Roof 17 ± 3 cm EPS white (50%)

Wall 13 ± 2 cm EPS white (56%)

Floor 3 ± 2 cm EPS white (99%)

Fenestra�on 22 ± 3 % wooden frame

Glazing double not shaded

Roof 17 ± 2 cm EPS white (62%)

Wall 13 ± 2 cm EPS white (68%)

Floor 3 ± 1 cm EPS white (99%)

Fenestra�on 22 ± 2 % plas c frame

Glazing double not shaded
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which represents a balanced choice considering the improve-
ment potential in both objectives. The net energy demand of 
heating, cooling and lights, as well as the U-values, are calcu-
lated and presented in Table 9. For the slab-on-ground, along 
with the U-value of the construction, the equivalent U-value 
is depicted which includes the effect of ground, calculated 
according to EN ISO 13370.

Since the electricity mix decarbonization affects the GWP 
only, the LCC-optimal solutions are the same in both cases. 
The insulation thickness and the U-values are closer to cur-
rent regulations (0.20 W/m2K on the roof, 0.19 W/m2K on 
the wall and 0.30 W/m2K-eq. on the floor); however, the 
roof is not compliant with the current regulation (0.17 W/
m2K) (TNM 2006).

The GWP-optimal solutions are similar regarding material 
use (wood wool insulation on the wall, graphite EPS else-
where and wooden window frame) but differ significantly 

in the energy efficiency levels. While in the static scenario 
U-values are much lower (0.09 W/m2K on the flat roof, 
0.08 W/m2K on the wall and 0.13 W/m2K-eq. on the floor) 
and the insulation thicknesses are extreme, in the dynamic 
scenario, the thicknesses are more compatible with the usual 
values (0.17 W/m2K on the flat roof, 0.13 W/m2K on the 
wall and 0.29 W/m2K-eq. on the floor). This aspect is also 
reflected in the net heating energy demand. In the dynamic 
scenario, the GWP-optimal solution needs about twice as 
much energy for heating as in the static scenario (20.25 kWh/
m2year vs 11.92 kWh/m2year).

Even though the trade-off solutions are closer to each 
other in terms of variables, a similar trend can be observed 
(lower insulation level and higher energy demand for a 
dynamic mix). The U-values are 0.19 W/m2K, 0.18 W/m2K 
and 0.17 W/m2K-eq. on the flat roof, wall and floor, respec-
tively, and the corresponding net heating energy demand is 

Table 8  Characteristics of the clusters in the dynamic electricity mix, 0% electricity price increase scenario

Graphical representa�on Parameters Pareto posi�on
GWP share and
improvement 

poten�al

LCC share and
improvement 

poten�al
Roof 18 ± 3 cm EPSgraphite (65%)

Wall 22 ± 2 cm WoodWool (100%)

Floor 3 ± 1 cm EPSgraphite (98%)

Fenestra�on 26 ± 2 % wooden frame

Glazing double not shaded

Roof 18 ± 2 cm EPSwhite (79%)

Wall 13 ± 2 cm EPSwhite (85%)

Floor 4 ± 2 cm EPSwhite (91%)

Fenestra�on 23 ± 4 % wooden frame

Glazing double not shaded

Roof 17 ± 4 cm EPSwhite (89%)

Wall 12 ± 2 cm EPSwhite (96%)

Floor 3 ± 2 cm EPSwhite (86%)

Fenestra�on 19 ± 4 % plasc frame

Glazing double not shaded
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23.3 kWh/m2year in the dynamic scenario. In the static sce-
nario, white EPS and triple glazing is preferred, but in the 
dynamic scenario, graphite EPS and double glazing is used 
instead. Both cases result in a wooden frame in the trade-off 
solution. The relative improvement potentials of the trade-off 
solutions are not much less than the achievable maximum 
(the single-objective optima) in both cases. In the dynamic 
case, less than 1% needs to be sacrificed from the rIPmax in 
both objectives to arrive at a feasible trade-off solution. In 
all cases, the net cooling and lighting energy demand is rela-
tively low and is less influenced by the variables.

