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Abstract
Purpose It is frequently mentioned in literature that LCA is linear, without a proof, or even without a clear definition of the
criterion for linearity. Here we study the meaning of the term linear, and in relation to that, the question if LCA is indeed linear.
Methods We explore the different meanings of the term linearity in the context of mathematical models. This leads to a
distinction between linear functions, homogeneous functions, homogenous linear functions, bilinear functions, and multilinear
functions. Each of them is defined in accessible terms and illustrated with examples.
Results We analyze traditional, matrix-based, LCA, and conclude that LCA is not linear in any of the senses defined.
Discussion and conclusions Despite the negative answer to the research question, there are many respects in which LCA can be
regarded to be, at least to some extent, linear. We discuss a few of such cases. We also discuss a few practical implications for
practitioners of LCA and for developers of new methods for LCI and LCIA.
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1 Purpose

We often read statements concerning the linearity of LCA. As
an example, below are a few quotations from articles in The
International Journal of Life Cycle Assessment:

& “Linear models such as... LCA” (Yang 2017; Yang and
Heijungs 2018)

& “At the heart of LCA methodology, default assumptions
lie in the strict linearity between inputs and outputs”
(Gibon and Schaubroeck 2017)

& “Unlike conventional LCA, [our] life cycle inventory...
relies on complex nonlinear calculations” (Di Lullo et al.
2020)

& “The reduction of model uncertainties in the inventory
analysis through the use of nonlinear modeling”
(Huijbregts 1998)

& “The LCA model scaled linearly” (Villares et al. 2017)
& “The first adaptation necessary for LCA... is to permit

nonlinear relationships in the inventory models” (Geyer
et al. 2010)

& “LCA, in effect, assumes linearity of all concentration-
response functions: all impact indices are proportional to
the emitted quantities” (Spadaro and Rabl 1999)

Apparently, many authors seem to agree that mainstream
LCA, or at least mainstream LCI, is linear. However, saying
that LCA is linear is one thing, but it is another how such
authors arrive at that conclusion, and what they mean by it.

In this paper, we will study two questions:

& Question 1: what does it mean when we say that LCA is
linear?

& Question 2: is it true that mainstream LCA is indeed
linear?

Answers to these two questions may induce new questions,
such as the following:

& Is it bad that LCA is linear?
& Can we develop improvements to cure such problems?
& When is a linear model good enough?
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Such follow-up questions will be left to future contribu-
tions; here we only discuss the two questions about the mean-
ing of linearity and if mainstream LCA is linear. Despite this
seemingly narrow scope of the research, there appears to be a
surprisingly rich and nuanced answer to the apparently simple
four-word question “Is mainstream LCA linear?”.

In posing the question if LCA is linear, there is a third
question which needs to be answered: What do we mean by
LCA? Yes, we mean environmental life cycle assessment, but
even then there are a large number of variations: process-
based LCA, IO-based LCA, consequential LCA, attributional
LCA, dynamic LCA, etc. To avoid the danger of forgetting
very specialized forms of LCA, we will narrow the discussion
to mainstream LCA. This is admittedly not clearly defined as
well, but we think that everyone who regularly reads The
International Journal of Life Cycle Assessment and who has
used the usual databases and software for LCA knows what
we have in mind. Computationally, it relies on (1) the scaling
of unit processes (or IO sectors) such that a final demand
(typically, the functional unit) is satisfied, (2) the aggregation
of similar pollutants and resources over all life cycle processes
or sectors, and (3) the use of characterization factors in LCIA.
The LCI part is often expressed in matrix form (Heijungs and
Suh 2002), although variations also occur (Ciroth et al. 2004).
The LCIA part is generally done with equations such as ∑

i
C

Fi � mi (Hauschild et al. 2018) or matrix equivalents
(Rosenbaum et al. 2007).

2 Methods

Words like “linear” and “linearity” have different mean-
ings. We can speak about a “linear chain of events” or
a “linear narrative”: First, I drop water on the floor,
then a passerby slides and falls, then the person breaks
his leg, then he goes to hospital, then he sues me, and
then... This narrative meaning is not completely alien to
LCA; consider for instance the phrase “the circular
economy is a move from linear business models... to
circular business models” (Broadbent 2016), where the
word “linear” is used in such a way. Another pertinent
example is the contrast between the cradle-to-grave “lin-
ear” LCA and “circular” cradle-to-cradle frameworks:
“McDonough and Braungart... recognized the impor-
tance of closing “technical” and “biological” loops in
a “cradle-to-cradle” or circular (rather than cradle-to-
grave or linear) economy” (Bocken et al. 2016). A third
case is the recognition that in the ISO framework “a
number of arrows indicate that rather than a linearly
proceeding process, LCA involves many feedback loops
between the different phases of the LCA” (Hauschild
et al. 2018).

