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Abstract
Purpose The share of variable renewable energy sources
(vRES) in the German electricity grid has increased over the
past few decades. Due to the nature of the generation pattern
of vRES, the increase of vRES causes the emission factor (EF)
to fluctuate on an hourly basis. This fluctuation raises con-
cerns about the accuracy of quantifying emissions with the
current metric of the annual average EF as the respective EF
may change depending on the time at which it is consumed.
Methods The study calculated the hourly EF of Germany
from 2011 to 2015 and investigated the effect of an increase
of vRES on the EF. The calculated hourly EF was clustered
based on three aspects of time: the period of time, the time of a
day, and the day of the week.
Results and discussion The study showed a higher proportion
of vRES on weekend daytimes while the weekday nighttimes
resulted in a lower share than the annual average. The study
highlighted potential underestimation and overestimation of
emissions by using annual average EF which ranged from
+22% (2015 weekday nighttime of October) to −34% (2015
weekend daytime of May).
Conclusions The study suggested that the application of hour-
ly EF may be necessary to quantify the respective emission
from the consumers that use electricity during the weekend
daytime and weekend nighttime. For consumer use at other
times, the emissions could be quantified appropriately by
using the conventional annual average EF.

Keywords Climate change . Consumption pattern . Dynamic
LCI . Emission factor . Environment

1 Introduction

Electricity is one of the key inventories in a life cycle assess-
ment (LCA); it is frequently used to describe the life cycle
inventory (LCI) of various products (Mendoza et al. 2012;
Torrellas et al. 2012; Treyer and Bauer 2016). The prevalence
of the electricity inventory’s use in LCA studies suggests that
the accuracy of the inventory may significantly impact the
result of an LCA. There exists a tremendous variety of elec-
tricity inventories in ecoinvent, with 71 geographical regions
being represented (Weidema et al. 2013). Currently, the inven-
tory of electricity is based on the annual share of energy
sources in the electricity grid mix of a country. Based on this
mix, the annual average carbon emission factor (EF) of elec-
tricity is calculated and used to quantify the emission from
consumed electricity.

However, the electricity mix has changed rapidly over the
last few decades in response to the emission reduction goals
set bymany countries to combat climate change. For example,
the EU set the emission reduction target of 20% by 2020
through the Climate and Energy Package (Commission of
the European Communities 2008). In keeping with the com-
mitments outlined, the share of renewable energy sources in
the electricity grids increased in several countries. Germany is
one of the countries that has successfully increased their share
of renewables in the grid. As a result, the grid mix of Germany
has transformed over the previous few decades.

The share of renewable energy increased from 3% in 1990
to 30% in 2015 (BDEW 2016; BMU 2013; Morris and Pehnt
2015). In other words, the share of renewable energy in the
German electricity grid increased tenfold in 25 years (BDEW
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2016; BMU 2013). Within the increased share of overall re-
newable energy, the contribution of variable renewable energy
sources (vRES), such as solar and wind, was significant. The
electricity generation from vRES is dependent on the time
when the energy sources are available, which restricts the
ability to plan electricity generation in the same manner as is
possible with conventional power plants. As a consequence of
the increased share of such renewables in the grid, a variation
of the electricity grid mix could be expected depending on the
time of day. In fact, the study by Paraschiv et al. (2014) offers
that the renewable energies in the electricity spot market en-
hances the deviation in price in Germany.

With the energy mix varying with increased vRES, the
corresponding carbon emission by consuming 1 kWh of elec-
tricity may change depending on the time. This indicates the
weakness of the current usage of annual average EF for quan-
tifying emission from electricity consumption, depending on
when the electricity is consumed. Indeed, previous studies
state the lack of temporal information in LCA as an important
limitation of LCA (Levasseur et al. 2010; Pinsonnault et al.
2014; Reap et al. 2008). To better quantify the respective
emission for a specific consumer, higher resolutions of EFs
may become relevant. Moreover, with the increase of vRES in
Germany as well as various European countries such as
Denmark, Italy, and Spain (Eurostat 2016), the importance
of yielding a higher resolution of EF of electricity may be-
come relevant for other countries as well. With the adoption of
the Paris Agreement in COP21 (UNFCCC 2016), the uptrend
in share of vRES can likely be expected in other nations and
continents as well.

