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Abstract
Purpose The choice of materials used for a vehicle can contribute to reduce negative environmental and social impacts.
Bio-based materials are considered a promising solution; however, the sustainability effects still need to be assessed.
Depending on the material assessed, it is questionable which environmental and social impact categories or subcategories should
be included since recommendations in guidelines are vague and case studies in this regard are limited. Therefore, this study aims
to shed light on the choice of impact categories, methods, and indicators for E-LCA and S-LCA when assessing wood as
substitute for conventional materials in automotive applications.
Method The research is based on a literature review covering 115 case studies of S-LCAs and E-LCAs focusing either on
wood-based products or on components in automotive applications. The selected case studies were analyzed according to the
following criteria: considered stakeholder groups and chosen subcategories (S-LCA sample), sector or product system (S-LCA
sample), year of publication and geographical scope (S-LCA and E-LCA sample), chosen LCIA method(s) and impact catego-
ries, objective(s) of the studies, analyzed materials and used software support (E-LCA samples).
Results and discussion For S-LCA some relevant social topics for bio-based product systems, like food security or land- and
worker-related concerns, could be identified. The E-LCA literature suggests that the objective and material type determine
calculation approaches and impact category choices. Some material-related environmental issues like biodiversity loss in the
case of bio-based product systems or ecotoxicity for steel and toxicity in the case of aluminum could be identified. For S-LCA the
geographical and sectorial context and the affected stakeholders are the determining factors for methodical choices, however, the
results show almost no difference in subcategory choice and geographical context. Influencing factors for methodical choices in
E-LCAmight be the objective of the study, data availability, the up-to-dateness of the LCIA approach, the geographical scope of
the study, the materials analyzed, and the availability of software support.
Conclusion Some relevant environmental and social impact categories as well as influencing factors onmethodical choices could
be identified from existing literature. However, a clear picture on these issues could not be drawn. Further research is needed on
the motivation of researches on certain methodical choices as well as on environmental issues connected with materials or
geographical-related social topics.
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1 Introduction

The automotive industry is confronted with increasing envi-
ronmental and social requirements. Those challenges are
posed by growing social and environmental awareness in the
society and the recognition that sustainability is one driver for
innovation (Ribeiro et al. 2007). Weight reduction through
lightweight design has become an important lever in the au-
tomotive industry to decrease use-phase emissions (Delogu
et al. 2017). Hence, the choice of materials used for a vehicle
can contribute to reduce negative environmental and social
impacts. Bio-based materials are considered a promising so-
lution, because depending on the component and the system
under study, using wood as a substitute for other materials has
the potential to reduce the environmental impacts (e.g., less
energy intensive than metals and plastics or less embodied
impacts for acidification, climate change, and eutrophication)
(Cordella and Hidalgo 2016; Petersen and Solberg 2005;
Spitzley et al. 2006). Additionally, wood-based product sys-
tems are expected to contribute to social benefits, like an in-
crease in local/rural employment and an improvement of in-
frastructure (Siebert et al. 2018b). Additionally, Touceda et al.
(2018) mention that a substitution with wood can lead to im-
provements in supply chains like reducing the risk of injuries
and fatalities.

The first vehicles were entirely made out of wood like the
1909 Ford Model T (Brooke 2008). Today, a typical passen-
ger vehicle is composed of many materials, but wood is usu-
ally not part of a vehicle anymore (Mayyas et al. 2012a; Omar
2011). In recent years, the idea of bringing wood-based mate-
rials back into automotive applications has gained some atten-
tion again and was studied by several research projects (e.g.,
HAMMER or WoodC.A.R.1) focusing mostly on the techni-
cal feasibility but also on potential environmental and social
impacts of material substitution or tradeoffs such as the op-
portunity of regional job creation at the cost of increasing risk
of forced labor or increasing GHG emissions (Asada et al.
2020). Accepted methods to assess the potential environmen-
tal and social impacts are Environmental Life Cycle
Assessment (E-LCA) or Social Life Cycle Assessment
(S-LCA) (Benoît et al. 2010; Finnveden et al. 2009;
Kloepffer 2008).

S-LCA aims to assess the potential positive and negative
social and socioeconomic impacts of products along their life
cycle (Dreyer et al. 2010a; Garrido 2017; UNEP/SETAC
2009). One of the most crucial steps in S-LCA is the selection
of relevant indicators and impact categories. Impact categories
and subcategories are different topics, which are of social
relevance and “are the basis of a S-LCA assessment because
they are the items on which justification of inclusion or

exclusion needs to be provided” (UNEP/SETAC 2009, p.
44). When deciding for impact categories, a prioritization of
the most relevant categories is challenging due to a lack of
previous experience and knowledge (UNEP/SETAC 2009).
Although there is a growing interest in S-LCAs in general
and in S-LCAs for bio-based product systems, there are few
recommendations available on how to decide for impact cat-
egories and relevant indicators for assessing bio-based product
systems (Hasenheit et al. 2016; Rafiaani et al. 2018; Siebert
et al. 2018a; Touceda et al. 2018). The lack of S-LCAs of the
respective areas as well as the fact that those are still in its
infancy (Petti et al. 2018) makes the identification of relevant
social aspects challenging. Some guidance on S-LCA is pro-
vided by the UNEP/SETAC guidelines, where a general
framework for conducting a study is proposed (Chen and
Holden 2017; UNEP/SETAC 2009).

E-LCA aims to assess the environmental impacts of prod-
ucts and services along their life cycle from cradle to grave
(ISO 2006a). As it is the case in S-LCA, E-LCA also requires
as a first step the definition of the system under study. One
aspect hereby is to identify which environmental issues (EC
2010c; ISO 2006a) and respectively which social topics and
indicators (UNEP/SETAC 2009) are relevant for the system
and should be covered in the analysis. In E-LCA the number
and variety of indicators and LCIA methods available makes
it difficult to choose the appropriate ones for a certain system
under study (Finnveden et al. 2009; Rosenbaum et al. 2018).
Understanding the main characteristics of a method and in-
dicator as well as staying up-to-date with the developments
in LCIA can be complex and time-consuming (Rosenbaum
et al. 2018). Nevertheless, the choice of a LCIA method can
be decisive for the outcome of the study, as well as calculat-
ing one impact category with different LCIA methods can
lead to different results (Dreyer et al. 2003; Höglmeier et al.
2016; Owsianiak et al. 2014; Pizzol et al. 2011). The ISO
standards 14040/14044 (2006a, 2006b) recommend to apply
internationally accepted models and factors; however,
Hauschild et al. (2013) state that none of the existing LCIA
methods are accepted like the ISO standards call for.
Because every system under study is unique, the recommen-
dations from the ILCD handbook (EC 2010c) or the ISO
standard 14040/14044 (ISO 2006a; 2006b) regarding indica-
tors or methods are vague, which leads to rather loose guid-
ance for LCA practitioners. One common recommendation
is to include all main relevant environmental issues related to
the system under study (EC 2010c; ISO 2006a) without giv-
ing criteria for how to rate the relevancy. In the ISO 14044
(2006b), it is stated that the choice of impact categories,
category indicators, and characterization models should be
consistent with the goal and scope of the study. Additionally,
the choice depends on the environmental issues to be cov-
ered, the geographical context of the study (including mid- or
endpoint assessment), and the interpretability and

1 HAMMER (http://www.projekt-hammer.de/) and WoodC.A.R. (www.
woodcar.eu)
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documentation as well as the up-to-dateness of the method
(Rosenbaum et al. 2018).

Besides the recommendations provided by the UNEP/
SETAC guidelines ( 2009) for S-LCA and the ISO standards
( 2006a, 2006b) or the ILCD handbook (EC 2010b) for
E-LCA, inputs on relevant social as well as environmental
issues can be identified by referring to previous literature with
similar research focus (Höglmeier et al. 2016). Unfortunately,
just a limited number of E-LCA and S-LCA case studies for
wood in automotive applications are available. Just a single
study was found assessing the environmental impacts of an
engineered wood product in an automotive application (Kohl
et al. 2016). However, the authors did not consider the whole
life cycle of the component compared with a functional equiv-
alent nor the social effects of the component. No S-LCA case
study of wood-based components in the automotive industry
is currently available.

Therefore, the aim of this study is to shed light on the
choice of impact categories, methods, and indicators for
E-LCA and S-LCA when assessing wood as substitute for
conventional materials in automotive applications. More pre-
cisely the aim is to answer the following research questions.
RQ 1: Which environmental and social impact categories or
subcategories are considered as relevant when assessing wood
as a substitute for steel, aluminum, or composites in automo-
tive applications? RQ 2: Which factors shape methodical
choices (e.g., methods or indicators) in environmental and
social LCA?

