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Abstract
Purpose The carbon intensity that accompanies concrete manufacturing has been widely investigated. However, depending on
the intended use, concrete’s embedded materials’ quantities can change significantly, affecting its environmental performance.
Seldom investigated, sprayed concrete’s impact differs from that of typical ready mixed concrete, which justifies a differentiated
inspection. Our goals are (i) to prove that sprayed concrete’s environmental impacts are under-investigated and (ii) to provide an
overview on how concrete’s components’ production cycles are typically modelled in LCAs.
Methods We performed a systematic literature review (SLR) to gather the widest possible sample of papers in a replicable and
transparent manner, aiming to answer two research questions: ‘What is the life cycle performance of sprayed concrete?’ and
‘What are the most frequent methodological choices made to perform an LCA of concrete’s constituents?’. We used eight
different keyword strings for each of concrete’s most used components and searched for documents in databases Springer and
ScienceDirect. After 3 conservative filtering rounds, 282 papers were thoroughly and collectively assessed to feed the outcome
herein documented.
Results and discussion The investigated literature not only showed a gap in sprayed concrete’s environmental impacts docu-
mentation but also allowed us to build a literary dossier to ground researches aiming to calculate typical concrete mixes’ impact
through LCA, assuring comparability with the ecological status quo for that construction material. Practitioners’ most frequent
methodological choices were documented, along with common standard breaches and limitations in investigated studies.
Conclusions By systematically structuring our research protocol, we covered enough papers to provide a sound overview and to
make collective conclusions regarding available literature. We make two main recommendations for LCA practitioners: non-
carbon correlated impact categories ought to be investigated—especially as we move towards more carbon-friendly technologies
in concrete/cement manufacturing. Second, practitioners should always comply with the transparency requirements of an LCA.
Our outcome pointed to an alarming number of published papers that failed to declare basic methodological choices such as data
sources, assessment methods used and impact distribution strategies in multifunctional processes’ modelling.
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1 Introduction

Mankind has benefitted from concrete’s outstanding technical
performance in terms of durability and strength for centuries
now (Flower and Sanjayan 2007; Waters et al. 2016). Be it in
the urban environment’s infrastructure or in living or working
spaces, one is constantly exposed to concrete structures. A
more recent chapter in concrete’s ancient history depicts, how-
ever, a less favourable profile: its significant environmental
impacts. Society is now aware of the carbon/natural resource
use intensity that accompanies the well-known construction
material, and this acknowledgement arose from scientific re-
searches performed throughout the world.

Even though abundant and (mostly) scientifically robust,
concrete-related researches do not always cover all of its pos-
sible applications’ peculiarities. Depending on the intended
use, concrete’s desired function and its embedded materials’
quantities can change significantly. The use of sprayed con-
crete stands out as one of the latter cases. Seldom investigated,
sprayed concrete’s environmental performance can differ from
that of typical ready mixed concrete (Saade et al. 2018a, b),
which justifies a closer individual inspection.

Performing environmental evaluations of construction
and building materials through life cycle assessment
(LCA) is increasingly regarded as a sound and coherent
scientific strategy (Passer et al. 2015). LCA widens the
scope of typical environmental analyses to include all of
a product’s life cycle stages that might contribute to impact
generation, thus providing a more complete assessment of
potential ecological damages. Such a broad delineation and
modelling of production processes, however, demands a
number of methodological delimitations which affect ob-
tained results.

This research’s motivations are two-fold: (i) to prove our
initial hypothesis that sprayed concrete’s environmental im-
pacts are under-investigated and (ii) to provide an overview on
how concrete’s components’ production cycles are typically
modelled in life cycle assessments. Results depicted here are
part of a research project entitled ‘Advanced and Sustainable
Sprayed Concrete’ (ASSpC), which aims to develop new
sprayed concrete mix designs and technologies, to jointly im-
prove the material’s durability and environmental perfor-
mance. The ultimate goal behind the performed review was
to provide a methodological basis for a scientifically accurate
environmental assessment of newly developed mixes and
benchmarks to establish clear environmental and technical
superiority.

