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Abstract
Purpose Global sensitivity analysis increasingly replaces manual sensitivity analysis in life cycle assessment (LCA). 
Variance-based global sensitivity analysis identifies influential uncertain model input parameters by estimating so-called 
Sobol indices that represent each parameter’s contribution to the variance in model output. However, this technique can 
potentially be unreliable when analyzing non-normal model outputs, and it does not inform analysts about specific values 
of the model input or output that may be decision-relevant. We demonstrate three emerging methods that build on variance-
based global sensitivity analysis and that can provide new insights on uncertainty in typical LCA applications that present 
non-normal output distributions, trade-offs between environmental impacts, and interactions between model inputs.
Methods To identify influential model inputs, trade-offs, and decision-relevant interactions, we implement techniques for 
distribution-based global sensitivity analysis (PAWN technique), spectral clustering, and scenario discovery (patient rule 
induction method: PRIM). We choose these techniques because they are applicable with generic Monte Carlo sampling and 
common LCA software. We compare these techniques with variance-based Sobol indices, using a previously published 
LCA case study of geothermal heating networks. We assess eight environmental impacts under uncertainty for three design 
alternatives, spanning different geothermal production temperatures and heating network configurations.
Results In the application case on geothermal heating networks, PAWN distribution-based sensitivity indices generally 
identify influential model parameters consistently with Sobol indices. However, some discrepancies highlight the potentially 
misleading interpretation of Sobol indices on the non-normal distributions obtained in our analysis, where variance may not 
meaningfully describe uncertainty. Spectral clustering highlights groups of model results that present different trade-offs 
between environmental impacts. Compared to second-order Sobol interaction indices, PRIM then provides more precise 
information regarding the combinations of input values associated with these different groups of calculated impacts. PAWN 
indices, spectral clustering, and PRIM have a computational advantage because they yield stable results at relatively small 
sample sizes (n = 12,000), unlike Sobol indices (n = 100,000 for second-order indices).
Conclusions We recommend adding these new techniques to global sensitivity analysis in LCA as they give more precise 
as well as additional insights on uncertainty regardless of the distribution of the model outputs. PAWN distribution-based 
global sensitivity analysis provides a computationally efficient assessment of input sensitivities as compared to variance-
based global sensitivity analysis. The combination of clustering and scenario discovery enables analysts to precisely identify 
combinations of input parameters or uncertainties associated with different outcomes of environmental impacts.

Keywords Uncertainty · Sensitivity analysis · Clustering · Trade-off analysis · Scenario discovery

1 Introduction

Recent literature on life cycle assessment (LCA) reflects 
an increasing interest in methods for uncertainty and 
sensitivity analysis in order to understand how natural 
variability and epistemic uncertainties (i.e., incomplete 
knowledge) affect the environmental impacts of products 
and processes. Epistemic uncertainties in LCA can be 
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attributed to parameter, model, and scenario uncertain-
ties (Rosenbaum et al. 2018). Parameter uncertainties for 
instance typically surround quantities used in inventory 
data or characterization factors (Huijbregts 1998). Model 
uncertainties may arise regarding the form of model equa-
tions or appropriate model boundaries (Reap et al. 2008). 
Scenario uncertainties relate to the use and interpretation 
of the model, such as the choice of a suitable functional 
unit or weighting method. Acknowledging these uncertain-
ties is crucial to supporting decision-making: in compara-
tive LCA, two products may yield impacts that are mark-
edly different under nominal assumptions, but statistically 
indistinguishable after including uncertainties (Finnveden 
2000). Conversely, specific uncertainties characterizing 
different products may propagate into unexpected out-
comes and change the conclusions of the analysis. Meth-
ods for sensitivity analysis can support the interpretation 
of these uncertainties by identifying the model inputs and 
assumptions that are most influential toward model out-
puts. The ISO 14044 standard on LCA thus recommends 
including at least a sensitivity analysis in the evaluation 
and quality assurance of LCA results and underlines the 
contribution of methodological choices as well as input 
data toward uncertainty (International Organization for 
Standardization 2006).

Consistently with these recommendations, LCA publica-
tions and software environments increasingly incorporate 
methods for sensitivity analysis, systematically reviewed by 
Michiels and Geeraerd (2020). However, ISO 14044 does not 
recommend a specific technique, and thus, sensitivity analysis 
is often applied with a manual, “one-at-a-time” strategy, in 
which each input is varied separately to measure its impact 
on the LCA outputs. This strategy may fail to properly assess 
the influence of uncertain inputs in the presence of non-
linearities or interactions between uncertain inputs (Saltelli 
and Annoni 2010). Automated methods for global sensitiv-
ity analysis (GSA) can address these issues by evaluating all 
uncertain model inputs and their impact on the LCA outputs 
at the same time, capturing the combined effects of model 
inputs by computing the model over multiple sampled val-
ues of these inputs. Applications of GSA in the LCA field 
(Wei et al. 2015; Bisinella et al. 2016; Lacirignola et al. 2017; 
Groen et al. 2017) have largely relied on variance-based GSA 
(Sobol 2001; Saltelli et al. 2004). A typical variance-based 
GSA identifies influential model inputs by computing first-
order and total sensitivity indices (or so-called Sobol indi-
ces; Online Resource 1, Sect. 1). The first-order index is the 
fraction of the variance of the model’s output that is caused 
by the uncertainty of each input on its own. The total index 
reflects the input’s total contribution to the output variance 
when accounting for interactions with other inputs (Saltelli 
et al. 2004), such as when inputs multiply each other. Indices 
identifying these specific interactions, such as second-order 

indices for interactions between pairs of inputs, can be esti-
mated at an added computational cost.

While variance-based GSA is considered as best practice 
for LCA models, it has certain limitations due to its specific 
assumptions that should be considered before applying it 
(Saltelli et al. 2004). In particular: (i) the expected contribu-
tion of an input to the variance of the LCA output is a suit-
able measure of sensitivity, and (ii) the variance of the LCA 
output distribution describes the uncertainty of the output 
and consequently the uncertainty facing a decision-maker. 
However, the second assumption may not always hold, for 
instance, if changes in the central tendency of the output dis-
tribution or in its tails are more meaningful for the decision-
maker (Saltelli 2002, “Methods”). Borgonovo (2006) links 
this second assumption to the mean-variance model used in 
classical decision theory, in which non-normal output dis-
tributions impose specific requirements on the preferences 
of the decision-maker. Borgonovo (2006) uses an analytical 
case to show that variance and thus variance-based sensitiv-
ity indices can be a misleading measure of uncertainty on a 
highly skewed output distribution. Liu et al. (2005) similarly 
show that variance-based GSA indices can be unreliable for 
non-normal, highly skewed output distributions. Variance-
based GSA is based on propagating all uncertain input dis-
tributions through the model and hence yields a previously 
unknown and not necessarily normal output distribution of 
the model outputs. In LCA, uncertain variables in life cycle 
inventories commonly follow a log-normal distribution (Qin 
and Suh 2017), meaning that the log-transformed variable 
is normally distributed. However, the relationship between 
life cycle inventories and midpoint or endpoint impacts is 
not necessarily linear (Groen et al. 2017) so that the result-
ing distribution of impacts cannot be presumed to be (log-)
normal. Alternative distributions are commonly used for 
uncertain input parameters, such as triangular distributions 
(Cucurachi et al. 2016; Muller et al. 2018). These distri-
butions would similarly be propagated into non-normally 
distributed LCA model outputs. In this situation, distribu-
tion-based techniques for GSA (Borgonovo 2007; Cucurachi 
et al. 2016) may offer a more robust alternative to variance-
based GSA by describing sensitivity through changes in the 
output distribution rather than through variance alone. These 
techniques, for instance, capture changes in the central ten-
dency or in the tails of the output distribution that could be 
relevant for the decision-maker.

