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Abstract
Purpose  Life Cycle Assessment (LCA) is the process of systematically assessing impacts when there is an interaction 
between the environment and human activity. Machine learning (ML) with LCA methods can help contribute greatly to 
reducing impacts. The sheer number of input parameters and their uncertainties that contribute to the full life cycle make 
a broader application of ML complex and difficult to achieve. Hence a systems engineering approach should be taken to 
apply ML in isolation to aspects of the LCA. This study addresses the challenge of leveraging ML methods to deliver LCA 
solutions. The overarching hypothesis is that: LCA underpinned by ML methods and informed by dynamic data paves the 
way to more accurate LCA while supporting life cycle decision making.
Methods  In this study, previous research on ML for LCA were considered, and a literature review was undertaken.
Results  The results showed that ML can be a useful tool in certain aspects of the LCA. ML methods were shown to be applied 
efficiently in optimization scenarios in LCA. Finally, ML methods were integrated as part of existing inventory databases to 
streamline the LCA across many use cases.
Conclusions  The conclusions of this article summarise the characteristics of existing literature and provide suggestions for 
future work in limitations and gaps which were found in the literature.

Keywords  Life cycle assessment · Machine learning · Optimization · Prediction · Decision-making · ANN · SVM · 
Random forest · Hybrid methods

1  Introduction

Life Cycle Assessment (LCA) is a series of procedures set 
for the collection and assessment of the inputs and outputs of 
materials or energy, as well as the subsequent impacts on the 
environment incurred due to the running of a system or prod-
uct throughout that entity’s life cycle (ISO 14040.2 Draft). 
The LCA provides a framework for the definition of the 
scope, and the goal of the assessment, analysis of the inven-
tory (LCI, life cycle inventory), assessment of the impact 
(LCIA, life cycle impact assessment), and finally, the inter-
pretation from these procedures (Guinee  2002). The purpose, 
entities (systems, products) and the degree of sophistication 

are defined in the LCA framework’s goal and scope defini-
tion step. The life cycle inventory (LCI) is the step in which 
the system boundaries are defined. The key outcome from 
the LCI is the inventory which collates inputs and outputs to 
the environment. The life cycle impact assessment (LCIA) 
is how its relevance expresses the inventory to the impact 
categories. This step quantifies the impact through weight-
ing and normalization. The interpretation is the final step 
in which the results from the LCIA are evaluated and used 
to make recommendations (Guinee  2002). LCA is a vital 
instrument to help reduce the overall environmental burden 
and provide insights into upstream and downstream trade-offs 
associated with environmental pressures, health & wellbeing, 
and the consumption of natural resources. As such, LCA can 
inform policy-making by providing valuable information on 
environmental performance, and thus contributing to perfor-
mance targets within the Environmental Technology Action 
Plan (ETAP) and for Energy-using Products within the EuP 
Directive, in green public procurement (GPP), and in Envi-
ronmental Product Declarations (EPDs).
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In addition, the recent special report on the impacts of 
global warming of 1.5◦ C was yet another call to imple-
ment measures to mitigate GHG emissions and to devise 
new adaptation scenarios (IPCC  2021; Sala et al.  2021). 
In this context, LCA helps quantify the environmental 
pressures, the trade-offs, and areas for achieving improve-
ments considering the entire life cycle of built assets from 
design to recycling. However, current approaches to LCA 
do not consistently factor in (both in the foreground and 
background inventory systems) life cycle variations in: (a) 
building usage, (b) energy supply (including from renewable 
sources), and (c) building and environmental regulations; 
as well as other changes over the building/district lifetime 
(Anand and Amor  2017; Bueno et al.  2016; Skaar and 
Jørgensen  2013). These include (a) change in the energy 
mix of a building/district or upgrading/retrofitting the energy 
system(s) in place; and (b) time-increase of energy demand 
during the lifetime of a building due to a wide range of rea-
sons, including changes in occupancy patterns.

As such, LCA is an important instrument to help reduce 
the overall environmental burden of buildings and provide 
insights into the upstream and downstream trade-offs that are 
associated with environmental pressures, health and wellbe-
ing, and the consumption of natural resources. As such, LCA 
can inform policymaking by providing valuable information 
on the environmental performance of built assets. However, 
the current LCA methods and tools face several limitations 
and challenges, including: (a) site-specific considerations 
(Bueno et al.  2016), several local impacts need to be con-
sidered in building assessments, such as the microclimate; 
(b) model complexity (Anand and Amor  2017), buildings 
involve a wide range of material/products, interacting as part 
of a complex assembly or system; (c) scenario uncertainty 
(Anand and Amor  2017; Bueno et al.  2016), the long use 
phase of buildings, including the potential for future ren-
ovation, poses uncertainty problems in LCA that are not 
currently addressed; (d) health and wellbeing (Bueno et al.  
2016; Skaar and Jørgensen  2013), traditional LCA meth-
odologies do not address indoor and outdoor environmental 
impacts on health and well-being; (e) recycled material data 

(Anand and Amor  2017; Negishi et al.  2018), lack of data 
on using waste and recycled materials as new building mate-
rials; and (f) lack of consideration for social and economic 
aspects (Anand and Amor  2017; Negishi et al.  2018).

The sheer number of input parameters and their uncer-
tainties that contribute to the full life cycle make a broader 
application of ML complex and difficult to achieve. Hence 
the need to adopt a cartesian, i.e., “Divide and Conquer”, 
or systems engineering approach, whereby the strategy to 
reduce and mitigate the environmental impact of a complex 
artefact, in our case a built asset, should be divided into 
an ensemble of discrete and manageable scenarios, such as 
optimizing the energy mix of an energy system. By address-
ing these discrete scenarios in isolation using ML, a broader 
reduction of environmental impacts via LCA is feasible.

ML methods are from a subtype of Artificial Intelligence 
(AI) methods that learn from data to improve their accu-
racy without the need to be programmed again. ML is creat-
ing such a model that can find patterns by studying a set of 
training data and developing an algorithm without human 
involvement (Mitchell  1997). ML algorithms are typically 
categorized into four groups: Supervised learning, Unsu-
pervised learning, Semi-supervised learning, and Reinforce-
ment learning as shown in Fig. 1.

Areas of data science, including ML, are presently used 
to fill gaps in data for LCA. Furthermore, they have been 
used to develop accessory tools for LCA that can model and 
predict a product’s environmental impact based on informa-
tion from the design phase. ML has the capability of being 
integrated as a real-time algorithm, assessing production or 
changes in processes and responding with potential alterna-
tives for better or less environmentally impactful production. 
ML approaches have been applied to different disciplines of 
LCA. These include the prediction of missing data, forecast-
ing impact parameters both directly and indirectly, and optimi-
zation algorithms in LCA. ML methods have also been used 
to overcome incompleteness or uncertainty in data to deliver 
actionable recommendations for the LCA (Algren et  al.  
2021). One potential advantage of ML in LCA is that it can 
reduce the cost of data collection. In other words, with ML, 

Fig. 1   Various types of ML 
techniques
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the most informative attributes can be identified and focused 
on collecting them while ignoring other attributes that may 
not contribute significantly to the model’s accuracy. Some-
times missing data in LCA is encountered, and ML can help 
predict those missing values, improving the data available for 
LCA. Based on the type of ML, various statistics and visuali-
zations can be used to evaluate the predicted data, including 
accuracy, confusion matrix, receiver operating characteristic 
curve, cluster distortion, and means squared error.

ML thrives in applications where there is a requirement 
to solve mathematical models accurately and efficiently. 
Consequently, it can be adapted to provide ideas or meth-
ods for an optimization process. It can be implemented as 
part of a real-time decision-making process where potential 
improvements in the performance of a system throughout 
its life cycle are identified. Optimization methods can then 
be applied to the process. This makes it particularly useful 
in the design process instead of the entire LCA. This study 
shows that the ML can be coupled with standard optimiza-
tion methods to increase their capability of quickly exploring 
promising regions. Figure 2 provides the standard ML and 
LCA deployment processes which should be considered in 
the investigation of ML methods in LCA.

The paper reviews the application of ML to LCA with a 
focus on Buildings, Districts and Cities, while also including 
several useful related applications described under a “Miscella-
neous” heading. A plethora of studies has explored the applica-
tion of LCA in buildings with most studies focusing on energy 
use and GHG emissions (Asif  2019; Elkhayat et al.  2020; 
Lyu and Chow  2020). However, the literature thus far lacks a 
comprehensive review of the different applications of ML in 
LCA, the trends in current practices as well as some of the gaps 
in research. This review aims to address this by proposing and 
answering research questions which will establish the current 
practices and future works which are required in this field.

1.1 � Goal and scope

This paper aims to investigate the role of ML methods in 
LCA across three levels;

–	 Buildings,
–	 Districts and cities
–	 Miscellaneous

As such, our review focuses on built assets considered (a) 
in isolation or (b) within a District or wider city level. Built 
assets can be of any type, including residential, public, or 
industrial. At the districts and cities level, the role of ML in 
human structures like roads, pavements, bridges, parks, rail-
ways is investigated, informed by the literature. ML in other 
related studies like chemical, agriculture, and products is 
considered and reported at the “Miscellaneous” level. As to 
the investigated LCA requirements, this review adopts an 
exploratory approach in that it reports use cases involving 
the application of ML in Buildings and wider Districts. As 
such, a bottom-up approach, driven by applications of ML 
in LCA, has helped identify the most common requirements 
addressed in the literature. It is worth noting that environ-
mental certification schemes, such as BREEAM, are not 
considered in this paper. When ML is used at the districts 
level, the building as an attribute (categorical attribute) can 
be considered in the model, which will help capture the 
differences between different building types within the dis-
tricts. This attribute will have to be tested to see the level 
of information (accuracy, for example) that it brings to the 
model.

