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Abstract
Purpose Life cycle assessment (LCA) is intended as a quantitative decision support tool. However, the large amount of uncer-
tainty characteristic of LCA studies reduces confidence in results. To date, little research has been reported regarding the
comparative sources of uncertainty (and their relative importance) and how, or how commonly, they are quantified in attributional
and consequential LCA. This paper answers these questions based on a review of recent LCA studies and methods papers, and
advances recommendations for improved practice.
Methods All relevant LCA methods papers as well as case studies (amounting to 2687 journal articles) published from 2014 to
2018 in the top seven journals publishing LCA studies were reviewed. Common sources and methods for analysis of uncertainty
in both attributional and consequential LCA were described, and their frequency of application evaluated. Observed practices
were compared to best practice recommendations from methods papers, and additional recommendations were advanced.
Results and discussion Less than 20% of LCA studies published in the past five years reported any kind of uncertainty analysis.
There are many different sources of uncertainty in LCA, which can be classified as parameter, scenario or model uncertainty.
Parameter uncertainty is most often reported, although the other types are considered equally important. There are also sources of
uncertainty specific to each kind of LCA—in particular related to the resolution of multi-functionality problems (i.e. allocation in
attributional LCA versus the definition of market-mediated substitution scenarios in consequential LCA). However, there are
currently nowidely applied methods to specifically account for these sources of uncertainty other than sensitivity analysis. Monte
Carlo sampling was the most popular method used for propagating uncertainty results, regardless of LCA type.
Conclusions Data quality scores and inherent (i.e. stochastic) uncertainty data are widely available in LCI databases, and researchers
should generally be able to define comparable uncertainty information for their primary data. Moreover, uncertainty propagation for
parameter uncertainty is supported by LCAmodelling software. There are hence no obvious barriers to quantifying parameter uncertainty
in LCA studies.More standardizedmethods based upon context-specific data that strike the right balance between comprehensiveness and
usability are, however, necessary in order to better account for both the shared and unique sources of uncertainty in attributional and
consequential LCAs. More frequent and comprehensive reporting of uncertainty analysis is strongly recommended for published LCA
studies. Improved practices should be encouraged and supported by peer-reviewers, editors, LCI databases and LCA software developers.
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1 Introduction

Life cycle assessment (LCA) is intended as a quantitative
decision support tool. However, it is not fully accepted as such
due to a perceived lack of robustness (Herrmann et al. 2014).
One of the main issues impacting the reliability of LCA results
is uncertainty (McKone et al. 2011), which may be very high,
underestimated or, very often, simply ignored (Weidema
2009). The frequent lack of quantified uncertainties in LCA
studies means that it is not possible to determine confidence
levels for results, which is fundamental in most branches of
empirical science. Identifying, quantifying and communicat-
ing uncertainty in LCA studies remain important areas for
both methodological development and, in particular, increased
implementation by practitioners (Herrmann et al. 2014).

The sources of uncertainty in LCA are numerous and have
been categorized in different ways. Lloyd and Ries (2007) di-
vide uncertainty into three main categories: model, scenario and
parameter uncertainty. Here, parameter uncertainty (also called
stochastic or data uncertainty) is described as uncertainty in
observed or measured values arising from inherent variability
in the sampled population, as well as uncertainty related to data
quality. Scenario uncertainty refers to uncertainty due to nor-
mative choices made in constructing scenarios, including the
choice of functional unit, time horizon, geographical scale and
other methodological choices. This can also be called uncer-
tainty due to choices.Model uncertainty comes from the struc-
ture of and the mathematical relationships defining the models
themselves (including models for deriving emissions and char-
acterization factors used in impact assessment models).

Many kinds of uncertainties influence LCA results.
However, some types of uncertainties may be more pro-
nounced depending on the type of study being conducted.
The two main types of LCA are attributional (ALCA) and
consequential (CLCA). ALCA examines a snapshot of the
current or past state of affairs to determine the environmental
impacts that can be attributed to the product studied, assuming
a static system. CLCA considers future scenarios to determine
the impacts that may occur as a consequence of a change in the
use, method of production, production level, etc. of a product.
Weidema (2003) defines ALCAs as ‘retrospective’ studies
suitable for hot-spot identification. CLCAs are defined as
‘prospective’ studies to evaluate the consequences of future
changes. These changes take into account multiple product
systems, which interact dynamically via assumed market-
mediated product substitution effects. These differences in
modelling approach mean that different processes will be in-
cluded within the system boundary, depending on whether an

attributional or consequential LCA is being performed. All
processes related to the production of the functional unit are
included in an ALCA, and those processes affected by a
change in the functional unit are included in a CLCA
(Weidema 2003). Methods for solving multi-functionality
problems in each type are also different—allocation for
ALCA and system expansion for CLCA (Weidema 2003).
ALCA and CLCA may also use different data. Ekvall et al.
(2016) describe ALCA as using average data and CLCA as
utilizing marginal data for modelling changes. These
differences can affect the types and relative importance of
uncertainties associated with each type of LCA, and how
this uncertainty should be analysed. Weidema (2003) states
that uncertainty in CLCA may be quite large but is able to
be estimated and controlled, whereas the uncertainty in ALCA
(i.e. arising from not considering market interactions) is not
knowable or controllable.

In order to quantify uncertainty due to data quality in LCA,
Weidema and Wesnaes (1996) proposed a semi-quantitative
pedigree matrix, adapted from Functowicz and Ravetz (1990),
which includes measures for data reliability, completeness,
temporal correlation, geographical correlation, and further
technological correlation. These indicators are intended to be
sufficient to describe the data quality in terms of consistency
with the study in which they are being used, and to be used in
conjunction with measures of inherent uncertainty (Weidema
and Wesnaes 1996). However, the pedigree matrix only ad-
dresses uncertainty due to data quality (parameter uncertain-
ty), not model or scenario uncertainty. Moreover, it should be
remembered that the pedigree matrix categories, score levels
and associated standard deviations are highly generic andmer-
it continued development and sector-specific adaptation by
the LCA community in order to improve their utility for con-
tributing to uncertainty quantification and assessment.