However, in most cases, the term “linear” is used in a
different, more mathematical, way. Below, we will study the
meaning of linearity in the context of mathematical models.

2.1 Linear, homogeneous, homogeneous linear,
bilinear, and multilinear functions

Typically, where authors write about the linearity (or nonlin-
earity) of LCA, they refer to a certain property, which has to
do with straight lines in a graph and/or proportionality of
response (“twice as much product means twice as much emis-
sion”). For instance, Yang (2017) writes that “when we apply
such linear models as process- and IO-based LCA to address
change-related questions, they are based on a strict linear or
proportional relationship”. We will focus on such uses, bring-
ing in a bit more precision through mathematical definitions
and mathematical notation. In this analysis, we will base our-
selves on the standard textbooks on mathematics, such as
Apostol (1967), Adams and Essex (2010), and Stewart
(2012).

A function f(x) is said to be a linear function when it can be
written as a + bx. For example, f1(x) = 5 + x and f 2 xð Þ ¼ 1

2 x
are linear functions, but f 3 xð Þ ¼ 3þ 2

x−2 and f4(x) = − 2 + x2

are nonlinear. The graph of a linear function is a straight line.
Figure 1 illustrates the four functions on a small part of their
domain.

Note that the straight line that represents a linear function
does not necessarily pass through the point (0, 0). This implies
that there is not necessarily a proportionality between input (x)
and output (f(x)). For example, f1(x) = 5 + x is a linear function,
but f1(2 × 3) = 11 ≠ 2 × f1(3) = 16, so doubling input does not
result in a doubled output. The subset of linear functions that
satisfy the proportionality between input and output are some-
times referred to as homogeneous linear functions: A

Fig. 1 Plot of two linear functions (f1(x) = 5 + x and f 2 xð Þ ¼ 1
2 x ) and two

nonlinear functions ( f 3 xð Þ ¼ 3þ 2
x−2 and f4(x) = − 2 + x2)
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homogeneous linear function satisfies f(kx) = kf(x) for all
values of x and k. The subset of linear functions that are not
homogeneous (so functions of the type f(x) = a + bx with a ≠
0) are then called non-homogeneous linear functions.

Besides functions of one variable, like f(x) = a + bx, math-
ematical theory also has incorporated functions of two or more
variables, such as g(x, y) = a + bx + cy or h(x, y, z) = a + bx +
cy + dz. Such functions also fall within the definition of linear
functions. The essential thing is that all terms contain only one
variable at the same time, and that this variable is included
with order 1, so without any square, root, logarithm, or other
nonlinear ways. Thus, g1(x, y) = 4 − 2x + 5y and g2(x, y) = x −
y are linear functions, while g3(x, y) = 4 + x2 − 5y and g4(x,
y) = 3 − 4x + 2xy are nonlinear. While linear functions of one
variable can be plotted as a straight line in a 2-dimensional
plot (Fig. 1), linear functions of two variables can be repre-
sented as a plane in a 3-dimensional graph (Fig. 2, left panel).
With a bit of phantasy, linear functions of k variables can be
plotted as hyperplanes in a (k + 1)-dimensional graph.

The proportionality between input and output is of course
more complicated for functions of more than one variable.
The concept of homogeneous linear functions works out in a
slightly more complicated way because we should rescale all
variables with the same factor: g(kx, kx) = kg(x, y) for a func-
tion of two variables, h(kx, kx, kz) = kh(x, y, z) for a function of
three variables, etc. More generally, if a linear function f sat-
isfies f(kx, ky, kz,…) = kf(x, y, z,…) for all k, it is a homoge-
neous linear function.

A function of two or more variables that is nonlinear can
still be homogeneous. An example is the function

g x; yð Þ ¼ 8xy
xþy. Clearly, g kx; kyð Þ ¼ k2

k
8xy
xþy ¼ kg x; yð Þ, for all

k ≠ 0. This function therefore satisfies a proportionality feature
(doubling both x and y yields a doubled output), but it is
clearly not a linear function (Fig. 2, right panel).