In this study, fundamental limitations and challenges 
faced by current ML methods in LCA, applications, motiva-
tions, constraints and their role in predictions and optimiza-
tions are considered (Fig. 3).

Fig. 2   ML and LCA deploy-
ment processes
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The significant contributions of this paper are collating a 
literature survey to determine use of ML techniques for LCA 
by answering the following research questions: 

1.	 How has ML been used in LCA?
2.	 What is the role and efficacy of ML methods in optimi-

zation in LCA?
3.	 Can ML methods integrate and contextualize existing 

inventory databases to provide a sound basis to stream-
line the LCA?

4.	 What are the gaps in research in order to guide future 
research for ML in LCA?

LCA is explored, and the current state of the art reported 
in the literature is identified to answer these questions. ML 
techniques tailored to LCA and specific AI techniques that 
can advance LCA’s establishment and delivery of the smart 
technology are investigated. Gaps in research will then be 
identified in order to guide future research for ML in LCA.

The contents of this paper are organized as follows: 
Sect. 2 lays out the methodology for identifying and includ-
ing studies for the review. Section 3 discusses research and 
provides an overview of ML methods in LCA. Section 4 
talks about ML and optimization in LCA. The results and 
discussion are described in Sect. 5. Finally, the findings are 
evaluated and concluded in Sect. 6.

2 � Methodology

A literature review in applying ML in LCA was per-
formed, and 81 relevant studies were analysed according 
to the research questions. The review presented here aims 
to identify, evaluate and interpret all available research 
relevant to LCA using ML models. This section outlines 
the process for selecting included papers. This methodol-
ogy was based on five phases.

Planning phase  In this phase, scope, literature research 
questions and databases were determined. Google scholar 
was chosen for the search database as well as Scopus and 
Web of Science. Citavi (SWISS ACADEMIC SOFTWARE 
GMBH, 2021) was used for managing the collected refer-
ences because of its broad functionality. The publication 
years of studies were determined to be between the years 
2000 and 2021.

Search phase  In this step, the search process was developed 
to select appropriate studies. After defining the research 
questions in the planning phase, the main terms were 
defined. Similar terms or interchangeable terms were iden-
tified and connected using Boolean OR and AND operators. 
Table 1 shows the search terms used.

Fig. 3   The applications, motiva-
tions, constraints and ML meth-
ods in LCA that are considered 
in this review

Table 1   Search terms

Main term Search terms

Life cycle assessment Life cycle assessment OR Lifecycle assessment OR LCA OR Life cycle impact assessment OR LCIA OR 
Life cycle analysis OR Life cycle inventory OR LCI

Prediction Predict OR Predicting OR Prediction
Machine learning Machine learning OR Deep learning OR ML OR ANN OR NN OR BPNN OR MLP OR SVM OR RF OR 

KNN OR hybrid. While these search terms included the key ML methods, many more were considered 
for inclusion from results yielded from these searches.

Optimization Optimization OR Optimize OR Optimizing OR Optimized OR Optimum OR Optimal OR Decision making

436 The International Journal of Life Cycle Assessment (2022) 27:433–456



1 3

Filtering phase  At first, the contents of the papers were 
assessed through screening of titles and abstracts and the 
following of inclusion criteria were applied. 

1.	 Language: English
2.	 Document types: Only full-text, conference or journal 

papers or books
3.	 Time interval: The publication years of selected primary 

studies are between the years 2000 and 2021 to narrow 
to more relevant results based on current practices in the 
field of LCA.

After removing the duplicates, the papers selected through 
their abstract screening were reviewed in full, and those that 
did not consider ML techniques in LCA or provide primary 
research findings in this topic were excluded. In the next 
step, the relevance of a paper based on its introduction and 
the conclusion/discussion was determined. In total, this 
yielded 81 primary research papers. These references were 
imported into our reference manager Citavi.
Evaluation phase  In this phase, the articles were assessed 
for their quality and impact. Three main points were consid-
ered for this phase: 

1.	 Is the methodology clear?
2.	 Are results provided in full?
3.	 Is the paper relevant to the research questions of this 

review?

Finally, a decision is made regarding the inclusion of the 
paper in a full review for this paper. Some papers may 
have been included for context or interest despite a lack of 
methodology.
Extraction phase  The collected references were managed 
using Citavi. For each selected paper, relevant informa-
tion was collected and a justification for each inclusion 
was noted. Each paper was then analysed and the following 
information was extracted and recorded: the model used, the 
optimal model found by the authors, the type of application 
that ML was targeting in the paper, and finally, the scale at 
which LCA was applied in this paper.

3 � ML methods in LCA

In this section, related works about ML methods and moti-
vation are presented. For ML methods, each studied zones 
are made bold.

Luque et al. presented a conceptual framework for the 
integration of AI and LCA. Throughout their study, the rel-
evance of using sensing when addressing an objective of 
intelligent sustainability in engineering projects has emerged 
(Luque et al.  2020). Adedeji et al. present a roadmap to 

using AI techniques in LCI. The data chain for efficient 
resident data availability for LCA studies was considered to 
focus on AI integration. Also, a framework for using AI in 
LCI was developed (Adedeji et al.  2020).

At the buildings level, through the combined use of ML 
in LCA, it may be possible to significantly reduce environ-
mental impacts (Barros and Ruschel  2021). D’Amico et al. 
employed ML methods in civil and structural engineering 
in order to reduce building impacts (D’Amico et al.  2019b). 
Barros and Ruschel performed a systematic literature review 
of the scientific research conducted for architecture, engi-
neering and construction industries in the context of LCA 
and ML (Barros and Ruschel  2021). They show that the 
most investigated environmental indicators were energy 
consumption and Global Warming Potential (GWP). Sig-
nificantly, they found that ML was predominantly used for 
prediction. In the case of a regionalized bottom-up model 
created using ML techniques, environmental profiles for 
individual households were assessed by (Frömelt et  al.  
2020). At the districts and cities level, Manfren et al. pre-
sented a review of modelling tools for identifying optimal 
solutions for district-wide energy systems. They introduced 
a framework for the key concepts of a local energy manage-
ment system in an urban area. This framework has a mul-
ticriteria perspective and uses ML to find optimal solutions 
for providing energy services through distributed genera-
tion (Manfren et al.  2011). Furthermore, DeRousseau et al. 
examined the various problem formulations which are com-
monly seen in the field of concrete mixture design optimiza-
tion that can necessitate models based on the linear combi-
nation, statistics, ML, and physics (DeRousseau et al.  2018). 
Also, in LCA at the miscellaneous level of production, ML 
algorithms can have an impact in reducing GHG emissions 
in LCA for geographically differentiated and contextualized 
design measures; however, they are still underutilized for 
such applications (Milojevic-Dupont and Creutzig  2021). 
Kurdi et al. reviewed methods for simulation in tribology to 
model tribo-contact scenarios and investigated LCA with 
simulation combined with ML (Kurdi et al.  2020). Wu and 
Wang reviewed ML methods applied to toxicity predic-
tion and discussed the ML algorithm’s input parameter to 
enhance prediction accuracy (Wu and Wang  2018). Gust 
et al. demonstrated that in toxicological and regulatory 
assessment for novel materials where fewer characterization 
data are available, probabilistic adverse quantitative outcome 
pathway can leverage using supervised ML models (Gust 
et al.  2015). In later sections, we discuss the most com-
monly used ML techniques in LCA.

3.1 � Neural networks

Artificial Neural Networks (ANNs), also known as Neural 
Networks (NNs) or simulated neural networks (SNNs), are 
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a subset of ML and are at the heart of Deep-Learning algo-
rithms. Their name and structure are inspired by the human 
brain, mimicking how biological neurons signal to one 
another (Livingstone  2008). ANNs are favourable as they 
overcome some limitations commonly seen with traditional 
software, such as collecting environmental and energy data, 
physical problem and software language, long computational 
time, and the need to calibrate a model. Consequently, ANN 
models provide a superior and more reliable decision sup-
port tool for engineers and architects, reducing uncertainties 
in the LCA field. Furthermore, the implementation of ANN 
in software can accommodate the development of an appro-
priate decision support tool. Thus, ML algorithms and tech-
niques may be capable of increasing accuracy in LCA and 
reducing the simulation time (Sharif and Hammad  2019; 
Barros and Ruschel  2021; D’Amico et al.  2019a). However, 
the validity of the NN solution is directly and powerfully 
proportional to the reliability of the database, which tends 
to be the most difficult to implement. Ziyadi et al. imple-
mented quantitative uncertainty analysis methods to charac-
terize and quantify uncertainties in a Life Cycle Inventory 
Analysis (LCIA) model. An ANN model was trained and 
tested to propagate input variability through a system using 
interval analysis. Monte Carlo sampling was then used to 
propagate input uncertainty directly and was compared to an 
indirect nonlinear optimization method that tries to maxi-
mize output range (Ziyadi and Al-Qadi  2019; Barros and 
Ruschel  2021). At the buildings level, ANN mainly was 
used for optimizing building performance and for impact 
prediction of energy consumption and GWP. It was sug-
gested that advances in LCA and ML could help calculate 
and analyze building environmental indicators and develop 
and improve LCA methods. Shi and Xu presented a system-
atic LCA method to analyze the environmental performance 
of construction materials. Furthermore, BPNN and the 
hybrid algorithm GA-BP were introduced to evaluate build-
ing materials. Compared with BPNN, the hybrid GA-BP 
algorithm was shown to be of better value for selecting con-
struction materials environmentally and has greater preci-
sion (Shi and Xu  2009). D’Amico et al. used ANN to simul-
taneously solve the energy and environmental balance along 
the building life cycle. The authors developed a decision 
support tool that quickly and reliably determines buildings’ 
performance with minimum effort. The reliable data and ML 
combination significantly contribute to the increase in speed 
and accuracy of LCA (Barros and Ruschel  2021; D’Amico 
et al.  2019a). The results showed that ANN helps predict 
energy demand and building LCA (D’Amico et al.  2019a). 
Considering that the importance of the design phase to car-
bon emissions during a building’s life cycle, Xikai et al. 
presented a regression model of carbon emissions using 
designing factors. Also, to determine the designing factors 
for a predictive model; Multilayer Perceptron (MLP) was 