Recent studies have generated a higher resolution of carbon
EFs of electricity for Belgium (Messagie et al. 2014) and
Canada (Cubi et al. 2015). However, the German grid system
is somewhat unique in its sizeable share of vRES and the size
of the power market, which renders the country an interesting
case study for assessing the effect of the higher resolution on
EF on quantifying carbon emissions. Therefore, this study
calculated an hourly resolution of the carbon EF of the
German electricity grid mix to assess the relevance of the time
of day when the electricity is consumed. To quantify the EF, a
life cycle impact assessment (LCIA) was made for each power
source. The hourly EF of 5 years (2011–2015) was clustered
in various time resolutions based on the period of time, the day
of the week, and the time of day.With the clustering, the study
intended to highlight that the use of hourly EF grows in sig-
nificance depending on the consumption patterns of a
consumer.

2 Methods

The hourly electricity generation data for Germany was used
to calculate the hourly EFs. Based on the energy mix of the

generation data, the hourly EF was calculated. The following
section introduces the source and method for calculating the
averaged EFs.

2.1 Data sources for generation

The hourly electricity generation data for the German electric-
ity grid was sourced from the EEX (European Energy
Exchange AG 2015). The data represents the net electricity
generation of a specific hour from companies participating in
the wholesale electricity market of EEX. In Table 1, the
German national statistics of the gross electricity generation
and the share of generation data covered by the study are
depicted. Due partly to the fact that not all electricity genera-
tion facilities are represented in the EEX market, and partly to
the differing representations of generation data, the data in the
study represented about 65% of the gross German electricity
generation (BDEW 2016). For the studied years, the represen-
tation of the electricity generated from renewables covered in
the study amounted to about 60% of the gross electricity gen-
eration of renewables in Germany, which was slightly lower
than that of the overall generation. Therefore, the study can be
considered to draw conservative rather than optimistic results
regarding the EFs. The study did not consider the import and
the export of the electricity between the neighboring
countries.

2.2 Data sources for emission

The LCI datasets for each energy source from ecoinvent v3.1
were used to quantify the hourly EF of electricity (Weidema
et al. 2013), and the global warming potential (GWP) based
on IPCC (2013) was calculated via SimaPro (PRé Consultants
2015). The LCIAwas based on a cradle-to-factory gate system
boundary. The LCI datasets of electricity from ecoinvent and
calculated LCIA is shown in Table 2.

For the electricity from nuclear energy, hourly gener-
ation data from EEX was only available as an aggregat-
ed value comprising data from pressurized water reac-
tors (PWR) and boiling water reactors (BWR). Thus, the
ratio of annual generation volume of PWR (78%) and
BWR (21%) (Deutsches Atomforum e. V. 2015) was
applied to quantify the hourly emission from nuclear
energy. For the electricity classified in the BOther^ cat-
egory, the study chose biogas based on the description
from EEX which mentioned the biomass as part of the
category, while the category BBiomass^ was represented
by state-of-the-art biomass LCI dataset.

2.3 Emission factors in various resolutions

Since the share of energy source may vary in the electricity
grid with the increased capacity of vRES, the study
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investigated the variation of the EF in several time resolutions.
In the study, carbon EFs were calculated as Eq. (1).

EFt ¼ ∑GWPt

∑Gt
ð1Þ

where EF represents the carbon EF,GWP represents the emit-
ted global warming potential from the entire electricity grid,
andG represents the total electricity generation of the grid at a
given time t. The highest resolution of time t was hourly.

The EFs were clustered based on three aspects: the length
of the time period, the time of day, and the day of the week.
Each of the clustered EF was calculated based on Eq. (1).
Thus, rather than averaging the hourly EF over the respective
period, the clustered EF represents corresponding emission
and generation that took place during the represented period.
Regarding the length of the time period, the study calculated
EF for annual, monthly, and hourly resolution. The influence

of the time of day was isolated by defining Bdaytime^ and
Bnighttime^. For the study, 6:00–18:00 was defined as the
Bdaytime^, while the rest of the hours were regarded as
Bnighttime^. The EF of weekdays (Monday to Friday) and
weekends (Saturday and Sunday) were also calculated with
Eq. (1). Thus, the study investigated the potential deviation of
clustered average EFs from the annual average to assess the
accuracy of quantifying the emission using annual average EFs.