2 Method and material

In order to identify potential social topics and environmental
issues as well as influencing factors for the choice of indica-
tors, impact categories, and methods, an analytical approach is
proposed by using a literature review. A research literature
review can be defined as “a systematic, explicit, and repro-
ducible method for identifying, evaluating, synthesizing the
existing body of completed and recorded work produced by
researchers, scholars, and practitioners” (Fink 2020, p. 6).
Literature reviews usually reprocess the current state of re-
search by aiming to provide a summary of themes and issues
in a specific field or to identify the theoretical content within
the analyzed research field (Engert et al. 2016; Meredith
1993). The approach applied for the present thesis is an inter-
pretative content analysis, which, according to Neuendorf
(2017), involves the theoretical sampling, the definition of
analytical categories, the cumulative and comparative analysis
of literature, as well as the formulation of types or conceptual
categories.

To collect relevant E-LCA and S-LCA case studies for
answering the research questions , a literature search was
performed using the Scopus database, which comprises an

adequate amount of scientific papers and journals (Klein
et al. 2015). The examined study period was between
1990 and July 2018. The starting year of 1990 for the
present study is adequate since the E-LCA literature
started to emerge at this time (Zimek et al. 2019) and
S-LCA later than the E-LCA literature. To identify the
most relevant case studies, the literature research was lim-
ited to peer-reviewed articles and primary studies in
English. Gray literature was excluded, as mentioned by
Petti et al. (2018) within gray literature, a quality control
is difficult and a higher quality is given in peer-reviewed
studies. In the case of S-LCA, only a limited number of
case studies focusing on bio-based product systems,
wood-based products, or on components in automotive
applications are available. However, the sector or industry
specific as well as the geographical context is very impor-
tant in S-LCA, as — dependent on the product system —
there can be important differences within one sector in a
country (Dreyer et al. 2006; Jørgensen 2013; Siebert et al.
2018a; Siebert et al. 2018b). Consequently, other case
studies besides studies focusing on wood-based and auto-
motive product systems can provide important insights on
sector as well as geographic dependent indicators.
Therefore, the scope of literature was broadened to in-
clude all S-LCA case studies available on Scopus. To
collect all those case studies, essential descriptors
(keywords) of the examined subjects were chosen:
“S-LCA” or “SLCA” or “Social Life Cycle Assessment”
or “Social Life Cycle Analysis” and “case study” (present
in Article title, Abstract, Keywords). In total 104 S-LCA
case studies were identified. However, in this study, pub-
lications were analyzed specifically in which a geograph-
ical context and sector or product system was indicated
since this is seen as essential in S-LCA (Dreyer et al.
2006; Jørgensen 2013; Siebert et al. 2018a; Siebert et al.
2018b). The UNEP/SETAC (2009) provide the general
framework for conducting a S-LCA; wherefore, only
those case studies are included, in which one or more of
the 31 subcategories of the UNEP/SETAC guideline are
included, or the chosen impact categories were assignable
to the 31 subcategories of the UNEP/SETAC guideline
(e.g., “job creation” is assignable to “local employment”).
This resulted in 50 case studies for further analysis (see
Fig. 1).

Again, just a limited number of E-LCAs with the particular
focus of wood for automotive applications are available.
However, studies focusing either on assessing wood-based
products or on components in automotive applications can
provide important insights on the considered environmental
issues and impact categories, the chosen LCIA approach, as
well as to identify possible methodological differences when
assessing the environmental performance of different mate-
rials (bio-based and non-bio-based). Therefore, two different
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sets of literature were analyzed: E-LCAs of materials and
components in automotive applications and E-LCAs of
wood-based products. To identify relevant case studies focus-
ing on assessing wood products, the keywords “Life Cycle
Assessment” or “LCA” and “wood” and “product” or “com-
ponent” or “part” (358) were used for the search. In the case of
E-LCAs focusing on automotive components, the search
string “Life Cycle Assessment” or “LCA” and “automotive”
or “car” or “automobile” was applied which resulted in over
1000 publications. Many of those publications were out of
scope and focused on, e.g., unmanned aerial vehicles, space-
crafts, underwater vehicles, planetary robotic rovers or rail, or
air vehicles. After trying several additional keywords to limit
the results to the most relevant for the present study, the fol-
lowing were found to be the most sufficient: “component” or
“material” or “part” or “light*weight” (312). Hereby, those
studies that actually focused on components in automotive
vehicles and not on the complete vehicle as well as onmaterial
substitution effects were identified. The keyword “light*-
weight” was included because after screening through the ti-
tles after the first search, it became clear that one motivation
for carrying out LCAs focusing on effects of material substi-
tution was to identify sustainable lightweight solutions for the
automotive industry.

In total this search resulted in 670 studies (Fig. 1) were
several studies are still out of the scope for the present litera-
ture review. Therefore, the sample was limited according to
the following criteria:

& Where a comparative E-LCA case study was performed
& Where the LCIA methods and/or impact categories were

explained
& Where the focus of the case study was on assessing the

impacts of solid wood or engineered wood products or
wood-based products/materials and not on biofuel or
construction

& Where the focus of the case study was on assessing the
impacts of components or materials for automotive
applications

& Where the focus was on assessing scenarios in order to
identify potential benefits of lightweighting

After limiting the number of publications according to the
previous listed criteria, a snowballing approach was used to
identify additional relevant case studies. Using a snowballing
approach means to screen the reference list of a paper or cita-
tions to the paper to gather additional relevant literature
(Wohlin 2014). In the present study, the references of the
papers included in the intermediate literature sample were
screened in order to identify additional relevant E-LCA case
studies (eight automotive and nine wood LCAs were added to
the sample) (Fig. 1).

A qualitative content analysis as described by
Neuendorf (2017) of the identified sample was performed
by using the software MAXQDA (VERBI GmbH 2019).
This method has been chosen as a huge amount of texts
can be analyzed in a systematic way. Also, the method is
not limited to any specific discipline and supports the
researcher in interpreting the content of texts through a
coding process (Hsieh and Shannon 2005; Mayring
2000). This was done to identify the factors influencing
the choice of indicators as well as subcategories in S-LCA
and respectively LCIA methods and impact categories in
E-LCA (RQ2). The software was used to code each pub-
lication according to the following criteria: considered
stakeholder groups and chosen subcategories (S-LCA
sample), sector or product system (S-LCA sample), year
of publication and geographical scope (S-LCA and
E-LCA sample), chosen LCIA method(s) and impact cat-
egories, objective(s) of the studies, analyzed materials and
used software support (E-LCA samples). The coded text
was then analyzed step by step for each criterion to gain
relevant information to answer the research questions. In
the following chapters, the results of the literature and
content analysis are presented. The results are spilt into
two sections, one for S-LCA and the second for E-LCA.
In each section, a brief insight into the respective method
is provided, followed by the results on the relevant envi-
ronmental and social impact categories or subcategories
(RQ1). The last subchapter in the two sections presents
the results regarding the influencing factors shaping the
choice of methods and indicators in S-LCA and E-LCA
(RQ2).

Fig. 1 Identified number of
relevant case studies
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3 Results

3.1 Social life cycle assessment

The UNEP/SETAC guidelines provide a general framework
for conducting a S-LCA, where 31 subcategories are being
suggested as the basis of a S-LCA (Chen and Holden 2017;
UNEP/SETAC 2009). These subcategories are classified into
five stakeholder groups (workers, local community, society,
consumers, and value chain actors) and impact categories
(UNEP/SETAC 2009) (Fig. 2). Although the UNEP/SETAC
provide a general framework for conduction an S-LCA, sev-
eral authors point out that S-LCA is still under development,
faces several (methodological) challenges, and lacks empirical
studies (Arcese et al. 2018; Baumann et al. 2013; Benoît et al.
2010; Kühnen and Hahn 2017; Salazar et al. 2012; Sureau
et al. 2018).

The product or sector/industry and company-specific social
impacts highly influence different stakeholders and stakehold-
er groups (Dreyer et al. 2006). Especially workers and labor
conditions gained increasing interest in the S-LCA literature.
Labor rights was the focus of Dreyer et al. (2010a), and within
their so-called contextual risk classes (CRC), they assessed
child labor, forced labor, discrimination, and restrictions of
freedom of association (Dreyer et al. 2010b). Additionally,
the geographical context and the industry of the companies
along the whole supply chain are important since, for instance,
the social impacts of an ore mine in Brazil might be complete-
ly different compared with the impacts of a sawmill in Austria
(Benoît et al. 2010; Dreyer et al. 2010a; Jørgensen 2013).

3.1.1 Social issues for automotive and bio-based product
systems

While there is currently no S-LCA case study of wood com-
ponents in the automotive industry available, there are some
studies available that deal with social impacts in the automo-
tive industry (Traverso et al. 2018; Zimmer et al. 2017) or of
wood-based products (Siebert et al. 2018a; Siebert et al.
2018b; Touceda et al. 2018) or the social impacts of the
bioeconomy (Hasenheit et al. 2016; Rafiaani et al. 2018). A
bioeconomy is seen as an economy where the basic compo-
nents of materials, chemicals, and energy are made out of bio-
based resources (McCormick and Kautto 2013). This means a
bioeconomy focuses on bio-based products and bio-based
product systems; wherefore, the studies of Hasenheit et al.
(2016) and Rafiaani et al. (2018) are considered as relevant
in identifying social issues of bio-based product systems.