used to develop regression models (Xikai et al.  2019). Sha-
rif and Hammad proposed an ANN model to obtain complex 
data generated from the simulation-based multiobjective 
optimization model. This model tried to predict energy con-
sumption to improve buildings’ energy performance-critical 
element of building energy conservation. The outcome of 
this study showed that the proposed ANN models could effi-
ciently predict the LCA for the whole building renovation 
scenarios considering the building envelope, HVAC, and 
lighting systems (Sharif and Hammad  2019). Also, Sharif 
proposed a simulation-based multiobjective optimization 
model for optimizing the selection of renovation scenarios 
for existing buildings by minimizing total energy consump-
tion (TEC) considering LCA. He developed a surrogate 
ANN for selecting near-optimal building energy renovation 
methods; and developed deep ML Models to generate reno-
vation scenarios considering TEC (Arani  2020). In the 
building sector’s construction, the material with their 
embodied energy of all the materials that fall under the main 
category like wood, cement, plastic and the material that 
release less energy is provided as input data to the NN 
(Mukherjeea et al.  2019). Płoszaj-Mazurek et al. showed the 
relationships between the parameters of buildings and the 
possibility of introducing Carbon Footprint estimation and 
implementing building optimization at the initial design 
stage. They used Convolutional Neural Networks (CNN) to 
analyze an image of the urban layout and consider its influ-
ence on the building’s Total Carbon Footprint (Ploszaj-
Mazurek et al.  2020). Azari et al. investigated the ideal 
building envelope design using a multiobjective optimiza-
tion algorithm. This was based on the office building’s 
energy use and life cycle environmental impacts. The input 
variables for design were insulation material, window type, 
window frame material, wall thermal resistance and south 
and north window-to-wall ratios. The optimal iteration of 
these variables was found to design the building with the 
smallest possible operational energy and environmental 
impact. The eQuest 3.65 simulation tool was used to calcu-
late active energy. LCA and Athena IE was used to find an 
estimated LCA. In addition, an ANN and genetic algorithm 
(GA) approach were implemented to generate further com-
binations and find the ideal design iteration. The environ-
mental impact categories included global warming, acidifi-
cation, eutrophication, formation of air pollution, and ozone 
depletion (Azari et al.  2016; Barros and Ruschel  2021). Xia 
et al. introduced a green building assessment index, devel-
oped using the life cycle theory and a back-propagation neu-
ral network (BPNN), through a Chinese and international 
building classification system. The assessment index was 
intended for scientific assessment as the basis for choosing 
the best plan for green building systems (Xia and Liu  2013; 
Barros and Ruschel  2021). Oduyemi et al. produced an 
ANN model for estimating operation and maintenance costs 
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of buildings (Oduyemi et al.  2015). Life cycle cost analysis 
(LCCA) compares different design elements, specifications, 
and materials based on the installation, operation, mainte-
nance and residual costs to evaluate the total life cost of 
construction. Alqahtani et  al. used ANNs to develop a 
framework for LCCA of construction projects. This was 
used to estimate the entire cost of construction and uses cost 
significant items to find the main cost contributions affecting 
the accuracy of estimation (Alqahtani and Whyte  2013). 
Wang and Shen created a stochastic Markov model to 
increase the accuracy of life cycle energy consumption fore-
casting. This was done by involving longitudinal uncertain-
ties in building conditions, degree days, and valuable life. 
The Markov building deterioration model was developed 
using historical data of similar situations and was used to 
predict the building’s useful life and expected condition at 
any given time. Deterioration of building and temperature 
changes were used to simulate yearly variation in energy 
consumption. Energy consumption was estimated with the 
available data set to calculate annual energy consumption 
using NN. The proposed stochastic model results in a more 
restricted distribution, being similar to measured data. It 
may be implied that the longitudinal uncertainty in the ther-
mal condition of the building and the temperature can 
account for some uncertainty in the variation of the energy 
performance (Wang and Shen  2013; Barros and Ruschel  
2021). Duprez et al. developed a technique using ML for 
predicting GWP of building design alternatives with a high 
coefficient of determination. The original model was com-
pared to three metamodels, Multiple Linear Regression 
(MLR), Support Vector Regression (SVR) and ANN, to 
compare their ability to estimate GWP accurately. The 
authors concluded that ANN offered better results than MLR 
and SVR (Duprez et al.  2019).

At the city level, Perrotta et al. used the application of 
Boruta Algorithm (BA) and NN to evaluate and calculate a 
fleet of trucks’ fuel consumption to estimate the emissions 
for pavement roads. The authors showed that NN is appro-
priate for analyzing data from fleet and road asset manage-
ment databases. The resulting NN model was used to esti-
mate the impact of rolling resistance parameters (pavement 
roughness and macrotexture) on fuel consumption (Perrotta 
et al.  2018). Furthermore, Perrotta et al. used truck telem-
atics, road geometry and condition data to investigate the 
fuel consumption prediction of fleets of trucks. Three ML 
techniques, Support Vector Machine (SVM), Random Forest 
(RF) and ANN, were developed and compared in perfor-
mance (Perrotta  2017).

In the miscellaneous level Wisthoff et al. studied the 
relationship between product design decisions and even-
tual LCA. Their study developed a search tree of sustain-
able design knowledge in the early design phase, and to 
assist in quantifying the impact of these design decisions; 

the study used an MLP method to relate the LCA of 37 
case study products to product attributes to help the 
designer to redesign the product to reduce the impact 
(Wisthoff et al.  2016). Smetana et al. focused on analyz-
ing evolutionary similarities and differences between two 
complex modular systems, NN and blockchain technolo-
gies, on evaluating their potential for application to mate-
rial flow analysis (MFA) and LCA. The authors concluded 
that the combination of NN and blockchain could form a 
more efficient system for MFA and LCA (Smetana et al.  
2018). Chiang et al. introduced a design for environment 
methodology to evaluate derivative consumer electronic 
product development using a BPNN model and a tech-
nique for order preference by similarity to ideal solution 
(TOPSIS) method (Chiang et al.  2011). Zhu et al. pre-
sented a research framework for greening the continuous 
sitagliptin manufacturing process with LCA and NN’s 
aid. Deep learning NN models were developed to pre-
dict LCA according to the chemicals in a database with 
known LCA values and corresponding molecular descrip-
tors (Luque et al.  2020). Li et al. developed an ANN 
approach to estimate unknown eco-indicators for missing 
environment impact information for several vital materi-
als used in electronic products and integrate recycling 
scenarios in LCA (Li et al.  2008). The result showed 
that the ANN-based approach was accurate enough in 
forecasting the missing materials. Kaab et al. employed 
two ANNs and an adaptive neuro-fuzzy inference system 
(ANFIS) model for predicting LCA and output energy of 
sugar cane production (Kaab et al.  2019). Romeiko et al. 
presented a model for estimating LCA spatially at the 
county scale, with corn production developed by apply-
ing ANN (Romeiko et al.  2020a). For the cost estimation 
of a product’s life cycle in the product design process, 
Leszczyński and Jasiński used ANNs and compared them 
with a parametric estimation (Leszczynski and Jasinski  
2020). Marvuglia et al. developed an automatic selection 
strategy using combinations of a General Regression Neu-
ral Network (GRNN) and a set of linear models, based on 
partial least squares (PLS) regression for USEtox factor. 
The authors found that linear models have lower predic-
tive power (prediction of toxicity factors) compared to 
GRNN nonlinear model (Marvuglia et al.  2015; Barros 
and Ruschel  2021). Song et al. developed ANN models 
to estimate the LCA of chemicals in the market. Using 
molecular structure information, they trained multilayer 
ANNs for life cycle impacts of chemicals using six impact 
categories. The application domain (AD) of the model 
was estimated for each impact category within which 
the model exhibits higher reliability (Song et al.  2017). 
Also, Song continued an attempt to harness the power of 
ML techniques to address the data deficiencies in LCA 
and an ANN, and Random Forest predictive models were 
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developed to estimate approximate life cycle impacts of 
chemicals (Song  2019). Li et al. used nine molecular fin-
gerprints to describe pesticides, binary and ternary clas-
sification models constructed to predict aquatic toxicity 
of pesticides via six machine learning methods: ANN, 
Naïve Bayes (NB), K-Nearest Neighbours (KNN), Clas-
sification Tree (CT), RF and SVM (Li et al.  2017). Amini 
Toosi et al. explored the possibility of an ANN-based 
LCA model for the conceptual design phase by classify-
ing products according to their environmental and product 
characteristics. The product classification ultimately iden-
tified was used to create classification schemes with the 
C4.5 decision tree algorithm. An ANN-based approach 
with product attributes as inputs and environmental 
impact drivers as outputs were developed to predict the 
approximate LCA of grouping members. The predicted 
results seemed to be satisfactory (Seo et al.  2005). Cor-
nago et al. introduced a model which resembles the deep 
neural network (DNN) to forecast the hourly day-ahead 
electricity consumption in an LCA aware scheduling sys-
tem. This information allows to schedule the production 
to minimize the LCA impacts relative to the electricity 
consumption. (Cornago et al.  2020). Understanding and 
developing the LCA of activated carbon produced from 
diverse biomass feedstocks is critical and time-consuming 
for biomass screening and process optimization for sus-
tainability. Liao et al. addressed this problem by develop-
ing a high accuracy ANN model and kinetic-based pro-
cess simulation to estimate primary energy consumption 
and GHG emissions across various woody biomass (Liao 
et al.  2020). Nabavi-Pelesaraei et al. used historical data 
to predict future agricultural energy, and they showed that 
agricultural energy output and its LCA could be readily 
predicted by ANN (Nabavi-Pelesaraei et al.  2018). Sousa 
et al. proposed an ANN model using product attributes, 
which are characteristics of product concepts, and envi-
ronmental inventory data from pre-existing LCAs. The 
product design team then use the new high-level attrib-
utes to obtain LCA for a new quickly product concept 
(Sousa et al.  2000). Also, Sousa and Wallace developed 
an ANN-based learning surrogate in approximate LCA 
of product design concepts (Sousa and Wallace  2006). 
Kleinekorte et al. proposed a predictive LCA framework 
of chemicals using ANN networks. The results show that 
the proposed. ANN was able to predict whether a tech-
nology change has the potential to reduce climate change 
impacts (Kleinekorte et al.  2019b). Park and Seo pro-
posed a BPNN model for an approximate LCA for the 
conceptual design phase by classifying products accord-
ing to their environmental and product characteristics. 
For approximate LCA, the product attributes and envi-
ronmental impact drivers (EID) were identified to pre-
dict the environmental impacts of products. The results 