In order to consider the electricity measures from the con-
sumer perspective, the losses that occurred in the grid were
included. In ecoinvent, the losses along the transmission and
infrastructure for the grid were accounted for in the transfor-
mation from high voltage to low voltage. The transmission
loss was considered to be 2.6% for the German data. The
difference between the high voltage and low voltage electric-
ity mix for German electricity EF was 2.7%, which demon-
strates the limited relevance of grid infrastructure compared to
the losses occurring in the grid. According to the World Bank

Table 2 Energy sources for German electricity grid mix and GWP of each LCI

Energy source in
EEX

LCI in ecoinvent GWP
[gCO2eq/
kWh]

Coal Electricity, high voltage {DE}| electricity production, hard coal | Alloc Def, U 1112.06

Coal derived gas Electricity, high voltage {DE}| electricity production, hard coal | Alloc Def, U 1112.06

Gas Electricity, high voltage {DE}| electricity production, natural gas, at conventional power plant | Alloc Def, U 588.52

Lignite Electricity, high voltage {DE}| electricity production, lignite | Alloc Def, U 1234.70

Oil Electricity, high voltage {DE}| electricity production, oil | Alloc Def, U 1150.68

Pumped-storage Electricity, high voltage {DE}| electricity production, hydro, pumped storage | Alloc Def, U 951.52

Run-of-the-river Electricity, high voltage {DE}| electricity production, hydro, run-of-river | Alloc Def, U 4.50

Seasonal-store Electricity, high voltage {DE}| electricity production, hydro, reservoir, non-alpine region | Alloc Def, U 14.37

Nuclear Electricity, high voltage {DE}| electricity production, nuclear, boiling water reactor | Alloc Def, U; Electricity, high
voltage {DE}| electricity production, nuclear, pressure water reactor | Alloc Def, U

13.75

Other Electricity, high voltage {DE}| heat and power co-generation, biogas, gas engine | Alloc Def, U 313.08

Garbage Electricity, high voltage {DE}| treatment of blast furnace gas, in power plant | Alloc Def, U 819.47

Biomass Electricity, high voltage {DE}| heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 | Alloc Def,
U

38.80

PV Electricity, low voltage {DE}| electricity production, photovoltaic, 3 kWp slanted-roof installation, single-Si, panel,
mounted | Alloc Def, U

93.25

Wind Electricity, high voltage {DE}| electricity production, wind, >3 MW turbine, onshore | Alloc Def, U 32.98

Offshore wind Electricity, high voltage {DE}| electricity production, wind, 1–3 MW turbine, offshore | Alloc Def, U 17.09

Table 1 Gross electricity
generation in Germany and rate of
representation in the EEX market
data from 2011 to 2015

Annual generation Generation from renewables

TWh Covered rate in the study
from EEX data (%)

TWh Share of renewable in
the grid mix (%)

Covered rate in the study
from EEX data (%)

2011 613 65.19 137 22.35 63.85

2012 630 63.44 144 22.84 60.78

2013 639 65.17 152 23.86 59.38

2014 628 66.90 163 25.88 62.70

2015 652 74.05 196 30.04 67.65
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(World Bank 2016), the losses along the transmission and
distribution grid in Germany from 2011 to 2013 totaled
around 4.0%. In this study, the transmission loss of 4% was
homogeneously applied to all energy sources for all of the
investigated years when computing the EF.

3 Results and discussion of averaged emission factors

3.1 Analysis of annual average and hourly emission
factors

With the data obtained from EEX and the use of Eq. (1), the
hourly EF of 2011 to 2015 was derived. The annual average
EF for each year was also calculated, and is displayed in
Table 3. The table also includes the minimum and maximum
hourly EF of each year, which is presented in both absolute
value and normalized value based on the annual average EF of
each respective year. In Fig. 1, the share of energy sources at
the time when the minimum and maximum hourly EF oc-
curred is depicted.

For the minimum hourly EF, the share of the vRES steadily
increased each year from 43% in 2011 to 65% in 2015.