Uncertainty analysis in LCA involves calculating the total
uncertainty of the outcome of a study based on the uncertainty
of all the parameters and model choices of the modelled prod-
uct system, which enables estimation of a confidence interval
for the results. This is especially important since there is often
a large amount of uncertainty in LCA models, such that
representing the results as point values is misleading
(Björklund 2002). There are many possible mathematical ap-
proaches for propagating uncertainty parameters in unit pro-
cess data and characterization factors, the most common ap-
proach beingMonte Carlo sampling (Groen et al. 2014). Other
approaches include Taylor series expansion and fuzzy interval
arithmetic. In essence, these methods all perform the same
function, which is to propagate the uncertainty of the
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parameters. However, they have different practical efficien-
cies depending on the situation. Given the differences in
LCA methodologies and sources of uncertainty, it is worth
considering which methods of uncertainty analysis are appro-
priate for each type of LCA as well as the relative importance
of different sources of uncertainty that are either common or
unique to ALCA and CLCA.

There has been research on uncertainty analysis and the
types of uncertainty in ALCA (for example, see Björklund
2002), which mostly only consider certain aspects of un-
certainty, variability or unrepresentativeness. However,
literature addressing uncertainty in CLCA and the differ-
ences between ALCA and CLCA with respect to uncer-
tainty is almost non-existent. Due to the methodological
differences between these two types of LCA, it is possible
that the major sources of uncertainty will differ and also
that different methods may be required to address them.
The relative importance of these sources of uncertainty,
and how they are best quantified, is presently unclear.

The aims of this paper are hence two-fold. First is to
identify and evaluate the frequency of uncertainty reporting
in LCA studies (including ALCA, CLCA and any combi-
nations of the two). The common sources and methods of
quantification of uncertainty are also reviewed - both those
that are common to all LCA studies, as well as unique to
either ALCA or CLCA. This includes identifying any cur-
rent issues in uncertainty analysis methods and reporting.
Second is to determine whether or not the methods that are
commonly applied for uncertainty assessment in attribu-
tional LCA, and the kinds of uncertainty that are considered,
are similarly applicable in consequential life cycle model-
ling contexts. It is also determined whether additional meth-
odological development may be necessary to support im-
proved quantification and communication of both shared
and unique sources of uncertainty with respect to both
ALCA and CLCA model results.

2 Methods

A broad suite of relevant LCA methods and theoretical
literature that focused on uncertainty was reviewed in or-
der to determine current recommendations, best practices
and challenges. Publications discussing uncertainty in
ALCA and/or CLCA were identified using Web of
Science and Google Scholar and the keywords ‘uncertain-
ty’, ‘error’, ‘variability’, ‘consequential’ and ‘life cycle
assessment’. Papers were selected based on their rele-
vance to answering research questions regarding sources,
analysis or communication of uncertainty/error/variability
in either ALCA, CLCA, or both.

In order to determine the current state of uncertainty anal-
ysis and reporting in LCA, a review was subsequently

performed of all relevant papers in the journals publishing
the greatest number of LCA studies from January 2014 to
August 2018. The journals included were the International
Journal of Life Cycle Assessment (IJLCA), Journal of
Cleaner Production, Sustainability, Applied Energy, Science
of the Total Environment, Resources, Conservation and
Recycling and Journal of Industrial Ecology, each of which
returned at least 150 results using keywords ‘life cycle assess-
ment’ in the Web of Science Core Collection for the years
2014–2018.

2.1 Reporting of uncertainty

The type of LCA study (attributional or consequential)
was recorded, as well as whether or not uncertainty anal-
ysis was performed, or if uncertainty was even mentioned
at all in the publication. The type of study was determined
first based on any indications of LCA study type (ALCA
or CLCA) by the authors, and second based on the re-
search questions and methods if no LCA type was
indicated. If the authors said that an uncertainty analysis
was performed, the paper was categorized as ‘performed’,
regardless of whether or not the results of the uncertainty
analysis were presented in the paper. This included all
types of uncertainty analysis (i.e. both quantitative and
qualitative parameter uncertainty analysis as well as anal-
ysis of model and scenario uncertainty). However, simply
a ‘sensitivity analysis’ with no mention of uncertainty was
not included as uncertainty analysis since these two anal-
yses have fundamentally different goals. In the case of
IJLCA, as it is an LCA-focused journal, any discussion
of uncertainty analysis was also recorded for non-LCA
case studies, including review papers and methodological
papers. However, for all other (non LCA-specific)
journals, no analysis was performed of non-LCA studies
since those studies are not relevant to the research ques-
tions. The total number of each type of paper was tabu-
lated and graphed, along with the number of each LCA
type for each category of uncertainty reporting. The rate
of reporting of uncertainty (i.e. % of papers) annually
over this interval was also calculated.

2.2 Sources and quantification of uncertainty

Both the LCA case studies and theoretical/methodological
publications regarding uncertainty in LCA were reviewed
in order to identify the methods for quantification of un-
certainty in either ALCA or CLCA. The broad category
sources of uncertainty (parameter, scenario and model)
mentioned in the LCA case studies were tabulated, as well
as any specific sources of uncertainty (within the broad
categories) mentioned. Since not all studies reported spe-
cific sources of uncertainty, methods documents
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discussing uncertainty in LCA were reviewed in order to
gain broader insight into sources of uncertainty common
to all LCA studies or unique to ALCA or CLCA.
Similarly, the methods of propagation and quantification
of uncertainty were identified from the LCA case studies
(categorized by LCA type). If any paper utilized more
than one uncertainty analysis method, this was catego-
rized as one instance of each method employed. Based
on this review, current limitations and potential for im-
provement of the availability/suitability of methods to ad-
dress uncertainty in ALCA and CLCA were evaluated.