showed BPNN is more accurate than multiple regression 
analysis in the prediction of the results of LCA (Park and 
Seo  2003). Milczarski et al. applied ANN to validate the 
production process’s quality and parameters in the food 
processing industry (Milczarski et al.  2020).

3.2 � Support vector machines

Support vector machines (SVMs) have been scarcely 
involved in LCA. SVM is an ML algorithm based on a the-
ory proposed by Vapnik called the statistical learning theory. 
It has proven to have unique advantages when working with 
smaller samples, nonlinear and high dimensional pattern 
recognition and can also be used in conjunction with other 
ML problems such as function fitting. SVM aims to solve 
the optimization problem and to find the optimal classifi-
cation hyperplane in the high-dimensional feature space in 
order to work with complicated data classification (Cortes 
and Vapnik  1995).

At the buildings level, Shan et al. explored ML-based elec-
troencephalogram (EEG) methods in the human-computer 
interaction domain for a potentially more accurate and objec-
tive human-building interaction. The machine learning-based 
EEG methods can be the primary feedback mechanism of 
wellbeing and performance to the building life cycle platform. 
Linear discriminant analysis (LDA) and SVM machine learn-
ing classifiers were demonstrated. Together with EEG indices, 
these two ML-based EEG methods can be the primary feed-
back mechanism of wellbeing and performance to the building 
(Shan et al.  2017). Liu et al. proposed a methodology that 
couples multiobjective optimization and SVM and decision 
tree classifiers to extract design heuristics (Comfort tem-
peratures, etc.). The methodology has been demonstrated on 
sustainable residential system design via Techno-Ecological 
Synergy in LCA (TES-LCA) methodology (Liu and Bakshi  
2018).

At the districts and cities level, Perrotta et al. presented 
the application of SVM to fuel consumption modelling of 
articulated trucks for a large dataset. Again, SVM demon-
strated a good level of accuracy (Perrotta  2017).

At the level of miscellaneous, Hou et al. compared the 
performance of SVM beside other ML models with the 
performance of the Ecological Structure-Activity Relation-
ships (ECOSAR) model. This is proven to be the best model 
among several existing aquatic ecotoxicity QSAR tools 
and linear regression models for estimating HC50 values 
of chemicals based on their physical-chemical properties 
and their classification of the mode of action (Hou et al.  
2020). Pradeep Kumar et al. developed an SVM model to 
delineate vanadium-derived strengthening effects in HSLA 
steels in the field of production. In addition, they created a 
ML model to predict the yield strength of V-HSLA steels. 
Materials savings are translated to embodied energy and 
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carbon savings using LCA databases in a life cycle inven-
tory process, subtracting the costs incurred in the production 
of vanadium feedstock (Pradeep Kumar et al.  2021). Li et al. 
used SVM to predict the aquatic toxicity of pesticides and 
develop a tool for an early evaluation of aquatic pesticide 
toxicity in environmental risk assessment. They found that 
SVM exhibited high accuracy (Li et al.  2017). Romeiko 
et al. compared the SVM and Gradient Boosting Regres-
sor (GBR) model for estimating spatially explicit life cycle 
global warming and eutrophication, with corn production. 
The results indicated that the GBR model built with monthly 
weather, features yielded higher predictive accuracy for life 
cycle, global warming impact, and life cycle EU (Romeiko 
et al.  2019). Milczarski et al. applied SVM, ANN, RF, KNN 
and C4.5 to validate the production process’s quality and 
its parameters in the food processing industry. The results 
showed that using the RF algorithm had the best results of 
processes classification (Milczarski et al.  2020).

3.3 � Random forest

Random forest is a type of supervised learning algorithm. It 
is a collection of decision trees, each trained with the “bag-
ging” method. The principle of the bagging method is that 
combining learning models can improve the outcome (Brei-
man  2001). This ML algorithm has been relatively well-
used in the LCA due to its high predictive accuracy and its 
built-in variable importance measures (Hou et al.  2020; 
Hou  2019).

At the buildings level, Xikai et al. applied RF beside three 
regression techniques to develop regression models of carbon 
emissions to predict designing factor during the building’s 
life cycle (Xikai et al.  2019). Frömelt used RF, KNN and 
LASSO-Regression to attribute missing water supply, elec-
tricity, and heating information. The predicted data were then 
converted to quantities using price data. Household budget 
survey finds the existence of similar socio-economic house-
hold archetypes in consumption. These archetypes diverging 
from general macro-trends suggest that the proposed approach 
may be beneficial in improving understanding of consumption 
and informing policymakers’ future decisions for impactful 
environmental measures targeting specific consumer groups 
(Frömelt et al.  2018; Frömelt  2018). DeRousseau et al. 
applied RF as the best method between various ML meth-
ods like regression models and for predicting concrete com-
pressive strength for field concrete mixtures given the model 
performance metrics in the field of concrete mixture design 
optimization (DeRousseau  2020).

At the districts and cities level, Perrotta et al. developed 
an RF model beside other ML algorithms to investigate the 
fuel consumption prediction of large fleets of trucks based 
on truck telematics and road geometry and condition data. 

The study also shows that although all three methods make 
it possible to develop models with good precision, the RF 
slightly outperforms SVM and ANN (Perrotta  2017).

At the miscellaneous level, Cheng et al. assessed the 
impacts of different combinations of feedstocks and pyrol-
ysis conditions on climate change, energy, and economic 
performance. First, they built an RF model to predict the 
yields and characteristics of biochar for selected feedstocks 
at varied pyrolysis conditions. Then, they applied LCA and 
financial analysis to RF model outputs to determine GWP, 
energy return on investment (EROI), and minimum prod-
uct selling price (MPSP) of biochar (Cheng et al.  2020a). 
Also, Cheng et al. evaluated the energy, climate change, and 
economic performance of slow pyrolysis of multiple feed-
stocks under various processing conditions via the integra-
tion of RF, LCA, and financial analysis. The results showed 
this integration is helpful for efficiently evaluating many 
possible pyrolysis systems producing biochar to sequester 
atmospheric CO2 (Cheng et al.  2020b). Also, Cheng et al. 
evaluates the feasibility of hydrothermal treatment (HTT) 
with carbon capture and storage (CCS) as energy-producing 
negative emissions technology (NET) and compares such 
system with traditional bioenergy with carbon capture and 
sequestration (BECCS) system. RF was developed to pre-
dict product yields and characteristics from HTT of various 
feedstocks. The model results were then integrated into an 
LCA model to compute two metrics EROI and GWP. Results 
showed that RF models had better prediction accuracy than 
regression tree and multiple linear regression models for 
HTT of feedstocks and predicted the mass yields of various 
products and the energy and carbon contents of biocrude 
and hydrochar (Cheng et al.  2020a). Rojek and Dostatni 
used RF beside some ML methods as modelling tools sup-
porting selecting materials in ecodesign (Rojek and Dostatni  
2020). Gu developed an LCA model to reduce the life cycle 
environmental impacts of metal-organic frameworks; he 
combined a conventional LCA with RF and yielded some 
preliminary heuristics for sustainable design of metal-
organic frameworks with some life cycle impact (Gu  2018). 
Beyond LCA, Hou developed an RF model in chemical risk 
management to predict the ecotoxicity of new chemicals or 
as a screening process to identify chemicals with high pre-
dicted ecotoxicity potential to further test in priority (Hou  
2019). Milczarski et al. applied RF to validate the production 
process’s quality and its parameters in the food processing 
industry. The results showed that using the RF algorithm 
had the best results of processes classification (Milczarski 
et al.  2020).

3.4 � Hybrid and ensemble ML techniques

The use of ML methods, including singles, ensembles, and 
hybrids, have been dramatically increasing. Hybrid methods 
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combine at least two ML and soft computing methods to 
achieve superior outcomes. Ensemble methods use a series 
of ML classification trees as opposed to one. By doing 
so, the accuracy of the model is significantly increased. 
Ensemble methods are categorized as supervised learning 
algorithms. Ensemble methods increase the training. The 
ensemble method allows for different training algorithms, 
making training more flexible. Kishk et al. proposed an inte-
grated life cycle costing (LCC) that utilizes statistics, fuzzy 
set theory, and ANNs to deal with incomplete information, 
human judgment, and uncertainty. The authors claim that 
these models should also provide estimates from different 
levels of data, and information availability (Kishk and Al-
Hajj  1999).

