Skip to main content
Log in

Screening LCA of French organic amendments and fertilisers

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Introduction

In France, agricultural recycling of organic waste is widespread, but LCIs of organic waste treatments are scarce. This work presents LCIs of the most relevant organic waste treatments yielding residual organic amendments and fertilisers, and organic residue–based industrial processes yielding commercial organic amendments and fertilisers, in France. It also presents the results from a screening LCA performed on these LCIs.

Material and methods

LCIs were built from mainly secondary data sources. Four functional units were retained: 1 t fresh mass of final product and 1 t of N, P, or K in fresh mass. Economic allocation was applied, following the French Environment and Energy Management Agency position. The International Reference Life Cycle Data System 2011 suit for impact assessment was retained, and all impacts were expressed as single scores to facilitate comparisons. Organic wastes considered were liquid and solid manures, agro-industrial residues, sewage sludge, green wastes and harvest residues, and biowaste. Treatment steps modelled were stocking, shredding, sieving, and mixing of substrates; anaerobic and aerobic treatments; thickening, dewatering, drying, and pelletising; various biological and physicochemical treatments of phase-separated liquid fractions; and the industrial production of organic amendments and fertilisers. Comparisons were performed among products classified as amendments or fertilisers.

Results and discussion

LCIs of typical treatment routes are presented, complemented with screening life cycle impact assessment results. Dried sludge and treated solid fractions of agricultural digestates present consistently higher impacts than any other amendment, mainly due to their associated energy use, relatively low N contents, and the use of maize silage as input. These items contribute in average > 50% of the aggregated impacts. Untreated manure and slurry feature the lowest relative impacts for all functional units. Compost-based commercial organic amendments have similar impacts to other composts per t of fresh mass, but slightly lower per t of nutrients or C, due to the inclusion of additional nutrient-rich inputs. Regarding fertilisers, the impact intensity of commercial organo-mineral fertilisers and treated liquid fractions of slurry and agricultural digestate is within similar orders of magnitude. Manure-based digestates feature relatively low impacts per all functional units. Only some digestates and untreated poultry manure feature impacts similar to those of N mineral fertilisers.

Conclusions

Energy provision and direct emissions are the main contributors to impacts in organic waste treatments. Modelling choices such as the allocation of impacts to agricultural by-products heavily influence specific impact categories, mainly climate change. Overall, these results represent a needed contribution to background data used in agricultural LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Referred to among French institutions and researchers as “produits résiduaires organiques” (PRO) or “matières fertilisantes d’origine résiduaire” (MAFOR).

  2. Referred to among French institutions and researchers as “indice de stabilité de la matière organique (ISMO)”.

  3. Referred to among French institutions and researchers as “organisation” of N.

References

  • ADEME (2011a) Qualité agronomique et sanitaire des digestats. Angers: ADEME

  • ADEME (2011b) Analyse de cycle de vie du biogaz issu de cultures energetiques. Valorisation en carburant véhicule et en chaudière, après injection dans le réseau de gaz naturel. Annexes. ADEME - Agence de l’Environnement et de la Maîtrise de l’Energie

  • ADEME (2016) Epandage. Fiche Technique. Angers: ADEME, Direction Economie Circulaire et Déchets/Service Mobilisation et Valorisation des Déchets

  • ADEME (2018) Matières fertilisantes organiques: gestion et épandage. Guide des bonnes pratiques. Angers: ADEME

  • Akhiar A (2017) Characterization of liquid fraction of digestates after solid-liquid separation from anaerobic co-digestion plants. Université de Montpellier, Chemical and Process Engineering

  • Amlinger F, Peyr S, Cuhls Carsten C (2008) Green house gas emissions from composting and mechanical biological treatment. Waste Manag Res 26:47–60. https://doi.org/10.1177/0734242X07088432

    Article  CAS  Google Scholar 

  • ANPEA (2017) Observatoire national de la fertilisation minérale et organique. Résultats 2010 à 2016. ANPEA - Association Nationale Professionnelle pour les Engrais et Amendements

  • ANPEA (2018) Observatoire national de la fertilisation minérale et organique. Résultats 2017. ANPEA - Association Nationale Professionnelle pour les Engrais et Amendements

  • Avadí A, Aissani L, Pradel M, Wilfart A (2020) Life cycle data on French organic waste treatments yielding organic amendments and fertilisers. Data Br. https://doi.org/10.1016/j.dib.2019.105000

  • Béline F, Daumer ML, Guiziou F (2004) Biological aerobic treatment of pig slurry in France: nutrients removal efficiency and separation performances. Trans ASAE 47:857–864