Nevertheless, over the five investigated years, the lowest
hourly EF took place in 2014 instead of 2015, although
2015 experienced the highest annual share of vRES.
Moreover, the minimum hourly EF of 2015 was marginally
higher than that of 2013, where 2015 had 9% less share of
vRES. This was due to the increased share of coal and gas,
with the reduction of nuclear power. However, since the data
from EEX does not cover the entire generation volume in
Germany, further study may be necessary for a higher accura-
cy and precision. Yet, the result demonstrated that the varia-
tion of the hourly EF over the years can deviate substantially
from the annual average EF.

3.2 Monthly emission factors

Figure 2 illustrates the monthly average EF and the share of
renewable energy in the grid from 2011 to 2015. Although the
monthly average EF within a year fluctuated by nearly 30%
between the minimum and maximum value, the month of the
year appears not to be a reliable indication for a high or low
EF. For instance, a relatively high monthly average EF was
recorded during February 2012, 2013, and 2015, while this
result was absent in 2011 and 2014. For the minimummonthly

Table 3 Annual average EF, minimum and maximum hourly EF of each year for German electricity grid mix for 2011 to 2015 in gCO2eq/kWh.
Minimum and maximum EF are recorded in gCO2eq/kWh and normalized values that take the annual average EF of respective year as the reference

Year 2011 2012 2013 2014 2015

Annual average EF 675 100% 686 100% 708 100% 681 100% 676 100%

Min hourly EF 328 49% 351 51% 278 39% 250 37% 278 41%

Max hourly EF 928 138% 920 135% 980 138% 901 133% 951 141%

Fig. 1 The share of energy
sources at the time when the
minimum and maximum hourly
EF took place in 2011 to 2015

Fig. 2 Monthly average EF and
the monthly average share of
renewable energy in the German
electricity grid mix for 2011 to
2015
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average EF, January was the lowest in 2012, while December
was the lowest in 2011 and 2013. In 2014, August was the
lowest, and May in 2015 which were in completely different
seasons of the year compared to the former 3 years.

However, the deviation of themonthly average EF between
the best and the worst month over the years tended to increase.
In 2012, the difference of monthly average EF between
January and November was 17% against the annual average
EF. The difference between the best and worst monthly aver-
age EF increased to 20% in 2013, 21% in 2014, and 31% in
2015. These results indicated that with the increased share of
renewable energy, in which vRES was the major contributor,
the consideration of the month of electricity consumption be-
comes more important to the accuracy of quantifying the
emission.

3.3 Difference between weekdays and weekends

In order to investigate the influence of the time of consump-
tion from a different viewpoint, the relevance of the day of the
week was studied. Table 4 illustrates the annual average EF,
clustered based on the day of a week. In Fig. 3, the share of
energy sources and the average daily volume of electricity
generation for weekdays and weekends are presented.

The result showed that the annual average EF of the week-
end was becoming Bcleaner^ than the overall average, by hav-
ing a lower proportion of fossil fuel in the grid mix with a
lower volume of generated electricity than the weekday. It is
therefore clear that electricity consumed on the weekends was
cleaner than the emission calculated using the annual average
EF for the last 5 years. The finding suggests the overestima-
tion of the quantified GHG emission of the weekend by nearly
10% when the annual average EF is used.

In Table 5, the monthly average EF subdivided into week-
days and weekends is presented from 2011 to 2015. The values
were normalized by the annual average EF of each year.

The results revealed the increasing deviation of some
cleaner monthly average EF of the weekend against the annual
average EF over the years. In addition to the values from the
weekend, some of the Bdirtier^ monthly average EF of the
weekdays also experienced a greater deviation from the annu-
al average EF. It is therefore possible that an increasing vari-
ation of the Bcleanliness^ of the grid mix depends on the day
of the week and increased share of vRES. With some months
experiencing a nearly 20% underestimation on weekdays and
25% of overestimation on weekends, the use of annual aver-
age EF for consumers with specific consumption patterns on
the day of the week may be considered as inappropriate.

3.4 Difference between the daytime and nighttime

The last scope of investigation in relation to the time of con-
sumption was the time of day. In Table 6, the annual average
EF was clustered based on the time of day and the day of the
week, which were normalized by the annual average EF. In
Fig. 4, the share of energy sources and the average daily vol-
ume of electricity generation were clustered into four groups
of daytimes and nighttimes of weekdays and weekends.