At the buildings level, Feng et al. developed a quantita-
tive method using fuzzy C-means clustering and an extreme 
learning machine (FCM-ELM) for assessing buildings’ 
environmental performance in early decision stages, con-
sidering uncertainty associated with complex design deci-
sions. The results show that the model is at least as reliable 
and accurate as the Monte Carlo methodology (Feng et al.  
2019). Also, Feng developed an LCA method that integrated 
discrete-event simulation and process-based LCA using the 
Bayesian regularization back-propagation neural networks 
(BRBNN), RT, ensemble learning (EL) and ELM algorithms 
to extract knowledge about the relationships between con-
struction planning and project performance (Feng  2020). 
Azari et al. proposed a hybrid ANN and GA approach as 
the optimization technique to explore optimum building 
envelope design concerning energy use and LCA in a low-
rise office building. The categories within the LCA were 
global warming, acidification, eutrophication, smog forma-
tion, and ozone depletion (Azari et al.  2016). In the con-
text of building material properties, Shi et al. considered a 
systematic method derived from LCA theory to analyze the 
green performance of construction materials. The authors 
proposed a BPNN and GA-BP hybrid algorithm to evaluate 
green building materials. They showed that with BPNN, the 
GA-BP hybrid algorithm is favourable for selecting green 
building materials and achieves higher accuracy (Shi and Xu  
2009). Wang et al. introduced a Markov chain based stochas-
tic approach and an ANN model to project periodic energy 
consumption distribution for each joint energy state of build-
ing condition and temperature. Comparing the traditional 
deterministic model and the developed model shows that the 
proposed model improved the result (Wang and Shen  2013). 
Duprez et al. combined Sobol Sensitivity Analysis (SA) and 
an ANN to building LCA. The Sobol method displayed satis-
factory results with the computation of quantitative indices. 
SA was used in the ANN training, and the subsequent model 
predicted the GWP of new design alternatives. It was able to 
do this in a time-efficient manner and with a coefficient of 
determination higher than 0.9 (Duprez et al.  2019).

For miscellaneous uses, Kleinekorte et al. proposed a fully 
automated framework, including selecting suitable subsets of 
descriptors, called feature selection and optimization of the net-
work architecture. They used a GA to determine the optimal 
network architecture and an ANN to predict the environmental 
impact for a given chemical. The results show that the environ-
mental impact is expected correctly, and the framework can 
serve as an initial screening tool for identifying environmen-
tally beneficial process alternatives (Kleinekorte et al.  2019a). 
Lysenko et al. proposed a method that the gradient-boosted 
classifier tree ensemble model (GBM) is chosen for the small 
number of positive (toxic) drugs in a training dataset with miss-
ing values. The ML leverages the identity of drug targets and 
off-targets, functional impact score computed from Gene Ontol-
ogy annotations, and biological network data to predict drug 
toxicity (Lysenko et al.  2018). Li et al. introduced a modular 
Scorecard-based LCA architecture with a Bayesian Network 
(BN). The energy consumption is assessed by an overall modu-
lar Scorecard-based LCA architecture embedded with a BN 
energy prediction model. Seo and Kim proposed a hybrid GA 
and NN model for an approximate LCA. The GA was employed 
as an optimization method of relevant feature selection, deter-
mining the number of hidden layers and processing elements. 
For approximate LCA, the product attributes and environmental 
impact drivers (EID) were identified to predict the environmen-
tal impacts of products (Seo and Kim  2007). The results show 
that the hybrid model improves the prediction accuracy of the 
BN model, and the BN is suitable for small data sets (Li et al.  
2017). Zhou et al. proposed integration of ANN with GA to 
optimize the multiobjective function of material selection in 
product design considering LCA (Zhou et al.  2009).

3.5 � Other types of ML

Slapni et al. presented a framework that used Weka 3.6.10, a 
JAVA program package for machine learning algorithms to 
predict the missing characterization factors (CFs) in environ-
mental interventions to reduce deviation from the European 
Union normalization factors (EU NFs) and a nominated reg 
regional NFs to calculate LCA (Slapnik et al.  2014).

At the buildings level, Duprez et al. proposed a method 
for predicting GWP of building design alternatives with a 
high coefficient of determination. The authors used MLR, 
SVR and ANN. MLR and SVR performed poorly when pre-
dicting new values as they could not cope with complexity 
as for MLR or were prolonged as for SVR models. (Duprez 
et al.  2019). Xikai et al. presented a study on the regression 
model of carbon emissions in residential buildings using 
designing factors. Four regression techniques, Principal 
Component Analysis (PCR), RF, MLP and SVR, were used 
to develop regression models, and the results show that 
SVR had the optimal predictive power (Xikai et al.  2019). 
Shan used LDA and SVM machine learning classifiers to 
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established EEG based methods to improve human-build-
ing interaction in the indoor environment and use them in a 
building LCA platform (Shan et al.  2017). Płoszaj-Mazurek 
et al. introduced a study of regenerative design guidelines 
for parametric modelling of building designs with calcu-
lated total Carbon Footprint. They used the GBR model to 
predict optimal building features and the CNN to predict the 
total carbon footprint of a building design based on funda-
mental building features and the urban layout. The results 
of multicriteria analyses showed relationships between the 
parameters of buildings and the possibility of introducing 
carbon footprint estimation and implementing building opti-
mization at the initial design stage (Ploszaj-Mazurek et al.  
2020). Østergaard used an MLR model to estimate more 
accurate lifespans, which can help to reduce the uncertainty 
of sustainability assessments of buildings in LCA. The 
regression model proved to estimate the lifespan with lower 
errors than the general approach relying on a single fixed 
value for all building locations, uses and building materials 
(Østergaard et al.  2018). Feng developed an LCA method 
that integrated discrete-event simulation and process-based 
LCA. The BRBNN, RT, EL and ELM algorithms were used 
to extract knowledge about the relationships between con-
struction planning and project performance (Feng  2020).

At the districts and cities  level, Alam used multiple lin-
ear regression, polynomial regression, decision tree regres-
sion and support vector regression models using calculated 
CO2 emission as a response variable for the LCA model 
for different phases of the pavement life cycle. The mod-
els determined the significant contributors and quantified 
the CO2 emission in pavement material production, initial 
construction, maintenance and use phase; they found that 
SVM and ANN performed better than other methods (Alam  
2020). Renard et al. developed a reinforcement learning 
(RL) decision support tool that minimizes the global warm-
ing impacts of a pavement system over its life cycle. Renard 
et al. presented an approach to LCA modelling that imple-
ments a reinforcement learning algorithm called Q-learning, 
which helps decision-makers account for several sources of 
uncertainty in pavement infrastructure (Renard et al.  2021a).

In the context of miscellaneous applications, Romeiko 
et al. used the boosted regression tree (BRT) model to iden-
tify the leading contributors among soil, weather, and farming 
practice parameters affecting the life cycle impacts in Soybean 
Production. The authors used a combination of Environmental 
Policy Integrated Climate and process-based LCA models to 
quantify life cycle GWP, EU and acidification (AD) impacts. 
BRT has been used in discovering the driving factors for spa-
tial and temporal trends in transportation, public health, and 
other disciplines (Romeiko et al.  2020b). Also, Romeiko et al. 
compared the predictive accuracies of SVR, linear regression 
(LR), ANN, gradient boosted regression tree (GBRT), and 
extreme gradient boosting (XGBoost) for estimating spatially 

explicit LCA at the county scale, with corn production in a 
case study. The results indicated that the GBRT model yielded 
the highest predictive accuracy with cross-validation (CV) 
values of 0.8 for the life cycle GW impacts (Romeiko et al.  
2020a). Bui and Perera proposed a decision support frame-
work comprising the life cycle cost analysis and advanced 
data analytics based on Gaussian Mixture Models (GMM) 
with the expectation-maximization (EM) algorithm for data 
clustering. GMM is a case of an unsupervised learning algo-
rithm in which GMM is a probabilistic-model technique for 
distributing data into different clusters by Gaussian distribu-
tions. This framework prepared an intelligent decision support 
tool for ship owners to achieve optimized vessel performance 
and comply with stringent environmental regulations (Bui 
and Perera  2020). Hamrol et al. presented an integrated eco-
design of products and technological processes, ensuring the 
appropriate selection of materials and connections from the 
point of view of recyclability. The method was implemented 
in an expert system using the classification method deci-
sion tree induction as the classification method. The expert 
system offers a practical solution that makes it possible to 
change material or connection without consulting the product 
designer. Moreover, it is consistent with concurrent engineer-
ing design (Dostatni et al.  2018). Hou et al. used KNN, SVM, 
ANN, RF, Adaptive boosting (AdaBoost) and Gradient boost-
ing machine (GBM) for estimating HC50 values of chemicals 
based on their physical-chemical properties and their classi-
fication of the mode of action. Among the machine learning 
models, RF had the best predictive performance (Hou et al.  
2020). Cheng et al. used the MLR, regression tree (RT), and 
RF to predict product yields and characteristics from HTT of 
various feedstocks. The model results were then integrated 
into an LCA model to compute EROI and net GWP. Results 
showed random forest models had better prediction accuracy 
than regression tree and multiple linear regression to model 
HTT of feedstocks (Cheng et al.  2020a). Rojek and Dostatni 
compared the effectiveness of RBF networks, Kohonen net-
works, and RF as modelling tools supporting selecting materi-
als in ecodesign and showed that ML methods effectively sup-
ported selecting materials in ecodesign. The study has proven 
ML methods to be highly useful and effective in selecting 
materials in designed products (Rojek and Dostatni  2020). 
Gu used a built-in decision tree model (ID3) package cou-
pled with conventional LCA to speed up understanding metal-
organic frameworks based via connecting the LCA results 
with ML technique (Gu  2018). Lee et al. developed a rapid 
predictive model to quantify life cycle GW and eutrophica-
tion (EU) impacts of corn production using the BRT model 
to estimate future life cycle environmental impacts of corn 
production (Lee et al.  2020). Nabavi-Pelesaraei et al. conduct 
energy output and environmental impact prediction of paddy 
production on ANN and adaptive neuro-fuzzy inference sys-
tem (ANFIS). According to the results, multi-level ANFIS 
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is chosen as a better model than ANN models due to higher 
computation speed, and higher accuracy (Nabavi-Pelesaraei 
et al.  2018). Ma and Kim (Ma and Kim  2015) presented an 
algorithm, predictive usage mining for life-cycle assessment 
(PUMLCA). This displayed a higher forecasting accuracy 
when data had complexity. Through modelling usage patterns, 
trend, seasonality and level, predictive LCA was performed 
for agricultural machinery in real-time. This showed an accu-
rate estimate of environmental impact (Barros and Ruschel  
2021). SAAB presents a proposed LCA calculator for imple-
menting an efficient LCA computation; they used Spark 
MLlib, a library built on Apache Spark, MPI and OpenMP 
for LCA algorithms. The results showed that the combina-
tion of MPI/OpenMP provided much better performance for 
computing algorithms than Spark MLIB in LCA (Saab  2019). 
Abdella et al. presented a framework integrating the economic 
input-output LCA with logic regression and k-means clus-
tering to deal with multiple decision-making units in food 
consumption categories and sustainability indicators (Abdella 
et al.  2020). Olafasakin et al. developed a Kriging-based 
reduced order model (ROM) to predict pyrolysis yields of 
feedstock samples based on the output of a detailed chemi-
cal kinetic pyrolysis mechanism for assessing the costs and 
emissions of a pyrolysis biorefinery (Olafasakin et al.  2021).