    Article  Google Scholar 

  • Benoist A, Bessou C (2018) Prise en compte en analyse de cycle de vie (ACV) du lien usage des sols – changement climatique : revue critique des méthodologies existantes. ADEME - Agence de l’Environnement et de la Maîtrise de l’Energie

  • Benoît P, Brugère H, Casellas M, et al (2014) Chapitre 2. Caractéristiques physico-chimiques et biologiques des Mafor. INRA-CNRS-Irstea

  • Bernstad A, la Cour JJ (2012) Review of comparative LCAs of food waste management systems--current status and potential improvements. Waste Manag 32:2439–2455. https://doi.org/10.1016/j.wasman.2012.07.023

    Article  CAS  Google Scholar 

  • Blonk Agri-footprint BV (2014) Agri-footprint. Description of data. Gouda: Blonk Agri-footprint BV

  • Bockstaller C, Girardin P (2010) Mode de calcul des indicateurs agri-environnementaux de la methode Indigo®. Colmar, INRA

  • Bockstaller C, Guichard L, Makowski D et al (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149. https://doi.org/10.1051/agro:2007052

    Article  Google Scholar 

  • Bockstaller C, Marion-Wuillemin M, Marion-Wuillemin N et al (2015) Assessing environmental impacts of cropping systems: comparison of an indicator-based and a life-cycle analysis-based method. Proc. 5th Int. Symp. farming Syst. Des:51–52

  • Bolzonella D, Fatone F, Gottardo M, Frison N (2018) Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manag 216:111–119. https://doi.org/10.1016/j.jenvman.2017.08.026

    Article  CAS  Google Scholar 

  • Bouthier A, Duparque A, Mary B et al (2014) Adaptation et mise en œuvre du modèle de calcul de bilan humique à long terme AMG dans une large gamme de systèmes de grandes cultures et de polyculture-élevage. Innov Agron 34:125–139

    Google Scholar 

  • Brankatschk G, Finkbeiner M (2015) Modeling crop rotation in agricultural LCAs - challenges and potential solutions. Agric Syst 138:66–76. https://doi.org/10.1016/j.agsy.2015.05.008

    Article  Google Scholar 

  • Brockmann D, Pradel M, Hélias A (2018) Agricultural use of organic residues in life cycle assessment: current practices and proposal for the computation of field emissions and of the nitrogen mineral fertiliser equivalent. Resour Conserv Recycl 133:50–62. https://doi.org/10.1016/j.resconrec.2018.01.034

    Article  Google Scholar 

  • Cadena E, Colón J, Artola A, Sánchez A, Font X (2009) Environmental impact of two aerobic composting technologies using life cycle assessment. Int J Life Cycle Assess 14:401–410. https://doi.org/10.1007/s11367-009-0107-3

    Article  CAS  Google Scholar 

  • Chen X, Wilfart A, Puillet L, Aubin J (2016) A new method of biophysical allocation in LCA of livestock co-products: modeling metabolic energy requirements of body-tissue growth. Int J Life Cycle Assess 22:1–13. https://doi.org/10.1007/s11367-016-1201-y

    Article  CAS  Google Scholar 

  • Colomb V, Amar SA, Mens CB et al (2015) AGRIBALYSE, the French LCI database for agricultural products: high quality data for producers and environmental labelling. OCL - Oilseeds Fats, Crop Lipids 22:D104. https://doi.org/10.1051/ocl/20140047

    Article  Google Scholar 

  • COMIFER (2013) Calcul de la fertilisation azotée - Cultures annuelles et prairies. COMIFER- Comité Français d’Étude et de Développement de la Fertilisation Raisonée, Groupe Azote

  • Constant N (2011) Catalogue des engrais et amendements utilisables en viticulture biologique en Languedoc-Roussillon. France Agrimer

  • Dhaouadi AK (2014) Insertion des Produits Résiduaires Organiques dans les systèmes de culture : Cas des systèmes céréaliers de la Plaine de Versailles et du Plateau des Alluets. Sciences agricoles. AgroParisTech

  • EC (2014) Towards a circular economy: a zero waste programme for Europe. Brussels: European Commission

  • EC-JRC (2012) Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Luxembourg: Publications Office of the European Union

  • Evanylo G, Sherony C, Spargo J et al (2008) Soil and water environmental effects of fertiliser-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric Ecosyst Environ 127:50–58. https://doi.org/10.1016/j.agee.2008.02.014