An important change of perspective occurs when we con-
sider functions such as g(x, y) = a + bx + cy + dxy. This func-
tion is not linear, in the sense as defined above: it is a nonlinear
function. However, when we fix one of the variables (say, x)
and change the other variable (y), the response changes in a

linear way. To see this, we rewrite the function as gx(y) = (a +
bx) + (c + dx)y, which indeed looks like a linear function of
one variable (only y). If we plot gx against y, for a fixed x, we
will see a straight line with slope c + dx. Such functions are
referred to as bilinear functions (Fig. 3). The idea of studying
the effect of a change while keeping the other variable fixed

points of course to the partial derivative: ∂g
∂y ¼ cþ dx, which

does not depend on x. Likewise, ∂g∂x ¼ bþ dy does not depend
on y. Note that every linear function of two variable is also a

bilinear function (g(x, y) = a + bx + cy yields ∂g∂x ¼ b and ∂g
∂y ¼ c

), but that the converse does not hold (g(x, y) = a + bx + cy +
dxy cannot be written as g(x, y) = a′ + b′x + c′y).

In the more general case of more than two variables, we
speak of multilinear functions: A function h(x, y,…) is a
multilinear function when ∂h

∂x does not depend on x, ∂h
∂y does

not depend on y, and similar relations hold for all other vari-
ables. In the remaining text, we will no longer mention
bilinearity, but always group this under multilinearity.
Table 1 summarizes the different concepts.

As a final note, a function like g(x, y) = a + bx + cy2 is a
nonlinear function because there is a quadratic term in it. It

is also non-multilinear, because ∂g
∂y ¼ 2cy, which depends on

y. However, it can be considered to be linear (and multilinear)
in x (but still nonlinear in y). In mathematics, linearity and
multilinearity are absolute notions, and a function that is non-
linear in one of its variables is nonlinear. However, we will
here allow for such cases of “partial” linearity or
multilinearity. Please note that the terms partial linearity and
partial multilinearity are not generally recognized terms in
mathematics.

2.2 Question 1: what does it mean when we say that
LCA is linear?

On the basis of the mathematical definitions of linear, homo-
geneous linear, and multilinear functions, we can answer the
first question as follows: LCA depends on a lot of data. More
specifically, we mention several categories of data:

Fig. 2 Left panel: plot of a linear function of two variables (g(x, y) = 3x + 2y − 4). Right panel: plot of a homogeneous nonlinear function (g x; yð Þ ¼ 8xy
xþy ).

In both panels, the colors indicate different function value ranges (e.g., orange is between 5 and 10)
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& Goal and scope definition: the functional unit/reference flow;
& Inventory analysis: product flows (e.g., electricity use per

unit of steel);
& Inventory analysis: elementary flows (e.g., CO2 emission

per unit of electricity);
& Impact assessment: characterization factors (e.g., the

GWP of methane);
& Impact assessment: normalization factors and weighting

factors.

There may be some more data needed, for instance in rela-
tion to allocation factors. We will ignore these here.

We now propose the following answer to question 1:

& LCA is linear if the LCA result is a linear function of the
data that is used as input in the LCA calculations.

Here, LCA result may refer to the result of inventory, char-
acterization, normalization, or weighting. In addition, we al-
low for possible other types of nuances:

& LCA is homogenous linear if the LCA result is a homog-
enous linear function of the data that is used as input in the
LCA calculations;

& LCA is homogenous if the LCA result is a homogenous
function of the data that is used as input in the LCA
calculations;

& LCA is multilinear if the LCA result is a multilinear func-
tion of the data that is used as input in the LCA
calculations.

3 Results

To study the question if LCA is linear (or homogenous, or
homogeneous linear, or multilinear), we will consider an LCA
system of minimal size:

& Two unit processes;
& Two products
& One elementary flow
& Only LCI, no impact assessment.

The next subsection describes the setup of this system and
specifies the final model equation.

3.1 The model equation of a small LCA system

We will work with traditional matrix-based setup
(Heijungs and Suh 2002), which is based on linear
(sic!) algebra. Here, we have a final demand vector f
¼ f 1ð f 2Þ, a technology matrix A ¼ a11 a12ð a21a22Þ,
and an intervention matrix which is reduced to a row
vector B = (b11 b12). The result is the system-wide

Fig. 3 Plot of a bilinear (but not linear) function of two variables (g(x,
y) = 3x + 2y + xy − 4). The colors indicate different function value ranges
(e.g., orange is between 10 and 20)

Table 1 Classification of a number of functions of 1, 2 or 3 variables in terms of linearity, homogeneity, homogeneous linearity, and multilinearity.
Bilinearity is multilinearity in the case of 2 variables

Variables Example function Linear Homogeneous linear Homogeneous Bilinear/
multilinear