2 Methodological approach

An inspection in published literature must be carefully
planned to assure coverage of all important studies. We

therefore chose to perform a systematic literature review
(SLR) to try to gather the widest possible sample of papers
in a replicable and transparent manner.

Following the typical protocol for SLRs, we initially
defined two research questions that guided all subsequent
steps: ‘What is the life cycle performance of sprayed con-
crete?’ and ‘What are the most frequent methodological
choices made to perform an LCA of (sprayed) concrete’s
constituents?’. We chose to search two databases:
ScienceDirect and Springer. The former encompasses a
number of journals assessing construction technologies
while the latter was chosen especially because of the
International Journal of Life Cycle Assessment, a publish-
ing vehicle focused exclusively in LCA’s methodology
and its application. Journals Science and Nature were in-
dividually assessed, due to their scientific relevance. In
addition, through the so-called snowball approach
(Wohlin 2014), we checked for relevant papers that were
not captured by our research strategy in citations within
our paper sample.

We chose to exclude grey literature (i.e. papers that were
not peer-reviewed) to assure coverage of only high-quality
papers (except from when added through the snowball ap-
proach). No time boundaries were applied to our search,
which was performed until January 2017.

The following keyword strings were structured based on
(sprayed) concrete’s composition and individually searched
for across the previously mentioned databases:

& Sprayed concrete (OR shotcrete) AND LCA
& CEM AND LCA
& Admixtures AND concrete AND LCA
& Limestone AND concrete AND LCA
& Sand AND concrete AND LCA
& Gravel AND concrete AND LCA
& Fly ash AND concrete AND LCA
& Blast furnace slag AND concrete AND LCA

All papers that met the initial search criteria were trans-
ferred to a reference management software, where they went
through three filtering rounds per keyword string: first a title
analysis, then an abstract analysis and finally an in-depth full
paper analysis. The remaining papers were listed in a data
extraction form (built in .xls format, available as Electronic
SupplementaryMaterial; all assessed references are detailed in
the further reading), where we documented all relevant infor-
mation allowing for a joint assessment of each sample, namely
(i) authors’ name, country, paper title, journal and year; (ii)
paper’s goal; (iii) functional unit chosen; (iv) system bound-
aries adopted; (v) background data source; (vi) impact assess-
ment method used; (vii) impact distribution criteria used (if
any); and, finally, (viii) life cycle indicators’ values for the
assessed material (if present).
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3 Results presentation and discussion

3.1 Research question 1: ‘What is the life cycle
performance of sprayed concrete?’

The search performed for sprayed concrete confirmed our
hypothesis and clearly pointed to a gap: our final sample of
papers was composed of only four studies (Huang et al. 2015;
Pretot et al. 2014; Stripple et al. 2016; Amin Hosseini et al.
2016). Detailed information on the amount of papers remain-
ing after each filtering phase can be found in Saade et al.
(2018a, b). Due to the low sample of papers, no graphs were
built, so a brief discussion on main methodological choices is
herein presented.

Our scarce sample did not show results for sprayed concrete
individually, which prevents the identification of the compo-
nent’s environmental performance. Amin Hosseini et al. (2016)
actually cited the Inventory for Carbon and Energy values
(Hammond and Jones 2011) as a source for concrete’s impact,
but since that inventory does not provide information on sprayed
concrete, it is safe to assume that the authors considered typical
ready mixed concrete as a proxy. Stripple et al. (2016) did not
mention the background data source used, while Huang et al.
(2015) and Pretot et al. (2014) used ecoinvent as the underlying
data foundation for their LCAs. As for impact assessment
methods used, only Huang et al. (2015) clearly declared their
choice: authors used Recipe midpoint v.1.06, with the egalitarian
perspective. Within system boundaries definition, cradle-to-
grave predominated, except for Stripple et al. (2016), where the
choice is not clearly stated. Finally, Pretot et al. (2014), Stripple
et al. (2016) andAminHosseini et al. (2016) usedm2 of wall as a
functional unit, while Huang et al. (2015) adopted road tunnel
length (1 m) as chosen unit.