KNN classification is one of the most fundamental and 
straightforward classification models in traditional super-
vised learning. Consequently, it is often one of the first 
choices for a classification study when it is tiny or no prior 
knowledge about the data distribution (Peterson  2009; 
Frömelt et al.  2018; Hou et al.  2020). Hou et al. proposed 
three data-driven frameworks to estimate the missing data in 
LCA. The results show that KNN models have better predic-
tion performance than ECOSAR and linear regression mod-
els for estimating some parameters for chemicals in USEtox 
(Hou et al.  2020). Serajiantehrani used KNN and MLR, 
decision tree regression, and gradient boosting regression 
methods for the complete construction and environmental 
costs of trenchless cementitious spray-applied pipe linings, 
cured-in-place pipe with polyester resin, and sliplining 
with high-density polyethylene pipe methods by evaluation 
and analysis of the construction and environmental costs 
based on the actual data. The results show that Multi-lin-
ear Regression had the optimal predictive (Serajiantehrani  
2020). Milczarski et al. applied KNN and C4.5 to validate 
the production process’s quality and parameters in the food 
processing industry (Milczarski et al.  2020). Romeiko et al. 
compared the SVM and GBR model for estimating spatially 
explicit life cycle global warming and eutrophication, with 
corn production. The results indicated that the GBR model 
built with monthly weather, features yielded higher predic-
tive accuracy for life cycle, global warming impact, and life 
cycle EU (Romeiko et al.  2019).

In this section, applying ML in LCA is explored, and the 
current state of the art reported in the literature is identified 
to answer the above questions. ML techniques tailored to 
LCA and specific AI techniques that can advance LCA’s 
establishment and delivery of the smart technology are 
investigated. Table 2 shows details of the literature survey 
on ML methods in LCA. The papers are divided into three 
types of prediction impact (PI), decision making (DM) and 
literature review (LR). The applied method in each paper is 
identified, and the scale at which the model was applied is 
shown. The majority of studies identified in this review were 
for impact prediction, but many had multiple objectives and 
often incorporated decision making. Many niche applica-
tions were also found in this review and the discussed studies 
show the adaptability of ML techniques for LCA.

4 � ML and optimization in LCA

In its most basic form, LCA does not always include a sys-
tematic way of optimizing alternatives for environmental 
impacts mitigation. Combining LCA with ML methods may 
be a useful way of generating optimized process alternatives 
as part of an LCA (Wallace et al.  2014). ML models can 
perform faster and with lower storage requirements when 
estimating model outputs than other traditional process-based 
models. They are also more flexible when being integrated 
into other processes and simulation platforms. These allow 
ML models to attempt more runs of a simulation and achieve 
better outcomes for a range of computationally demanding 
tasks. These include optimization, prediction, and valida-
tion. Also, ML models can be fine-tuned by altering trainable 
parameters through an optimization procedure. LCA can be 
used to assess technological solutions from an environmental 
perspective. In conjunction, ML can be used as an optimizer 
alone or combined with other optimization algorithms to find 
the best solution according to constraints in LCA.

Luque et al. developed a conceptual framework for the 
integration of AI and LCA. The study focused on the sen-
sorization of industrial plants and the treatment of data 
through ML algorithms in the field of sustainability optimi-
zation (Luque et al.  2020). Ziyadi et al. developed an ML 
surrogate model to perform direct Monte Carlo sampling as 
well as indirect nonlinear optimization to provide grounds 
for objective model uncertainty analysis for LCA applica-
tions (Ziyadi and Al-Qadi  2019).

At the buildings level, Sharif and Hammad developed 
an ANN model to analyze renovation scenarios to minimize 
total energy consumption in LCC and LCA. They devel-
oped a set of data to represent renewal scenarios from results 
obtained by Simulation-Based Multi-Objective Optimiza-
tion (SBMO). ANNs were developed as surrogate models 
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Table 2   Summary of literature survey on ML in LCA for included papers

Ref-ID  Individual / ensemble models  The best model Types of 
Papers

Scale

PI DM LR Buildings Districts 
& cities

Miscellaneous

(Shi and Xu  2009) BPNNa, GA-BPb GA-BP ✓ ✓

(Romeiko et al.  2020b) BRTc
✓ ✓

(Cheng et al.  2020a) RFd
✓ ✓

(Xia and Liu  2013) BPNN ✓ ✓

(Wisthoff et al.  2016) MLPe
✓ ✓

(Pradeep Kumar et al.  2021) SVMf
✓ ✓ ✓

(Lee et al.  2020) BRT ✓ ✓

(Kurdi et al.  2020) General ML ✓ ✓

(Saab  2019) Spark MLlibg
✓ ✓

(Manfren et al.  2011) General ML ✓ ✓

(Azari et al.  2016) ANN-GA ✓ ✓

(Ziyadi and Al-Qadi  2019) ANN ✓ ✓

(Ploszaj-Mazurek et al.  2020) CNNh
✓ ✓

(Gu  2018) RF, ID3i, naive Bayes ID3 ✓ ✓

(Rojek and Dostatni  2020) RF, RBF networksj, Kohonen 
networks

Kohonen networks ✓ ✓

(Barros and Ruschel  2021) General ML ✓ ✓

(Marvuglia et al.  2015) GRNNk, MCUVE-PLSl, Random 
Frog,

GRNN ✓ ✓

(D’Amico et al.  2019b) General ML ✓ ✓

(Gust et al.  2015) General ML ✓ ✓

(Wang and Shen  2013) Markov - ANN ✓ ✓

(Cheng et al.  2020b) RF, MLRm, RTn RF ✓ ✓

(Duprez et al.  2019) Sobol SAo - ANN ✓ ✓

(Shan et al.  2017) SVM, LDAp, NBai, KNN LDA, SVM ✓ ✓

(Hou et al.  2020) ANN, SVM, RF, KNNq, 
AdaBoostal

KNN ✓ ✓

(Cornago et al.  2020) DNNr
✓ ✓

(Serajiantehrani  2020) KNN, MLR, DTRs, Gradient 
Boosting

MLR ✓ ✓ ✓

(Sharif and Hammad  2019) ANN ✓ ✓

(Hou  2019) RF, ANN - GA RF ✓ ✓

(DeRousseau et al.  2018) General ML ✓ ✓ ✓

(Xikai et al.  2019) MLP, RF, PCRt, SVRx SVR ✓ ✓

(Leszczynski and Jasinski  2020) MLP ✓ ✓

(Feng et al.  2019) FCM-ELMy
✓ ✓

(D’Amico et al.  2019a) ANN ✓ ✓ ✓ ✓

(Zhu et al.  2020) ANN ✓ ✓

(Adedeji et al.  2020) General ML ✓ ✓

(Dostatni et al.  2018) General ML ✓ ✓ ✓

(Luque et al.  2020) General ML ✓ ✓

(Kleinekorte et al.  2019a) ANN-GA ✓ ✓

(Perrotta et al.  2018) BAu - NN ✓ ✓

(Bui and Perera  2020) GMMz
✓ ✓

(Li et al.  2017) BNaa
✓ ✓

(Ma and Kim  2015) PUMLCA ✓ ✓ ✓
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Table 2   (continued)