1 f(x) = ax Yes Yes Yes Yes

1 f(x) = a + bx Yes No No Yes

1 f(x) = a + bx2 No No No No

2 g(x, y) = ax + by Yes Yes No Yes

2 g(x, y) = a + bx + cy Yes No No Yes

2 g(x, y) = a + bx2 + cy No No No No

2 g(x, y) = a + bx + cy + dxy No No No Yes

2 g(x, y) = a + bx + cy + dxy + ex2 No No No No

2 g(x, y) = ax + ay Yes Yes Yes Yes

2 g x; yð Þ ¼ axy
bxþby No No Yes No

3 h(x, y, z) = a + bx + cy + dz Yes No No Yes
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emission vector (g), for which we use the generic for-
mula

g ¼ BA−1 f

For such a 2-by-2-system, the inverse of A can be worked
out in algebraic detail:

A−1 ¼ 1

a11a22−a12a21
a22 −a12
−a21 a11

� �

This then yields

g1 ¼
b11a22 f 1−b11a12 f 2−b12a21 f 1 þ b12a11 f 2

a11a22−a12a21

In summary, the LCI result (g1) is modeled as a function F
of the different inputs (b11, b12, a11, a12, a21, a22, f1, f2):

g1 ¼ F b11; b12; a11; a12; a21; a22; f 1; f 2ð Þ

The question we face now is as follows: Is the function F
linear, homogeneous linear, homogeneous, multilinear, or is it
just nonlinear in all meanings?

3.2 Question 2: is it true that mainstream LCA is
indeed linear?

We consider the different types of linearity of the function

F b11; b12; a11; a12; a21; a22; f 1; f 2ð Þ

¼ b11a22 f 1−b11a12 f 2−b12a21 f 1 þ b12a11 f 2
a11a22−a12a21

This function is clearly not of the type

F b11; b12; a11; a12; a21; a22; f 1; f 2ð Þ
¼ αþ βb11 þ γb12 þ δa11 þ⋯

so it is not a linear function. Because of this, it is also not a
homogeneous linear function.

It is a homogeneous function, though:

F kb11; kb12; ka11; ka12; ka21; ka22; k f 1; k f 2ð Þ
¼ kF b11; b12; a11; a12; a21; a22; f 1; f 2ð Þ

In words, if we multiply all coefficients in an LCA calcu-
lation (functional unit, process data) by a factor of 2, the LCI
result will be doubled. It is easy to see that, although we did
not analyze the impact assessment here, inclusion of charac-
terization factors changes this conclusion. Anyhow, we do not
think that this nonlinear homogeneity is the property that most
authors have in mind when they write that LCA is linear.

The only further option to consider is multilinearity. To test
for that, we consider the eight partial derivatives ∂F

∂b11,
∂F
∂b12,

∂F
∂a11,

etc. For conciseness, wewill work out just three representative
cases.

First we consider ∂F
∂b11:

∂F
∂b11

¼ a22 f 1−a12 f 2
a11a22−a12a21

which does not depend on b11, so this suggests
multilinearity with respect to b11 (and by analogy, with respect
to b12). Next consider ∂F

∂ f 1
:

∂F
∂ f 1

¼ b11a22−b12a21
a11a22−a12a21

which does not depend on f1, so again no problem in main-
taining multilinearity with respect to f1 (and f2). Finally, ∂F

∂a11:

∂F
∂a11

¼ b12 f 2
a11a22−a12a21

−a22
b11a22 f 1−b11a12 f 2−b12a21 f 1 þ b12a11 f 2

a11a22−a12a21ð Þ2

Clearly, this expression depends on a11, and we therefore
conclude that F is not multilinear with respect to a11. Similar
expressions and conclusions can be drawn when we consider
the other 3 a-variables a12, a21, and a22.

Because the LCA function F is non-multilinear in some of
its arguments, it is a non-multilinear function, even though it is
multilinear in some of its other arguments, so the overall con-
clusion is that LCA is not a multilinear function.

Now, we have analyzed the four possible options that could
be embraced by linearity: linear, homogeneous linear, homo-
geneous, and multilinear. Traditional, matrix-based, LCA has
been demonstrated to be at most nonlinear homogeneous, but
not linear, not homogeneous linear, and not multilinear.
Therefore, there is not much in LCA that could be argued to
be linear. Our overall conclusion is therefore the following:
No, LCA is not linear.

4 Discussion and conclusions

Despite our negative answer to the question raised in the title,
the discussion is not finished. For instance, why do so many
authors claim that LCA is linear? We will approach this ques-
tion from different sides.