3.2 Research question 2: ‘What are the most frequent
methodological choices made to perform an LCA
of concrete and its constituents?’

Due to the large number of keyword strings used, this section
presents a joint meta-analysis performed for all papers found
when using the different keywords. The figures detailing meth-
odological choices show each time a specific method was used,
even when a single paper adopted more than one method.

Figure 1 shows the temporal distribution of the assessed 282
published papers dealing with concrete components’ LCA. The
six papers published in early 2017, though part of our sample,
are not plotted to avoid line distortions. One notices a discrete
peak in 2010, followed by a much relevant increase rate as of
2014. Many scenarios might have contributed to the almost
exponential growth after that year, but here we highlight the
publication of the International Panel on Climate Change
(IPCC) Fifth Assessment Report and the World Sustainable
Building Conference in Barcelona, both events taking place in

2014. These two landmarks in regard to climate change
(former) and the construction sector’s sustainability (latter)
highlighted the need for environmentally preferable alternatives
to conventional building materials, paving the way for LCA
practitioners focusing at this topic. The following subsections
show the SLR outcome for the relevant methodological infor-
mation extracted from sampled papers.

3.2.1 Background data source

LCA’s wide scope makes it a data-intensive methodology, in
which the practitioner typically collects specific data related to
his/her process of interest, but relies on background databases
to provide environmental information on the processes that are
up- or downstream on the investigated supply chain. There are
idiosyncratic methodological procedures behind each avail-
able database and, therefore, the choice of one or the other
potentially interferes with LCA results. Figure 2a plots the
adoption frequency of the most well-known internationally
used databases—namely ecoinvent and GaBi—in all assessed
papers along with other less typical sources, while Fig. 2b
shows how often the different versions of the most used data-
base (ecoinvent) are chosen.

The less typical data sources dominate the sample, but
closely followed by the ecoinvent database. The fact that var-
ied sources (the ‘other’ category) grounded most of the
assessed studies points to a difficulty in benchmarks defini-
tion, since comparability is hindered in those cases. The ini-
tially Switzerland-focused ecoinvent database stands out for
its transparency and completeness, which might explain its
relative preference in concrete’s component’s LCAs.

Considering its great use and the fact that there were sig-
nificant methodological changes made to the database struc-
ture with time, acknowledging which version of ecoinvent is
most adopted is also important. As expected, the first versions
of the database—released from 1999 to 2007—(1.01, 1.1, 1.2
and 1.3 represented in Fig. 2b as ‘1.x’) are the least adopted.
Versions 2.0 and 2.1 (represented by ‘2.x’) show an increase
in use frequency, as does version 2.2, which is represented
alone here due to its greater use. The ‘ecoinvent 2’ series
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Fig. 1 Temporal distribution of papers in the final samples. Six papers,
published in early 2017, are not plotted to avoid line distortions
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was released shortly after the publication of the revised ISO
standards on LCA in 2006 (ISO 2006a), which stimulated a
growth in publication of LCA papers in general, thus
explaining its significantly larger adoption. Versions 3.0,
3.01, 3.1, 3.2 and 3.3 (‘3.x’ in Fig. 2b) were released from
2013 to 2016 and still have not shown a use as wide as the 2.x
versions’. The changes made on the database methodological
structure from version 2 to 3 were the largest so far, which
might have inhibited its use (Saade et al. 2018a, b). Version
3.4 of the database was released on October of 2017, after our
paper selection was finished, and is therefore out of our
search’s scope.