    Article  Google Scholar 

  • Foster C, Green K, Bleda M, et al (2006) Environmental impacts of food production and consumption: a report to the Department for Environment Food and Rural Affairs. London, Manchester Business School

  • Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Ashworth GS, Azevedo P (eds) Agricultural wastes. Nova Science Publishers, Inc, pp 155–189

    Google Scholar 

  • Fuchs J, Génermont S, Houot S, et al (2014) Chapitre 3. Effets agronomiques attendus de l’épandage des MAFOR sur les écosystèmes agricoles et forestiers. INRA-CNRS-Irstea

  • García-González MC, Riaño B, Teresa M et al (2016) Treatment of swine manure: case studies in European’s N-surplus areas. Sci Agric:444–454. https://doi.org/10.1590/0103-9016-2015-0057

  • Godfray HCJ, Beddington JR, Crute IR et al (2012) The challenge of food security. Science (80- ) 327:812. https://doi.org/10.4337/9780857939388

    Article  Google Scholar 

  • Gooding CH (2012) Data for the carbon footprinting of rendering operations. J Ind Ecol 16:223–230. https://doi.org/10.1111/j.1530-9290.2011.00430.x

    Article  CAS  Google Scholar 

  • Hamelin L, Wesnæs M, Wenzel H (2010) Life cycle assessment of biogas from separated slurry. Danish Environmental Protection Agency

  • Harder R, Holmquist H, Molander S et al (2015) Review of environmental assessment case studies blending elements of risk assessment and life cycle assessment. Environ Sci Technol acs.est.5b03302. https://doi.org/10.1021/acs.est.5b03302

  • Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertiliser product types. Eur J Agron 69:41–51. https://doi.org/10.1016/j.eja.2015.06.001

    Article  CAS  Google Scholar 

  • Hjorth M, Christensen KV, Christensen ML et al (2010) Solid-liquid separation of animal slurry in theory and practice. A review. Agron Sustain Dev 30:153–180. https://doi.org/10.1051/agro/2009010

    Article  CAS  Google Scholar 

  • Hospido A, Carballa M, Moreira M, Omil F, Lema JM, Feijoo G (2010) Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants. Water Res 44:3225–3233. https://doi.org/10.1016/j.watres.2010.03.004

    Article  CAS  Google Scholar 

  • Houot S, Pons MN, Pradel M (2014) Valorisation des matières fertilisantes d’origine résiduaire sur les sols à usage agricole ou forestier. Impacts agronomiques, environnementaux, socio-économiques

  • Humbert S, Loerincik Y, Rossi V et al (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Clean Prod 17:1351–1358. https://doi.org/10.1016/j.jclepro.2009.04.011

    Article  Google Scholar 

  • IFIP (2017) Gestion et traitement des digestats issus de methanisation. IFIP, Chambre d’agriculture de Bretagne, Idele, Trame, Ministère de l’agriculture de l’agroalimentaire et de la forêt

  • Ingram J, Erickson P, Leverman D (2010) Food security and global environmental change. earthscan

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues – friend or foe of soil fertility? Soil Biol Biochem 84:1–14. https://doi.org/10.1016/j.soilbio.2015.02.006

    Article  CAS  Google Scholar 

  • Intini F, Kühtz S, Rospi G (2011) Energy recovery of the solid waste of the olive oil industries–LCA analysis and carbon footprint assessment. J Sustain Energy Env 2:157–166

    Google Scholar 

  • IPCC (2007). IPCC Climate Change Fourth Assessment Report: Climate Change 2007. http://www.ipcc.ch/ipccreports/assessments-reports.htm

  • ISO (2006) ISO 14040 environmental management — life cycle assessment — principles and framework. The International Standards Organisation

  • Kirchmann H, Kätterer T, Bergström L et al (2016) Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems. F Crop Res 186:99–106. https://doi.org/10.1016/j.fcr.2015.11.006

    Article  Google Scholar 

  • Koch P, Salou T (2014) AGRIBALYSE ® : RAPPORT METHODOLOGIQUE Version 1.1. ADEME

  • Koch P, Salou T (2015) AGRIBALYSE ®: METHODOLOGY Version 1.2. Ed. ADEME, Angers, France

  • Koch P, Salou T (2016) AGRIBALYSE ®: Rapport Méthodologique - Version 1.3. ART, INRA, ADEME

  • Lashermes G, Nicolardot B, Parnaudeau V et al (2009) Indicator of potential residual carbon in soils after exogenous organic matter application. Eur J Soil Sci 60:297–310. https://doi.org/10.1111/j.1365-2389.2008.01110.x