Regarding the social issues of automotive product systems,
Zimmer et al. (2017) assessed the social risks of global supply
chains and demonstrated different options of analysis for a
case of a premium car manufacturer. They point out that not
only the choice of the right indicators but also the weighting of
indicators (e.g., together with different stakeholders) is of
great importance for assessing social risks in supply chains
(Zimmer et al. 2017). Traverso et al. (2018) identified 26
relevant indicators to assess the social impacts of a run on flat
tire mounted on a BMW3 series. These indicators (e.g., health
and safety, wages and social benefits, working hours, child
labor, forced labor for workers; no details on the stakeholder
groups other value chain actors and society) are split into

Fig. 2 Considered stakeholder
groups and subcategories in S-
LCA recommended by the
UNEP/SETAC ( 2009) guidelines
for S-LCA
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three stakeholder groups, namely, worker, customers, and lo-
cal communities.

The social issues of bio-based product systems are
analyzed; for instance by Hasenheit et al. (2016)
who summarized possible social indicators to assess a bio-
based economy, e.g., the use of agrochemicals, malnutrition,
or job quality (see Table 1). The review of Rafiaani et al.
(2018) shows common social indicators within the bio-based
economy, namely, health and safety, food security, income,
employment, land- and worker-related concerns, energy secu-
rity, profitability, and gender issues. Siebert et al. (2018a,
2018b) define appropriate and relevant indicators for a social
assessment of wood-based products within a bioeconomy re-
gion in Germany (see Table 1). Another case study of
Touceda et al. (2018) assesses the sustainability of a tailored
development for housing retrofit. This study does not address

a specific wood example. However, they propose wood as a
substitute for metallic windows frames. An overview and
summary of the social impact topics and possible indicators
of these studies is given in Table 1.

The identified social impacts as shown in Table 1 provide
an overview of possible impacts of wood-based products and
of a bioeconomy and, respectively, bio-based product sys-
tems. It has to be noted that each factor is somehow related
to other factors, e.g., a change in prices possibly directly or
indirectly affects food security in a region (Hasenheit et al.
2016).

3.1.2 Factors influencing methodical choices in S-LCA

The products or sectors assessed within the 50 identified
S-LCA case studies range from textiles, sugarcane, car tires

Table 1 Overview of identified social impacts and indicators for assessing bio-based product systems, proposed byHasenheit et al. (2016) [1], Rafiaani
et al. (2018) [2], Siebert et al. (2018a) [3], and Touceda et al. (2018) [4]

Social impact Possible indicators

Food security • Use of agrochemicals, fertilizers [1]
• Change in food prices, price volatility [1]

• Malnutrition, risk of hunger [1]
• Macronutrient intake/availability [1]

Land access • Land prices [1]
• Access to land (incl. gender equality) [1]

• Land tenure [1]
• Property rights (incl. gender equality) [1]

Employment • Change in employment rate [1]
• Job conditions (rate of qualified employees, rate of

marginally employed) [1], [3]
• Duration of employment (rate of fixed-term employees,

rate of employees provided by temporary work agencies)
[3]

• Full-time equivalent jobs [1]

• Job quality [1]
• Need for/lack of highly specialized workforce [1]
• Working time (contractual working hours, compensation for

overtime) [3]
• Work-life-balance (access to flexible working time

agreements, rate of part-time employees) [3]

Household income
/adequate remunera-
tion

• Income of employees in bioeconomy sector (total) [1]
• Payment (payment according to basic wage,

average remuneration level) [3]

• Distribution of income [1]
• Financial participation (capital participation, profit-sharing

and bonuses) [3]

Quality of life • Change of quality of life [1] • Equality (of gender, etc.) [1]

Health and safety • Exposure to agrochemicals [1]
• Numbers of multi-resistant organisms [1]
• Toxicity of “green” vs. “gray” industrial products [1], [3]
• Accidents (occupational (fatal) accidents) [1], [3]

• Occupational diseases per working hour [4]
• Sick-leave (number of workdays lost per worker and year,

sick-leave days, preventive health measures) [1], [3]

Knowledge capital • On-the-job training (employees participated in training,
support for professional qualification) [3]

• Vocational training (rate of vocational trainees,
rate of vocational trainees hired) [3]

•Research and development (rate of employees in research and
development) [3]

Participation • Workers participation (works’ council,
other measures for participation) [3]

Land- and worker-related
concerns

• No possible indicators proposed [2]

Energy security • No possible indicators proposed [2]

Profitability • No possible indicators proposed [2] • Investment and return (state) [4]
• Avoided costs (state) [4]

Equal
opportunities/gender
issues

• No possible indicators proposed [2]
• Older employees (measures to support older employees)

[3]
• Minorities (rate of disabled employees, rate of foreign

employees) [3]

• Gender equality (rate of female employees in management
positions, measures to improve gender equality) [3]

Consumer issues • Indoor air quality [4]
• Adequate indoor temperature [4]

• Fuel poverty gap (inability to afford keeping a home warm at
a reasonable price) [4]
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to recycling systems or manufacturing companies (Table 3).
Out of the 50 S-LCA case studies, seven case studies have
been identified, which analyze bio-based product systems
(e.g., Pizzirani et al. 2018; Siebert et al. 2018a or Agyekum
et al. 2017), and one case study has been identified directly
related to the automotive industry (Zimmer et al. 2017)
(Table 3). These are the basis to identify possible relevant
stakeholder groups, subcategories, and/or indicators.

The importance of a sector-specific and geographical con-
text has already been mentioned in several papers in the past
(e.g., Benoît et al. (2010) highlight the need of site-specific
data; Dreyer et al. (2010a) conclude that the regional context
and the industry itself highly influence the external risk envi-
ronment). The geographical context might also influence the
choice of indicators, e.g., in the USA the risk of child labor is
considered to be lower compared with, e.g., India or countries
with high poverty rates, whereas for other indicators, the op-
posite is the case (e.g., the risk of not having collective
bargaining rights) (Arvidsson et al. 2015; Benoit-Norris
et al. 2012). Because of the importance of the regional context
in S-LCA (Dreyer et al. 2010a; Jørgensen 2013), it is reason-
able to assume that stakeholder groups, subcategories, and/or
indicators are chosen on the basis of the geographical context
and country. Therefore, investigated countries in the case
studies analyzed are split into developing and developed
countries based on the United Nations (2014) (see also in
Petti et al. 2018). The countries chosen in S-LCAs of
bio-based product systems are highlighted with an asterisk
in Table 2. The case study within the automotive industry
has been conducted for Germany.

An overview of all considered S-LCAs is provided in
Table 3, whereby the case studies are categorized by the topic
(product system under study) and split up concerning the geo-
graphical context (developing and developed countries) (see
Table 2).

Slightly more case studies are found for developing coun-
tries (29 vs 32), whereby several case studies are conducted
for more than one country, including both developing and
developed countries. The chosen product system, company,
or sector is very heterogeneous in both groups. All 50 case
studies were analyzed concerning the chosen subcategories
based on UNEP/SETAC ( 2009) in relation to the

geographical context, each split in developed and developing
countries (see Fig. 3).

The results in Fig. 3 show that 57% of the 50 S-LCA case
studies investigated subcategories concerning the stakeholder
group worker and 25% investigated subcategories within the
stakeholder group local community. Subcategories from the
other three stakeholder groups (value chain actors, society and
consumers) were examined in 18% of the considered studies.

Regarding the assumption that subcategories might be cho-
sen depending on the geographical context or the economic
status of countries (developed and developing countries), no
big differences could be identified. The stakeholder groups
value chain actors, society, local community, and worker are
chosen more often when S-LCAs were conducted in develop-
ing countries (biggest differences for the stakeholder group
worker). Only for the stakeholder group consumer, more
S-LCA case studies are conducted in developed countries.
As illustrated within Fig. 3 only six subcategories show slight-
ly bigger differences between developing and developed
countries, namely, child labor, fair salary, working hours and
access to material resources are chosen more often in devel-
oping countries and forced labor, health and safety (consumer)
and local employment are more often chosen in developed
countries. Of the case studies which analyzed bio-based prod-
uct systems (see Table 3), six refer to developing and four to
developed countries.Within all studies, the subcategory “local
employment” is chosen, followed by “health and safety” (9
studies) and ‘fair salary’ (8 studies). Additionally, more than
half of the studies include “social benefits/social security,”
“equal opportunities/discrimination,” “working hours,” and
“child labor” as subcategories.