3.2.2 Impact assessment method

The life cycle impact assessment stage (LCIA) translates in-
formation on material and energy flows that happen through-
out the product’s life cycle into environmentally relevant in-
dicators. Due to the great number of parameters to be translat-
ed into those indicators, practitioners typically rely on LCIA
methods that, through the use of scientifically accepted con-
version factors, calculate the overall contribution of each mea-
sured flow to an impact category. There are inherent differ-
ences between the available methods, which vary in terms of
conversion factors used, which sets of flows contribute to
which impact category and how far along the environmental
cause and effect chain the results are. Unsurprisingly, once
again, LCA results vary from one method to the other. Our
SLR (Fig. 3) pointed that the most used LCIAmethod was the
one developed by the Institute of Environmental Sciences of
Leiden University, also known as CML or CML-IA, which is
in line with the findings of Desideri et al. (2014) and
Ferrández-García et al. (2016).

It is noteworthy that 31% of the sampled papers did not
declare the impact assessment method used, which denotes a
severe transparency issue—unacceptable if one aims for
replicability.

3.2.3 Life cycle stages

Within the built environment and, more specifically, within
the realm of construction products in general, the life cycle
phases to be assessed are described in terms of different
acronyms, following the guidelines published in the
European Standard 15804:2012 (EN 2012). The so-called
product stage encompasses raw material extraction (A1),
transport to manufacturing (A2) and manufacturing per se
(A3), and is considered mandatory for environmental prod-
uct declarations (EPD). The following stages consider ac-
tivities that are specific to the construction sector: A4 =
transport of product to construction site, A5 = installation
in building, B1–B7 refer to the product’s use stage, while
C1–C5 represent its end-of-life. An additional stage (D) is
supposed to cover the potential recyclability of the
assessed material. We adopted this nomenclature to identi-
fy which life cycle stages were mostly addressed in the
specialized literature. The mandatory product stage (also
called ‘cradle-to-gate’ or A1–A3) was the most adopted
scope (Fig. 4), followed by a more complete A1–C5 scope,
also referred to as ‘cradle-to-grave’.

Almost 5% of our sample (13 papers) failed to declare the
scope of the performed LCA which, as with the previous
methodological choices assessed, renders unclear and incom-
parable results.

3.2.4 Functional unit

The functional unit plays one of the most important roles in
LCAs. When performing comparisons between different
products, one must always guarantee a functional equivalence
among them, which needs to be translated into the unit for
which the environmental flows are calculated. When
performing an LCA for an isolated product, however, it is
not uncommon to find what practitioners like to call a ‘de-
clared unit’, since no functional equivalency is needed.
Considering that our set of assessed materials are typically

Mix: v2.x & v3.x, 2

version not stated, 
24

v1.x, 4

v2.2, 31

v2.x, 31

v3.x, 19

Data source: ecoinvent

ecoinvent, 111

not stated, 12

other, 139

Mix, 7

Gabi, 13

Data source ba
Fig. 2 a Background data source
adopted in papers in the final
samples. The ‘other’ category
refers to alternative papers,
environmental product
declarations, industrial partners,
sectorial reports and country-
specific databases. Their individ-
ual frequency was low and did not
justify a single category for each.
b Database version in papers that
adopted ecoinvent as a back-
ground data source
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sold and measured in terms of mass or volume and that most
papers did not perform comparisons between different com-
ponents, our SLR outcome does not come as a surprise
(Fig. 5), showing that mass (kg or ton) and volume-related
(m3) were the most adopted functional units in cradle-to-gate
LCAs. When all life cycle phases were considered, ‘piece’
stood out as a widely used functional unit, which can represent
different construction systems as a whole, such as a concrete
slab or column with specific dimensions, a whole house, a
bridge or a defined highway section. Area units (m2/km2)
were mostly related to LCAs in housing/residential sectors,
where the net floor area is a typically adopted functional unit.
The meter or kilometre functional units were mainly found in
studies that referred to streets or pavements’ LCAs.