2.3 Uncertainty analysis/propagation specific to ALCA
and CLCA

A review of methods/guidance documents discussing
uncertainty in LCA was also conducted to determine
the current state-of-the-art with regard to best practices,
general areas of agreement or disagreement, and any
gaps in the literature or outstanding questions related
to uncertainty propagation in both ALCA and CLCA,
or common to both types. The aforementioned LCA
case studies published from 2014 to 2018 were assessed
against these best practices in order to evaluate the cur-
rent quality of uncertainty analysis in published LCA
research and to make recommendations for improve-
ment, if necessary.

2.4 Uncertainty analysis by sector

Finally, the LCA case studies from 2014 to 2018 were
sorted according to ISIC economic sector (United
Nations 2008). These sectors were then mapped to the
different sectors for which a standard base uncertainty is
provided in Frischknecht et al. (2005). This was done to
compare the size of the base uncertainty for a given
sector (intended to be representative of inherent
stochasticity) to the relative proportion of studies within
that sector that performed uncertainty analysis.

3 Results and discussion

3.1 Reporting of uncertainty

A total of 2687 LCA case studies published in the
International Journal of Life Cycle Assessment (731 stud-
ies), Journal of Cleaner Production (1426 studies),
Sustainability (147 studies), Applied Energy (231 stud-
ies), Science of the Total Environment (174 studies),
Resources, Conservation and Recycling (148 studies),
and Journal of Industrial Ecology (140 studies) from
January 2014 to August 2018 were identified for review.

The overwhelming majority (94%) of these were strictly
attributional LCA studies (Table 1). Only 6% were either
CLCA (5%) or a combination of ALCA and CLCA (1%).
Among these, 19% of ALCA studies included some type
of uncertainty analysis (including quantitative and quali-
tative analysis of parameter uncertainty, as well as
scenario/sensitivity analysis of scenario/model uncertain-
ty) (Fig. 1). In comparison, 15% of CLCA studies report-
ed performing uncertainty analysis, as did 22% of com-
bined ALCA/CLCA studies. There were also 2% of
ALCA studies and 1% of CLCA studies that reported that
uncer ta in ty analys is was not performed due to
methodological/data limitations and rather suggested it
as a future step. Overall, the majority of LCA studies
(79%) did not perform any kind of uncertainty analysis,
and a large fraction did not even mention uncertainty at
all (43%). In publications in IJLCA that were not LCA
case studies, including reviews, methodological pro-
posals, etc., the proportion that addressed the topic of
uncertainty was lower still (14%) (Table S1, Electronic
Supplementary Material - ESM). Moreover, there does
not appear to be an increase over time in the proportion
o f LCA s t u d i e s t h a t i n c l u d e a n u n c e r t a i n t y
analysis despite the increase in total LCA studies, in fact
the percentage drops from 21 to 17% over the period
studied (Fig. 2). Only aggregated data (all journals togeth-
er) for uncertainty reporting are presented in the current
document (Figure 1). Detailed data are available in
Tables S1–S14 (ESM) for individual journals.

3.2 Sources and quantification of uncertainty

3.2.1 Sources common to both ALCA and CLCA, their
importance, and their rates of consideration

Table 2 lists specific sources of uncertainty common to all
LCAs, as well as those specific to either ALCA or CLCA.
These lists are based on the types of uncertainty seen in either
only ALCA or CLCA studies, or in both LCA types from the

Table 1 Numbers of life cycle assessment studies reviewed from
January 2014–August 2018 in the International Journal of Life Cycle
Assessment, Journal of Cleaner Production, Sustainability, Applied
Energy, Science of the Total Environment, Resources, Conservation and
Recycling, and Journal of Industrial Ecology, categorized by LCA type

Type of LCA Number of studies
reviewed

Attributional 2519 (94%)

Consequential 136 (5%)

Combination attributional
and consequential

32 (1%)

Total 2687
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review of LCA studies from 2014 to 2018. Most sources of
uncertainty are common to both types. These sources include
data variability and quality (parameter uncertainty), many kinds
of methodological choices (scenario uncertainty) and impact
assessment methods (model uncertainty).

Several studies have evaluated the relative importance of the
different types of uncertainty in LCA, with contradicting re-
sults. As reviewed by Lloyd and Ries (2007), some suggested

parameter uncertainty to be the most important (for example,
Huijbregts et al. 2003), some concluded that uncertainty in
characterization and valuation factors (or model and scenario
uncertainty) are more important (Steen 1997), and others
claimed that all were important (Huijbregts et al. 2005). In
reality, their relative importance will likely often be context-
specific—for example, depending on which LCIA methods
and impact factors are considered (Henriksson 2015). That said,

Fig. 1 Types of LCA studies and
reporting of uncertainty in
the International Journal of Life
Cycle Assessment, Journal of
Cleaner Production,
Sustainability, Applied Energy,
Science of the Total Environment,
Resources, Conservation and
Recycling, and Journal of
Industrial Ecology from January
2014–August 2018. See ESM1
for complete list of citations. a)
Attributional studies (n = 2522).
b) Consequential studies (n =
136). c) Combination attribution-
al and consequential studies (n =
32)

Fig. 2 Reported uncertainty
analysis in LCA case studies in
the International Journal of Life
Cycle Assessment, Journal of
Cleaner Production,
Sustainability, Applied Energy,
Science of the Total Environment,
Resources, Conservation and
Recycling, and Journal of
Industrial Ecology from 2014–
2017. Note that 2018 was
excluded because there were only
data for eight months. See ESM1
for complete list of citations
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no LCA study identified for this review has included analysis of
all sources of uncertainty in a single, quantitative uncertainty
assessment, neither is it likely that this is even possible (there
will always be unknown unknowns). Lloyd and Ries (2007)
found that parameter uncertainty was most commonly reported
and that important sources of uncertainty may often be
overlooked. This is an important issue since including some,
but not all, sources of uncertainty can lead to incorrect and
misleading results (Uusitalo et al. 2015).