Demonstrably, the electricity user who consumes only dur-
ing the daytime on the weekend would have their GHG emis-
sion overestimated by nearly 15% when the annual average
EF was used to calculate the emissions in 2013 to 2015. This
overestimation was due to the increased proportion of non-
fossil fuel in the energy mix of the electricity through in-
creased available volume of such energy sources, especially
from both vRES. While the decrease of the total volume of

Table 4 Annual average EFs subdivided into weekdays and weekends from 2011 to 2015. Annual average EF of each year was taken as a reference

Year 2011 2012 2013 2014 2015

Unit [gCO2eq/kWh] (%) [gCO2eq/kWh] (%) [gCO2eq/kWh] (%) [gCO2eq/kWh] (%) [gCO2eq/kWh] (%)

Weekly 675 100 686 100 708 100 681 100 676 100

Weekday 689 102 699 102 725 103 701 103 697 103

Weekend 635 94 647 94 656 93 623 91 615 91

Fig. 3 Share of energy sources
and average daily electricity
generation volume for weekdays
and weekends from 2011 to 2015
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produced electricity more significantly affected the proportion
of the non-fossil fuel between weekdays and weekends, the
increase of volume of non-fossil fuel energy sources exerted
more influence in the daytime than the nighttime. On the
weekend, the difference in generated electricity volume be-
tween the daytime and nighttime over the year was around
5%, whereas the difference in the share of fossil fuel in the

mix was nearly 10%. Thus, the inaccuracy of using the annual
average EF to calculate the emission of daytime electricity
consumers on weekends in a grid where the share of vRES,
mainly from solar energy, is expected to increase.

On the other hand, the individuals who consumed electricity
during the nighttime on weekdays experienced emission under-
estimation of nearly 7% when calculating emissions through

Table 5 Monthly average EF clustered based on day of the week, normalized by annual average EF

Jan (%) Feb (%) Mar (%) Apr (%) May (%) Jun (%) Jul (%) Aug (%) Sep (%) Oct (%) Nov (%) Dec (%)

2011 Weekly 94.00** 90.10** 100.00 100.30 109.40* 106.20* 98.90 102.00 101.70 104.20 108.10* 89.80**

Weekday 97.70 93.30** 100.40 101.50 112.60* 108.90* 103.80 102.70 101.80 104.10 111.00* 91.60**

Weekend 85.40** 80.90** 98.70 96.90 100.40 97.80 87.40** 99.50 101.50 104.20 99.50 84.70**

2012 Weekly 91.60** 103.10 98.70 104.60 94.80** 98.30 98.80 95.80 98.60 105.30* 107.60* 102.00

Weekday 92.80** 103.60 101.90 107.70* 96.40 102.20 100.80 98.10 100.10 106.80* 108.70* 104.20

Weekend 87.90** 101.90 89.10** 95.80 89.40** 87.90** 93.00** 88.30** 95.00 100.20 104.10 97.00

2013 Weekly 103.10 109.50* 100.20 102.10 99.40 94.70** 102.50 98.10 99.50 96.40 104.10 90.40**

Weekday 103.10 110.10* 105.30* 102.90 102.10 100.90 104.90 101.60 101.70 97.50 106.70* 93.60**

Weekend 103.10 107.90* 88.00** 99.60 90.20** 79.00** 94.20** 88.30** 93.50** 92.40** 97.40 81.60**

2014 Weekly 102.30 95.70 97.90 98.90 97.70 98.00 100.60 90.00** 104.70 106.00* 110.90* 95.10

Weekday 105.00 101.40 102.00 100.90 100.70 100.60 102.50 93.90** 105.40* 108.50* 115.20* 96.40

Weekend 93.40** 79.90** 87.90** 92.40** 88.90** 90.80** 94.30** 80.70** 102.30 97.10 100.40 91.00**

2015 Weekly 96.30 108.40* 101.90 96.70 87.90** 99.10 101.80 102.40 104.90 117.40* 93.60** 88.80**

Weekday 99.00 112.20* 104.10 98.70 92.50** 101.90 103.40 105.00 108.00* 119.00* 97.70 93.70**