3.2.5 Impact distribution method

In almost all product systems to be modelled in an LCA, one
finds what practitioners call a ‘multifunctionality problem’.
Whenever a production process generates more than one prod-
uct or has more than one function, the decision on how to
distribute material and energy flows between the generated

products/functions needs to be made. ISO 14044:2006 (ISO
2006b) provides a hierarchic stepwise procedure to solve
multifunctionality problems: first, allocation, i.e. the distribu-
tion of impacts between a product and its co-product(s) based
on specific criteria, should be avoided wherever possible, by
either dividing multifunctional processes into sub-processes
(sub-division) or by expanding the product system to include
the co-products’ additional functions (system expansion).
When allocation cannot be avoided, system inputs and outputs
should be divided based on the underlying physical relation-
ships between them. If no physical criteria can easily enable
partitioning, then the inputs and outputs should be attributed
to reflect other relationships between the products and func-
tions, such as their economic value.

Although not mentioned in ISO 14044, the ‘avoided
burden’ approach is conceptually equivalent to the sys-
tem expansion cited in it, and consists of subtracting the
environmental loads prevented by co-product recycling
from the multifunctional process’ loads (Tillman et al.
1994; Heijungs and Guinée 2007). Also not explicitly
mentioned in the international standard but widely
adopted is the ‘cut-off ’ approach—in which the
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practitioner acknowledges the multifunctionality issue,
but regards the co-product as a waste with null impact.
Since distribution methods lead to significantly different
outcomes, ISO requires that when modelling multifunc-
tional processes, LCA practitioners perform a sensitivity
analysis by using more than one method.

Due to high industrial co-product incorporation in building
materials’ manufacturing, the construction sector often faces
impact distribution issues (Saade et al. 2015). The cement
industry, for instance, is frequently confronted with this meth-
odological conundrum mainly due to blast furnace slag (from
steelmaking processes) and fly ash (from coal-based electric-
ity generation) use as supplementary cementitious materials.
Documenting how often each possible impact distribution
method is used is paramount if one wishes to establish bench-
marks or assure comparability with previously published
researches.

Figure 6 shows the adoption frequency of each distribution
method considering papers found when using the keyword
strings for fly ash and blast furnace slag. The ‘System expan-
sion’ column refers to papers that adopted either the avoided
burden approach or actual system expansion as predicted by
the standard.

Sixty percent of sampled papers (64 papers) failed to per-
form or acknowledge the need for impact distribution—a clear
breach of ISO 14044’s guidelines. Moreover, only 21% (23
papers) performed a sensitivity analysis as requested by the
international standard. The cut-off approach was the most
adopted method between ISO-compliant papers, typically ac-
companied by a sensitivity analysis using mass and/or eco-
nomic value allocation.

3.2.6 Life cycle indicators

Albeit kept in our final samples for methodological aspects’
identification, most evaluated papers (244) did not provide
environmental indicators’ values for concrete’s components.

This subsection provides an overview of those that did docu-
ment their environmental performance, focusing on indicators
that compose EN 15804’s minimum impact category
structure—namely acidification potential (AP), eutrophication
potential (EP), global warming potential (GWP), ozone layer
depletion potential (ODP), photochemical ozone creation po-
tential (POCP) and abiotic depletion potential (ADP).
Presented results refer to values per kg of material, consider-
ing a cradle-to-gate scope (A1–A3). A table with ranges found
for each indicator and material is shown at the end of this
section.

Cement As concrete’s global warming potential’s (GWP)
greatest contributor, one does not struggle to find information
on cement’s greenhouse gas emissions as with most other
components. Cement’s carbon intensity has been widely in-
vestigated in the specialized literature (Flower and Sanjayan
2007; Chen et al. 2010; Van den Heede and De Belie 2012;
Habert 2013), which explains the lowest standard deviation
found when jointly plotting all GWP results for CEM I found
in the SLR (Fig. 7). The ‘n’ acronym accompanying the indi-
cator’s name represents the number of values found—
confirming the larger availability of information on GWP
when compared to other impact categories.