3.2 Environmental life cycle assessment

E-LCA has developed to a widely acknowledged tool — used
across various areas— for assessing the potential environmental
impacts of a product or service system (Finnveden et al. 2009;
Guinée et al. 2011; Zimek et al. 2019). It has been standardized
within ISO14040/14044 (ISO 2006a, b) and defines four phases
of an LCA study: goal and scope definition, life cycle inventory
(LCI), life cycle impact assessment (LCIA), and the interpreta-
tion phase. In the LCI phase, the input/output data of the studied

Table 2 Overview of the chosen countries of the selected case studies split in developing and developed countries

Geographical
context

Countries within the considered S-LCA case studies

Developed
countries

Australia, Austria, Belgium, Canada*, Croatia, Denmark, Germany*, Greece, Hungary, Ireland, Italy, Japan, the Netherlands,
New Zealand*, Portugal, Spain, United States*

Developing
countries

Algeria, Angola, Argentina*, Bangladesh, Brazil*, China, Democratic Republic of Congo, East Timor, Ecuador, Equatorial Guinea,
Ghana*, India, Indonesia*, Iran*, Israel, Jordan, Kuwait, Malaysia*,Mexico,Mongolia, Morocco, Mozambique, Pakistan, Peru,
Rwanda, Sierra Leone, South Africa, South Korea, Taiwan, Thailand, Turkey, Zambia

*Countries chosen in S-LCAs of bio-based product systems
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system is collected and analyzed (ISO 2006a). The LCIA phase
includes three mandatory elements: first, the selection of impact
categories, category indicators, and characterization models;
second, assigning inventory results to impact categories; and
third, calculating the category indicator results (ISO 2006b).
The calculation of LCIA can be done by using an LCIAmethod
(Table 4), which combines a number of category indicators as
well as calculates the results based on specific characterization
models (Hauschild et al. 2013) and are partly implemented in
LCA software (Rosenbaum et al. 2018). LCIAmethods exist for
midpoint level (CML 2002, EDIP, TRACI) and endpoint level
(EPS, Eco-Indicator 99) as well as methods that try to combine
the mid- and endpoint levels (LIME, ReCiPe, IMPACT 2002+)
(EC 2010c; Hauschild et al. 2013; Pennington et al. 2004)
(Table 4). On midpoint level, a higher number of impact cate-
gories are differentiated, and at endpoint level, the impacts are
shown as effects on the areas of protection (human health,

natural environment, natural resources) (EC 2010c;
Pennington et al. 2004; Udo de Haes et al. 1999; Udo de Haes
et al. 2002) or aggregated as a single score (e.g., eco-indicator).

3.2.1 Environmental issues of wood in automotive
applications

To identify the environmental issues of wood in automotive
applications, literatures dealing with bio-based and automotive
product systems have been analyzed in regard to relevant envi-
ronmental issues connected with specific materials as well as in
regard to methodical aspects connected with either product sys-
tem. Starting with LCAs of bio-based product systems, the first
tangible LCAs for the forestry and wood products sector in
Europe were published in in the 1990s (e.g., Frühwald and
Wegener 1993 or Karjalainen and Asikainen 1996). Since then
LCA has been frequently applied to assess the impacts of wood

Table 3 S-LCA case studies (product, sector, company) categorized by topic and geographical context (developing and developed countries); some
studies are in both categories as some case studies relate to more countries

Topic Developed countries Developing countries

Agriculture Chen and Holden 2017 (dairy farm); Franze and Ciroth 2011
(rose bouquets); Martínez-Blanco et al. 2014 (fertilizers);
Teah and Onuki 2017 (recycled P fertilizers)

Franze and Ciroth 2011 (rose bouquets); Martínez-Blanco
et al. 2014 (fertilizers); Teah and Onuki 2017
(recycled P fertilizers)

Apparel
industry

Lenzo et al. 2017 and Zamani et al. 2018 (textiles) Mair et al. 2018 (clothing supply chain); Zamani et al. 2018
(textiles)

Automotive
industry

Zimmer et al. 2017 (automotive industry) Zimmer et al. 2017 (automotive industry)

Bio-based
product
systems

do Carmo et al. 2017 (biodiesel); Pizzirani et al. 2018 (radiata pine);
Siebert et al. 2018a (wood-based products)

do Carmo et al. 2017 (biodiesel); Agyekum et al. 2017
(bamboo bicycle frames); Ghaderi et al. 2018
(switchgrass-based bioethanol); Manik et al. 2013 (palm
oil biodiesel); Souza et al. 2018 (biorefinery scenarios)

Construction
(materials),
housing

Arcese et al. 2013 (accommodation facilities), Touceda et al. 2018
(housing retrofitting processes)

Dong and Ng 2015 (public housing project); Dong and Ng
2016 (building construction project); Fan et al. 2018
(green residential districts); Hossain et al. 2018 (recycled
constructionmaterials); Hosseinijou et al. 2014 (building
materials, cement, and steel);
Singh and Gupta 2018 (steel)

Energy sector Corona et al. 2017 (solar power plant); Traverso et al. 2012
(photovoltaic (PV) modules); Tsalis et al. 2017 (energy companies);
Kolotzek et al. 2018 (capacitor technologies); Wulf et al. 2017
(rare earth permanent magnet for use in wind turbines)

Tseng et al. 2017 (wind power); Kolotzek et al. 2018
(capacitor technologies); Wulf et al. 2017
(rare earth permanent magnet for use in wind turbines)

Food sector Neugebauer et al. 2017 (tomatoes); Andrews et al. 2009 (tomatoes);
Arcese et al. 2017 (wine); de Luca et al. 2018 (Calabrian olives);
Petti et al. 2018a (tomatoes); Sanchez Ramirez et al. 2014 (wine
company)

Neugebauer et al. 2017 (tomatoes); Du et al. 2018
(sugarcane); Prasara-A and Gheewala 2018 (sugar)

Waste
management

Lehmann et al. 2011 (water resources management and integrated
packaging waste)

Lehmann et al. 2011 (water resources management and
integrated packaging waste); Aleisa and Al-Jarallah
2018 (waste management system); Aparcana and
Salhofer 2013 (recycling systems); Mirdar Harijani et al.
2017 (municipal solid waste); Opher et al. 2018 (urban
domestic water reuse alternatives)

others Reuter 2016 (lithium-ion batteries); Schau et al. 2012 (remanufactured
alternators); Dreyer et al. 2010b (manufacturing companies); Hannouf
and Assefa 2018 (high-density polyethylene, HDPE); Subramanian
et al. 2018 (nano-enabled biocidal paint)

Reuter 2016 (lithium-ion batteries); Schau et al. 2012
(remanufactured alternators); Dreyer et al. 2010a
(manufacturing companies); Sanchez Ramirez et al.
2014 (cocoa soap); Wang et al. 2017 (IC packaging)
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and wood-based products (see, e.g., Petersen and Solberg 2004,
González-García et al. 2011b, Hesser et al. 2016 or Lettner et al.
2018). However, as, for example, stated by Klein et al. (2015),
there are still no consistent and comprehensive LCA studies of
wood-based production systems. Due to the multitude of

different methods and approaches (e.g., see Hesser 2015 in
terms of carbon accounting or Sutterlüty et al. 2017 in terms
of water footprint), it is difficult to make a comparative state-
ment between different studies.

When performing comparative LCAs of bio-based mate-
rials in comparison with petrochemical materials, Pawelzik
et al. (2013) argue that the treatment of biogenic carbon stor-
age is critical for quantifying the greenhouse gas emissions.
However, a current shortcoming frequently discussed in the
LCA community is the difficulty to fully capture the dynamic
nature of carbon flows (see, e.g., Brandão et al. 2013; Lippke
et al. 2011; McKechnie et al. 2011). Also, the question of
whether to account for carbon storage or not is subject to
ongoing debates (Levasseur et al. 2012; Pawelzik et al.
2013). The questions concerning carbon accounting are close-
ly connected to the questions concerning land use. IPCC
(2006) and EC (2010a) have published specific guidelines
for calculating the carbon stock for agriculture and forestry
land use. Besides following a more simplified approach, the
guideline published by EC provides the possibility to calculate
changes in total of carbon stocks for different soil types or land
cover (Pawelzik et al. 2013).

