Correction to: Selecting the best product alternative in a sea of uncertainty

Reinout Heijungs ${ }^{1,2}$

Published online: 14 April 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Correction to: The International Journal of Life Cycle Assessment (2021) 26: 616-632 http://doi.org/10.1007/s11367-020-01851-4

The original version of this article unfortunately contained mistakes in the captions of Tables 12, 13, 14, 15. Here are the correct tables given:

Open Access This article is licensed under a Creative Commons. Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://www.creativecommons. org/licenses/by/4.0/.

Table 12 Proposed format for communicating comparative results in case of more than two products. A cell like " $\mathrm{X} \leftrightarrow \mathrm{Y}$ " contains information about the difference or preference of X with respect to Y

	product A	product B	product C	product D
product A	-	$\mathrm{A} \leftrightarrow \mathrm{B}$	$\mathrm{A} \leftrightarrow \mathrm{C}$	$\mathrm{A} \leftrightarrow \mathrm{D}$
product B	$\mathrm{B} \leftrightarrow \mathrm{A}$	-	$\mathrm{B} \leftrightarrow \mathrm{C}$	$\mathrm{B} \leftrightarrow \mathrm{D}$
product C	$\mathrm{C} \leftrightarrow \mathrm{A}$	$\mathrm{C} \leftrightarrow \mathrm{B}$	-	$\mathrm{C} \leftrightarrow \mathrm{D}$
product D	$\mathrm{D} \leftrightarrow \mathrm{A}$	$\mathrm{D} \leftrightarrow \mathrm{B}$	$\mathrm{D} \leftrightarrow \mathrm{C}$	-

Table 13 Framework for deciding between two products A and B

		What is the probability that a randomly selected specimen of product A performs better than a randomly selected specimen of product B ?		
		low	$\approx 50 \%$	high
How much will a randomly selected specimen of product A perform better than a randomly selected specimen of product B?	a bit a lot	questionable choose B	never mind questionable	questionable choose A

product B ?

The original article can be found online at https://doi.org/10.1007/ s11367-020-01851-4.

Reinout Heijungs
r.heijungs@vu.nl; heijungs@cml.leidenuniv.nl

1 Department of Operations Analytics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands

2 Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300, RA, Leiden, The Netherlands

Table 14 Suitability of the various comparison statistics for answering the two relevant questions

Statistic	Answers the question	
	What is the probability that a randomly selected specimen of product A performs better than a randomly selected specimen of product B?	How much will a randomly selected specimen of product A perform better than a randomly selected specimen of product B?
difference in mean or median	no	yes
NHST with t-test or Wilcoxon-Mann-Whitney test	no	no
modified NHST	no	no
Cohen's d, Pearson's r	no	no
nonoverlap statistics $\left(U_{1}, U_{2}, U_{3}, C L E S\right)$	yes	no
Bhattacharyya coefficient and overlapping	yes	no
coefficient	yes	no
comparison index and discernibility	yes	yes
superiority $\left(K_{2}, K_{3}\right)$	yes	

Table 15 Result of the proposed superiority statistics K_{4} for the example system, using $\gamma_{0}=1.2$

	independent comparison	dependent compari- son
Probability of threshold superiority of $\mathrm{A}\left(K_{4, \mathrm{~A}}\right)$	0.51	0.49
Probability of threshold superiority of $\mathrm{B}\left(K_{4, \mathrm{~B}}\right)$	0.10	0.00

The original article has been corrected.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