As an example of this approach, the PAWN distribution-
based GSA technique (Pianosi and Wagener 2015, 2018; the 
PAWN acronym is derived from the authors’ names) esti-
mates sensitivity indices for each input by systematically 
computing Kolmogorov–Smirnov statistics on the condi-
tional cumulative distribution function of the output. This 
technique (detailed in Online Resource 1, Sect. 2) is appli-
cable regardless of the output distribution and has the added 
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benefit of being computationally efficient. It can be used with 
relatively small sample sizes and with datasets sampled with 
a generic Monte Carlo method, whereas the practical esti-
mation of sensitivity indices with variance-based GSA typi-
cally requires numerical estimators (e.g., Saltelli et al. 2010; 
Online Resource 1, Sect. 1) and specific sampling designs 
to reduce computational cost (Lo Piano et al. 2021). These 
sampling designs may be impossible to implement with com-
mercial LCA software that only provide generic Monte Carlo 
sampling functionality. The computational cost also grows 
with the number of parameters and may be intractable for 
models with a large number of parameters, when reliable 
estimation of variance-based sensitivity indices may require 
hundreds of thousands of model evaluations (Nossent et al. 
2011; Butler et al. 2014). The PAWN technique should thus 
be advantageous in many LCA applications, but no applica-
tion of PAWN exists in the LCA domain.

Whether derived from variance-based or distribution-
based methods, sensitivity indices in GSA only provide 
general insights into the importance of uncertainties. As 
these indices are generally computed over the entirety of 
the model output, they do not indicate whether certain inputs 
may, for instance, be particularly influential toward caus-
ing the model output to fall in a specific decision-relevant 
range. Conversely, the indices do not indicate whether the 
estimated overall influence of certain inputs is due to spe-
cific values of these inputs or due to combinations of values 
across multiple inputs. However, these aspects are important 
for LCA practitioners who may need to meet impact thresh-
olds for performance or regulatory compliance (Vidal and 
Sánchez-Pantoja 2019; Mahbub et al. 2019), or who want 
to explore combinations of input uncertainties that affect 
the relative performance of design alternatives (Heijungs 
et al. 2019). The GSA literature presents factor mapping 
as a suitable approach for these goals by identifying inputs 
most strongly associated with a specified range of outputs 
(Saltelli et al. 2004). This range of outputs can, for instance, 
be defined with a performance threshold. Proposed factor 
mapping methods include regionalized sensitivity analysis 
(Hornberger and Spear 1981), in which a binary threshold 
criterion is used to split a sample of model outputs. For each 
uncertain input, the cumulative distribution function of the 
two output groups is examined to assess whether a specific 
range of the input is associated with a shift in the cumulative 
distribution function of each group. Still, this method lacks 
statistical power in typical applications and is less informa-
tive about the influence of inputs for cases that involve inter-
actions between multiple inputs (Spear et al. 1994; Saltelli 
et al. 2004). As such, applications of factor mapping are less 
common in the GSA literature (Pianosi et al. 2016).

By contrast, recent literature on model-based decision-
making under deep uncertainty (reviewed in Marchau 
et al. 2019) presents methods such as scenario discovery, 

which is functionally similar to a factor mapping anal-
ysis but is better suited to study input interactions, for 
instance, by identifying the combinations of uncertain 
input values under which a design alternative would meet 
a performance threshold (Groves and Lempert 2007). 
Published applications of scenario discovery (reviewed 
in Kwakkel and Haasnoot 2019) commonly rely on the 
Patient Rule Induction Method (PRIM; Friedman and 
Fisher 1999). PRIM uses an optimization procedure to 
identify ranges of the uncertain model inputs which lead 
to a range of the model output specified by the analyst as 
interesting, such as output values above a certain thresh-
old. This technique can be applied regardless of the shape 
of input or output distributions. A parallel approach was 
developed by Spear et al. (1994) in the form of the tree-
structured density estimation technique, using classifica-
tion and regression trees (CART) to explore interactions 
associated with decision-relevant ranges of a model’s 
output. In this work, we use PRIM for scenario discovery 
as it offers more easily interpretable results for problems 
involving multiple uncertain inputs (Lempert et al. 2008). 
A clustering step can also be added to scenario discovery 
to pre-process the ensemble of model outputs generated 
in an uncertainty analysis or GSA. This enables analysts 
to group outputs into different trade-off patterns across 
multiple performance indicators or to identify different 
modes of behavior in cases without predefined perfor-
mance thresholds. For example, spectral clustering is a 
graph-partitioning approach (reviewed in von Luxburg 
(2007) and Online Resource 1, Sect. 3) that is suitable for 
this purpose. It provides robust performance for cluster-
ing across multiple independent variables (such as mul-
tiple environmental impacts computed in a single model 
evaluation) on arbitrary output distributions. The PRIM 
technique can then be applied to identify the different 
combinations of uncertain input values that lead to each 
cluster of outputs (Jaxa-Rozen et  al. 2016; Moallemi 
et al. 2017; Steinmann 2020; details in Online Resource 
1, Sect. 4). In LCA, this combined approach could sup-
port the interactive analysis of trade-offs between mul-
tiple environmental impacts under uncertainty (Payen 
et al. 2015; Prado‐Lopez et al. 2016) and identify the 
combinations of uncertain parameters causing different 
trade-off patterns.