4.1 Traces of linearity in LCA

The analysis of multilinearity leaves open a small but impor-
tant option: The LCA function F is multilinear (not linear) if
we consider the elements of f and B only. A plot of the LCA
result as a function of one specific element of f (say, f1) or one
specific element of B (say, b11) shows a straight line (but not
necessarily through the point (0, 0)).
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There is one other special case to consider. In conventional
LCA, the final demand vector f is entirely filled with zeros,
except for the reference product that fulfills the functional
unit. In our small example, we might write this as f ¼ f 1ð
0Þ. In that case, the previous equation for F reduces to

F b11; b12; a11; a12; a21; a22; f 1ð Þ ¼ b11a22 f 1−b12a21 f 1
a11a22−a12a21

¼ b11a22−b21a12
a11a22−a12a21

f 1

This implies that F is a homogeneous linear function when
we only study the effect of f1. Indeed, the LCA result (g1)
scales linearly with the size of the functional unit (f1). We
conjecture that this proportionality of g on f1 is meant by some
LCA researchers whenever they speak of the “linearity of
LCA”. Such is indeed the case with Yang and Heijungs
(2018): “the amount of impact change (Δg) that is associated
with a change in demand [(Δf)] is a linear function of [Δf].
We will refer to this as process-based LCA being a linear
model.” (notation has been changed to agree with this paper).

This is of course a very specific and restricted meaning of
linearity. As shown, LCA in general is not linear, it is even not
multilinear, and it is certainly not homogeneous linear.

As a side note, with a compound functional unit like f
¼ f 1ð f 2Þ, we have no linearity, but we do have a homoge-
neous case, because when we multiply all reference flows by
the same factor k, so drive the system with k f ¼ k f 1ð k f 2Þ,
the LCA result also multiplies by k into kg. This is another
trace of linearity, even though a mathematician would prefer
to use the term “homogeneous” for this case.

4.2 Almost linear LCA and strongly nonlinear LCA

To better investigate the situation, we will choose concrete
numbers for the input variables of our LCA system, based
on Heijungs and Suh (2002) and Heijungs (2002):

A ¼ −2 100
10 0

� �

and

B ¼ 1 10ð Þ

and

f ¼ 0
1000

� �

With these choices, we can compute a value for g: 120. If
we now vary coefficient a22 between 0 (the “default” value
above) and −499, we obtain a strongly nonlinear response
(Fig. 4, left panel). If we zoom in on a smaller range of values,

between 0 and −25, the response is for all practical purposes
linear (Fig. 4, right panel).

The consequence is that for some ranges of parameter values,
the nonlinear LCA result responds in an almost linear way, while
in some other ranges, the response is not at all linear.

4.3 Causes of nonlinearity

How can linear (sic!) algebra, which is at the root of matrix-
based LCA (Heijungs and Suh 2002), lead to a nonlinear
model? The reason is that the basic equation

g ¼ BA−1 f

looks like a succession of “innocent”multiplications, but in
fact contains a crucial power (−1 ) for the inverse of matrix A.
In several respects, a matrix inversion bears similarities with a
division, so we may in a way reinterpret BA−1f as “BfA ” (note
this is an interpretation only, and it is not a division). As noted
in the example function f 3 xð Þ ¼ 3þ 2

x in the very beginning
of our analysis, division yields a nonlinear function (Fig. 1).

A related point is that the start equations of LCA are linear.
They are based on equations like

As ¼ f
g ¼ Bs

�

both of which are linear. The point is thatAs = f is a system
of linear equations, but that its solution s =A−1f is nonlinear.
This issue has been addressed in the gray LCA literature be-
fore (Heijungs (2002): “even though processes are scaled in
LCA in a linear way, the final equation that displays how the
CO2 emission depends on the system’s coefficients is nonlin-
ear.”). In other words, part of the confusion about the alleged
linear nature of LCA may stem from the distinction between
the equations and the solution of the equations. Traditional
LCA scales processes in a linear way, but the scaling factors
depend in a nonlinear way on the process data.

The conclusion is that in statements like “LCA is a linear
model” not only the term “linear” deserves a more precise artic-
ulation, but also the distinction between amodel equation and the
solution of the model equation should be introduced carefully.
LCA’s model equations are linear, but their solutions are nonlin-
ear. The distinction between amodel equation and the solution of
a model equation is a fundamental one, but it is not always
appreciated. In our case, the model As = f is linear, but its solu-
tion s=A−1f is nonlinear, because it involves an inversion.

4.4 Extension to LCIA

The discussion above has concentrated on the inventory phase
of LCA. Does inclusion of impact assessment (the LCIA
phase) provide new insights? We will restrict the discussion
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to characterization; extension to normalization or weighting is
straightforward.