Weekend 88.90** 97.30 95.30 89.80** 76.20** 89.50** 96.50 95.60 94.70** 112.80* 82.70** 73.30**

*The values higher than 105%

**The values lower than 95%

Table 6 Normalized annual average EF of the time of a day and the day of the week for 2011 to 2015

2011 2012 2013 2014 2015

Day (%) Night (%) Day (%) Night (%) Day (%) Night (%) Day (%) Night (%) Day (%) Night (%)

Weekly 98.2 102.1 96.2 104.6 95.8 105.0 95.5 105.5 96.0 104.8

Weekday 100.8 103.7 98.8 105.9 98.8 107.0 98.9 107.8 99.4 107.4

Weekend 90.5 97.9 88.5 101.0 86.8 99.4 84.9 99.1 85.3 97.3

Fig. 4 Share of energy sources
and average daily electricity
generation volume for the
daytime and the nighttime of
weekdays and weekends from
2011 to 2015
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Table 7 Monthly EF clustered in weekday, weekend, daytime and nighttime normalized by annual EF for 2011 to 2015

Jan (%) Feb (%) Mar (%) Apr (%) May (%) Jun (%) Jul (%) Aug (%) Sep (%) Oct (%) Nov (%) Dec (%)

2011 Weekly Daily 94.00** 90.10** 100.00 100.30 109.40* 106.20* 98.90 102.00 101.70 104.20 108.10* 89.80**

Day 95.80 91.00** 97.70 96.40 103.70 102.20 95.10 97.70 98.20 102.50 108.50* 91.30**

Night 92.00** 89.00** 102.60 105.00 116.70* 111.10* 103.50 107.10* 106.00* 106.10* 107.80* 88.00**

Weekday Daily 97.70 93.30** 100.40 101.50 112.60* 108.90* 103.80 102.70 101.80 104.10 111.00* 91.60**

Day 95.80 91.00** 97.70 96.40 103.70 102.20 95.10 97.70 98.20 102.50 108.50* 91.30**

Night 94.60** 91.60** 102.40 105.50* 119.30* 113.00* 108.20* 107.50* 105.70* 105.20* 110.20* 89.30**

Weekend Daily 85.40** 80.90** 98.70 96.90 100.40 97.80 87.40** 99.50 101.50 104.20 99.50 84.70**

Day 84.50** 79.90** 94.60** 91.20** 92.70** 91.70** 82.40** 93.90** 97.00 100.60 98.40 84.70**

Night 86.20** 82.00** 103.10 103.40 109.60* 105.00 93.10** 105.90* 106.70* 108.30* 100.70 84.60**

2012 Weekly Daily 91.60** 103.10 98.70 104.60 94.80** 98.30 98.80 95.80 98.60 105.30* 107.60* 102.00

Day 92.30** 102.00 94.50** 99.00 87.70** 91.50** 91.40** 88.80** 92.60** 102.60 108.10* 102.80

Night 90.80** 104.40 103.70 111.50* 104.40 107.40* 108.70* 104.80 106.10* 108.40* 107.10* 101.20

Weekday Daily 92.80** 103.60 101.90 107.70* 96.40 102.20 100.80 98.10 100.10 106.80* 108.70* 104.20

Day 92.30** 102.00 94.50** 99.00 87.70** 91.50** 91.40** 88.80** 92.60** 102.60 108.10* 102.80

Night 91.10** 103.90 106.50* 113.80* 105.60* 109.90* 110.20* 106.40* 106.60* 109.50* 108.00* 102.60

Weekend Daily 87.90** 101.90 89.10** 95.80 89.40** 87.90** 93.00** 88.30** 95.00 100.20 104.10 97.00

Day 86.20** 98.30 83.30** 87.90** 81.00** 77.90** 83.90** 79.00** 86.70** 95.80 104.00 96.20

Night 89.70** 105.80* 95.80 105.10* 100.10 100.80 104.40 99.80 104.90 105.10* 104.20 97.90

2013 Weekly Daily 103.10 109.50* 100.20 102.10 99.40 94.70** 102.50 98.10 99.50 96.40 104.10 90.40**

Day 103.80 108.30* 95.90 95.50 92.90** 87.60** 92.80** 89.90** 94.60** 94.40** 103.80 90.20**