Uncertainty from the impact assessment stage of LCA can
sometimes (but not always) be more subjective than inventory
uncertainty, due to the uncertain nature of actual environmen-
tal impacts as well as individual preferences, which leads to
more assumptions and value judgements being required
(Lloyd and Ries 2007). This includes the choice of character-
ization factors, category indicators, etc. and their
representativeness. Weidema et al. (2013) found that uncer-
tainty data is more often reported for LCI data than LCIA, but
that the latter source of uncertainty may be just as important.

Tables 3, 4, and 5 list the number of ALCA, CLCA and
combination ALCA/CLCA studies that were reviewed that

account for each broad category of uncertainty, including the
method of uncertainty analysis. This only includes those studies
which were previously identified as having performed an uncer-
tainty analysis.Many studies accounted formore than one source
of uncertainty; therefore, the data was also visualized using Venn
Diagrams (Fig. 3a, b). Among ALCAs in which some form of
uncertainty analysis was reported, 410 out of 470 studies
reviewed (87%) accounted for parameter uncertainty, 77 (16%)
for scenario uncertainty and 54 (11%) formodel uncertainty (Fig.
3a). Only eight studies (less than 2%) included all three
sources of uncertainty in their analysis. Ninety studies
(18%) included a combination of two different sources.
Twenty-seven studies (6%) did not indicate the sources
of uncertainty but still indicated that they performed an
uncertainty assessment. Others stated that they did not
analyse any uncertainty but parameter uncertainty, citing
lack of suitable methods (Romero-Gámez et al. 2017).

In CLCAs, 18 out of 19 studies (95%) that performed
uncertainty analysis included parameter uncertainty as a
source of uncertainty in their analysis, six (32%) included
scenario uncertainty, and three (16%) included model

Table 2 Sources of uncertainty in
LCA in general and specific to
ALCA and CLCA from LCA
studies in the International
Journal of Life Cycle Assessment,
Journal of Cleaner Production,
Sustainability, Applied Energy,
Science of the Total Environment,
Resources, Conservation and
Recycling, and Journal of
Industrial Ecology reviewed from
January 2014-August 2018

Source of Uncertainty Common to
ALCA and CLCA

System boundaries; mathematical relationships in model; data variability,
availability, accuracy, representativeness; time horizon of study/timing
of emissions; stakeholder interpretation of results; transformative
technology; human behaviour; methodological choices (functional
unit, multi-functionality, impact assessment methods); normalization;
weighting; lack of knowledge of biological processes (e.g. soil carbon,
land change, ecosystem services); assumptions of linearity and fixed
relationships

ALCA-specific Uncertainty Co-product allocation

CLCA-specific Uncertainty Behavioural-economic impacts: change over time (technical change or
input substitution), horizontal competition for intermediate goods,
impact on consumption (rebound), strategic competitive behaviour,
impact of technology, future production costs, future demand; system
expansion/substitution

Table 3 Sources of uncertainty and analysis type, categorized by
parameter, scenario or model uncertainty, in attributional LCA studies
in the International Journal of Life Cycle Assessment, Journal of

Cleaner Production, Sustainability, Applied Energy, Science of the Total
Environment, Resources, Conservation and Recycling, and Journal of
Industrial Ecology reviewed from January 2014-August 2018

Parameter
only

Scenario
only

Model
only

Parameter
and
scenario

Parameter
and
model

Scenario
and
model

Parameter,
scenario
and model

Not
indicated

Monte Carlo 217 3 6 12 23 0 4 22

Fuzzy 3 0 0 1 0 0 0 0

Not indicated/other 21 2 1 3 2 0 0 3

Probabilistic (other thanMonte Carlo) 11 0 1 0 2 0 1 0

Qualitative 4 0 0 1 1 0 1 0

Regression 1 0 0 0 0 0 0 0

Scenario 7 6 1 12 1 0 0 2

Sensitivity 55 9 1 17 4 3 2 0

Taylor series 4 0 0 0 0 0 0 0
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uncertainty (Fig. 3b). None of these studies included all
three types of uncertainty analysis, and eight (42%) in-
cluded two types. In combination ALCA and CLCA stud-
ies, five out of six studies (83%) listed parameter uncer-
tainty as the only source of uncertainty analysed, and one
(17%) listed scenario uncertainty. No combination ALCA/
CLCA studies accounted for more than one type of
uncertainty.

Common sources of model uncertainty were characteriza-
tion factors and emission factors (ex. Dong and Ng 2014;
Aubin et al. 2018). Sources of scenario uncertainty were from
modelling choices including the definition of the functional
unit, system boundary, and handling of co-products (ex. Tu
et al. 2018). Parameter uncertainty was by far themost common
source of uncertainty considered, from both inherent data var-
iability and data quality uncertainty quantified using the data
quality indicators of the pedigree matrix (ex. Galle et al.
2017). See Table 2 for a list of sources of uncertainty in the
LCA studies reviewed.