Traditional LCIA uses characterization factors, which are
used to perform a linear aggregation of LCI results. A typical
expression for the characterization result for impact category j,
hj,is

hj ¼ ∑
i
qjigi

where qji is the characterization factor that couples elemen-
tary flow i to impact category j. In matrix form, this may be
written as

h ¼ Qg

Clearly, this procedure satisfies the definition of a linear
function (but not that of a homogeneous linear function).

The full LCA procedure can be written as

h ¼ QBA−1 f

which of course remains nonlinear, as discussed above. But
another intriguing argument may be added.

Characterization factors are typically derived from nonlin-
ear models, such as the IPCC-climate model or species sensi-
tivity distribution models for ecosystem toxicity. Let us write
such a model as

z ¼ f x; yð Þ

where z is the model output (e.g., infrared radiation) and x
and y are model inputs (e.g., the CO2 emission and the CH4

emission). Characterization factors are defined as marginal
effects (Huijbregts et al. 2011), so through partial derivatives:

qx ¼
∂ f
∂x

; qy ¼
∂ f
∂y

The LCIA result is then found through

h ¼ qxgx þ qygy

where gx is the LCI result for elementary flow x and gy is
the LCI result for elementary flow y. With respect to the dis-
cussion on linearity, it is important to observe the following:

& Characterization factors are defined as partial derivatives
from (in general) nonlinear impact models;

& Characterization factors are used in a linear way (the
LCIA equation is linear).

As such, the use of characterization factors can be consid-
ered a “linearized” approach (Woods et al. 2018). Further,
although some classes of characterization factors have histor-
ically been derived without the use of partial derivatives, it has
even turned out to be possible to erect an underlying nonlinear
impact model ex-post (Hélias and Heijungs 2019).

4.5 Nonlinear LCA and parametrized LCA

Although we concluded that LCA is in many respects nonlin-
ear, the basic modeling principle of traditional LCA rests on a
linearity assumption: Processes scale in a linear way. In the
world of input-output analysis (Miller and Blair 2009), this
assumption is known as the assumption of a linear technology.
More precisely, it is an assumption of homogeneous linearity:
For any process, doubling the input is associated with dou-
bling the output. A specific process j has exchanges with the
economy aij and with the environment bkj. The linear relation-
ship is then written as

a′i j ¼ ai js j for all ið Þ
b′k j ¼ bk js j for all kð Þ

where a
0
ij and b

0
kj are the exchanges of process j after scaling

with a factor sj (while aij and bkj are the exchanges per unit of
output). This assumption of linear technology is made for
every included process, after which the system-wide equations
are the well-known

Fig. 4 Dependence of the LCA result (g) on a22. Left panel: over a large range of values, a nonlinear response is clearly visible. Right panel: over a small
range of values, the response is approximately linear (but not homogeneous linear)
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f ¼ As
g ¼ Bs

�

If we depart from the linearity assumption, we turn the
equation for an individual process j into a nonlinear function,
say αij (for the economic part) and βkj (for the environmental
part):

a′i j ¼ αi j v j
� �

for all ið Þ
b′k j ¼ βk j v j

� �
for all kð Þ

where vj is some activity level (e.g., output level) of process
j. The balance equation still holds:

∑
j
α′
i j ¼ ∑

j
αi j v j

� � ¼ f i for all ið Þ

The task is therefore to find the activity levels vj such that
∑
j
αij v j

� � ¼ f i, where α i j are nonl inear funct ions .

Depending on the details of these functions αij, this may be
a difficult task, and there is no guarantee that there is a solution
at all, or a unique solution. In any case, there is no analogous

closed-form solution, like s j ¼ ∑
i

A−1� �
ji f i for the linear

case.
Once these activity levels are found, they are inserted into

gk ¼ ∑
j
β′
k j ¼ ∑

j
βk j v j

� �
for all kð Þ

With βkj given, that is a straightforward task.
In conclusion, dropping the linear technology assumption

in LCA is possible, but we have to replace the scaling factors
sj (for which a closed-form solution is available) by activity
levels vj (for which there is no closed-form solution).

The topic of parametrized LCA deserves a special mention.
Parametrized LCA refers to a setup in which the process data
(or some of the process data) depend collectively on one or
more settings. For instance, the fuel efficiency of a car does
not enter the process data of A and B explicitly, but it influ-
ences some of the elements in A and B. The fuel input of
process j (say, aij) and the CO2 emission of process j (say,
bkj) both depend on this external parameter (say, ηj). The de-
pendence of these coefficients may even be nonlinear:

aij ¼ ϕi η j

� �
; bkj ¼ ψk η j

� �

However, when the resulting process data (aij and bkj) con-
tinue to end up in a matrix structure that is scaled in a linear
way, the LCA model is again linear.