In this study, we therefore combine distribution-based 
GSA (PAWN technique of Pianosi and Wagener 2018), 
spectral clustering, and PRIM, and illustrate how these tech-
niques can yield more precise as well as additional insights 
toward understanding uncertainty in typical applications of 
LCA with non-normal output distributions, trade-offs across 
multiple impacts, and interactions between uncertainties. 
We apply these techniques to a case study of geothermal 
heating networks (Pratiwi and Trutnevyte 2021) and analyze 
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three system design alternatives defined on the basis of 
geothermal production temperature and heating network 
design. We compute environmental impacts under uncer-
tainty for eight indicators, analyzed in the previous study: 
cumulative energy demand, fine particulate matter emis-
sions, fossil and mineral resource scarcity, global warming, 
land use, terrestrial acidification, and water consumption. 
For each design alternative of the geothermal system, we 
highlight a typical use case for scenario discovery. In order 
to evaluate the added value of the three applied techniques, 
we compare their results to a variance-based GSA by com-
puting Sobol first-order, second-order, and total indices 
(Sobol 2001). These three techniques of distribution-based 
GSA, clustering, and PRIM do not impose restrictions on 
the required sampling design or input distributions, and 
thus, they can be used with generic Monte Carlo sampling 
or with specific sampling already used in variance-based 
GSA. As a result, these techniques add minimal computing 
costs to an existing uncertainty analysis or variance-based 
GSA. To further make the three approaches more accessi-
ble, we use documented open-source Python packages for 
all analyses and provide an interactive code notebook rep-
licating the general workflow for our LCA case as well as 
idealized test cases (Jaxa-Rozen et al. 2021). We note that 
our workflow is based on OpenLCA software with exter-
nal processing in Python. Equivalent analysis packages are 
available in the R language, and our analysis can be repro-
duced with other LCA software that supports the export of 
Monte Carlo analysis results. This includes Brightway2, 
Umberto LCA + with the LiveLink feature, and the PhD and 
Developer license levels for SimaPro.

The case study, analysis methodology, and computa-
tional implementation are described in “Methods.” This 
is followed by results from each technique in “Results of 
global sensitivity analysis” and “Results of spectral cluster-
ing and scenario discovery.” “Discussion and conclusions” 
discusses these results and concludes the paper with recom-
mendations for practitioners, along with avenues for further 
research.

2  Methods

2.1  Case study of geothermal heating networks

We illustrate our approach using the case study of LCA 
of geothermal heating networks in the State of Geneva in 
Switzerland. This case study builds upon the recent work 
of Pratiwi and Trutnevyte (2021), who compared the envi-
ronmental performance of six alternatives of geothermal 
heating and cooling networks, defined on the basis of well 
depths and network design, in terms of eight environmental 
impacts (Table 1). The choice of impacts was made in the 
previous study, and it is based on a review of most com-
mon impact indicators used in energy studies by Dorning 
et al. 2019). In the earlier study of Pratiwi and Trutnevyte 
(2021), a minimum-maximum bounding analysis indicated 
that these environmental impacts were driven by relatively 
complex relationships among design parameters, uncertain-
ties on material and energy intensity, and subsurface prop-
erties. For instance, while higher geothermal production 
temperatures may improve energy performance, this may 
be offset in a non-linear manner by impacts associated with 
deeper drilling. In parallel, the relative environmental per-
formance of different geothermal system alternatives hinged 
on interactions among the design parameters, such as geo-
thermal flow rate and geothermal production temperature. 
Different combinations of well depths and network designs 
were also associated with distinct trade-offs across the eight 
impacts. For these reasons, this application of LCA was a 
particularly relevant starting point for GSA, spectral cluster-
ing, and scenario discovery.

We narrowed down the six original geothermal network 
alternatives of Pratiwi and Trutnevyte (2021) into three 
design alternatives for the present study (Fig. 1), covering 
a greater range of geothermal production temperature and 
flow rate in each network design: (i) a networked heat pump 
alternative supplying a network of connected, decentralized 
heat pumps from the depth of 10–2200 m, (ii) a central heat 
pump alternative supplying district heating from the depth 

Table 1  Environmental impacts of geothermal heating networks that are assessed in this study

Impact Description Unit

Cumulative energy demand Total life cycle energy use from all sources (including geothermal energy) MWh
Fine particulate matter emissions Emissions of particulate matter with a diameter below 2.5 μm kg  PM2.5 eq
Fossil resource scarcity Depletion of fossil fuels available for future generations kg oil eq
Global warming Greenhouse gas (GHG) emissions from all sources kg  CO2 eq
Land use Species loss due to the change in land use m2-year crop eq
Mineral resource scarcity Depletion of mineral resources kg Cu eq
Terrestrial acidification Deposition of inorganic substances modifying soil acidity kg  SO2 eq
Water consumption Water consumed over the life cycle, excluding water returned to the water body m3
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of 300–2200 m, and (iii) a direct heating alternative supply-
ing district heating from the depth of 2000–4400 m. In each 
alternative, the LCA boundaries include the drilling of geo-
thermal wells, the construction of the heating network, the 
operation and maintenance of the network over its lifetime, 
and its decommissioning. We focus the analysis on heating 
and leave cooling out of scope. The results of Pratiwi and 
Trutnevyte (2021) indicated that operational electricity con-
sumption contributed prominently to the life cycle impacts 
of the geothermal alternatives with heat pumps, using a 
hydropower-based electricity mix typical of conditions in 
the State of Geneva. For this study, we assume a more rep-
resentative electricity supply mix based on Swiss national 
electricity grid (Itten et al. 2014). We otherwise maintain the 
other life cycle assessment choices documented by Pratiwi 
and Trutnevyte (2021), including the Ecoinvent 3.5 database 
(Wernet et al. 2016), OpenLCA 1.10 software, and ReCiPe 
2016 H midpoint method (Huijbregts et al. 2017). Like the 
previous study, we report all impacts per MWh of delivered 
heat.

The original geothermal configurations contain between 
41 and 43 uncertain input parameters (Online Resource 2, 
Table S1). As the sample size required for variance-based 
GSA increases with the number of parameters, using the 
original configurations for this analysis would be imprac-
tical due to the runtime of the OpenLCA implementation 

(approximately 20 s per execution on an Intel Xeon 6126 
CPU). To reduce the number of input parameters and enable 
a reference variance-based GSA, we therefore apply a pre-
liminary screening step to identify non-influential param-
eters that can be removed from the analysis. To this end, 
we combine the ExtraTrees technique for non-linear regres-
sion (Geurts et al. 2006) with the PAWN distribution-based 
GSA technique. The Mean Decrease Impurity measure of 
input importance obtained from ExtraTrees approximates 
the relative value of Sobol total indices at small sample sizes 
(Jaxa-Rozen and Kwakkel 2018). It can therefore be used 
to assess the relative importance of model inputs toward 
output variance and can generally identify inputs that are 
non-influential in a full variance-based GSA. Nonetheless, 
the large initial number of parameters can make this estima-
tion of input importances less reliable. To have a second 
independent assessment of input importances with a method 
that is applicable regardless of output distribution, we there-
fore use the PAWN technique that reliably ranks sensitivity 
indices for a non-normal distribution (Pianosi and Wagener 
2018). We combine these methods to exclude input param-
eters that (i) do not meet a minimum threshold of relative 
importance using ExtraTrees, on any of the environmental 
impacts and any of the design alternatives, and (ii) do not 
meet a minimum threshold rank of importance using either 
ExtraTrees or PAWN, on any impact and any alternative. 

Fig. 1  Design alternatives for geothermal heating networks used in 
this study on the basis of the work by Pratiwi and Trutnevyte (2021). 
Top subplots: heating network design used in each alternative. Bot-

tom subplots: ranges of geothermal production temperature and flow 
rate in each alternative
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This combined screening approach is visualized in Online 
Resource 2, Fig. S1.