3.2.2 Uncertainty specific to ALCA

The main source of uncertainty specific to ALCA comes from
solving multi-functionality problems through allocation,
which is not used in CLCA (Pelletier et al. 2015). Scenario
uncertainty from the choice of allocation method was indicat-
ed as a source of uncertainty in many of the ALCA studies
reviewed, but not in the CLCA studies (Table 2). For example,
Van Stappen et al. (2018) found a 10–26% change in results
depending on the type of allocation used (economic or mass).
It should be noted that the uncertainty that comes from the
choice of allocation method is separate from the inherent var-
iability related to the specific factors used for a particular
allocation method (for example, price differences over time
and space when economic allocation is used). This second
type of variability is additive to LCI variability, as it is a type
of data uncertainty. The uncertainty due to allocation choice,
like other sources of scenario or choice uncertainty, was often
analysed using sensitivity analysis. Of the 77 ALCA studies

Table 5 Sources of uncertainty and analysis type, categorized by
parameter, scenario or model uncertainty, in combination attributional
and consequential LCA studies in the International Journal of Life
Cycle Assessment, Journal of Cleaner Production, Sustainability,

Applied Energy, Science of the Total Environment, Resources,
Conservation and Recycling, and Journal of Industrial Ecology
reviewed from January 2014-August 2018

Parameter only Scenario only Model
only

Parameter and
scenario

Parameter and
model

Scenario and
model

Parameter, scenario
and model

Not
indicated

Monte Carlo 2 0 0 0 0 0 0 0

Fuzzy 0 0 0 0 0 0 0 0

Not indicated/other 1 0 0 0 0 0 0 0

Probabilistic other 0 0 0 0 0 0 0 0

Qualitative 1 0 0 0 0 0 0 0

Regression 0 0 0 0 0 0 0 0

Scenario 0 1 0 0 0 0 0 0

Sensitivity 1 0 0 0 0 0 0 0

Taylor series 0 0 0 0 0 0 0 0

Table 4 Sources of uncertainty and analysis type, categorized by
parameter, scenario or model uncertainty, in consequential LCA studies
in the International Journal of Life Cycle Assessment, Journal of Cleaner

Production, Sustainability, Applied Energy, Science of the Total
Environment, Resources, Conservation and Recycling, and Journal of
Industrial Ecology reviewed from January 2014-August 2018

Parameter only Scenario only Model only Parameter and
scenario

Parameter and
model

Scenario and
model

Parameter, scenario
and model

Not
indicated

Monte Carlo 7 0 0 2 3 0 0 0

Fuzzy 0 0 0 0 0 0 0 0

Not indicated/other 0 0 0 0 0 0 0 0

Probabilistic other 2 0 0 0 0 0 0 0

Qualitative 0 0 0 0 0 0 0 0

Regression 0 0 0 0 0 0 0 0

Scenario 1 0 0 1 0 0 0 0

Sensitivity 0 1 0 2 0 0 0 0

Taylor series 0 0 0 0 0 0 0 0
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that accounted for scenario uncertainty, 49 (64%) used scenar-
io or sensitivity analysis to assess it (Table 3). However only
16% of studies included scenario uncertainty in their uncer-
tainty analysis, whereas 87% included parameter
uncertainty. See Fig. 3a and Table 2 for an overview of sources
of uncertainty in ALCA.

3.2.3 Uncertainty specific to CLCA

CLCA differs from ALCA in that it considers the market-
mediated changes and associated environmental impacts in
the broader economic system that may arise due to a change
in a given product system. However, the identification of mar-
ginal technologies and the pathways and magnitude of the
assumed substitution are quite difficult in practice (Ekvall
and Weidema 2004). This is the main source of uncertainty
specific to CLCA (Table 2). Further uncertainty is also added
with respect to the definition of the system boundaries
(Mathiesen et al. 2009). Overall, the inclusion of such as-
sumed economic effects may introduce considerable uncer-
tainty into CLCA due to the uncertainty of both economic
activity and future predictions in general (Ekvall and
Weidema 2004).

Process-based CLCA is most simply modelled as a linear
process which has an associated set of assumptions. It as-
sumes fixed input/output coefficients, infinite elasticity of in-
puts, and an adequate market capacity for co-products (Yang
and Heijungs 2018). In other words, it creates a linear extrap-
olation of the original system to model a change in the system.
As these assumptions do not accurately reflect reality in many
cases, this is a source of uncertainty that can impede CLCA as
a decision support tool (Pelletier et al. 2015). The problem is
not limited to CLCA but is also a well-recognized problem of
econometric policy evaluation in economics (Lucas 1976).
However, some CLCA methodologies include more sophisti-
cated systems based onmarginal markets (e.g. Schmidt 2008).
To help avoid erroneous conclusions, Yang and Heijungs
(2018) suggest using process-based models in conjunction
with other types of models such as general equilibrium
models, linear optimisation models, system dynamics and in-
tegrated assessment models when making decisions, especial-
ly for economically and environmentally important policies.
All of these methods will have their own characteristic types
and degrees of uncertainty. In particular, they require assump-
tions regarding the preferences and objectives governing the
decision making of economic agents.

Most CLCA studies that were identified as having per-
formed an uncertainty analysis accounted for parameter un-
certainty, with only 32% of CLCAs and 17% of combination
ALCA/CLCAs accounting for scenario uncertainty, which is
the type of uncertainty introduced by the identification of
marginal technologies (Tables 4 and 5). See Fig. 3b and
Table 2 for an overview of sources of uncertainty in CLCA.

3.3 Methods for uncertainty propagation in LCA

Parameter uncertainty is the most commonly analysed source
of uncertainty in LCA studies and is most often undertaken
using stochastic modelling (mostly Monte Carlo (MC) simu-
lation). MC is most often available and used in LCA software
but requires a large number of samples and thus considerable
computing time. Other than MC, alternative approaches for
quantifying uncertainty in LCA include fuzzy data sets, ana-
lytical uncertainty propagation, probabilistic simulation, and
Bayesian statistics (Björklund 2002). However, the most ap-
propriate method of uncertainty propagation will differ de-
pending upon the parameter data available as well as the goal
and scope of the study, in terms of necessary specificity and
amount of data. It will also depend on the availability and cost-
effectiveness of software. Currently, OpenLCA is an example
of a free and open source LCA software with uncertainty
analysis capability (using MC), although only data variability,
uncertainty due to data quality and uncertainty due to charac-
terization factors can be included in the analysis. There is also
open source statistics software such as R that can be used for
uncertainty analysis.