Notice, by the way, that the topic of parametrized is an
underdeveloped one. Even a proper definition of what entails
parametrized LCA is probably lacking, and different authors
have different ideas on this. For instance, Mutel et al. (2013)
suggest that parametrized LCA does not fit the framework of

linear algebra: “the formulas... cannot be applied to parame-
trized databases, which include nonmatrix calculations”.
Marini and Blanc (2014), on the other hand, define “a param-
etrized LCA model [as] depending on a limited number of
input parameter,” and further treat it in the usual way. The
whole idea of parametrized LCA obviously deserves a more
rigorous treatment.

4.6 The narrative meaning of linearity

In the introduction, we briefly mentioned that the term linear-
ity can be understood in a narrative way, besides the mathe-
matical, model-oriented, meaning that has received our prime
attention so far. LCA is sometimes considered to be linear,
because it addresses a product from the cradle to the grave, as
a chronologic account. Authors then sometimes argue that
other paradigms (cradle-to-cradle, circular economy) have ad-
vantages above this linear thinking that would be inherent to
LCA. This article will not further explore such debates. But
we would like to single out one aspect: there are numerous
loops in traditional LCA. For instance, electricity production
requires fuel, while fuel production requires electricity. Such
loops distort the linear time order of a flow diagram. Indeed, as
Dorfman et al. (1958) observed in relation to input-output
analysis, “for the production of coal, iron is required; for the
production of iron, coal is required; no man can say whether
the coal industry or the iron industry is earlier or later in the
hierarchy of production”. As a result, we may conceive the
solution of the system to reflect some forms of time ordering,
through the use of the power series expansion of the inverse
matrix (Suh and Heijungs 2007):

A−1 ¼ Iþ I−Að Þ þ I−Að Þ2 þ I−Að Þ3 þ⋯

This is not further discussed here, but we refer to Beloin-
Saint-Pierre et al. (2014) for an elaboration.

A typical feature of such systems is that a network repre-
sentation (Newman 2010) exhibits cyclic structures, and
studying network theory opens another interesting vista for
studying industrial networks (Heijungs 2015). Matrix-based
LCA easily incorporates such structures in the model equa-
tions. In conclusion, there is no strict linear time order in LCA,
and matrix-based LCA can easily deal with such “nonlinear”
time orderings.

4.7 Questions 1 and 2 once more

The above arguments may lead to a more nuanced answer to
question 1 (What does it mean when we say that LCA is
linear?) and question 2 (Is it true that mainstream LCA is
indeed linear?). Distinguishing the basic equations (such
As = f) from their solutions (such as s =A−1f) gives two strat-
egies for answers:
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& Yes, the basic equations of (traditional) LCA are linear;
& Partly yes, the dependence of LCA results on the size of

the functional unit data is linear;
& No, the dependence of LCA results on input data is

nonlinear.

Likewise, we may answer:

& No, the dependence of LCA results on input data is non-
linear if you consider the whole range of values;

& Yes, the dependence of LCA results on input data is al-
most linear in a restricted range of values.

The strictly negative original answer to the title question (Is
mainstream LCA linear?) can be relaxed if we adopt a more
relaxed viewpoint of what it means to be “linear”.

4.8 Practical implications

The analysis and discussion are quite theoretical so far. Do
they also have practical implications, for present-day LCA, or
for future development? Of course, there is an implication for
the wording of research: simple statements that LCA is linear,
such as those quoted in the introduction, have been shown to
be incorrect or inaccurate. But there is a wider implication.

On the one hand, several authors criticize the use of “linear
models” because they would fail to capture nonlinear effects,
but then propose new, equally linear models. For example,
Hauschild et al. (2018) write that “when medium-scale or
large-scale interventions (or consequences) are to be assessed,
the characterization factors should represent non-marginal po-
tential impacts and may also have to consider nonlinearity”.
But at another place, they write that “the use of characteriza-
tion models... implies a linear relationship,” so it is unclear
which type of nonlinearity problem would be resolved while
staying within a linear (or multilinear) model setup. Especially
in the world of LCIA method developers, there is an idea that
traditional LCIA methods are of limited value due to a linear
setup and that LCIA should move on to include nonlinear
impact functions. For instance, Fantke et al. (2015) discuss
that in an equation like q ∝ ERF, where q is an element of
the characterization matrix Q and ERF is the exposure-
response function, “a key assumption implicit in this frame-
work is the linear, no-threshold ERF,” and that “the shape of
populationERF is usually assumed to be linear with no thresh-
old”. That is wrong. As discussed by many authors
(Huijbregts et al. 2011; Boulay et al. in press), characterization
factors are derived from impact models that are either linear or
nonlinear. That is, there is a dose-response function f(x1, x2,
…), where xi is the emission (or concentration, or dose) of
stressor i, and a marginal characterization factor is constructed
through