We implement this preliminary screening step by gener-
ating separate ensembles of 12,000 input samples for each 
design alternative, using the SALib package (Herman and 
Usher 2017) to create a Latin hypercube sample (Online 
Resource 1, Sect. 2). We specify independent uniform dis-
tributions for each input parameter with the bounds reported 
in Online Resource 1, Table S1. We then use OpenLCA to 
compute impacts on each of the 12,000 samples and apply 
ExtraTrees regression using the scikit-learn Python pack-
age (Pedregosa et al. 2011) with the settings recommended 
in Jaxa-Rozen and Kwakkel (2018). In parallel, we use 
the SAFE Toolbox Python package (Noacco et al. 2019) 
to apply PAWN, with the same settings listed in “Computa-
tional implementation” for our detailed uncertainty analy-
sis. We set the screening thresholds to exclude inputs that 
are not in the ten most influential parameters toward any 
impact, and that are not above 5% of the maximum rela-
tive importance on any impact using ExtraTrees. We find 
that relatively few inputs are influential across all impacts 
so that the set of retained inputs is robust to these screening 

thresholds. We thus identify 19 inputs in the networked 
and central heat pump alternatives (bolded in Table S1, 
Online Resource 2), and 18 in the direct heating alternative 
for which the heat pump coefficient of performance (COP) 
parameter is not used. To support the further analysis of the 
design alternatives with this reduced set of parameters using 
distribution-based GSA, clustering, and scenario discov-
ery, we sample a new Latin hypercube ensemble of 12,000 
samples for each alternative, only using the reduced set of 
influential parameters. To enable a meaningful comparison 
between design alternatives, we use consistent random seeds 
to initialize random number generation in Python, so that 
repeatable sequences of values are used in this sampling. 
A given uncertain parameter is therefore sampled using the 
same initial sequence in all design alternatives; the initial 
sequences are then rescaled to define input values based on 
the bounds specified in each alternative.

At this preparation step, we find that distributions of model 
outputs (i.e., environmental impacts) are consistently posi-
tively skewed with a longer upper tail (Fig. 2). To test whether 
the output distributions are normal, we use a Shapiro–Wilk 
test and find that the null hypothesis of a normal distribution 

Fig. 2  Distribution of impacts in each design alternative, using Latin 
Hypercube ensembles (n = 12,000). All impacts are reported per 
MWh of delivered heat. For each boxplot, the mean is denoted by a 

black marker and the median by a black line. Boxes show the inter-
quartile range; whiskers are extended to the full range of the data
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is rejected at p < 0.001 for all impact distributions. We find 
the same result after log-transforming to test for a log-normal 
distribution. The skewness of the output distribution means 
that the expected contribution to variance described by the 
variance-based GSA indices may be unreliable as a metric of 
sensitivity (Liu et al. 2005; Borgonovo 2006). As numerical 
implementations of the Shapiro–Wilk test may be unreliable 
for large sample sizes (Razali and Wah 2011), we provide 
corresponding probability plots in Online Resource 2, Fig. S2 
that show deviation from (log-)normality in the upper tail 
of values (using water consumption as an example). These 
results support the relevance of a distribution-based GSA 
approach in our case study. Figure S3 in Online Resource 2 
directly visualizes the relative performance of design alterna-
tives using a regret measure (Savage 1951); the direct heating 
alternative for instance has lower average impacts than the 
two heat pump alternatives on cumulative energy demand 
and land use, but consumes more water. Based on Pearson’s r 
(Fig. S4, Online Resource 2), the impacts on fine particulate 
matter formation, fossil resource scarcity, and global warm-
ing are almost perfectly correlated in all design alternatives 
(r >  = 0.99). However, trade-offs may emerge between water 
consumption and the other impacts for the networked heat 
pump (r <  = 0.78) and central heat pump (r <  = 0.58) alter-
natives, justifying further trade-off analysis using clustering. 
The direct heating alternative yields highly correlated impacts 
(r >  = 0.93), except in relation to cumulative energy demand.

2.2  Methodology for the uncertainty analysis

We use the uncertainty screening as a starting point to 
systematically investigate input sensitivities, interactions, 
and trade-offs between environmental impacts. Using the 
reduced set of influential parameters identified by screening, 
we first perform variance-based and distribution-based GSA 
on each geothermal heating network alternative, to identify 
influential single inputs with Sobol first-order and total indi-
ces (Online Resource 1, Sect. 1) and PAWN indices (Online 
Resource 1, Sect. 2). In order to identify influential inter-
actions between pairs of input parameters, we extend the 
variance-based GSA with Sobol second-order indices. We 
then combine clustering and scenario discovery to under-
stand how these influential inputs and interactions lead to 

different subsets of scenarios of interest, that present dif-
ferent trade-offs between impacts. We define a scenario as 
the combination of the vector of input samples used in a 
given execution of the model, with the resulting vector of 
environmental impacts. In principle, the subsets of interest 
for scenario discovery could be defined through a targeted 
approach by setting performance thresholds on one or mul-
tiple model outputs, or they could also be defined from an 
exploratory perspective by applying statistical learning tech-
niques to find patterns in the model outputs. We combine 
these approaches to illustrate typical use cases at different 
levels of complexity. As such, we first choose a representa-
tive performance measure to define subsets of interest in 
each design alternative (Table 2): an impact threshold, a 
threshold for the relative regret between alternatives, and a 
multi-objective measure of relative performance based on 
Pareto dominance (Ravalico et al. 2009), where an alterna-
tive A is Pareto-dominated by an alternative B if it is no 
better than B in all objectives (eight environmental impacts), 
and worse in at least one objective.

We use water consumption to define an example of an 
impact threshold and a relative regret threshold; this impact 
is broadly distributed (Fig. 2), and it was found by Pratiwi 
and Trutnevyte (2021) to be driven by multiple uncertain 
life-cycle activities for geothermal heating, making it a par-
ticularly relevant case to illustrate our analysis. For each sub-
set of interest, we then (i) apply spectral clustering (Online 
Resource 1, Sect. 3) in order to identify different patterns 
of trade-offs between impacts that emerge within the sub-
set, and (ii) apply the PRIM scenario discovery technique 
(Online Resource 1, Sect. 4) in order to identify the com-
binations and ranges of uncertain model inputs associated 
with each cluster (i.e., each pattern of trade-offs). Figure 3 
summarizes the relationships between these analysis tech-
niques. We visualize the results for the networked heat pump 
alternative in the main text and provide results for the two 
other alternatives in Online Resource 2.

2.3  Computational implementation

We implement techniques for global sensitivity analysis, 
spectral clustering, and scenario discovery using open-
source packages in the Python 3.x scientific computing 

Table 2  Definition of subsets of scenarios of interest for each design alternative

Design alternative Type of performance measure Definition of the subset of scenarios of interest

Networked heat pumps Single-objective impact threshold Scenarios with water consumption < 40  m3/MWh (n = 1200)
Central heat pump Single-objective relative performance Scenarios with water consumption regret > 50% relative to

networked heat pump alternative (n = 1,743)
Direct heating Multi-objective relative performance Scenarios that are Pareto-dominated by central heat pump 

alternative (n = 391)
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ecosystem. Equivalent implementations are available in R, 
for instance using the sensitivity and OpenMORDM pack-
ages (Hadka et al. 2015; Pujol et al. 2017). We implement a 
Python parallelization wrapper based on OpenLCA’s inter-
process communication (IPC) interface to distribute the 
model executions across 16 processing cores. Python code 
for this OpenLCA interface and our overall implementation 
is documented by Jaxa-Rozen et al. (2021).