Klein et al. (2015) reviewed LCAs in the forestry sector
and found that all reviewed studies considered the global
warming potential as impact category, yet, solely focusing

Table 4 Overview of existing LCIA methods including the respective
year and geographical origin of each method (Rosenbaum et al. 2018)

LCIA methods Year Origin

CML 2001 Netherlands

ReCiPe 2009 Netherlands

Eco-Indicator 1995 Netherlands

IMPACT 2002+ 2002 Switzerland

TRACI 2003 USA

EPS 2000 Sweden

EDIP 2003 Denmark

LUCAS 2007 Canada

LIME 2003 Japan

ILCD 2012 EU

EcoScarcity 2006 Switzerland

BEES 1997 USA

IMPACT World+ 2016 Canada, USA, Denmark, France, Switzerland

LC-IMPACT 2016 EU

Fig. 3 Chosen subcategories
based on UNEP/SETAC ( 2009)
split in developing (n = 32) and
developed (n = 29) countries (rel-
ative to total amount of the se-
lected subcategories by the
reviewed case studies)
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on climate change as impact category may not be sufficient. In
general bio-based products and an increased cultivation of
biomass are connected to the risk of biodiversity loss (Koh
2007; Koh and Ghazoul 2008; Pawelzik et al. 2013).
Assessing the loss of biodiversity as well as water use or soil
degradation are often excluded in LCAs due to persisting
methodological problems and limited data availability (dos
Santos et al. 2014; Pawelzik et al. 2013). In order to overcome
this limitation, the impact categories global warming, acidifi-
cation, eutrophication, and ecotoxicity currently cover the
main drivers of biodiversity losses (dos Santos et al. 2014;
Pawelzik et al. 2013). With the impact categories fresh water
aquatic ecotoxicity and terrestrial ecotoxicity, the issues of
water and soil protection can be evaluated (dos Santos et al.
2014). Nevertheless, it is worth to note that methodological
differences within each proxy should be considered individu-
ally. The cumulative energy demand is often used as a proxy
indicator in LCA studies (Huijbregts et al. 2006).

Klein et al. (2015) focused on the methodological aspects of
forest production and highlighted the large ranges of results in
dependence on methodological choices, such as system bound-
aries and functional unit. In terms of system boundaries, most of
the reviewed studies followed a cradle to gate approach. While
the endpoint in the individual studies was very similar, the
starting point for the assessment at the forest site varied consid-
erably. Most of the studies actually started at the harvesting
thinning/operations and thus excluded other processes such as
seedling/seed production or planting (Klein et al. 2015). At the
end, most of reviewed studies investigated wood for energy
purposes or for pulp wood. Another aspect is the determination
of the functional unit. In total Klein et al. (2015) identified 12
different functional units applied in the 24 studies. Furthermore,
around 50% of the studies did not mention any characteristics
of the wood or the wood-based product.

In E-LCAs focusing on automotive product systems, the
potential benefits of lightweighting are often the objective of
the studies since weight reduction of vehicles can lead to ma-
jor environmental benefits (Hottle et al. 2017). Hottle et al.
(2017) found in their review on critical factors affecting LCAs
that the use phase for vehicles with combustion engines ac-
counts for 84–88% of the life cycle emissions and energy
demand, whereas the production just accounts for about 4–
7% of the energy consumption. However, the production and
processing of materials can have dramatic impacts on the en-
vironment like undesirable emissions to air, water, and land or
land use pattern and water use (Allwood et al. 2011).

The most commonly used material in the automotive in-
dustry is steel (Poulikidou et al. 2015), which makes up about
65–70% of the body mass (Dalmijn and de Jong 2007).
Typical lightweight alternatives are high-strength steels, alu-
minum, magnesium, and glass or carbon fiber composites
(Hottle et al. 2017; Mayyas et al. 2012b; Poulikidou et al.
2015; Raugei et al. 2015; Witik et al. 2011). All those

materials are non-renewable and will eventually be exhausted
up to the point where it will be too expensive to extract them;
wherefore, the depletion potential and in some cases the scar-
city needs to be assessed (Allwood et al. 2011; Cordella and
Hidalgo 2016; Klinglmair et al. 2014).

Depending on the material to be assessed, different envi-
ronmental issues are of concern, and the results vary consid-
ering different impact categories. For example, current used
lightweight materials such as composites do indeed reduce
weight, but the recycling is difficult, toxic, and energy inten-
sive (Allwood et al. 2011; Diener and Tillman 2016).
Consequently, using composites can lead to problems in
reaching the ELV targets (European Commission 2000).
Besides that, glass fibers need approximately four times more
energy in the production compared to kenaf fibers (Mohanty
et al. 2001) or jute fibers (Alves et al. 2010). Although natural
fiber-reinforced composites may be seen as sustainable in
terms of integrating renewable materials, they are not suffi-
ciently eco-friendly because of their petroleum-based matrix
(Mohanty et al. 2002).

Hottle et al. (2017) reviewed LCAs of materials for vehicle
mass reduction and found that most studies assessed GHG
emissions and life cycle energy use. This makes sense since
those impacts are the main concern for the aluminum industry
(Liu and Müller 2012) as well as for the production of mag-
nesium (Cherubini et al. 2008). Liu and Müller (2012) men-
tion other impact categories which should be assessed when
analyzing aluminum: the toxicity of the aluminum production
through emissions to air, water, and soil as well as the land use
of bauxite mining and red mud generation (Liu and Müller
2012). Aluminum is ranked under the top 10 for its land use
change, fresh water ecotoxicity, and final solid waste produc-
tion in a top twenty priority list for the environmental profiles
of materials consumed in the Netherlands (Liu and Müller
2012; van der Voet et al. 2003). van der Voet et al. (2003)
published a report named “dematerialization: not just a matter
of weight” where a contribution of materials to 13 environ-
mental impact categories consumed in the Netherlands is pro-
vided. They screened and summarized for each impact cate-
gory the top 20 contributions of materials to environmental
problems. Their results show that steel and iron contribute to
depletion of abiotic resources, land use competition, as well as
fresh water ecotoxicity (van der Voet et al. 2003). The mate-
rials such as high-alloyed steel, aluminum, and plastics con-
tribute at least to ten out of 13 impact categories (Table 5).

3.2.2 Factors influencing methodical choices in E-LCA

In total 33 E-LCA case studies of wood-based products and 32
E-LCA case studies of automotive components were identified.
An overview of the identified E-LCA case studies is provided
in Table 6, where the 65 case studies are categorized according
to the focus of the study (E-LCA of wood or automotive
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components) and the objective of the reviewed studies. The
objectives of E-LCA literature were grouped into six catego-
ries: method development, impacts of lightweighting, material
substitution, re-/eco-design, material development, and life cy-
cle inventory. A description of each category is provided in
Table 7.

Besides studying the E-LCA literature for the objective, it
was further analyzed for the chosen impact categories
(Table 8) and LCIA methods (Table 4). For further analysis,
the LCIA methods rarely used in the studies (EPS, EDIP,
ILCD, BEES) as well as the characterization model USEtox
are grouped into “Others.”Another possibility to do the LCIA
is by calculating the cumulative energy demand (CED)
(Huijbregts et al. 2006; Huijbregts et al. 2010). Several studies
calculated the global warming potential (GWP) by referring to
the latest IPCC characterization factors (IPCC 2013) which is
also included in several LCIA methods like in CML. Some
studies did not mention a particular LCIA approach but per-
formed own calculation with, e.g., energy-related
indicators — those studies were categorized into the LCIA
group own calculations.

A common practice is to explain the choice of certain
impact categories and indicators by referring to previous
studies with a similar research focus, which is also sug-
gested by Höglmeier et al. (2016). However, the use of
categories that have been selected in comparable studies
does not mean that all relevant aspects are automatically
taken into account. Therefore, the literature sample was
screened to identify the impact categories chosen to assess
wood as well as automotive product systems. In total over
50 differently named impact categories were identified in
the E-LCA sample. An overview of all identified impact
categories is provided in the appendix. In order to identify
potential tendencies between impact category choice and,
e.g., the analyzed material as well as to reduce the

complexity of the identified impact categories, those over
50 identified impact categories were grouped into 14 im-
pact category groups (Table 8) according to the overview
provided by Rosenbaum (2018). The grouping was done
(a) on the basis of the unit used to express an impact
category, (b) based on the theme addressed, e.g., the CA
group contains carcinogenic and non-carcinogenic impact
categories (c) if similar environmental issues were ad-
dressed as in the groups BD and RRU, and (d) when the
impact category was used just once or twice they were
included into a group others. A more detailed overview
of the grouping including the units and their respective
LCIA methods is provided in the appendix.