CFi ¼ ∂ f
∂xi

				
x1;x2;…ð Þ¼ b1;b2;…ð Þ

where bi is the background level of pollutant i at which the
derivative is determined (Heijungs and Suh 2002). If the effect
would be zero below some threshold level, CF would be zero
at low levels until the background exceeds the threshold, after
which CF would be non-zero. Average characterization fac-
tors are instead made through

CFi ¼ f b1; b2;…ð Þ
bi

This is admittedly a re-interpretation of the one-pollutant
treatment by Huijbregts et al. (2011), who effectively use
∂ f
∂x

		
x¼b and f bð Þ

b respectively, but we are not aware of any

multi-pollutant presentation of the distinction between mar-
ginal and average characterization factor. If the impact func-
tion f would be homogenous linear, the whole discussion on
average versus marginal would be meaningless, because for

such a function, ∂ f∂x ¼ f bð Þ
b for all values of x and b. Hélias and

Heijungs (2019) discuss a few nonlinear impact models, and
Cucurachi et al. (2012) present an operational example of a
strongly nonlinear characterization model which is used to
derive characterization factors. But indeed, LCIA linearizes
such functions, because the CFs are invariably used in a char-
acterization formula like

h ¼ ∑
i
CFi � gi

Therefore, a possible point of improvement of LCIAwould
not be to replace linear impact models by nonlinear models,
but to replace their linearized use through the concept of char-
acterization factors by a more sophisticated system, replacing
∑
i
CFi � gi by some nonlinear aggregation rule. As far as we

know, that discussion has hardly taken place. The only place
of which we know that this discussion is briefly mentioned is
the multisubstance PAF treatment by Huijbregts et al. (2002),
but unfortunately, no aggregation rule is stated by these au-
thors, so it is impossible to say if their treatment is merely
about a nonlinear f, or if it also includes a nonlinear use of
characterization factors.

On the other hand, researchers should be well aware of the
place at which linear and nonlinear considerations show up,
and what this implies for proportionality. As was shown by
Heijungs (2002), small changes of one LCA input coefficient
may lead to huge changes in the LCA results, but in other
cases, large changes of inputs may result in insignificant
changes of results. The reason is that the LCA equations con-
tain a mix of addition, multiplication, subtraction, and divi-
sion, with non-trivial combined effects. A structured analysis
of the sensitivity of the results to changes in the input
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coefficients is therefore needed. Quite a few LCA studies
nowadays include an uncertainty analysis, but the use of sen-
sitivity analysis is still far from standard practice. In that re-
spect, not only global sensitivity (Padey et al. 2013; Groen
et al. 2017) is important, but also local sensitivity (Wei et al.
2015; Senga Kiessé et al. 2017) should be taken seriously as
well. Systematic study and reporting of such sensitivity anal-
yses is still an exception rather than the rule.

4.9 Conclusion

Statements in literature on the linearity of LCA are mistaken.
In the best case, LCA possesses a weaker property of
multilinearity, but only with respects to elements of the final
demand vector and the emission data. With respect to ele-
ments of the technology matrix, LCA is not multilinear, and
certainly not linear, although the LCI is homogeneous. The
strong property of homogeneous linearity is only present if we
consider functional unit-based LCA as a function of the size of
the functional unit. Only in that special case can we speak of a
proportionality of the functional unit and the LCA result.

The underlying modeling principle in LCA is based on a
linear technology assumption, where individual processes are
assumed to be scalable in a linear homogeneous way. That by
no means implies that the solution of the model equations is
linear too. However, for certain ranges of parameter values,
LCA results will behave in an almost linear way. That is
obviously a poor reflection of reality, and it pinpoints to places
in the LCA framework where better models are needed. For
instance, the discussion on marginal or average linearization
and (partial) derivatives (Huijbregts et al. 2011; Boulay et al.
in press) is now primarily taking place in the LCIA, whereas it
is equally essential in the LCI, where it is seldom discussed
(see, however, Yang 2017). A better appreciation on what
linearity embraces and how it enters the LCA model and the
solution of the LCA model would help to clarify the
discussion.
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