To define input values for the variance-based GSA, we 
use the quasi-random Sobol sampling sequences recom-
mended by Saltelli et al. (2010), as implemented in the 

SALib package (Herman and Usher 2017). To estimate 
first-order (S1), second-order (S2), and total (ST) Sobol 
indices, these sequences require the model to be computed 
for a total of N = n(2k + 2) input samples, where n is a 
baseline sample size and k is the number of input param-
eters. We choose n = 2500 to improve the convergence of 
Sobol indices within computational constraints, for a total 
of N = 100,000 samples for each design alternative. In order 
to estimate the value of the Sobol indices, we first compute 
environmental impacts on each input sample with Open-
LCA, then use SALib to apply the estimators of Saltelli 

Fig. 3  Overall structure of the analysis applied for each design alter-
native. Online Resource 1 provides theoretical background for each 
method in the sampling and analysis levels. Fig. S1, Online Resource 

2 details the preliminary screening step used to reduce the number of 
model parameters
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et al. (2010), averaged over 100 bootstrap resamples for 
each of the eight environmental impacts. The sampling and 
estimators are detailed in Online Resource 1, Sect. 1. The 
ranking and relative importance of total indices are both 
largely stable for N > 50,000 scenarios (Online Resource 
2, Fig. S5). The convergence of second-order indices is 
less satisfactory (Online Resource 2, Fig. S6); larger sam-
ple sizes were limited by memory restrictions. We then 
compute distribution-based PAWN indices for each design 
alternative, using the SAFE Toolbox package (Noacco et al. 
2019). To estimate the conditional cumulative distribution 
functions for each uncertain input, we divide the range of 
each input with the default setting of 10 conditioning inter-
vals used by the package. We then use the median value 
of the Kolmogorov–Smirnov statistic across these condi-
tioning intervals to define the PAWN median index of each 
input (averaging over 100 bootstrap resamples). We repeat 
this process for each environmental impact. We find that 
the rankings and relative importance of the PAWN indices 
are stable for N > 10,000 samples. To make the analysis 
computationally more efficient, we therefore compute these 
indices on the smaller ensembles of 12,000 Latin hypercube 
samples generated after the screening step, rather than the 
larger ensembles used for variance-based GSA. To check 
for extreme values (Pianosi and Wagener 2015), we also 
compute alternative indices using the maximum value of the 
Kolmogorov–Smirnov statistic across the same conditioning 
intervals.

In order to analyze patterns of trade-offs between envi-
ronmental impacts, we use the spectral clustering module 
included in scikit-learn after normalizing all impacts to 
[0,1] within the subset of scenarios of interest selected for 
each design alternative. We select these scenarios of interest 
from the same ensembles of 12,000 Latin hypercube samples 
that were used to compute PAWN indices. We consider the 
eight environmental impacts calculated for each sample as 
independent dimensions on which the scenarios should be 
clustered. We select the default radial-basis function ker-
nel to weight the graph representation of these samples on 
the basis of the similarity of their environmental impacts 
(Online Resource 1, Sect. 3) and test a range of two to 
six clusters in each design alternative. We use the scikit-
learn grid search function to test a range of 0.001 to 1 for 
the γ kernel parameter. Based on visual evaluation and a 
silhouette metric (Rousseeuw 1987), we choose three clus-
ters for all design alternatives. A greater number of clus-
ters tend to divide existing clusters rather than highlighting 
new trade-off patterns. The γ parameter is set to 0.001, 0.3, 
and 0.1 for the networked heat pump, central heat pump, 
and direct heating alternatives. These parameters need to 
be adjusted to each specific case depending on the prop-
erties of the underlying data, such as its distribution and 
the number of dimensions (impacts) used for clustering, as 

few theoretical guidelines exist (von Luxburg 2007). For 
each design alternative, this clustering step yields a vector 
of 12,000 integers, corresponding to the size of the original 
model outputs computed over the Latin hypercube samples; 
the original model output values are replaced with an integer 
value representing the cluster label (1, 2, or 3).

For each design alternative, we then apply the PRIM tech-
nique (Friedman and Fisher 1999) on the vector of labels 
produced by clustering, to identify combinations and ranges 
of input parameters associated with each of the clusters. 
This technique assumes that model outputs of interest (i.e., 
outputs with a specified cluster label) are associated with 
a (hyper-)rectangular region (or “box”) of the input space, 
after sequentially removing ranges of the input that do not 
lead to these outputs of interest (Online Resource 1, Sect. 4). 
However, this is not always the case (Dalal et al. 2013), and 
the quality of the identified box of input ranges must be 
assessed for each application. To this end, the scenario dis-
covery literature typically uses the trade-off between cover-
age and density to assess the performance of the algorithm 
(Lempert et al. 2008), where coverage is the fraction of all 
scenarios of interest that fall within the box identified by 
PRIM, and density is the fraction of scenarios within the 
box that is of interest. We use the implementation of PRIM 
included in the EM Workbench package (Kwakkel 2017), 
which interactively visualizes the trade-off between coverage 
and density and the revised objective function introduced in 
Kwakkel and Jaxa-Rozen (2016) to improve the analysis of 
categorical parameters. We visualize boxes meeting an arbi-
trary coverage threshold of 75%, so that the combinations 
of ranges of input parameters identified by PRIM describe 
at least this fraction of the total scenarios in each cluster. 

3  Results of global sensitivity analysis

3.1  Single‑input sensitivity indices

In the analyzed case study, the variance-based and distribution-
based indices generally provide consistent estimations of the 
relative importance of uncertain inputs (Fig. 4). The geother-
mal production temperature is largely dominant across the 
environmental impacts and sets of sensitivity indices with the 
exception of the impact on water consumption, where geo-
thermal flow rate is more influential. The rank correlations 
between Sobol total indices and PAWN median indices are 
relatively high (ρ ≥ 0.6; Online Resource 2, Fig. S7), except in 
the case of terrestrial acidification. Taking rank correlations 
across impacts for the Sobol total indices alone, correlations 
are particularly strong (ρ > 0.8) between these indices for fine 
particulate matter formation, fossil resource scarcity, global 
warming, land use, and terrestrial acidification, indicating that 
these impacts are largely driven by the same parameters. This 
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finding is consistent with Pearson’s r for correlations between 
the impacts (Online Resource 2, Fig. S4). Cross-impact rank 
correlations are weaker for the PAWN median indices, indicat-
ing greater variation in the rankings, but they remain strong 
(ρ > 0.8) between PAWN indices for fine particulate matter for-
mation, fossil resource scarcity, and global warming. Between 
the Sobol first-order and total indices, relative importances 
are generally consistent. However, the higher absolute value 
of total indices in several cases (Online Resource 2, Fig. S8) 
denotes higher-order interactions, for example, involving geo-
thermal flow rate, geothermal production temperature, and 
number of wells for the impact on water consumption. Between 
the distribution-based PAWN median and maximum indices, 
relative values are also largely consistent, but the maximum 
indices for geothermal flow rate are higher on fine particulate 

matter formation, fossil resource scarcity, and global warming. 
The heat pump COP multiplier presents a similar trend on most 
impacts. This indicates that a limited region of the input range 
for these parameters is associated with a particularly significant 
impact on the output cumulative distribution function (Pianosi 
and Wagener 2015) and may need to be investigated further.