Ref-ID  Individual / ensemble models  The best model Types of 
Papers

Scale

PI DM LR Buildings Districts 
& cities

Miscellaneous

(Renard et al.  2021b) Q-learning ✓ ✓

(Nabavi-Pelesaraei et al.  2018) ANN, ANFISab ANFIS ✓ ✓

(Liao et al.  2020) ANN ✓ ✓

(Slapnik et al.  2014) Wekaac
✓ ✓

(Mukherjeea et al.  2019) ANN ✓ ✓

(Oduyemi et al.  2015) ANN ✓ ✓

(Romeiko et al.  2020a) ANN, LRad, SVR, GBRTae, 
XGBoostaf

GBRT ✓ ✓

(Kaab et al.  2019) ANN, ANFIS ANN ✓ ✓

(Li et al.  2008) ANN ✓ ✓

(Chiang et al.  2011) BPNN ✓ ✓

(Lysenko et al.  2018) GBMag
✓ ✓

(Kishk and Al-Hajj  1999) ANN-FSTah
✓ ✓

(Smetana et al.  2018) General ML ✓ ✓

(Perrotta  2017) ANN, SVM, RF ✓ ✓

(Seo et al.  2005) ANN ✓ ✓

(Alqahtani and Whyte  2013) BPNN ✓ ✓

(Østergaard et al.  2018) MLR ✓ ✓

(Hou et al.  2018) Similarity-based link prediction ✓ ✓

(Li et al.  2017) ANN, SVM, RF, NB , KNN, CTaj SVM, ANN ✓ ✓

(Frömelt et al.  2020) General ML ✓ ✓

(Wu and Wang  2018) General ML ✓ ✓

(Alam  2020) SVR, MLR, DTR, Polynomial 
regression

SVR ✓ ✓

(Song et al.  2017) ANN ✓ ✓

(Frömelt et al.  2018) RF, KNN, LASSOak
✓ ✓

(Liu and Bakshi  2018) SVM, DTCam
✓ ✓

(Chen et al.  2021) Multiagent deep reinforcement 
learning

✓ ✓

(Algren et al.  2021) General ML ✓

(DeRousseau  2020) RF ✓ ✓ ✓

(Seo and Kim  2007) NN-GA ✓ ✓

(Renard et al.  2021a) Q-learning ✓ ✓

(Feng  2020) BRBNNan, RT, ELaq, ELM EL ✓ ✓

(Abdella et al.  2020) k-means clustering, logistics 
regression

✓ ✓

(Romeiko et al.  2019) SVM, GBR GBR ✓ ✓

(Olafasakin et al.  2021) Kriging-based ROMap
✓ ✓

(Zhou et al.  2009) NN-GA ✓ ✓

(Kleinekorte et al.  2019b) ANN ✓ ✓

(Milczarski et al.  2020) ANN, RF, KNN, C4.5, SVM RF ✓ ✓

(Sousa et al.  2000) ANN ✓ ✓

(Park and Seo  2003) ANN ✓ ✓

(Sousa and Wallace  2006) ANN ✓ ✓

(Song  2019) ANN, RF ✓ ✓
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a Back-Propagation Neural Networks
b Back-Propagation Neural Networks and Genetic Algorithms
c Boosted Regression Tree
d Random Forest
e Multi-Layer Perceptron
f Support Vector Machine
g Apache Spark’s machine learning library
h Convolutional Neural Network
i Iterative Dichotomiser 3 (decision tree learning)
j Radial Basis Function network
k Generalized Regression Neural Network
l Monte Carlo version of Uninformative Variable Elimination Partial Least Squares
m Multiple Linear Regression
n Regression Tree
o Sensitivity Analysis
p Linear Discriminant Analysis
q K-Nearest Neighbor
r Deep Neural Network
s Decision Tree Regression
t Principal Component Regression
x Support Vector Regression
y Fuzzy C-means clustering-Extreme
u Boruta Algorithm learning machine
z Gaussian Mixture Models
aa Bayesian Network
ab Adaptive Network-based Fuzzy Inference System
ac A JAVA program package for machine learning algorithms
ad Linear Regression
ae Gradient Boosted Regression Tree
af Extreme Gradient Boosting
ag Gradient Boosting Machine
ah Fuzzy Set Theory
ai Naïve Bayes
aj Classification Tree
ak Least Absolute Shrinkage and Selection Operator regression
al Adaptive Boosting
am Decision Tree Classifier
an Bayesian regularization back-propagation neural networks
aq Ensemble learning
ap Reduced Order Model ROM

Ref-ID  Individual / ensemble models  The best model Types of 
Papers

Scale

PI DM LR Buildings Districts 
& cities

Miscellaneous

(Abokersh et al.  2020) ANN ✓ ✓

(Arani  2020) ANN ✓ ✓ ✓

Table 2   (continued)
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of actual computationally complex buildings. The compu-
tational time saved with the use of the proposed substitute 
models was found to be significant (Cornago et al.  2020). 
Also, Sharif proposed a simulation-based multi-objective 
optimization model for optimizing the selection of renova-
tion scenarios for existing buildings by minimizing total 
energy consumption (TEC) considering LCA. Furthermore, 
he developed a surrogate ANN for selecting near-optimal 
building energy renovation methods; and developed deep 
ML Models (MLMs) to generate renovation scenarios con-
sidering TEC and LCC (Arani  2020). Azari et al. used a 
multi-objective optimization algorithm to explore ideal 
building envelope design by analyzing energy use and LCA 
of office buildings. Their approach combined an ANN and 
GA to find the optimal design (Azari et al.  2016). Feng 
developed an LCA method that integrated discrete event 
simulation and process-based LCA. The optimization 
method achieved real-time environmental optimization by 
introducing ML methods into simulation-based optimiza-
tion. Płoszaj-Mazurek et al. applied the CNN method to 
optimize the carbon footprint of buildings in regenerative 
architectural design. The BRBNN, RT, EL and ELM algo-
rithms were used to extract knowledge about the relation-
ships between construction planning and project perfor-
mance (Feng  2020). The results show ML methods could be 
a research tool for exploring vast design spaces in the field 
of sustainable architectural design (Płoszaj-Mazurek et al.  
2020; Płoszaj-Mazurek  2020). Renard et al. implemented a 
Q-learning to optimize a pavement construction and main-
tenance plan to minimize the expected global warming 
impact of a pavement facility (Renard et al.  2021a). Liu 
et al. proposed a methodology that couples multiobjective 
optimization and ML to extract design heuristics (comfort 
temperatures and other related parameters). The methodol-
ogy has been demonstrated on sustainable residential system 
design via TES-LCA methodology (Liu and Bakshi  2018).

At the districts and cities level, Chen et al. used multi-
agent deep reinforcement learning to optimize dissolved 
oxygen and chemical dosage in water treatment plants. 
The outcome was designed from an LCA perspective to 
achieve sustainable optimization. They showed that the 
optimization based on LCA had results that achieved 
lower environmental impacts compared to the baseline 
scenario (Chen et al.  2021). Abokersh et al. developed 
a multiobjective optimization framework using an ANN 
model comprising the Bayesian optimization approach; 
assisted sensitivity analysis. ANN method was used to 
inherent sustainability principles in the design of solar 
assisted district heating in different urban sized communi-
ties in an optimization framework (Abokersh et al.  2020). 
DeRousseau et al. examined the various problem formu-
lations commonly seen in concrete mixture design opti-
mization that can necessitate models based on the linear 

combination, statistics, ML, and physics. They used ML 
methods for predicting the compressive field strength of 
concrete (DeRousseau et al.  2018; DeRousseau  2020).

For miscellaneous uses, Zhou et al. proposed integra-
tion of ANN with GA to optimize the multiobjective of 
material selection in product design considering LCA 
(Zhou et al.  2009). In the context of decision-making 
support for LCA, Marvuglia et al. presented an evalua-
tion of two different grouping techniques for categorizing 
materials based on their environmental performance. The 
agglomerative clustering technique and self-organizing 
map helped distinguish variables that could be used to 
establish classes of materials using their environmental 
performance (Marvuglia et al.  2015). The authors imple-
mented GRNN and a set of linear models based on PLS 
regression, hoping to develop an automatic selection strat-
egy of the critical variables according to the modelled out-
put (USEtox factor) (Marvuglia et al.  2015; Barros and 
Ruschel  2021). Cornago et al. proposed an LCA aware 
scheduling framework, in which a production schedule is 
optimized with a lower environmental impact using pre-
dicted the hourly day-ahead electricity consumption by a 
DNN model (Cornago et al.  2020). Romeiko et al. pre-
sented a model for estimating LCA spatially at the county 
scale in corn production. This was developed by apply-
ing ML methods that could be used for corn supply chain 
optimization, corn-based biorefinery siting, and feedstock 
landscape optimization (Romeiko et al.  2020a).

Figure 4 represents the general relation of ML meth-
ods in the field of Optimization in LCA in the reviewed 
researches.

Fig. 4   ML and optimization methodology in LCA
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5 � Results and discussion

This paper collaborated a literature survey to determine the 
use of ML techniques for LCA by answering the research 
questions. Gaps in research for ML in LCA were identi-
fied to guide future research. In the following sections, the 
highlights of reviewed papers and the limitation of using 
ML methods in LCA will be discussed.

5.1 � Limitations of ML methods in LCA

Based on reviewed papers, the limitations of ML methods 
in LCA are; 

1.	 LCA and training powerful analytical models with ML 
are expensive and depend on large amounts of hand-
crafted, structured training data. Computational cost and 

training time in ML methods are other important param-
eters related to the accuracy of outputs. The researchers 
should try to reduce the computational cost by reducing 
the dimensions of data sets and keeping the accuracy 
and validation of the results in good time.

2.	 Some ML models, known as black-box models such 
as DNN, RF and SVMs, are exceedingly complex and 
make it very difficult to predict how they will perform in 
a specific context. Similarly, their users may not be able 
to review and understand the recommendations given by 
these models for intelligent systems.

3.	 Early design stages often are limited in detailed infor-
mation, which is typically required for thorough assess-
ments and thus need quick decisions on varying, numer-
ous and loosely-defined concepts. These make the early 
use of detailed LCA impractical. For predictive model-
ling and experimental studies to be compatible, stand-
ardization of the conditions, experiments and reporting 

Fig. 5   Heatmap of hit-points for 
each ML method

Fig. 6   Radar graph showing the 
applications of ML methods in 
prediction and decision making
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are needed in order to achieve consistency and to be 
reproducible.