    Article  CAS  Google Scholar 

  • Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild MZ, Christensen TH (2014) Review of LCA studies of solid waste management systems – part I: lessons learned and perspectives. Waste Manag 34:573–588. https://doi.org/10.1016/j.wasman.2013.10.045

    Article  Google Scholar 

  • Levasseur P (2004) Traitement des effluents porcins. Guide Pratique des Procedés. ITP - Institute Technique du Porc

  • Levasseur P (2017) Compte rendu final du projet METERRI: Conforter l’autonomie énergétique des zones à forte densité d’élevage par des projets de méthanisation agricole durables, en harmonie dans leur territoire. Le cas de la Bretagne. IFIP - Institute du Porc

  • Liao W, Van Der Werf HMG, Salmon-Monviola J (2015) Improved environmental life cycle assessment of crop production at the catchment scale via a process-based nitrogen simulation model. Environ Sci Technol 49:10790–10796. https://doi.org/10.1021/acs.est.5b01347

    Article  CAS  Google Scholar 

  • Liu H (2016) Achilles heel of environmental risk from recycling of sludge to soil as amendment: a summary in recent ten years (2007–2016). Waste Manag 56:575–583. https://doi.org/10.1016/j.wasman.2016.05.028

    Article  CAS  Google Scholar 

  • Loiseau E, Saikku L, Antikainen R et al (2016) Green economy and related concepts : an overview. J Clean Prod 139:361–371. https://doi.org/10.1016/j.jclepro.2016.08.024

    Article  Google Scholar 

  • Lopes C, Herva M, Franco-Uría A, Roca E (2011) Inventory of heavy metal content in organic waste applied as fertiliser in agriculture: evaluating the risk of transfer into the food chain. Environ Sci Pollut Res 18:918–939. https://doi.org/10.1007/s11356-011-0444-1

    Article  CAS  Google Scholar 

  • Lopez-Ridaura S, van der Werf H, Paillat JM, Le Bris B (2009) Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment. J Environ Manag 90:1296–1304. https://doi.org/10.1016/j.jenvman.2008.07.008

    Article  CAS  Google Scholar 

  • Mackenzie SG, Leinonen I, Kyriazakis I (2016) The need for co-product allocation in the life cycle assessment of agricultural systems - is “biophysical” allocation progress? Int J Life Cycle Assess:1–10. https://doi.org/10.1007/s11367-016-1161-2

  • Macpherson S (2012) 5. Wool classing key terms and concepts. In: WOOL422/522 Wool Marketing & Clip Preparation. The Australian Wool Education Trust licensee for educational activities University of New England, p 42

  • Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source - review. In: Kumar DS (ed) Biogas. InTech, pp 295–310

  • Martínez-Blanco J, Lazcano C, Christensen TH, Muñoz P, Rieradevall J, Møller J, Antón A, Boldrin A (2013) Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron Sustain Dev 33:721–732. https://doi.org/10.1007/s13593-013-0148-7

    Article  Google Scholar 

  • Moreira Cardoso AA (2013) Life cycle assessment of two textile products. University of Porto, Environmental Engineering

  • Morris J, Scott Matthews H, Morawski C (2013) Review and meta-analysis of 82 studies on end-of-life management methods for source separated organics. Waste Manag 33:545–551. https://doi.org/10.1016/j.wasman.2012.08.004

    Article  Google Scholar 

  • Muller A, Schader C, El-Hage Scialabba N et al (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1–13. https://doi.org/10.1038/s41467-017-01410-w

    Article  CAS  Google Scholar 

  • Nemecek T, Kagi T (2007) Life cycle inventories of agricultural production systems data v2.0 (2007). Swiss Center For Life Cycle Inventories

  • Nemecek T, Schnetzer J (2012) Methods of assessment of direct field emissions for LCIs of agricultural production systems. Data v3.0

  • Nemecek T, Bengoa X, Rossi V, Humbert S (2014) World food LCA database: methodological guidelines for the life cycle inventory of agricultural products. Version 2.0. 79

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilisation with anaerobic digestates: a review. Agron Sustain Dev 34:473–492. https://doi.org/10.1007/s13593-013-0196-z

    Article  Google Scholar 

  • Notarnicola B, Sala S, Anton A et al (2017) The role of life cycle assessment in supporting sustainable agri-food systems: a review of the challenges. J Clean Prod 140:399–409. https://doi.org/10.1016/j.jclepro.2016.06.071