323 20

10

46

33 3

8

a
Parameter Scenario

Model

3

10

15

b
Parameter Scenario

Model

Fig. 3 Sources of uncertainty included in LCA studies that performed
an uncertainty analysis in the International Journal of Life Cycle
Assessment, Journal of Cleaner Production, Sustainability, Applied
Energy, Science of the Total Environment, Resources, Conservation and
Recycling, and Journal of Industrial Ecology from January 2014–August
2018. a) Attributional studies (n = 470). b) Consequential studies (n = 19)
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According to Lloyd and Ries (2007), analytical uncertainty
propagation, interval calculations, and fuzzy data sets can be
less accurate than stochastic sampling. Groen and Heijungs
(2017) found that both analytical and sampling approaches
can yield approximately equal variance and sensitivity
indices, depending on the study. Heijungs and Lenzen
(2014) found that either analytical or sampling techniques
may be preferable, depending on the situation, and that
analytical approaches are faster but can be less reliable for
large uncertainties. Groen et al. (2014) tested multiple
methods of uncertainty propagation and found that sampling
methods yielded more usable data than fuzzy interval or
analytical uncertainty propagation. They also found that
Latin Hypercube and quasi Monte Carlo sampling were
more accurate and sometimes even faster than MC
sampling. Di Maria et al. (2016) proposed a new probabilistic
method of uncertainty propagation based on variance and geo-
metric mean, which produced comparable results toMC. Only
some of these propagation methods allow for dependent sam-
pling (Heijungs et al. 2017), something that is desirable for
only considering relative results and paired-sampled statistics
(Henriksson et al. 2015). Despite the various options, MC
remains the standard uncertainty propagation method most
commonly available and used in LCA software.

MC simulation, or other Monte Carlo-type propagation
techniques such as Latin Hypercube, were the most common-
ly applied methods of stochastic modelling in the LCA studies
reviewed. Of the 502 LCA studies reviewed which reported
uncertainty analysis, 301 (60%) employed MC (Fig. 4,
Tables S15–S21 - ESM). Several studies applied MC to prop-
agate model uncertainty from characterization factors or emis-
sion factors, or scenario uncertainty due to choices in addition
to just parameter uncertainty (ex. Meinrenken and Lackner
2015; Usack et al. 2018). Some studies combined MC simu-
lation with other uncertainty analysis methods such as semi-
quantitative analysis based on expert judgement, since MC
generally is commonly only used to account for data uncer-
tainty, not uncertainty from the models or impact assessment
methods (Van Stappen et al. 2018). However, it was most
commonly used only for parameter uncertainty (82% of
studies). Other methods of quantitative stochastic uncertainty
analysis performed in the LCA studies reviewed included
Taylor series (1%). Taylor series analysis has been suggested
as another method to account for uncertainty from both data
and other sources, and can also be used in conjunction with
DQI scores to propagate individual parameter uncertainties
when these input parameters do not have a known range of
variability (Cordes et al. 2016). A small number of probabi-
listic analyses other than Monte Carlo-type (4%), fuzzy logic
(1%) and regression analysis (< 1%) were also reported.
Overall, of the studies that reported having performed an un-
certainty analysis, 2% performed a purely qualitative analysis,
7% performed scenario analysis, and 19% performed a

sensitivity analysis. An additional 7% did not report how the
uncertainty analysis was performed.

3.3.1 Uncertainty propagation in ALCA studies

Mendoza Beltran et al. (2016) developed a methodology for
simultaneously propagating data uncertainty and uncertainty
due tomethodological choices, specifically allocationmethod.
MC simulations are used for the propagation of unit process
data uncertainty, as well as the choice of allocation method.
This is more representative of the overall uncertainty and can
be quicker to perform than modelling each allocation method
as a separate scenario, including a MC analysis of each sce-
nario. Using a more efficient statistical propagation method
such as Latin Hypercube sampling is also possible with this
method. The method can also be applied to other methodolog-
ical choices, not only allocation.

Among the reviewed studies,Monte Carlo is the most com-
mon method of uncertainty analysis in ALCA, accounting for
287 out of 475 (60%) ALCA studies that reported uncertainty
analysis (Fig. 4a, Tables S15–S21 - ESM). Other methods of
uncertainty analysis employed in the ALCA studies reviewed
were Taylor series (1%), probabilistic (other than MC) (3%),
fuzzy logic (1%) and regression analysis (< 1%). A small
number (2%) of studies used qualitative methods. Scenario
modelling accounted for 6%, and sensitivity analysis 19%.
An additional 7% of studies did not report the type of uncer-
tainty analysis used or used some other kind of uncertainty
analysis.

3.3.2 Uncertainty propagation in CLCA studies

Larrea-Gallegos et al. (2019) performed an uncertainty analy-
sis in their CLCA of pisco grape production. The marginal
effects of the change in pisco production were modelled using
the stochastic technology-of-choice model (STCM), in which
the uncertainty of any element of the model can be assessed
using its probability density function and, combined with sto-
chastic aspects of parameters, MC simulation. Plevin et al.
(2010) studied bioenergy production using CLCA. To deter-
mine the potential range of the impact of indirect land use
change associated with bioenergy production, they subjective-
ly created uncertainty distributions for each parameter and
propagated the uncertainty using MC simulation, and also
determined the contribution of each parameter to the overall
uncertainty. This resulted in large ranges—larger than report-
ed in previous literature on the subject - since this study com-
bined the uncertainties of all the input parameters (Plevin et al.
2010). Much of this variance is from uncertainty in modelling
choices and inherent stochasticity of parameters.