Night 102.40 110.90* 105.10* 110.40* 107.90* 104.20 115.50* 108.70* 105.40* 98.70 104.50 90.60**

Weekday Daily 103.10 110.10* 105.30* 102.90 102.10 100.90 104.90 101.60 101.70 97.50 106.70* 93.60**

Day 103.80 108.30* 95.90 95.50 92.90** 87.60** 92.80** 89.90** 94.60** 94.40** 103.80 90.20**

Night 102.10 111.20* 109.80* 110.70* 109.60* 109.30* 116.90* 111.50* 107.00* 99.70 106.80* 93.70**

Weekend Daily 103.10 107.90* 88.00** 99.60 90.20** 79.00** 94.20** 88.30** 93.50** 92.40** 97.40 81.60**

Day 102.60 105.70* 82.50** 91.30** 80.50** 68.70** 81.20** 78.10** 86.80** 89.50** 96.20 80.80**

Night 103.70 110.10* 94.10** 109.30* 102.10 91.90** 110.80* 100.90 101.30 95.50 98.60 82.60**

2014 Weekly Daily 102.30 95.70 97.90 98.90 97.70 98.00 100.60 90.00** 104.70 106.00* 110.90* 95.10

Day 102.90 93.90** 92.30** 91.20** 89.30** 88.20** 91.80** 81.60** 99.00 103.90 111.20* 96.00

Night 101.70 97.60 104.60 108.80* 108.80* 111.20* 112.40* 101.20 111.80* 108.40* 110.50* 94.10**

Weekday Daily 105.00 101.40 102.00 100.90 100.70 100.60 102.50 93.90** 105.40* 108.50* 115.20* 96.40

Day 102.90 93.90** 92.30** 91.20** 89.30** 88.20** 91.80** 81.60** 99.00 103.90 111.20* 96.00

Night 104.70 102.10 108.50* 110.00* 110.50* 112.90* 113.40* 104.20 111.70* 110.40* 114.00* 95.50

Weekend Daily 93.40** 79.90** 87.90** 92.40** 88.90** 90.80** 94.30** 80.70** 102.30 97.10 100.40 91.00**

Day 94.60** 74.70** 81.20** 82.00** 77.40** 78.40** 82.70** 70.00** 93.90** 93.00** 98.40 92.20**

Night 92.30** 85.70** 95.40 105.00 103.80 106.70* 109.10* 94.40** 112.20* 101.70 102.50 89.80**

2015 Weekly Daily 96.30 108.40* 101.90 96.70 87.90** 99.10 101.80 102.40 104.90 117.40* 93.60** 88.80**

Day 96.50 106.70* 97.70 88.50** 80.70** 92.20** 93.00** 94.80** 100.30 114.30 94.90** 90.30**

Night 96.20 110.20* 106.90* 106.90* 97.20 108.10* 113.00* 111.70* 110.40* 120.90* 92.30** 87.20**

Weekday Daily 99.00 112.20* 104.10 98.70 92.50** 101.90 103.40 105.00 108.00* 119.00** 97.70 93.70**

Day 96.50 106.70* 97.70 88.50** 80.70** 92.20** 93.00** 94.80** 100.30 114.30* 94.90** 90.30**

Night 98.40 114.10* 109.40* 108.60* 101.00 110.10* 114.00* 113.00* 112.70* 122.00* 96.40 91.20**

Weekend Daily 88.90** 97.30 95.30 89.80** 76.20** 89.50** 96.50 95.60 94.70** 112.80* 82.70** 73.30**

Day 87.70** 95.30 91.30** 80.30** 66.60** 79.40** 85.50** 84.70** 87.30** 108.10* 83.70** 71.70**

Night 90.20** 99.40 99.60 101.00 87.90** 101.40 109.40* 108.50* 103.10 117.80* 81.70** 75.10**

*The values higher than 105%

**The values lower than 95%
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annual average EF in 2012 to 2015. The decreased share of
renewable energy, primarily from solar, in the grid mix clearly
affected the Bcleanliness^ of the consumed electricity.

Table 7 depicts the results further broken down into
months. In Fig. 5, the maximum differences among the
monthly average EFs for each cluster are given.