    Article  Google Scholar 

  • Obriot F, Stauffer M, Goubard Y et al (2016) Effects of repeated organic amendment applications on soil and crop qualities. Acta Hortic 1146:87–96. https://doi.org/10.17660/ActaHortic.2016.1146.11

    Article  Google Scholar 

  • Odlare M, Arthurson V, Pell M et al (2011) Land application of organic waste - effects on the soil ecosystem. Appl Energy 88:2210–2218. https://doi.org/10.1016/j.apenergy.2010.12.043

    Article  Google Scholar 

  • Oudart D (2013) Modélisation de la stabilisation de la matière organique et des émissions gazeuses au cours du compostage d’effluents d’élevage. INSA de Toulouse

  • Parnaudeau V, Nicolardot B, Pagès J (2004) Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil. J Environ Qual 33:1885–1894

    Article  CAS  Google Scholar 

  • Peltre C, Christensen BT, Dragon S et al (2012) Soil Biology & Biochemistry RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol Biochem 52:49–60. https://doi.org/10.1016/j.soilbio.2012.03.023

    Article  CAS  Google Scholar 

  • Perez Neira D (2016) Energy sustainability of Ecuadorian cacao export and its contribution to climate change. A case study through product life cycle assessment. J Clean Prod 112:2560–2568. https://doi.org/10.1016/j.jclepro.2015.11.003

    Article  Google Scholar 

  • Phong NT (2012) Greenhouse gas emissions from composting and anaerobic digestion plants. Friedrich-Wilhelms-Universität zu Bonn

  • Ponsioen TC, van der Werf HMG (2015) Five propositions to harmonize environmental footprints of food and beverages. J Clean Prod 153:457–464. https://doi.org/10.1016/j.jclepro.2017.01.131

    Article  Google Scholar 

  • Pradel M (2016) Guide pour la réalisation d’Analyses du Cycle de Vie pour les filières de traitement et de valorisation des boues d’épuration urbaine. Rapport final. Irstea-ONEMA

  • Pradel M (2017) Proposition d’une méthode d’allocation par répartition paramètre-dépendant pour l’Analyse du Cycle de Vie des produits déchet-sourcés - Application aux fertilisants phosphatés boue-sourcés. Université de Lyon

  • Priekulis J, Aplocina E, Laurs A (2016) Chemical composition of digestate. In: 15th International Scientific Conference Engineering for Rural Development, 25–27.05.2016 Jelgava, LATVIA. pp 381–386

  • Quirós R, Villalba G, Muñoz P et al (2014) Environmental and agronomical assessment of three fertilisation treatments applied in horticultural open field crops. J Clean Prod 67:147–158. https://doi.org/10.1016/j.jclepro.2013.12.039

    Article  CAS  Google Scholar 

  • Recanati F, Marveggio D, Dotelli G (2018) From beans to bar: a life cycle assessment towards sustainable chocolate supply chain. Sci Total Environ 613–614:1013–1023. https://doi.org/10.1016/j.scitotenv.2017.09.187

    Article  CAS  Google Scholar 

  • Rehl T, Müller J (2011) Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl 56:92–104. https://doi.org/10.1016/j.resconrec.2011.08.007

    Article  Google Scholar 

  • Rehl T, Lansche J, Müller J (2012) Life cycle assessment of energy generation from biogas - attributional vs. consequential approach. Renew Sust Energ Rev 16:3766–3775. https://doi.org/10.1016/j.rser.2012.02.072

    Article  Google Scholar 

  • Richard M, Pradel M (2014) Les filières de traitement et de valorisation des boues d’épuration en France: Rapport d’enquête. Irstea-ONEMA

  • Schau EM, Palomino JAP, Michalopoulos G, Russo C (2016) Product environmental footprint category rules for olive oil. Draft for 3rd public consultation phase. Brussels: European Commission

  • Seufert V, Ramankutty N (2017) Many shades of gray—the context-dependent performance of organic agriculture. Sci Adv 3. https://doi.org/10.1126/sciadv.1602638

  • Skowrońska M, Filipek T (2014) Life cycle assessment of fertilisers: a review. Int Agrophysics 28:101–110. https://doi.org/10.2478/intag-2013-0032

    Article  Google Scholar 

  • SOLAGRO (2001) La digestion anaérobie des boues urbaines: état des lieux, état del’art. Toulouse: SOLAGRO and Agence de l’Eau Adour-Garonne

  • Solagro (2004) La qualité agronomique des digestats. Rapport Final. Angers: Solagro and ADEME