Despite the relatively high correlation between Sobol 
total indices and PAWN rankings, some of the PAWN rela-
tive importances are consistently higher than the variance-
based indices, particularly in the case of the heat pump 
COP multiplier and the geothermal gradient. Following 
the definition of Saltelli et al. (2004), the first-order index 
is the reduction in variance which could be expected if 
the parameter was fixed. However, in the case of water 
consumption as an example, the geothermal gradient 

Fig. 4  Relative variable importances for the networked heat pump 
design alternative, grouped by environmental impact (subplots) and 
set of sensitivity indices (subplot columns). For each environmental 
impact, the vector of sensitivity indices is normalized to [0,1] in each 

set of sensitivity indices separately. The relative variable importances 
for other alternatives are available in Online Resource 2, Fig. S10 and 
Fig. S13
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(S1 = 0.02; PAWN median = 0.29) yields a conditional 
variance that is larger than unconditional variance within 
a large portion of its uncertainty range (Online Resource 2, 
Fig. S9). Fixing it to its lower bound would thus increase 
the unconditional variance of water consumption, i.e., 
the uncertainty of the output would counterintuitively be 
increased by resolving the uncertainty of this parameter. 
While this effect is not exceptional on skewed output distri-
butions and when interactions between variables are signif-
icant (Borgonovo 2006; Saltelli et al. 2004, Box 2.4), this 
result underlines that the expected reduction in variance—
which is, by definition, taken over the entire uncertainty 
range—may not always be the most meaningful measure 
of sensitivity. As such, the PAWN indices here may bet-
ter highlight the geothermal gradient’s impact on water 
consumption.

In the case of the central heat pump design alternative, 
we similarly find that relative importances are generally 
consistent across the different sensitivity indices (Online 
Resource 2, Fig. S10; rank correlations in Fig. S11). Rela-
tive importances are dominated by the production tempera-
ture and heat pump COP multiplier for most impacts except 
water consumption, on which geothermal flow rate and the 
number of geothermal wells are most influential. Compared 
to the networked heat pump alternative, a greater variety 
of parameters is influential across impacts as the narrower 
range of production temperatures used in the central alter-
native makes this parameter less salient. Across all indices, 
parameters related to the submersible well pumps and distri-
bution piping thus have more influence on mineral resource 
scarcity than with the networked heat pump design alterna-
tive. Absolute differences between Sobol first-order and total 
values (Online Resource 2, Fig. S12) indicate the presence 
of interactions, for instance, involving geothermal produc-
tion temperature in the case of mineral resource scarcity. The 
relative importances of PAWN median and maximum indi-
ces are largely consistent, so that the outputs do not appear 
particularly sensitive to specific regions of the input ranges. 
However, both sets of PAWN indices present some discrepan-
cies with the variance-based indices. Using the former, the 
geothermal flow rate and geothermal gradient are relatively 
more influential on fine particulate matter formation, fossil 
resource scarcity, and global warming. Conversely, the flow 
rate is relatively less influential on water consumption using 
the PAWN indices than with the variance-based indices. 
The long upper tail of this outcome distribution may make 
variance less reliable as a description of uncertainty so that 
this impact could be further explored with a visualization of 
conditional variance across the range of flow rate, as in the 
case of the geothermal gradient for the networked heat pump 
alternative.

For the direct heating design alternative (Online Resource 
2, Fig. S13; rank correlations in Fig. S14), the number of 

wells and geothermal flow rate dominate relative impor-
tances except for the case of cumulative energy demand, 
where production temperature ranks ahead of flow rate. 
Sobol total index rankings are almost perfectly correlated 
(ρ > 0.98) across the impacts of fine particulate matter for-
mation, fossil resource scarcity, global warming, land use, 
and terrestrial acidification. However, they are less corre-
lated with the PAWN rankings than in the shallower alter-
natives (ρ < 0.82). The consistent difference between Sobol 
first-order and total indices for flow rate and number of wells 
(Online Resource 2, Fig. S15) indicates a likely interaction 
between these parameters. The relative difference between 
PAWN median and maximum indices indicates that particu-
lar regions of the input ranges may be especially sensitive in 
the case of production temperature (on cumulative energy 
demand) and well count (on water consumption). Overall, 
as the direct heating alternative does not use a heat pump, 
other parameters associated with the operation phase (i.e., 
efficiencies of the circulation pump and submersible well 
pump, and pumping pressure at the surface) emerge as more 
influential than in the heat pump alternatives, particularly for 
cumulative energy demand. This effect is especially notable 
with the PAWN indices. Similarly, the geothermal gradient 
is slightly but consistently more influential with the PAWN 
indices than with the variance-based indices, likely indicat-
ing a similar effect on conditional variance as illustrated for 
the networked heat pump design alternative.

3.2  Pairwise interaction indices

The differences found between first-order and total indi-
ces justify the investigation of pairwise interactions using 
second-order Sobol indices (Fig. 5; other impacts, along 
with absolute index values, are shown in Online Resource 2, 
Fig. S16 due to their high correlation with impacts shown in 
the main text). For the networked heat pump design alterna-
tive, the variance of cumulative energy demand is dominated 
by first-order indices. However, consistently with differences 
between first-order and total indices (Online Resource 2, 
Fig. S8), we find more substantial interactions toward impacts 
on global warming (mainly between geothermal flow rate and 
the number of wells) and mineral resource scarcity (between 
geothermal production temperature and the number of wells, 
or submersible pumps and the well production index). In rela-
tion to total variance, the largest interactions occur in the 
context of water consumption. Taking the most influential 
parameters for this impact, pairwise interactions thus account 
for most of the variance contributed by the geothermal flow 
rate and by the number of wells, and for nearly all the vari-
ance contributed by the geothermal gradient. Pairwise inter-
actions with these three parameters also represent a large 
part of the production temperature’s contribution to water 
consumption variance. These parameters all play a key role 
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for the drilling of geothermal wells, which was found to sig-
nificantly affect water consumption in the earlier analysis by 
Pratiwi and Trutnevyte (2021). However, we also emphasize 
that the values of these second-order indices should be inter-
preted with caution due to the limited convergence observed 
at tractable sample sizes (Online Resource 2, Fig. S6).