ADP’s variation assessment was hindered due to the low
number or results found for that indicator (4). Nonetheless, it
presented the highest results’ range (from 1.98E-4 to 0.243 kg
of antimony-equivalent per kg of cement), most likely due to
its calculation’s uncertainty, associated to each consumed
mineral’s availability, extraction rates and other possible pa-
rameters to which there is still no scientific consensus (Van
Oers and Guinée 2016).

Few results (three papers) were found for average types of
cement, considering the most consumed types in the country
(García-Gusano et al. 2015a; García-Gusano et al. 2015b;
Strazza et al. 2010). These were not plotted due to lack of
confirmed functional equivalence with CEM I.
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Sand and gravel Within our SLR strategy, sand and gravel’s
impact were searched for separately. Since some papers pre-
sented combined results for both fine and coarse aggregate,
here we chose to jointly plot values to provide an overview of
aggregates in general. Moreover, the main difference between
sand and gravel is basically their grain size which, translated
into environmental flows, means an additional energy for
grinding consumption.

Again, ADP showed the highest variation, for the same
reasons previously discussed—high calculation uncertainty
coupled with lower number of values found. Apart from an
isolated outlier, GWP has the least variation among found
values, followed by the acidification potential. As expected,
when comparing with figures obtained for cement, the much
lower values of impact per kg of aggregate stand out.

Admixtures From the 26 papers that composed our final sam-
ple for chemical admixtures used in concrete, 11 provided
information on those materials’ environmental loads, with on-
ly 2 of them expanding the indicators’ scope to include more
than just GWP. Plasticizers and/or superplasticizers were the
most addressed agents (eight papers). Table 1 shows GWP
results found for the two latter chemical agents along with
their data source. The European Federation for Concrete
Admixtures’ EPD (2006) data was adopted in two different
papers.

GWP results range was wide, pointing to a lack of consen-
sus in literature regarding this component’s carbon intensity.
The EFCAEPDwas the most adopted data source, which also
showed great variation depending on its year of publication.
The current EPD for that organization (2015) shows an even
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higher GWP value, as listed for comparison purposes in
Table 1’s shaded cell. This variability points to a need of
further investigation regarding chemical agents’ contribution
to concrete’s loads. Typically disregarded due to its low con-
sumption in ready mixed concrete (Van den Heede and De
Belie 2012), admixtures are used in much larger quantities
in sprayed concrete mixes, which most certainly interferes
with the material’s environmental attractiveness (Saade,
Passer, and Mittermayr 2018b). In LCAs, when dealing with
data uncertainty or unavailability, being conservative is usu-
ally the wisest approach. We therefore recommend using the
latest data published by the EFCAwhenevermore specific and
detailed inventory for an adapted LCA is unavailable. The
referred EPDs also list GWP (and other indicators) values
for hardening and set accelerators (2.28 kgCO2eq/kg and
1.33 kgCO2eq/kg, respectively) (used in typical sprayed con-
crete mixes), air entrainers (5.27E-1 kgCO2eq/kg), water
resisting admixtures (2.67 kgCO2eq/kg) and retarders (1.31
kgCO2eq/kg).

Limestone Our SLR pointed to a significant gap related to
the presentation of limestone’s life cycle impacts contribu-
tion in concrete-related researches. Even though 81 papers
met our search criteria for this material (which means
limestone is indeed considered in overall calculations),
only 2 of them presented limestone’s impact separately
(Sagastume-Gutiérrez et al. 2012; Grist et al. 2015), but
these referred to slaked lime production—not used as filler
or aggregate in concrete. One safely assumes that lime-
stone, aggregates and eventual supplementary cementi-
tious materials (SCM) have lower environmental loads
than cement’s. Nonetheless, aggregates and other SCM’s
were far more individually investigated (Fig. 8).
Limestone’s lower content in concrete’s composition
might be the only explanation for such a pronounced over-
look in our sampled papers. Present authors are currently
collaborating in the development of a manuscript
documenting limestone fillers environmental loads and in-
vestigating their optimal environmental/functional perfor-
mance in pastes.