The newest version of the ecoinvent database (version 3)
now includes consequential LCI models (Wernet et al. 2016).
The consequential models use substitution instead of
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allocation and are intended to be used in CLCAs. Products are
attributed all benefits or burdens associated with their resource
inputs and emissions but are then credited for any co-products
that substitute other products. However, there is no change in
the pedigree matrix traditionally used in ecoinvent for the
consequential system model, meaning that there are no addi-
tional categories to take into account unique sources of uncer-
tainty specific to CLCA. Practitioners of consequential model-
ling should look to other fields, such as economics, to deter-
mine how best to quantify and analyse the unique and poten-
tially very large sources of uncertainty in CLCA that arise
from the identification of the assumed market-mediated sub-
stitutions, the affected markets and the magnitude of the as-
sumed substitution effect.

There are also limitations when using the attributional
framework for consequential modelling (Yang 2016). Real life
scenarios are not likely to scale linearly due to such factors as
physical constraints to expansion andmarket-mediated human
behaviours. However, the computable general equilibrium
models often used in CLCA (Earles and Halog 2011) have
their own assumptions such as rational expectations which
can also increase the uncertainty of the result. Yang (2016)
proposed a two-step approach to conducting a CLCA using
the more familiar ALCA framework. The first step is to con-
duct an ALCA to determine the status quo and any hot-spots.
The second step is to conduct scenarios (and likely collect
more data) based on the change to be studied in a consequen-
tial framework. In the end, this yields a range of scenario
output values. This process requires marginal input/output co-
efficients to replace the average coefficients used in ALCA.
However, Weidema (2017) argues that the attributional frame-
work is not appropriate to answer consequential questions and
contributes a large amount of uncertainty if used. They com-
pared the same systems in the consequential and attributional
models in ecoinvent version 3 and found that in most cases,
there was at least a 10% difference in impact between the two
systems, up to an order of magnitude difference. The sources
of these differences came from the following five categories:
marginal suppliers that are very different from the average,
specialty products, multiple determining products, by-
products from treatment activities and determining products
heavily influenced by by-products. On this basis, Weidema
(2017) suggests that using the consequential models in
ecoinvent for CLCA studies removes an important source of
error from CLCA.

Modelling many different scenarios can help alleviate the risk
of under-representing uncertainty and presenting results as too
certain (Ekvall andWeidema 2004). Ekvall andWeidema (2004)
also suggest cutting off the system boundaries where the uncer-
tainty becomes too large to support any realistic decision-mak-
ing, and that short-term fluctuations in marginal technology can
be ignored in favour of long-term effects. Mathiesen et al. (2009)
suggest performing a sensitivity analysis to determine the impor-
tance of switching between different marginal technologies. In
some cases in the literature, this can have a significant impact on
the outcome of the study (Mathiesen et al. 2009). They also
suggest to test the LCA results against several fundamentally
different marginal technology options in order for the results to
not become too sensitive to the uncertainty introduced by mar-
ginal technology changes.

Overall, 14 out of 27 (52%) CLCA (or combination
ALCA/CLCA) studies published in the past five years that
included uncertainty analysis used MC (Fig. 4b, c,
Tables S15–S21 - ESM). Two studies (7%) used other proba-
bilistic methods. One (4%) used qualitative analysis, four
(15%) used scenario analysis, five (19%) sensitivity analysis
and one (4%) did not report the method of uncertainty

Fig. 4 Types of uncertainty analysis performed in ALCA and CLCA
studies in the International Journal of Life Cycle Assessment, Journal of
Cleaner Production, Sustainability, Applied Energy, Science of the Total
Environment, Resources, Conservation and Recycling, and Journal of
Industrial Ecology from January 2014-August 2018. Studies that
employed a combination of uncertainty analysis methods are counted
under each method. The percentages are calculated based on the sum of
all the categories, including those studies that employedmultiple methods
and were included in more than one category. See ESM1 for complete list
of citations. a) Attributional studies (n = 482). b) Consequential studies (n
= 20). c) Combination attributional and consequential studies (n = 7)
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analysis. Roux et al. (2017) used MC analysis to propagate
uncertainty based on the nine most sensitive parameters relat-
ed to the marginal electricity mix. However, the majority of
studies did not perform uncertainty analysis nor attempt to
account for the uncertainty associated with market scenarios.

3.4 Uncertainty analysis by sector

All LCA case studies considered in the review were classified
by ISIC sector and then mapped to the appropriate category
according to the generic basic uncertainty values given by
Frischknecht et al. (2005) (Table 6). The basic uncertainty
values (geometric standard deviations) for different
products are as follows: Thermal energy, electricity, semi-
finished products, working material and waste treatment ser-
vices 1.05; transport services 2.00; infrastructure 3.00; and pri-
mary energy carriers, metals and salts 1.05. This implies that
there is the highest amount of inherent uncertainty in LCI data
for the infrastructure sector, followed by transport services,
thermal energy, electricity, semi-finished products, working
material, waste treatment services and primary energy carriers,
metals, and salts. In terms of performance of uncertainty anal-
ysis, results are different for attributional and consequential
(including combination attributional and consequential) LCAs
(Table 3, Tables S22–S28 - ESM). For ALCA, sector-specific
studies with the highest level of reporting of uncertainty analy-
sis focused on primary energy carriers, metals, and salts (26%),
followed by infrastructure (21%), transport (21%) and finally
thermal energy, electricity, semi-finished products, working
material and waste treatment services studies (18%). For
CLCA, the studies in the transport sector had the highest per-
centage of uncertainty analysis (30%), followed by thermal
energy, electricity, semi-finished products, working material,
waste treatment services (17%), infrastructure (11%) and pri-
mary energy carriers, metals, and salts (8%). Aggregated results
are presented in Table 6, and individual journal results in
Tables S22–S28 (ESM). In theory, one would anticipate that

the sectors with the largest basic uncertainty should have the
most studies that perform uncertainty analysis, in order to ac-
curately quantify the large inherent uncertainty in that sector.
However, this is not seen in the reporting of uncertainty analysis
by sector. There are also differences betweenALCA andCLCA
in terms of overall percentages of reporting as well as the order
of most to least reporting by sector.