In the case of the central heat pump design alternative 
(Online Resource 2, Fig. S17), we similarly find that the 
most influential pairwise interactions arise in the case of 
mineral resource scarcity (between geothermal production 
temperature, or the number of wells and submersible pumps) 
and water consumption (particularly between geothermal 
flow rate and the number of wells, whereas the geothermal 
gradient is involved in multiple weaker interactions with the 
drilling-related parameters). This is consistent with the dif-
ferences observed between first-order and total indices on 
these impacts. Finally, the direct heating alternative (Online 
Resource 2, Fig. S18) presents the most salient interactions: 
the geothermal flow rate and the number of wells dominate 
pairwise interactions across all impacts, consistently with 
differences between first-order and total indices, and present 
the highest absolute second-order index values of any of the 
configurations: 7–10% of output variance depending on the 
impact. As with the shallower alternatives, the geothermal 
gradient is also involved in weaker interactions with multiple 
variables related to the drilling of geothermal wells.

4  Results of spectral clustering and scenario 
discovery

In the case of the networked heat pump design alternative, 
the subset of selected scenarios for scenario discovery, which 
is defined using a maximum water consumption threshold of 
40  m3/MWh, yields a relatively broader range of outcomes 
across the other impacts (Fig. 6). Consistently with cross-
impact correlation coefficients (Online Resource 2, Fig. S4), 
a low water consumption impact may for instance be accom-
panied by higher impacts on terrestrial acidification. We 
decompose this subset using spectral clustering (Fig. 7, left 
column), finding three clusters which rather evenly span 
the range of impacts found in the subset. Cluster 1 is thus 
a “best-case” group of scenarios across all impacts, while 
cluster 2 is, in comparison, a “worst-case” group, including 

several high outliers on cumulative energy demand. Cluster 
3 displays a different trade-off pattern, sharing cluster 1’s 
low impacts except for mineral resource scarcity and water 
consumption. As expected from the impact correlation coef-
ficients, impacts within each cluster are similar across fine 
particulate matter formation, fossil resource scarcity, global 
warming, land use, and terrestrial acidification.

The significant uncertainties identified by PRIM (Fig. 7, 
right panel) are consistent with the GSA results: the geo-
thermal flow rate, geothermal production temperature, and 
number of wells are the only variables that appear signifi-
cant in all three clusters. These were previously identified as 
the three most influential variables on water consumption, 
based on both types of single-variable sensitivity indices 
and Sobol second-order indices. Considering all clusters, 
we can conclude that at least 75% of scenarios with a water 
consumption below 40  m3/MWh in this alternative have a 
relatively high geothermal fluid flow (≥ 34 L/s), combined 
with a relatively high production temperature (≥ 24 °C), 
and a small number of wells (≤ 4). However, within these 
ranges, different patterns of outcomes emerge from differ-
ent input combinations. The relatively worse outcomes of 
cluster 2 are thus associated with a medium range of pro-
duction temperatures (24–45 °C). Clusters 1 and 3 include 
similar combinations of flow rate, production temperature, 
and heat pump COP multiplier. However, relaxing the con-
straint on the number of wells and removing the constraint 
on geothermal gradient leads to higher impacts on water 
consumption in cluster 3. The presence of the geothermal 
gradient as a significant variable in cluster 1 is coherent with 
the PAWN indices, which highlighted this variable’s impact 
on water consumption more prominently than the variance-
based indices. As such, the best-performing scenarios on 
water consumption occur with a relatively high geothermal 
gradient (≥ 0.025 °C/m), combined with favorable ranges 
of the other significant parameters. Whereas the second-
order interaction indices offered relatively poor convergence 
even for n = 100,000 scenarios, we note that PRIM can here 
identify meaningful parameter combinations with a much 
smaller sample.

In the case of the central heat pump alternative, we select 
scenarios for which water consumption is more than 50% 
higher than in the networked heat pump alternative (Online 
Resource 2, Fig. S19). In relation to the full ensemble of cen-
tral heat pump scenarios, we find that the scenarios of interest 
nonetheless occur in the context of low impacts on water con-
sumption. The clustering step identifies three clusters (Online 
Resource 2, Fig. S20). Cluster 1 has the lowest outcomes 
across all impacts, while cluster 2 identifies a smaller group 
including the highest outcomes on all impacts except for water 
consumption. Cluster 3 contains the majority of the scenarios 
with midrange values on most impacts, but a broad distribu-
tion of water consumption. The PRIM input ranges indicate 

Fig. 5  Sobol first-order and second-order indices for the networked 
heat pump design alternative; additional impacts are visualized in 
Online Resource 2, Fig. S16. For each chord diagram, the total cir-
cumference represents the variance of each impact. The arc length of 
each portion of the circumference represents the relative contribution 
of each input to the variance (total index). Within this portion, the 
arc length of a self-referential chord represents the first-order index; 
second-order indices are represented by the arc length (thickness) of 
chords linking two inputs

◂
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that these clusters are all associated with a relatively high 
geothermal flow rate (≥37 L/s), combined with a relatively 
high production temperature (≥36 °C). However, opposite 
portions of the heat pump COP multiplier range are retained 
in different clusters, leading to different outcomes. The pro-
duction temperature and COP multiplier did not emerge as 
highly influential overall for water consumption in the GSA 
but would nonetheless be decision-relevant in this case. As 
such, a low range for the COP multiplier (≤ 0.37), combined 
with a midrange production temperature (36–49 °C), leads 
to relatively high impacts in cluster 2. Impacts can instead 

be minimized as in cluster 1, by combining the upper range 
of this parameter (≥ 0.4) with a higher production tempera-
ture (≥ 39 °C) and a limited number of wells (≤ 3). How-
ever, following the definition of the scenarios of interest, the 
networked heat pump alternative would have a considerably 
lower water consumption in all these cases, when parameter-
ized with equivalent combinations of the PRIM input ranges 
that are rescaled to its specific uncertainty bounds. In sum, the 
networked heat pump alternative may be preferable in situ-
ations where a larger geothermal capacity is required and 
where water consumption is critical.