The results of the content analysis show that more than half
of the studies used software support to perform the E-LCA.
Most of them used SimaPro followed by GaBi, Umberto,
OpenLCA, or ATHENA. Using software support can influ-
ence the choice of an LCIA method since those software so-
lutions have various LCIA methods implemented
(Rosenbaum et al. 2018; SimaPro 2019). Incidentally, 78%
of the studies which performed own calculation had no LCA
software support. The availability of the characterization sheet
of an LCIA method could be another argument for choosing
one LCIA method over the other. The results of the present
study show that 56% of the studies where TRACI was chosen
for LCIA used no software support. The environmental im-
pact assessment tool TRACI includes characterization factors
for the LCIA and is available for free at the EPA homepage
(EPA 2016). The same is possible with CML-IA, where the
characterization factors can be downloaded at the homepage
of Leiden University.2

2 https://www.universiteitleiden.nl/en/research/research-output/science/cml-
ia-characterisation-factors

Table 5 Environmental problems of selected materials (van der Voet et al. 2003)

Steel and iron Steel-high alloyed Aluminum Plastics

Depletion of abiotic resources x x x x

Land use competition x x x x

Climate change x x

Stratospheric ozone depletion x x

Human toxicity x x x

Fresh water ecotoxicity x x x x

Marine ecotoxicity x x x

Terrestrial ecotoxicity x x x

Photochemical oxidant formation x x x

Acidification x x x

Eutrophication

Radiation x x x

Final solid waste x x
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Other influencing factors for the choice of an LCIA
approach might be the availability and up-to-dateness of
a method as well as the geographical scope of the
study. In the reviewed E-LCA literature CML was
used only after the year 2006, ReCiPe after 2013,
TRACI and IMPACT2002+ only after 2009, and
Ecoindicator95/99 only before 2010. Looking at the
year when a certain LCIA method was first introduced
(Table 4) plus a few years until a study first uses a new
method, the results are not surprising. The geographical
focus of a study can also influence the choice of an
LCIA method, e.g., all studies which defined the

geographical scope to be North America used TRACI
as LCIA method.

From the 65 studies, 95% considered climate change
(CC) impact categories. Over 60% assessed acidification
and eutrophication whereas ozone depletion, abiotic re-
source use, respiratory effects, or impacts measured by
energy demand have been analyzed by over 50%. Just
little difference could be found between impact category
choice and focus of the study, but, e.g., bio-based ma-
terials were more often analyzed with impact categories
like acidification, abiotic resource use, eutrophication, or
ecotoxicity (Fig. 5). The latter can at least be partly

Table 7 E-LCA literature sample (n = 65) categorized by focus and aim of the study

Aim Focus Author(s) (year of publication)

Method
development

Wood Höglmeier et al. (2014)

Automotive Poulikidou et al. (2015), Mayyas et al. (2012b), Ribeiro et al. (2007), Geyer (2008), Fitch and Cooper (2003)

Impacts of
lightweighting

Automotive Das (2000), Das (2014), Duflou et al. (2009), van Acker et al. (2009), Kim et al. (2010), Geyer (2008),
Raugei et al. (2015), Ding et al. (2016), Delogu et al. (2017), Koffler (2014)

Material
substitution

Wood Petersen and Solberg (2004)

Automotive Akhshik et al. (2017), Alves et al. (2010), dos Santos et al. (2014b), Das (2011), Dubreuil et al. (2012), Hardwick
and Outteridge (2016), Puri et al. (2009), Sun et al. (2017), Song et al. (2009), Tharumarajah and Koltun (2007),
Witik et al. (2011), Wötzel et al. (1999), Zah et al. (2007)

Re-design/
Eco-design

Wood Bolin and Smith (2011a, 2011b, 2011c), Cobut et al. (2015), dos Santos et al. (2014), Frenette et al. (2010),
González-García et al. (2011a), González-García et al. (2011b), González-García et al. (2012), Hesser et al.
(2016), Lee and Xu (2004), Lu and El Hanandeh (2016), Noda et al. (2016), Petersen and Solberg (2002)

Automotive Boland et al. (2016), Ermolaeva et al. (2004), Ribeiro et al. (2007)

Material
development

Wood Hesser (2015), La Rosa et al. (2014), Mahalle et al. (2014), Sommerhuber et al. (2017), Xu et al. (2008)

Automotive Luz et al. (2010)

Life cycle
inventory

Wood Cambria and Pierangeli (2012), García-Durañona et al. (2016), Gasol et al. (2008), González-García et al. (2009),
Hu et al. (2018), Laurent et al. (2013), Nakano et al. (2018), Park et al. (2018), Petersen and Solberg (2004),
Phungrassami and Usubharatana (2015), Rivela et al. (2007; 2006), Wenker et al. (2016)

Automotive Hakamada et al. (2007)

Studies mentioned more than once means that multiple objectives were formulated

Table 6 Objectives of the reviewed E-LCA studies

Aim Description

Method development The study focused on (further) developing a method, framework, or model for sustainable material selection, assessing light-
weight strategies, for life cycle engineering or for assessing cascading systems

Impacts of
lightweighting

Several studies analyzed the potential benefits of a weight reduction by calculating the emission saving potentials of using lighter
materials for the vehicle

Material substitution The focus was on assessing the environmental impacts of constructing a component or product with a different material.
The focus of the study was on the material of a certain component

Re-design /
Eco-design

The studies focused on environmental conscious product development and therefore on assessing the environmental impacts of
redesigned or eco-designed components or products and often involved more components and materials

Material development The studies assessed the environmental impacts of newly developed materials and compared them with conventional materials

Life cycle inventory The objective of the study was on producing generic LCI data for a region, life cycle stage, material, product, or certain practices
as well as in some cases to identify hotspots in the product system
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explained by the fact that E-LCAs of wood products chose
more often CML as an LCIA method which already includes
several different impact categories (Fig. 4).

Numerous different materials were analyzed in the
E-LCA literature. In order to analyze relations between
a material and the LCIA method or impact category for
bio-based materials in the automotive industry, the ma-
terials were categorized into eight material groups (glass
or carbon fiber composites (G/CFRC); steel (including
boron, stainless, or high strength steel); aluminum, wood
and engineered wood products (e.g., wood, glulam,
MDF, OSB, or particleboards); plastics (e.g., polypro-
pylene); natural fiber reinforced composites (NFRC,

e.g., with kenaf, jute or wood); magnesium; and other
materials (e.g., mineral reinforced composites or con-
crete)). The latter two were not considered for further
analysis.

The impact category choice per material analyzed is
illustrated in Fig. 5. Figure 6 illustrates the LCIA meth-
od chosen for assessing different materials. When just
comparing the choice of impact categories between two
materials, especially when comparing bio-based (natural
fiber reinforced composites and engineered wood prod-
ucts) versus steel, aluminum, and composites, the results
show that the latter materials were more often analyzed
with energy-related impact categories. The studies ana-
lyzing bio-based materials more often chose various im-
pact categories. However, this can also be explained by
the fact that studies focusing on wood more often used
CML for LCIA (see Fig. 4) which already includes
different impact categories, whereof automotive studies
more often did the LCIA with own calculations. Most
studies, which did not mention any LCIA approach,
performed their own calculations or added impact cate-
gories not covered in their chosen LCIA method (most-
ly climate change and/or energy demand impacts). The
materials assessed in the “own calculation” studies are
steel (48%) and aluminum (58%) (Fig. 6).

Analyzing the LCIA approach chosen per objective
of a study, the results show that studies focusing on
material development and life cycle inventory more of-
ten chose CML, whereas studies focusing on impacts of
lightweighting and method development more often per-
formed own calculations. The latter might be explained
by the fact that automotive studies mostly aimed at

Table 8 Overview of the identified impact categories in the reviewed literature grouped into 14 category groups for further analysis. A more detailed
overview is available in the appendix

Acronym Category Impact categories

AC Acidification Terrestrial or aquatic acidification

ARU Abiotic resource use Abiotic depletion potential, fossil fuel depletion, mineral extraction

BD Biodiversity and land use Land occupation, biodiversity, biotic production potential

CA Carcinogenic effects Carcinogenics and non-carcinogenics

CC Climate change Global warming potential, GHG emissions

ED Energy demand Cumulative energy demand, cumulative non-renewable energy use

ET Eutrophication Marine or terrestrial eutrophication

Etox Ecotoxicity Aquatic ecotoxicity, terrestrial ecotoxicity

HT Human toxicity Human toxicity potential

IR Ionizing radiation Ionizing radiation

OD Ozone depletion Ozone layer depletion

Others - Solid waste, heavy metals, pesticides

RE Respiratory effects Respiratory effects organics and inorganics, smog potential, photo-oxidants creation potential

RRU Renewable resource and water use Consumption of renewable resources, water intake, water depletion

Fig. 4 LCIA approaches chosen by the reviewed E-LCA studies either
focusing on wood or on automotive (absolute numbers). Some case stud-
ies chose more than one LCIA approach
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assessing material substitution effects, identifying poten-
tial benefits of lightweighting, or developing a method
for sustainable material selection (Fig. 7). On the con-
trary, E-LCAs of wood products focused more often
on life cycle inventories, material development, or re-/
eco-design. The results of Fig. 7 are in line with the
results presented in Fig. 4: here E-LCAs of wood prod-
ucts more often chose CML whereas automotive

E-LCAs more often performed own calculations. All of
the automotive studies analyzed the whole life cycle of
the product under study. On the contrary, only 45% of
the wood E-LCAs considered the whole life cycle in
their analysis whereof the other 55% consider just parts
of the life cycle, mostly from cradle to grave of which
70% aimed at analyzing the life cycle inventory of sev-
eral processes.