In the analysis of Hester et al. (2018), similar thermal trans-
mittance values (0.1–0.16 W/m2K for the wall and 0.09–0.23 W/
m2K for the roof) were found in the quasi-optimal range in a life 
cycle impacts and costs optimization for Chicago. They also 
showed that the window-to-wall ratio was one of the critical 
factors.

The results are in line with the findings of Landuyt et al. 
(2021) who also concluded that the optimal insulation thick-
ness is very much affected by the choice of the energy mix 
and the thickness reduces when an electricity mix with a lower 
environmental impact is considered for Belgium. The choice 

of the heating energy source may be more significant than the 
envelope performance in some cases (Galimshina et al. 2021).

4.3  Investment strategies

Although electricity mix decarbonization cannot be influenced 
by the building owner or investor, viewing this aspect from the 
policy-making perspective raises the question to what extent 
it is better to improve the energy performance of buildings 
or to invest more into the decarbonization of the electricity 
production in order to achieve a low-carbon building sector. 
To elaborate on this question, the results of the BAU case can 
be compared with a decarbonized mix and the optimized solu-
tions with the static mix (Fig. 6). Without decarbonization, the 
maximum reduction of GWP is 18%, albeit with an increased 
life cycle cost. However, even at the LCC-optimal end, GWP 
can still be significantly reduced (with at least 10%) and at the 
same time, LCC can be reduced by up to 13%.

On the other hand, if the decarbonization of the electric-
ity mix is fulfilled but the building envelope is not opti-
mized, then the reduction in GWP is 30% in average, with 
no change in LCC. If building optimization is carried out in 

Table 9  Net heating, cooling and lighting energy demand and U-values of the GWP-optimal, trade-off and LCC-optimal solutions for the static 
and dynamic mix, 3% price increase scenarios (Ufloor* = equivalent U-value according to EN ISO 13370)

Sta�c mix, 3% price increase Dynamic mix, 3% price increase

G
W
P
-o
p
ti
m
al

Qhea�ng 11.92

kW
h/

m
2 yr

Uflat roof 0.091

W
/m

2 K

Qhea�ng 20.25

kW
h/

m
2 yr

Uflat roof 0.167

W
/m

2
KQCooling 4.44 Uwall 0.077 QCooling 4.42 Uwall 0.134

Qlights 2.68 Ufloor 0.173 Qlights 3.14 Ufloor 0.566

rIPGWP 18.5% Ufloor* 0.129 rIPGWP 9.7% Ufloor* 0.286

rIPLCC -10.3% rIPLCC 6.6%

T
ra
d
e-
o
ff

Qhea�ng 17.91

kW
h/

m
2 yr

Uflat roof 0.135

W
/m

2 K

Qhea�ng 23.30

kW
h/

m
2 yr

Uflat roof 0.188

W
/m

2
KQCooling 3.69 Uwall 0.112 QCooling 3.64 Uwall 0.178

Qlights 3.17 Ufloor 0.255 Qlights 3.29 Ufloor 0.642

rIPGWP 15.3% Ufloor* 0.172 rIPGWP 9.1% Ufloor* 0.311

rIPLCC 11.5% rIPLCC 12.0%

L
C
C
-o
p
ti
m
al

Qhea�ng 24.76

kW
h/

m
2 yr

Uflat roof 0.208

W
/m

2 K

Qhea�ng 24.55

kW
h/

m
2 yr

Uflat roof 0.198

W
/m

2
KQCooling 3.05 Uwall 0.188 QCooling 3.03 Uwall 0.188

Qlights 3.43 Ufloor 0.642 Qlights 3.44 Ufloor 0.642

rIPGWP 10.7% Ufloor* 0.310 rIPGWP 8.0% Ufloor* 0.310

rIPLCC 12.9% rIPLCC 12.9%
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addition to the decarbonization, the maximum reduction is 
up to 37% in GWP (with a reduced LCC of at least 6%). As 
seen in the previous sections, the optimized building param-
eters are significantly different and much closer to the BAU 
today case if the decarbonization plan is fulfilled.