4.	 Data-based approach is a method to fill in data gaps in LCA 
studies. It depends on the available data and how we choose 
to use it statistically, so we can recognize a good pattern from 
the data and make a prediction (Song  2019). Therefore, a 
large amount of data is required for an LCA while one of the 
key limitations on the application of ML algorithms side is a 
lack of high-quality and real-world-collected data sets.

5.2 � Highlights of reviewed papers

The significant contributions of this paper are collaborat-
ing literature survey to determine use of ML techniques 
for LCA by answering the following research questions:

–	 How has ML been used in LCA?
–	 What is the role and efficacy of ML methods in optimiza-

tion in LCA?
–	 Can ML methods integrate and contextualize existing 

inventory databases to provide a sound basis to stream-
line the LCA?

–	 What are the gaps in research in order to guide future 
research for ML in LCA?

Applying ML in LCA is explored, and the current state of 
the art reported in the literature is identified to answer the 

above questions. ML techniques tailored to LCA and spe-
cific AI techniques that can advance LCA’s establishment 
and delivery of the smart technology are investigated. In 
this section, the results of the research are shown by figures 
and tables.

How has ML been used in LCA? Table 2 shows details of 
the literature survey on ML methods in LCA. The papers are 
divided into three types of prediction impact (PI), decision 
making (DM) and literature review (LR). The applied method 
in each paper is identified, and the scale at which the model 
was applied is shown. The papers included in this paper answer 
and support the above research question. In the included lit-
erature, many different applications at different scales were 
demonstrated to be beneficial in accurate and efficient LCA.

The associated heatmap, Fig. 5, shows that ANN is the 
most commonly applied method at all three levels of cat-
egorisation in this paper, particularly at the buildings level 
and then at the miscellaneous level which includes a variety 
of niche applications. Hybrid techniques were the next most 
used ML method at the building and districts and cities 
level.

Figure 6 is a radar graph showing that the most common 
application of ML methods have been for predictions. Indi-
vidually, NN was most commonly used, followed by hybrid 
methods. In response to the first research question, Figs. 5 
and 6 display a list of included studies that supported the use 
of ML-based prediction methods to predict LCA accurately.

Fig. 7   Sankey diagram to show the relationship between the inputs and outcomes of ML methods in LCA
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What is the role and efficacy of ML methods in Optimi-
zation in LCA? The results of this study show that the ML 
methods are capable of matching detailed LCA results and 
predicting missing data or trends of variables while stay-
ing within the accuracy of typical LCA. Furthermore, ML 
extends outside of LCA in processes such as data clean-
ing, predicting system output or performance, ecosystem 
informatics, and optimization. ML algorithms could also 
be applied in screening or cleaning data for LCI, estimat-
ing flow data for unit processes, improving the quality and 
quantity of data used to determine CFs, and can be used to 
generate optimized scenarios. They are especially suitable 
for supporting real-time decisions of construction environ-
mental optimization. This study shows that the ML can be 
coupled with standard optimization methods to increase 
their capability of quickly exploring promising regions.

Can ML methods integrate and contextualize existing 
inventory databases to provide a sound basis to streamline 
the LCA?  Many included studies in this review utilised pre-
established databases in order to perform LCA. ML methods 
are capable of integrating these existing databases, although 
with all LCA the quality of the data and the nature of the 

database may have an impact on the quality of LCA. How-
ever, ML methods identified in this paper can be used to 
fill in gaps if pre-existing databases are partially complete.

Figure 7 shows predictors and outcomes of ML methods 
that have been used in LCA applications. Characteristics 
are shown as the most commonly used inputs. Impact cat-
egories were the most frequently assessed outcome of these 
applications.

What are the gaps in research in order to guide future 
research for ML in LCA? Table 3 shows details of the litera-
ture survey on ML methods in LCA for different levels of 
the built environment. In this paper, the levels are catego-
rized as buildings vs district & cities . For each level of the 
built environment, different categories of LCA are identified. 
The applications in which ML methods have been utilized 
have been marked with an asterisk. This is a roadmap for 
researchers in LCA who want to apply ML techniques to 
identify gaps in research. This paper has identified a signifi-
cant gap in research in the ‘End of Life’ phase and ‘Benefits 
beyond the system, for buildings. These include demolition, 
disposal and transport, as well as recycling. At the districts 

Table 3   Use cases at different levels of the built environment

a Roads, Pavements, Parking, Green spaces, etc.
b Networks of Water, Electricity, Water-waste, Gas and District heating, etc.
c Passenger cars, Public transport, etc.

Buildings
Product stage Constructions Use stage End of life Benefits 

beyond the 
system

⋆ Early design Construction waste Retrofit waste Demolition Reuse
Raw material supply ⋆ Construction materials Retrofit materials ⋆ Waste processing Recycling
⋆ Manufacturing Transport Renovation waste Disposal Transport
⋆ Transport ⋆ Renovation materials Transport

Maintenance waste
Maintenance materials
⋆ Operational use of energy
Operational use of water
Transport

Districts & cities
Open spacesa Networksb Mobilityc

⋆ Consumption patterns

Construction waste Construction waste Vehicle manufacturing
⋆ Construction materials Construction materials ⋆ Daily mobility
Maintenance waste Maintenance waste
⋆ Maintenance materials Maintenance materials
Public lighting Demolition waste
Public wastes ⋆ Energy systems
Demolition wastes ⋆ Water systems
Water consumption
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and cities level, the most significant opportunities for ML 
in LCA research lie in the ‘Networks’ and ‘Open Spaces’.

The research questions posed in this paper were answered 
through this literature survey. In the included papers, authors 
claimed and displayed that ML can be applied to different 
aspects of the LCA and be a useful tool. ML methods were 
shown to be applied efficiently in optimization scenarios in 
LCA. Finally, ML methods were integrated into existing 
inventory databases to streamline the LCA across many use 
cases. However, ML-based techniques have been employed 
less for real-time monitoring and control of real-world LCA.

Future research should focus on using ML technologies 
in real-time applications to monitor, optimize, and control 
the built-environment systems. ML models may be more 
comprehensible than other black-box approaches due to 
their transparency. Furthermore, hybrid ML applications 
may expand on the benefits of ML models and overcome 
limitations to case-specific scenarios for optimizing LCA 
through their interpolation and extrapolation capabilities. 
Advanced stochastic metaheuristics should be used in refin-
ing ML model training parameters to maximize their accu-
racy and reliability.

6 � Conclusion

LCA, when done successfully, provides a systems view of 
products systematically and quantitatively and can thus act as 
a decision support tool. It can then guide the design and give 
insights on areas for improvement and innovation. However, 
performing detailed LCA is expensive, time-consuming, and 
requires a large amount of data.

The ML methods in LCA have received considerable 
attention as countries are continuing and growing to address 
the importance and protection of the environment. The cli-
mate regulations have encouraged industries to apply LCA 
using various intelligent technologies. The rapid develop-
ment of modern technologies, including sensors, informa-
tion, wireless transmission, network communication, cloud 
computing, and smart devices have been led to an enormous 
amount of data accumulation. Therefore, LCA researches 
have adopted the opportunities made possible by the devel-
opment of computational techniques and ML methods to 
improve predictive models. ML methods belong to the 
category of data-based predictive models and thus aims to 
use computational methods to allow an algorithm to find a 
meaningful pattern from an extensive data set.

The contributions of this paper are as follows:

–	 This study presented a review of ML models utilized for 
LCA. It presented a thorough review and critical dis-
cussion of various ML technologies to solve function 
approximation, optimization, monitoring, and control 

problems in LCA research. Moreover, the advantages 
and disadvantages of using ML technologies in LCA are 
highlighted to direct future policymakers efforts in this 
domain.

–	 The reviews show that if computational levels in LCA are 
divided into three categories, inventory, modelling and 
optimization, ML is most used at the inventory level for 
prediction and finding the missing data; and optimizing 
during the model simulation. The fundamental limita-
tions and challenges faced by applying ML methods in 
LCA are model complexity and scenario uncertainty.

–	 The review identifies that developing ML techniques, 
including predictive model control and optimization 
algorithms, can help the policymakers deliver actionable 
knowledge to inform various control strategies and cor-
rective measures to reduce the gap between predicted and 
actual environmental impact. This review finds that ML 
methods can match the LCA results within the accuracy 
of typical LCA studies and correctly predict the trends.

This review has identified research gaps and given an over-
view of the progression in this field to aid researchers’ 
understanding of key concepts for applying ML in LCA. 
Future research should focus on using ML technologies in 
real-time applications to monitor, optimize, and control the 
built-environment systems. ML models may be more com-
prehensible than other black-box approaches due to their 
transparency. Furthermore, hybrid ML applications may 
expand on the benefits of ML models and overcome limita-
tions to case-specific scenarios for optimizing LCA through 
their interpolation and extrapolation capabilities. Optimiza-
tion uses can be particularly impactful in life cycle alterna-
tives where the environmental impact of a process, product 
or system can be reduced. ML has the capability of being 
integrated as a real-time algorithm, assessing production or 
changes in processes and responding with potential alterna-
tives. These can be less environmentally impactful and help 
decision-makers choose the optimum available options of 
the design, construction/production, facilities management, 
and demolition processes. Advanced stochastic metaheuris-
tics should be used in refining ML model training parameters 
to maximize their accuracy and reliability. Nevertheless, ML 
may not be appropriate for every application and should be 
considered alongside the cost, length of time and delays 
which incur from some ML techniques. In the future, the 
integration of ML models within LCA may be commonplace 
following further research into applications such as utilizing 
access to dynamic data and providing detailed and accurate 
environmental impacts.
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