The results of clustering the monthly average EF into the
time of day and the day of the week depicted that the range of
underestimation and overestimation varied from 22% (2015
weekday nighttime of October) and 34% (2015 weekend day-
time of May), respectively. The result did not exhibit clear
trends for specific months, as noted in Chapter 3.2.
Nonetheless, from March to September, the EF of weekday
daytime was generally less than the annual average EF (up to
15%), and weekend daytime was around 20% less. Another
clear tendency demonstrated in Fig. 5 was the increasing de-
viation of minimum and maximum monthly average EF for
each cluster of time, especially the decrease of EF during the
daytime. The increasing EF difference suggests the increasing
inaccuracy of quantifying GHG emission with the annual av-
erage EF for electricity consumers with varying demands over
the months during the daytime with the higher grid share of
vRES.

3.5 Uncertainty in the result

The study is possibly affected by several aspects of uncertain-
ty that might influence the obtained results. The first aspect of
uncertainty was the exclusion of the import and export of
electricity between the neighboring grids. According to
BDEW (2016), the amount of export that took place between
2011 and 2015 was around 55 to 85 TWh, where the amount
of import was around 30 to 50 TWh.While the share of export
increased from 9 to 13% of the gross electricity generation for
the respective years, the share of import decreased from 8 to
5%. Since the inflow of electricity from neighboring grids
involves its ownmixes and corresponding EFs, the decreasing
share of the import implies the decreasing uncertainty of the
calculated EF.

Another factor of uncertainty was the sample size of the
weekends of each month, which is less than 10 days in

Chapter 3.4. With such a limited sample size, the effect of
extreme weather events, for instance, may play a significant
role in the corresponding EF, especially for vRES.

4 Conclusions

In light of the recent increase of vRES in the German electric-
ity grid, the study calculated the higher temporal resolution of
the grid mix from 2011 to 2015. The study assessed the accu-
racy of the quantified emissions by using the annual average
EF through different clusters of time. In the study, the increase
of vRES, which was the main source for the increase of re-
newable energy as a whole, was demonstrated. This affected
the variation of the Bcleanliness^ of hourly EF over the years.
This observation suggested the increasing importance of ap-
plying the hourly EF over annual average EF with the increase
of vRES in the grid for accurate quantification of emission.

Moreover, the study revealed that weekend daytime con-
sumers may have their emissions overestimated by the annual
average EF, while the weekday nighttime consumers may
have been underestimated. The difference in EF between the
days of the week increased over the years. The increase of
vRES may have played an important role in this increase.
Furthermore, the accuracy of calculating the emission of day-
time and nighttime was also affected by the increase of the
vRES, where the deviation of these two EFs from the annual
average EF was generally increasing. This implies the weak-
ness of applying the annual average EF on consumers who
typically use the electricity during the weekday nighttime or
weekend daytime. The study also found that when the con-
sumption volume differs frommonth to month, the inaccuracy
of quantified emission may rise, which was evident from the
monthly average EF results.

On the other hand, the weekday daytime EF recorded very
similar values to the annual average EF, suggesting the appro-
priateness of the use of the annual average EF for quantifying
the emission of the consumer who typically consumes elec-
tricity during the weekday daytime.

For future research, the influence of the increased vRES on
the EFs may require further investigation. The influence may

Fig. 5 Difference between
maximum and minimum monthly
average EF for each cluster of
time resolution for 2011 to 2015
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be investigated by taking other countries such as Denmark,
Italy, or Spain—which record high levels of penetration of
vRES in the grid recently (Eurostat 2016)—as a case study.
However, access to hourly generation data in the grid would
be a challenge. The limitation of the study regarding the cov-
erage of generation data may also be strengthened in the fu-
ture. Furthermore, the limitation regarding the exchange of
electricity between the neighboring countries may influence
the cleanliness of the electricity. However, in order to account
for the influence of taking inflow of electricity from neighbor-
ing grids into account, the EF of the inflow electricity will
need to be included in the hourly resolution. Furthermore,
the inclusion of neighboring grid electricity of Germany will
call for further inclusion of grids surrounding the German
neighboring grids as electricity in Europe is traded on a con-
tinental scale. This calls for the further investigation of the
hourly EF of other grids to allow the inclusion of electricity
from other grids.
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