The results show that the decarbonization of the electricity 
mix is a key aspect to achieve a low-carbon building sector, 
and it is a very relevant condition when defining the GWP-
optimal building design. It is important to mention that these 
findings apply if a heat pump is used to heat the building, 
which is increasingly used in new buildings.

4.4  Limitations of the study

An important limitation of this study is that only one case 
study building is used in one location, which currently has 

a fossil-based electricity mix, though with high decarboni-
zation potential. The results might be different if the size 
or the usage of the building is different. The application 
of local solar energy utilization is not analysed. The sole 
focus is on the environmental impact and the cost of the 
building, without considering other architectural, aesthetical 
and technical parameters that are influencing a real building 
design. Also, other environmental indicators might highlight 
different aspects of sustainability, and would result in other 
optimal solutions. In this study, a genetic algorithm was 
applied to find the optimum solutions. Due to the nature 
of the algorithm, finding the global optimum is not guar-
anteed. However, the algorithm achieved a great improve-
ment compared to the typical designs and a range of good 
enough solutions could be found, which are also relevant in 
engineering problems.

Fig. 6  Optimization results for the static and dynamic 3% electricity price increase scenarios, showing the current BAU and BAU with decar-
bonized electricity
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5  Conclusions

In this paper, the sensitivity of environmental building opti-
mization to the electricity mix scenario was evaluated, with 
a heat pump used for space heating and cooling. The influ-
ence of electricity price changes has also been examined. For 
the analysis, a multi-objective optimization framework has 
been developed that integrates parametric building model 
generation, environmental and cost databases, dynamic 
energy simulation, life cycle assessment calculation and 
optimization algorithms into one platform. The framework 
provides an efficient and automatic mechanism to search 
for building design solutions with the lowest environmental 
impact and cost.

The results demonstrate that the electricity mix turns out 
to be a major factor in the environmental impacts and sig-
nificantly influences the environmentally optimal building 
design. Using a dynamic, gradually decarbonizing electricity 
mix, the whole life cycle GWP was on average 25% lower 
in the optimized building solutions compared to the current 
Hungarian static mix. With today’s static electricity mix, 
the optimization proved that the minimum energy efficiency 
requirements in force are close to cost optimality, in line 
with the EU regulation. However, from an environmental 
point of view, much higher insulation thicknesses have 
been shown as justified (U-values of less than 0.1 W/m2K). 
With a decarbonizing electricity mix, energy efficiency still 
remained important, but GWP and LCC turned out to be 
much less conflicting and today’s cost-optimal requirements 
proved to be both cost- and environmentally optimal.

The paper also introduced new evaluation metrics for 
the description of the Pareto front, which could be of inter-
est to other researchers focusing on building optimization. 
The improvement potential was defined as the difference 
in the total emissions/costs between the optimized and the 
reference building sample, with the reference defined as 
business-as-usual new building designs calculated with a 
Monte Carlo simulation based on typical building param-
eters. The optimization algorithm achieved 18% (127 t) 
 CO2-eq. improvement potential for a static mix and 10% (46 
t) if a dynamic mix was applied. As the performance of the 
BAU design also improves with decarbonization, building 
design optimization is more important if the current, high 
emission mix is applied than with the future mix. Building 
optimization not only reduces the GWP but in most cases 
the life cycle costs too, indicating cost-efficiency. How-
ever, the reduction in operational impacts is much more 
attributed to the reduced GWP of the electricity in the case 
of the dynamic mix than to the increased energy perfor-
mance. This not only avoids the extreme insulation level of 
the envelope but also decreases the trade-off between GWP 
and LCC in an optimal design.

Although the results are specific to the present case study, 
it has implications for other locations with a heavy reliance 
on fossil fuels that is expected to give way to substantial 
decarbonization, for example Poland or Germany. Further 
research is needed to widen the scope to more building types 
and geographical areas, while assessing the sensitivity of the 
results to other parameters.
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