  • Solagro-IRSTEA (2012) Etat de l’art des digestats et de leurs procédés de post-traitement. Solagro - Irstea

  • Soulié JC, Wassenaar T (2017) Modelling the integrated management of organic waste at a territory scale. 22nd Int Congr Model Simul 75

  • Stedje O, Cherubini F, Falk A et al (2018) Choice of mineral fertiliser substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system. Sci Total Environ 615:219–227. https://doi.org/10.1016/j.scitotenv.2017.09.215

    Article  CAS  Google Scholar 

  • Tampio E, Marttinen S, Rintala J (2016) Liquid fertiliser products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J Clean Prod 125:22–32. https://doi.org/10.1016/j.jclepro.2016.03.127

    Article  CAS  Google Scholar 

  • Tsarouhas P, Achillas C, Aidonis D et al (2015) Life cycle assessment of olive oil production in Greece. J Clean Prod 93:75–83. https://doi.org/10.1016/j.jclepro.2015.01.042

    Article  Google Scholar 

  • Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts? - a meta-analysis of European research. J Environ Manag 112:309–320. https://doi.org/10.1016/j.jenvman.2012.08.018

    Article  CAS  Google Scholar 

  • Vaneeckhaute C, Lebuf V, Michels E et al (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste and Biomass Valorization 8:21–40. https://doi.org/10.1007/s12649-016-9642-x

    Article  CAS  Google Scholar 

  • Vázquez-Rowe I, Golkowska K, Lebuf V, Vaneeckhaute C, Michels E, Meers E, Benetto E, Koster D (2015) Environmental assessment of digestate treatment technologies using LCA methodology. Waste Manag 43:442–459. https://doi.org/10.1016/j.wasman.2015.05.007

    Article  CAS  Google Scholar 

  • Vicente-Vicente JL, García-Ruiz R, Francaviglia R et al (2016) Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: a meta-analysis. Agric Ecosyst Environ 235:204–214. https://doi.org/10.1016/j.agee.2016.10.024

    Article  Google Scholar 

  • Wassenaar T, Doelsch E, Feder F et al (2014) Returning organic residues to agricultural land (RORAL) - fuelling the follow-the-technology approach. Agric Syst 124:60–69. https://doi.org/10.1016/j.agsy.2013.10.007

    Article  Google Scholar 

  • Wenzel H (1998) Application dependency of LCA methodology: key variables and their mode of influencing the method. Int J Life Cycle Assess 3:281–288. https://doi.org/10.1007/BF02979837

    Article  Google Scholar 

  • Yoshida H, Christensen TH, Scheutz C (2013) Life cycle assessment of sewage sludge management: a review. Waste Manag Res 31:1083–1101. https://doi.org/10.1177/0734242X13504446

    Article  CAS  Google Scholar 

  • Zang Y, Li Y, Wang C et al (2015) Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. J Clean Prod 107. https://doi.org/10.1016/j.jclepro.2015.05.060

Download references

Acknowledgements

This work, which is a deliverable of the ACV-MAFOR project (https://ur-recyclage-risque.cirad.fr/principaux-projets/acv-mafor), was partly supported by the French Environment and Energy Management Agency (ADEME), under the AGRIBALYSE 2 research programme (https://rebrand.ly/agribalyse). The author moreover thanks the following colleagues for their valuable contributions: Amandine Foulet (IRSTEA), Armelle Gac (IDELE), Aurélie Perrin (ESA), Aurélie Tailleur (ARVALIS), Aurélie Wilfart (INRA), Aurore Vigan (INRA), Blaise Leclerc (ITAB), Christian Bockstaller (INRA), Hayo van der Werf (INRA), Jean-Marie Paillat (CIRAD), Laurent Largant (AFAÏA), Lynda Aissani (IRSTEA), Marilys Pradel (IRSTEA), Mélynda Hassouna (INRA), Paul Robin (INRA), Sabine Houot (INRA), Sandrine Espagnol (IFIP), Vincent Colomb (ADEME), Virginie Parnaudeau (INRA), and two anonymous representatives of the organic fertiliser industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Avadí.

Additional information

Editorial Responsibility: Ian Vázquez-Rowe

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 398 kb)

Appendix

Appendix

Table 5 Characteristics of organic amendments and fertilisers (composition)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avadí, A. Screening LCA of French organic amendments and fertilisers. Int J Life Cycle Assess 25, 698–718 (2020). https://doi.org/10.1007/s11367-020-01732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01732-w

Keywords

Navigation