Fly ash As briefly discussed in the previous subsection, the
cement (and concrete) industry has historically relied on in-
dustrial co-products use within its manufacturing processes.
Incorporation typically happens in fuels’ replacement (in what
is called waste co-processing) or in clinker replacement, by
using co-products that provide similar binding effect (calcu-
lated through the binding equivalency equation as listed in EN
206-1 (CEN 2004))—which is the case of SCMs like fly ash
and ground granulated blast furnace slag. Regular materials
(i.e. not co-products such as calcined clay, metakaolin and/or
silica fume) also classify as SCMs, but are not part of our
search’s scope.

Allocation factors for co-products are calculated as a ratio
between the co-product’s property (be it mass or economic
value) and the total figure of that property for the multifunc-
tional processes (sum of mass figures or prices of product and
co-product), as shown in Eq. 1; where Ap is the allocation
factor based on a certain property, pcoproduct is the co-product’s
value for that property and pmainproduct is the main product’s
value for that same property.

Ap ¼ pcoproduct
pmain product þ pcoproduct

: ð1Þ

Being fly ash a widely used co-product, its impact values
reflect differences related to the possible impact distribution
methods adopted (Fig. 9).

When performing mass allocation for fly ash, authors typ-
ically consider the mass of hard coal necessary to generate a
certain amount of electricity as the main product’s property (as
described by Chen et al. (2010)). Keeping that in mind, the far
largest figures found for when mass allocation was adopted
are expected, since fly ash’s mass contribution to the process’s
total mass is always greater than its economic value contribu-
tion. The cut-off approach results—located in the lowest limits
of the graph—only account for processing impacts (such as
drying, storing and/or transporting). It becomes clear that fly
ash’s environmental attractiveness is greatly dependant on the
impact distribution method used, adding relevance to the dis-
cussion presented in Subsection 3.2.5.

Table 1 GWP values found for
plasticizers and superplasticizers
in sampled papers. Information in
shaded cell is shown only for
comparison purposes

Admixture type GWP value (kg CO2eq/kg) Data source

Plasticiser 1.53 Ecoinvent

Plasticiser/Superplasticizer 0.22 EFCA EPD 2006

Plasticiser/Superplasticizer 0.72 EFCA EPD 2010

Plasticiser 0.944 German Association

Superplasticizer 0.739 German Association

Superplasticizer 0.0052 “Large manufacturer”

Plasticiser 0.75 unclear

Plasticiser/Superplasticizer 1.88 EFCA EPD 2015
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Blast furnace slagAnalogously to results presented for fly ash,
blast furnace slag results are also inherently dependant on the
distribution method adopted (Fig. 10). However, a few out-
liers stand out, in which economic allocation values surpass a
few mass allocation values. Habert (2013) considers a range
of economic-based allocation factors, from 0.6 to 12.6%, to
more realistically depict price fluctuations, while Saade et al.
(2015) present lower than average values for mass allocation
due to state-of-the-art pig iron-making processes considered.
Both papers’ modelling peculiarities led to the mentioned
differences.

For further reference, Table 2 summarizes the ranges of
values found for each component, considering the six assessed
environmental indicators.

3.2.7 Comparison between components

Results for concrete’s components for which the largest num-
ber of papers were available are jointly plotted on Fig. 11,
showing GWP values exclusively. We limit this comparison
to the latter indicator due to the greatest number of results
available for each component, which favours statistical

Fig. 8 Impact values for 1 kg of aggregates (fine + course)

Fig. 9 Impact values for 1 kg of fly ash
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representation. Results are presented per equivalent binding
capacity (BE) to assure a fair comparison (Chen et al. 2010).
The assessed SCMs rank differently depending on critical
choices made by the LCA practitioner.