Fig. 5 Impact categories chosen for assessing different materials relative
to the total number of studies that examined this material (NFRC - natural
fiber-reinforced composites; G/CFRC - glass or carbon fiber-reinforced

composites; EWPs - engineered wood products). The description of im-
pact category groups including their abbreviations is provided in Table 8

Fig. 6 LCIA methods chosen for
assessing different materials
relative to the total number of
studies that examined this
material (NFRC - natural fiber-
reinforced composites; G/CFRC -
glass or carbon fiber-reinforced
composites; EWPs - engineered
wood products)
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4 Discussion and conclusion

The aim of the conducted literature review was to identify the
relevant social topics and environmental issues when
assessing wood in automotive applications as well as to shed
light on the factors influencing the choice of the respective
methods, impact categories, and indicators. The first
step was to gain knowledge about (RQ1) which environmen-
tal and social impact categories or subcategories are consid-
ered in the literature and secondly to systematically analyze
the factors shaping the choice of methods, impact categories,
and indicators in environmental and social LCA (RQ2).

4.1 Relevant social and environmental issues

In order to identify relevant social and environmental issues,
literature dealing with these topics was reviewed. The results of
this review show that most of the S-LCA case studies performed
so far, referred to the subcategories proposed by the UNEP/
SETAC (2009) guidelines. Additional relevant social topics for
bio-based product systems could be identified (see Table 1), such
as food security or land- and worker-related concerns. Although
the identified social impacts listed in Table 1 can be a good
starting point to decide for impact categories and indicators for
bio-based product systems, it might not be complete yet. S-LCAs
specific for bio-based product systems are still very limited in
order to analyze and compare the different methodologies and
indicators chosen in the case studies. Furthermore, there is a risk
that potentially relevant indicators will be neglected, if only the
indicators of the UNEP/SETAC (2009) guideline are taken into
account. Nevertheless, the literature suggests that the geograph-
ical and sectorial context determine methodical choices in the
case of S-LCA (see in Benoît et al. 2010; Dreyer et al. 2010a;
Garrido et al. 2018; Hunkeler 2006; Sanchez Ramirez et al.
2014; Siebert et al. 2018a; Siebert et al. 2018b).

Regarding E-LCA the literature suggests that the objective
and material type determine calculation approaches and impact
category choices (EC 2010c; ISO 2006a; Rosenbaum et al.
2018); for instance, GWP is described as a major concern in

the automotive industry as well as in the production of certain
materials like aluminum or magnesium (Cherubini et al. 2008;
Hottle et al. 2017; Liu and Müller 2012). However, some au-
thors recommend to consider additional impact categories, e.g.,
biodiversity for bio-based systems, where the main drivers of
biodiversity loss can be coveredwith the impact categories glob-
al warming potential, acidification, eutrophication, and
ecotoxicity (dos Santos et al. 2014; Klein et al. 2015;
Pawelzik et al. 2013); the depletion potential or scarcity indica-
tors for non-renewable materials (Allwood et al. 2011; Cordella
and Hidalgo 2016; Klinglmair et al. 2014); or ecotoxicity for
steel and toxicity in the case of aluminum (see Table 5) (Liu and
Müller 2012; van der Voet et al. 2003).

4.2 Factors influencing methodical choices

To gain insights on the factors that shape the choice of methods
and indicators in environmental and social LCA, a content anal-
ysis approach of three literature samples (all published S-LCA
case studies; E-LCA case studies focusing on wood products or
on components in automotive applications) was performed. The
sample was analyzed covering the following criteria: considered
stakeholder groups and chosen subcategories (S-LCA), sector or
product system (S-LCA), year of publication and geographical
scope (S-LCA and E-LCA), chosen LCIA method(s) and im-
pact categories, objective(s) of the studies, analyzed materials
and used software support (E-LCA).

In S-LCAs the identification of relevant countries and sec-
tors as well as the targeted stakeholder groups is central in order
to identify relevant social aspects (subcategories, indicators)
(Dreyer et al. 2010a; Jørgensen 2013; UNEP/SETAC 2009).
The results of the present study show that the stakeholder
groups value chain actors, society, local community, and work-
er who were chosen slightly more often when S-LCAs were
conducted focusing on developing countries. Hereby,
the biggest differences can be observed for the stakeholder
group worker (see Fig. 3). Only the stakeholder group consum-
er has been chosenmore often for developed countries. In glob-
alized value chains, the steps in the production phase, such as
resource extraction, are often located in developing countries;
hence, the focus on the stakeholder group workers can be ex-
plained. Following, the consumers as stakeholder groups af-
fected during the use-phase are considered in studies conducted
in developed countries. This is also reflected in the choice of
indicators. The indicators child labor, fair salary, working
hours, and access to material resources have been slightly more
often chosen in developing countries, and two indicators have
been slightly more often chosen in developed countries (forced
labor and local employment). For example, in the case of child
labor, studies showed that poverty drives this social issue in
developing countries because the income of child labor is high-
ly needed (Arvidsson et al. 2015). Following it can be assumed
that the socio-political context is reflected in the selection of

Fig. 7 Aim of the reviewed E-LCA studies either focusing on wood or
automotive (absolute numbers)
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indicators. However, within the 50 case studies under investi-
gation, the results showed not as many differences as might be
expected. It has to be noted that this study included only a small
sample, yet it included all available case studies at the date of
analysis. No clear connection between the geographical area
and the choice of subcategories/indicators could be found with-
in the present study. Petti et al. (2018) did a review on S-LCA
and came to a similar conclusion that the geographical area has
just a minor influence on the choice of social indicators. They
also found that over 40% of the S-LCAs conducted have been
performed in European countries where the highest concentra-
tion of researchers can be observed (Mattioda et al. 2015; Petti
et al. 2018). A general problem in S-LCAs focusing on devel-
oping countries might be data availability (Petti et al. 2018).
The difficulty in finding data (e.g., socially sensitive ones)
could be one reason why fewer studies than expected were
conducted in developing countries (Petti et al. 2018).
Especially in developing countries, it could be important to
implement S-LCAs in order to identify the hotspots to improve
the social conditions on site (Petti et al. 2018).

The environmental issues related to the production of mate-
rials are diverse, yet most studies focus on assessing the impacts
on climate change (95%). Similar results are shown by Hottle
et al. (2017) in context of automotive LCAs, which is probably
connected to the emission performance standards of the
European Commission (2014). The results of the present study
show that climate change is also the most chosen indicator in
LCAs of wood-based products andKlein et al. (2015) found the
same result on LCAs of forest productions. In the analyzed case
studies, over 60% assessed acidification and eutrophication,
whereas ozone depletion, abiotic resource use, respiratory ef-
fects, or impacts measured by energy demand have been ana-
lyzed by over 50%. Over 30% of the analyzed case studies
focused just on one or two indicators, which is relatively mod-
est considering the environmental issues connected with mate-
rials. However, just because a category is chosen by a lot of
different studies, it does not imply that this is an environmental
issue to be included as recommended by EC (2010b) and ISO
(2006a). One way to identify relevant impact categories for a
specific product system is to screen results of different impact
categories after an LCA study has been performed. Using soft-
ware support facilitates this since various LCIA approaches
covering various impact categories are partly already imple-
mented in LCA software (Rosenbaum et al. 2018; SimaPro
2019). This means the environmental issues connected with a
system can at least be identified after the LCA has been per-
formed by analyzing the results of the LCA. If no software
support is available, the identification of the relevant environ-
mental issues is more complex and time-consuming than with
software support. For that the characterization tables of CML or
TRACI can be used, although here data must be available and
in the case of ex-ante assessment data availability is an issue. If
no resources for software support or generic databases such as

Ecoinvent are available, researchers and practitioners have to
rely on preliminary studies with a similar research focus. In that
way, insights into the relevant environmental issues for specific
product systems are gathered, which might help in the selection
of impact categories. Another possibility on how to deal with
the issue of no software support or no generic database avail-
able is to use CED as a proxy for the environmental burden of
impacts, as recommended by Huijbregts et al. (2006).
However, CED looks only into the primary energy demand,
and other environmental impacts are not covered.