Fig. 6  Subset of scenarios of interest for the networked heat pump 
alternative (in blue; n = 1200) and full ensemble of scenarios sam-
pled with Latin Hypercube for this alternative (in gray; n = 12,000). 
Impacts are shown using parallel coordinates, with each line repre-
senting one scenario. For each impact, outcomes are normalized to 

[0,1] across the full ensemble. A Gaussian kernel density estimate 
shows the distribution of outcomes for each impact in the scenarios 
of interest (in dark blue) and in the full ensemble of scenarios for the 
networked heat pump alternative (in black)
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We conclude the analysis with the direct heating alterna-
tive (Online Resource 2, Fig. S21) focusing on scenarios that 
are Pareto-dominated by the central heat pump alternative 
across the eight impacts. In relation to the full ensemble of 
scenarios sampled for this alternative, we find that the sce-
narios of interest are largely found in the upper tail of the 

outcome distributions. As with the other alternatives, the 
clustering step identifies three clusters spanning the range 
of outcomes in the scenarios of interest (Online Resource 
2, Fig. S22). Due to the high correlation between impacts 
(Online Resource 2, Fig. S4), the relative magnitude of dif-
ferent impacts in each cluster is largely uniform. When only 

Fig. 7  Left column: clusters identified using spectral clustering in the 
subset of scenarios of interest for the networked heat pump alternative. 
Impacts are shown using parallel coordinates after re-normalizing to 
[0,1] within the scenarios of interest. Each line represents one scenario. 
Right column: combinations of uncertainty ranges associated with each 
cluster, identified using PRIM at a coverage threshold of 75%. The nor-

malized uncertainty range shows the full range of input uncertainties 
sampled in the Latin Hypercube ensemble for the networked heat pump 
alternative. Gray lines show the restricted range of each input found to 
be significant (p < 0.05) for each cluster. Estimated p values for the sig-
nificance of each restriction are shown in parenthesis
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using the input parameters of the direct heating alternative 
to explain the clusters, the PRIM algorithm did not reach the 
coverage threshold of 75% due to the small size of cluster 
3 in particular. Given that the scenarios of interest are also 
defined on the basis of the performance of the central heat 
pump alternative, we add the latter’s heat pump COP param-
eter to the analysis and find that it emerges as a significant 
restriction for all clusters. Overall, the Pareto-dominated 
scenarios are associated with a relatively low flow rate 
(≤ 42 L/s), a higher number of wells (≥ 4), and a relatively 
efficient heat pump in the reference central heat pump alter-
native (COP multiplier ≥ 0.34). This is consistent with the 
GSA results, which indicated that the first two parameters 
dominated the uncertainty of most impacts except cumu-
lative energy demand. The worst-case scenarios in cluster 
3 are furthermore associated with a low geothermal gra-
dient (≥ 0.025 °C/m), which would require deeper drilling 
for a given production temperature and greater consequent 
impacts. As such, in the presence of a low geothermal gra-
dient, combined with a relatively low flow rate, a relatively 
efficient heat pump, and a large number of wells, the central 
heat pump alternative would be preferable to direct geother-
mal heating across all impacts.

5  Discussion and conclusions

This study combined methods for distribution-based GSA, 
spectral clustering, and scenario discovery to demonstrate 
the insights which can be gained from these methods in a 
typical LCA application presenting non-normal outputs, 
trade-offs across multiple impacts, and interactions between 
inputs. As such, the PAWN distribution-based sensitivity 
indices generally identified influential inputs consistently 
with variance-based first-order and total Sobol indices. 
However, occasional discrepancies highlighted the poten-
tially misleading interpretation of variance-based indices 
on non-normal distributions. For instance, the geothermal 
gradient parameter was found to have a disproportionate 
impact on the conditional variance of water consumption in 
the networked heat pump design alternative, whereby fixing 
the parameter at a certain point of its range could coun-
terintuitively increase the variance of this impact, and thus 
its uncertainty. This parameter was more prominent using 
the PAWN indices. Furthermore, differences in the relative 
values of the median and maximum statistics used to define 
PAWN indices highlight relevant aspects for further analysis, 
such as the presence of specific input ranges that may lead 
to outliers on certain impacts. Nonetheless, the PAWN indi-
ces should ideally be used in a “meta-sensitivity analysis” 
framework (Puy et al. 2020) to test the robustness of these 
indices to parameters of the method, such as the number of 
conditioning intervals and sampling type.

In parallel, spectral clustering provides a useful explora-
tory step in cases where analysts and decision-makers must 
consider potential trade-offs between multiple impacts. While 
several impacts were highly correlated in our case study, 
spectral clustering nonetheless highlighted groups of sce-
narios presenting trade-offs across the remaining impacts, 
such as water consumption in the two heat pump alterna-
tives. We then applied the PRIM technique for scenario 
discovery, identifying specific ranges and combinations of 
uncertainties associated with these clusters. While second-
order Sobol indices pointed toward the overall importance of 
certain interactions, for instance across geothermal flow rate, 
production temperature, and number of wells on the water 
consumption of the networked heat pump alternative, PRIM 
provided more precise information on the specific values of 
these parameters that were associated with different patterns 
of impacts. Conversely, the production temperature and heat 
pump COP multiplier were found to be decision-relevant in 
our scenario discovery for the central heat pump alternative, 
despite having a low overall influence on water consumption 
using either GSA approach. Scenario discovery thus makes it 
easier for analysts to precisely identify design parameters or 
uncertainties associated with specific outcomes across single 
or multiple impacts, or to compare different design alterna-
tives. Unlike second-order Sobol indices, which require a 
very large sample size for convergence in typical applica-
tions, this approach is useful on smaller ensembles of sce-
narios. It can also highlight the combinations of multiple 
input parameters associated with certain output patterns: 
while Sobol indices are in practice limited to identifying 
interactions between pairs of parameters, PRIM identified 
combinations of four or more influential parameters (Fig. 7, 
right column). While we assumed independent and uniformly 
distributed inputs in our case study, we note that PRIM can 
be used regardless of input correlations, or assumptions on 
input and output distributions. It can similarly be applied on 
experimental designs that include categorical uncertainties; 
these can be mapped to structural “switches” in the model to 
support the combined exploration of parametric and method 
uncertainties, such as the choice of weighting methods or 
characterization factors.

We emphasize that we do not present distribution-
based GSA or scenario discovery as replacements for 
variance-based GSA. Except for their dependence on a 
specific statistical moment, variance-based sensitivity 
indices otherwise meet all criteria described by Liu and 
Homma (2009) for “ideal” sensitivity indices, in par-
ticular due to their clear mathematical interpretability 
and their straightforward (if computationally intensive) 
computation. However, the fundamental assumptions that 
underpin variance-based GSA should be made explicit 
in analyses which rely on this approach, by evaluat-
ing whether variance is a suitable characterization of 
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uncertainty. This can be assessed on the basis of the 
model output distributions by using a statistical test such 
as Shapiro–Wilk and a quantile–quantile visualization 
to evaluate the (log-)normality of model outputs. Vis-
ualizing the conditional output variance (as in Online 
Resource 2, Fig. S9) can also illustrate the implications 
of resolving the uncertainty of a specific parameter: if 
fixing the parameter at a certain value leads to increased 
variance, first-order Sobol indices should be interpreted 
with care. In parallel, the techniques used in this work 
for distribution-based GSA and scenario discovery can 
easily be added to variance-based GSA in a multi-method 
approach, without adding computing costs. As these 
techniques are applicable with relatively small sample 
sizes, they are also useful for models for which variance-
based GSA is impractical and which may instead benefit 
from recent advancements in efficient sensitivity estima-
tors (reviewed in Lo Piano et al. 2021). Such a multi-
method approach would support a robust assessment of 
input sensitivities for LCA, while yielding more precise 
insights into decision-relevant input ranges and interac-
tions between uncertainties. With this paper, we thus hope 
to highlight the usefulness of emerging methods for the 
analysis and interpretation of uncertainty in LCA models.
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