As previously shown in Eq. (1), when one uses mass allo-
cation in industrial processes that generate a great quantity of
co-product, significant loads are assigned to the latter. For fly
ash and blast furnace slag, it leads to an unattractive environ-
mental profile for activities intending to recycle them, surpass-
ing that of cement. The appropriateness of (and sensitivity to)
different allocation criteria has been widely discussed in liter-
ature (Chen et al. 2010; Sayagh et al. 2010; Saade et al. 2015;
Schrijvers Loubet and Sonnemann 2016a) but a consensus is
far from being reached (Curran 2007; Schrijvers et al. 2016b).
One could argue that the choice involves value judgement and
therefore deliberating on the suitability of each approach
would be a never-ending endeavour. Although we do agree
that scientifically quarrelling over subjective matters might be
a waste of time, here we present a more practical view of the
issue: if an allocation criterion stimulates stakeholders to
move away from a consolidated recycling practice which is

in line with circular economy principles and knowingly avoids
impact-intensive flows from and to nature (e.g. clinker
manufacturing and waste disposal loads), while maintaining
an overall net benefit (considering generated processing
loads), then should not one consider it as inadequate for mul-
tifunctional modelling within one’s own LCA? While for
SCMs this perception is easier, we acknowledge that the iden-
tification of such situation in other cases might be tricky, and
recommend caution whenever methodologically delineating a
multifunctional process.

4 Final remarks

Our review’s results provide a wide scientific panorama on
how concrete (through its components) has been typically
modelled in published LCA studies. The literary dossier that
we have built not only aids in properly investigating sprayed
concrete’s loads within the ASSpC project, but it also has the
potential to ground researches aiming to calculate typical con-
crete mixes’ environmental profile through LCA, assuring

Fig. 10 Impact values for 1 kg of blast furnace slag

Table 2 Ranges of results found
in the SLR. SCM’s indicators
values range from zero (cut-off
approach) to the values obtained
with mass allocation

CEM I Aggregates Fly ash Blast furnace slag

AP (kg SO2eq/kg) 0.5E-3–3.49E-3 0.00087E-3–1.49E-3 0–0.032 0–0.00539

EP (kg PO4eq/kg) 3.3E-4–5.04E-4 0.0018E-5–1.24E-5 0–0.00176 0–0.000752

GWP (kg CO2eq/kg) 0.476–0.951 0.00106–0.287 0–4.18 0–1.39

ODP (kg CFC11eq/kg) 1.64E-8–4.2E-8 0.23E-9–6.31E-9 0–4.06E-8 0–2.72E-8

POCP (kg C2H4eq/kg) 0.022E-4–1.11E-4 0.00416E-5–1.34E-5 0–0.0011 0–9.32E-4

ADP (kg Sbeq/kg) 0.0159E-1–2.43E-1 1.6E-5–6.9E-5 0–0.0325 0–0.0134
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comparability with the ecological status quo for that construc-
tion material.

As with any literature review, valid papers might have been
left out because they fell out of our search criteria’s scope.
Still, by carefully structuring our research protocol and
performing it systematically, we believe we have covered
enough papers to provide a sound overview and to make col-
lective conclusions regarding available literature.

We make two main recommendations for LCA practi-
tioners assessing concrete’s impacts: first, although knowingly
carbon-intensive, concrete (and cement) do contribute to other
impact categories which ought to be investigated—specially
as we move towards more carbon-friendly technologies in
their manufacturing. To restrict concrete’s LCA focus to
GWP is to risk overseeing equally important environmental
issues or—worse—shifting the burden to other categories
such as toxicity or depletion of non-renewable resources.
LCA tools currently available are powerful enough to provide
a range of impact results with almost no additional demand on
the computational apparatus, so one should aim for seizing all
of the method’s potential.

Second, practitioners should always comply with the trans-
parency requirements of an LCA. Our outcome pointed to an
alarming number of published papers that failed to declare
basic methodological choices such as data sources, impact
assessment methods used and impact distribution strategies
in multifunctional processes’ modelling. Comparability is se-
verely hindered in those cases. Journal reviewers and/or edi-
tors could be of help in assuring the proper declaration of
calculation procedures taking place in published LCAs.
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