In the present study it could be shown that the identification
of relevant environmental issues of wood in automotive appli-
cations is difficult, also when referring to previous studies with
similar research focus. In the studies analyzed, the choice for a
certain impact category or LCIA approachwas often not argued
or was influenced by more than just the environmental issues
connected with the system under study. In the conducted liter-
ature review influencing factors such as the objective of the
study, the up-to-dateness of the LCIA approach, the geograph-
ical scope of the study, the materials analyzed, and the software
support have been identified by reviewing and analyzing rele-
vant literature. The two investigated samples on E-LCA of
wood products and of automotive components had quite differ-
ent objectives (Fig. 7), which might be one explanation for the
different choice of LCIA approaches (Fig. 4). Other influencing
factors for methodical choices might be data availability or the
usage of software support. The former was rarely mentioned
within the studies analyzed. The latter is not always available,
e.g., due to limited budgets or tradition (e.g., Excel as the usual
tool). The results show that 40% did not mention any software
support, of which the majority (80%) did not mention the
LCIA approach or calculated the LCIA on their own.
However, analyzing the potential environmental impact with
a whole set of impact categories is easier when using software
support. Other influencing factors might be the up-to-dateness
of the LCIA approach or the geographical scope of the study.
In case of the geographical scope of the study, it could be
shown that it can influence the choice for an LCIA approach,
e.g., all studies which defined the geographical scope to be
North America used TRACI as LCIA method. Regarding the
influence of the material analyzed on the choice of impact
category, it was found that studies which analyzed product
systems involving wood products or natural fiber composites
more often chose impact categories such as acidification, eu-
trophication, abiotic resource use, or ozone depletion (see Fig.
5). However, this might be connected to the fact that LCAs of
wood products more often performed the LCIA with CML
(Fig. 4) and therefore with various impact categories.

4.3 Limitations and outlook

The aim of this study was to shed some light on the choice of
impact categories and LCIA approach for E-LCA and
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subcategories and indicators for S-LCA when assessing the
environmental and social performance of wood-based compo-
nents in automotive applications. The applied methods, liter-
ature review, and content analysis are subject to some typical
limitations, i.e., selection of literature and criteria for coding
might be biased by the researcher conducting the study, the
aspects discussed depend on other authors work in this field,
setting the boundaries according to the research question for
the literature search as well as discriminating between relevant
and irrelevant literature (e.g., Engert et al. 2016).

Some relevant environmental and social impact categories as
wellasinfluencingfactorsinmethodicalchoicescouldbeidentified
from existing literature. However, a clear picture on these issues
could not be drawn, e.g., concrete recommendations on
material-related environmental issues or geographical-related so-
cial topics could not be foundwhen reviewing the literature focus-
ingon automotive orwood-basedproduct systems.Expanding the
literature sample to include LCAs of other product systems most
likely enables to generate additional knowledge on relevant social
and environmental issues for specific product systems.

Identifying the relevant impact categories before conducting a
study is a general problem (not just for assessing wood in vehi-
cles), and the literature review carried out shows that this problem
can be confirmed for the specific case of wood in automotive

applications. The results of the present study are based on a small
sample, namely, E-LCAs of wood-based or automotive product
systems and S-LCA case studies. Further research might analyze
if LCAs of other product systems face similar challenges in iden-
tifying the relevant environmental and social issues as well as in
selecting the appropriate impact categories and assessment
methods for the system under study.

Further knowledge onmethodical choices might be gained by
social science research on, e.g., the motivation of researchers to
choose a certain LCIA approach or impact category in E-LCA or
subcategory and indicator in S-LCA. This may provide an un-
derstanding of what information and guidance researchers and
practitioners may consider regarding methodological decisions
for specific product systems. A starting point for providing guid-
ance on the identification of environmental and social issues for
specific product systems could be based on environmental issues
connected with materials or geographical-related social topics.
Furthermore, there is currently neither a full E-LCA nor an
S-LCA case study of wood-based products for automotive
applications available. Such a study would be needed to address
the differences in assessing bio-based and non-bio-based prod-
ucts and in particular the extent to which those products are
comparable in terms of the different environmental issues that
should be considered for each system.

Appendix

Table 9 Categorization of identified impact categories based on Rosenbaum (2018), Jolliet et al. (2003) and Lippiat (2007)

Acronym Category Impact category Unit LCIA method

CC Climate change global warming potential kg CO2 eq IMPACT2002+ | EI99 | TRACI | CML | EDIP |
ReCiPe | ILCD | IMPACTworld+ | BEES

greenhouse effect GWP kg EI95

ED Energy demand cumulative energy demand MJ CED | ILCD

primary energy
consumption

MJ TRACI

Cumulative non-renewable
energy use

MJ

non-renewable energy MJ primary IMPACT2002+ | EI99

ARU Abiotic resource
use

abiotic depletion fossil and
non-fossil resources

MMBTU

abiotic depletion potential
(non-renewable
resources)

ADP | person reserve | marginal
increase of extraction costs | kg
Sb-eq.

CML-IA | EDIP | ReCiPe | ILCD

resource intensity kg ILCD

fossil fuels depletion / fossil
use

MJ deprived EI99 | TRACI | IMPACTworld+ | BEES 2.0

Mineral, Metal extraction /
depletion

MJ surplus | kg eq. Of iron in ore IMPACT2002+ | EI99 | IMPACTworld+
|ReCiPe

RRU Renewable
resource and
water use

water intake liters BEES 2.0

water deprivation m3 world eq. ILCD | IMPACTworld+

consumptive water use EI99

water depletion EI99 | ReCiPe

wood consumption t softwood standing trees

EDIP
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Table 9 (continued)

Acronym Category Impact category Unit LCIA method

consumption of renewable
resources

AC Acidification winter smog EI95

acidification H+ eq. EI99 | BEES 2.0

terrestrial acidification kg SO2 eq | H+ eq. | BS [m2*y] | mol
H eq.

IMPACT2002+ | CML-IA | TRACI | EDIP |
ReCiPe | ILCD | IMPACTworld+

aquatic acidification kg SO2 eq IMPACT2002+ | IMPACTworld+

OD Ozone depletion ozone layer depletion kg CFC-11 eq IMPACT2002+ | EI99 | TRACI | CML | EDIP |
ReCiPe | ILCD | IMPACTworld+ | BEES

ET Eutrophication marine eutrophication kg N | vkgN N-lim ReCiPe | ILCD | IMPACTworld

eutrophication N eq EI99 |BEES 2.0

terrestrial eutrophication PO 3-
4 eq | m2 | mol N eq. CML-IA | IMPACT2002+ | EDIP | ILCD

freshwater eutrophication PO 3-
4 eq. | kg PO4 P-lim | NO3eq. | kg

N | kg P
IMPACT2002+ | CML-IA | TRACI | EDIP |

ReCiPe | ILCD | IMPACTworld+

Etox Ecotoxicity ecotoxicity CTUe | 2,4-D eq EI99 | BEES

aquatic ecotoxicity kg TEG water IMPACT2002+

freshwater aquatic
ecotoxicity

kg 1,4-Dbeq| 2,4-Deq. | m3 | PAF |
CTU

CML | TRACI | EDIP | ReCiPe | ILCD |
IMPACTworld+

marine aquatic ecotoxicity kg 1,4-Dbeq CML | ReCiPe

terrestrial ecotoxicity kg 1,4-Dbeq | kg TEG soil | m3 CML | IMPACT2002+ | EDIP | ReCiPe

marine sediment kg 1,4-Dbeq CML

freshwater sediment kg 1,4-Dbeq CML

water pollution kg

RE Respiratory
effects

respiratory effects organics kg C2H4 eq | nmVOCeq |
person*ppm*h

IMPACT2002+ | EI99 | EDIP | ReCiPe |
IMPACTworld+

respiratory effects
inorganics

PM2.5 eq | PM10 eq. TRACI | IMPACT2002+ | EI99 | ILCD |
IMPACTworld+

particulate matter formation PM10eq. ReCiPe

photo-oxidants creation
potential

C2H4 eq. | ethylene eq. CML | IMPACT 2002+

summer smog POCP kg EI95

nitrogen oxides Nox eq. TRACI

smog potential O3 eq. | NOx eq TRACI | BEES

IR Ionizing radiation ionizing radiation Bq C-14 eq | DALY | man. Sv/kBq IMPACT2002+ | EI99 | CML | ReCiPe |
IMPACTworld+

HT Human toxicity human health C7H8 eq BEES 2.0

criteria air pollutants microDALYs BEES 2.0

human toxicity potential kg 1,4-DCBeq | 2,4Deq |
chloroethylene eq. | m3 | cases |
CTU

IMPACT2002+ | TRACI | CML | EDIP | ReCiPe
| ILCD | IMPACTworld+

CA Carcinogenic
effects

carcinogenics kg benzene | PAH eq. | kg C2H3Cl eq TRACI | EI99 | EI95 | IMPACT2002+

noncarcinogenics kg toluene | kg C2H3Cl eq TRACI | IMPACT2002+

BD Biodiversity and
land use

land use EI99

land occupation m2org.arable | m2 occupation or
transformation

IMPACT2002+ | ReCiPe

habitat alteration T&E count BEES 2.0

biodiversity ha eq. IMPACTworld+

erosion resistance potential kg/m2 | ton/ha/y ILCD | IMPACTworld+

mechanical filtration
potential

m3/m2 | cm/d ILCD | IMPACTworld+

groundwater replenishment m3/m2 ILCD

biotic production potential kg/m2 | tC/ha/y ILCD | IMPACTworld+

mm/y IMPACTworld+
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