4 Conclusions and recommendations

Despite the generally recognized importance (and widespread
practice) of quantifying and communicating uncertainty asso-
ciated with the results of scientific studies, uncertainty
reporting within the LCA community is not yet commonplace.
Less than 20% of the LCA studies published since 2014 report
uncertainty analysis of any kind, and the rate of reporting does
not appear to be increasing over time. In light of the potential-
ly high levels of uncertainty in LCA studies, improved
methods and practice with respect to uncertainty analysis are
clearly critical to ensuring the utility of LCA as a decision-
support tool. Of the many sources of uncertainty in LCA,
parameter uncertainty is the main type that is accounted for
with any degree of regularity among the subset of published
LCA studies considered in this review that actually include
uncertainty analysis. This is likely due to the lack of common-
ly accepted methods for quantitative analysis of model or sce-
nario uncertainty.

There are important sources of uncertainty that are unique
to either ALCA or CLCA, largely related to how multi-
functionality problems are resolved (i.e. choice of allocation
criterion in ALCA, and market-mediated substitutions based
on identification of marginal technologies in CLCA). For the
latter, uncertainty arises with respect to the identification of
marginal technologies, general market trends (Mathiesen et al.
2009), assumptions regarding elasticities and the uncertainty
of future predictions in general (Ekvall and Weidema 2004).

Table 6 Number of studies in the International Journal of Life Cycle
Assessment, Journal of Cleaner Production, Sustainability, Applied
Energy, Science of the Total Environment, Resources, Conservation and
Recycling, and Journal of Industrial Ecology from January 2014-August
2018 that either did or did not perform uncertainty analysis, categorized
by the major industrial sectors with defined base uncertainty values

(Frischknecht et al. 2005). Percentages refer to how much of the total of
each sector either performed or did not perform uncertainty analysis.
Within each sector, papers are further subdivided by LCA type; CLCA
in this case refers to all LCA studies that employed consequential model-
ling, including combination ALCA/CLCA studies

Studies with
uncertainty analysis

Studies with no
uncertainty analysis

Total number
of studies

Thermal energy, electricity, semi-finished products, working
material, waste treatment services (uncertainty factor 1.05)

ALCA 18% 82% 1841
CLCA 17% 83% 101

Transport (uncertainty factor 2) ALCA 21% 79% 157
CLCA 30% 70% 10

Infrastructure (uncertainty factor 3) ALCA 21% 79% 256
CLCA 11% 89% 18

Primary energy carriers, metals, salts (uncertainty factor 1.05) ALCA 26% 74% 292
CLCA 8% 92% 48
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However, this review of recent literature suggests that uncer-
tainty in CLCA is currently analysed in the same manner as is
prevalent for ALCA, with little apparent consideration of how
to account for these unique and potentially very large sources
of uncertainty.

Monte Carlo-type analysis is by far the most common meth-
od of uncertainty analysis employed in the reviewed studies,
despite the potential that other methods may be as accurate and
less time-consuming. The current prevalence of Monte Carlo
sampling likely reflects its general applicability and the fact that
it is commonly supported in commercial LCA software.

The frequency of uncertainty reporting among LCA studies
for products within specific economic sectors does not align
with sector group ‘base uncertainties’, as are commonly ap-
plied in the popular ecoinvent database. In general, one might
expect that studies within sectors whose LCI data are charac-
terized by the highest parameter uncertainty would have the
highest level of uncertainty analysis, but this does not seem to
be the case.

Based on this review of the literature, the following specific
recommendations for the LCA community with respect to
uncertainty assessment methods and practice have been
identified:

1. Comprehensive uncertainty analysis should be included
in all published LCA studies, unless it can be justifiably
excluded with regard to the goal and scope of the study.
This is particularly pertinent for studies that claim ISO-
14044 compliance and which advance comparative asser-
tions. Journal editors and reviewers should begin to en-
force this requirement, and should include it in their au-
thor guidelines. IJLCA, as the flagship disciplinary jour-
nal, should take the lead in ‘raising the bar’ in this regard.

2. More attention should be paid to uncertainty analysis in
studies specific to the transport and infrastructure sectors,
due to their higher basic uncertainty values (if, indeed,
these values are subject to and stand up to critical
scrutiny).

3. Practitioners should consider different uncertainty propa-
gation methods in order to select the most practical and
efficient method for the study, rather than using Monte
Carlo sampling by default. LCA software developers
should provide a range of options for uncertainty assess-
ment in addition to Monte Carlo sampling.

4. Concerted efforts need to be made to enable considering
all relevant types of uncertainty and variability related to
LCA studies, not just parameter uncertainty. This will
require development of consensus methodologies for
quantifying model and scenario uncertainties. This is cur-
rently not available in most major LCA software.

5. When performing an attributional or consequential LCA,
attention should be paid to the types of uncertainty spe-
cific to the type of LCA. Methods should be agreed upon

for accounting for the variety of sources of uncertainty
present in both ALCA and CLCA. In particular, appropri-
ate methods must be identified/developed for quantifying
the unique and potentially very large uncertainties charac-
teristic of CLCA. Methods for sensitivity analysis in con-
sequential modelling could be borrowed from other fields,
such as economics.
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