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neuropsychological assessments and resting-state 
EEG recordings. Patients with AD also underwent 
CSF examinations to assess biomarkers related to 
the disease. Stepwise regression was used to analyze 
the relationship between changes in microstate pat-
terns and CSF biomarkers. Receiver operating char-
acteristics analysis was used to assess the potential of 
these microstate patterns as diagnostic predictors for 
AD. Compared with HC, patients with AD exhibited 
longer durations of microstates C and D, along with a 
decreased occurrence of microstate B. These micro-
state pattern changes were associated with Stroop 
Color Word Test and Activities of Daily Living scale 
scores (all P < 0.05). Mean duration, occurrences of 
microstate B, and mean occurrence were correlated 
with CSF Aβ 1–42 levels, while duration of microstate 

Abstract Electroencephalography (EEG) micro-
states are used to study cognitive processes and brain 
disease-related changes. However, dysfunctional pat-
terns of microstate dynamics in Alzheimer’s disease 
(AD) remain uncertain. To investigate microstate 
changes in AD using EEG and assess their associa-
tion with cognitive function and pathological changes 
in cerebrospinal fluid (CSF). We enrolled 56 patients 
with AD and 38 age- and sex-matched healthy con-
trols (HC). All participants underwent various 
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C was correlated with CSF Aβ 1–40 levels in AD (all 
P < 0.05). EEG microstates are used to predict AD 
classification with moderate accuracy. Changes in 
EEG microstate patterns in patients with AD corre-
late with cognition and disease severity, relate to Aβ 
deposition, and may be useful predictors for disease 
classification.

Keywords Alzheimer’s disease · EEG microstates · 
Cognitive function · CSF biomarkers

Introduction

Alzheimer’s disease (AD), a pervasive neurode-
generative disorder, undermines various cognitive 
functions and affects roughly 40 million individuals 
globally [1]. With dementia predominated by AD, 
projections indicate a tripling in prevalence by 2050, 
which could escalate if adopting a biological over a 
clinical definition [2]. Presently, AD diagnosis leans 
on biomarkers like PET neuroimaging or CSF anal-
ysis—methods that are invasive or expensive, thus 
impractical for mass screening [3].

The aggregation of amyloid beta (Aβ) peptides in 
AD primarily affects specific brain functional net-
works that collaborate to perform tasks. Impaired 
brain network connectivity is associated with the 
clinical severity and cognitive function of AD [4–6]. 
It has been proposed that these disrupted connectiv-
ity patterns within large-scale networks manifest the 
diverse clinical symptoms and cognitive impairments 
across dementia variants [7–9]. While fMRI remains 
the standard for studying functional brain networks, 
its temporal resolution falls short in capturing the 
fleetingly dynamic nature of these networks, crucial 
during resting states [10]. Conversely, EEG micro-
states may offer a promising parallel, potentially mir-
roring the resting-state networks and the instantane-
ous activity of spontaneous BOLD recognized by 
fMRI, due to their superior temporal resolution [10, 
11]. Hence, EEG stands out as an advantageous tool 
for screening AD patients due to its cost-effective-
ness, non-invasive nature, and high temporal resolu-
tion, potentially serving as a supplementary method 
in detecting dementia biomarkers [12].

Our study delves into EEG microstate analysis, a 
cutting-edge technique that segments the EEG signal 
into a sequence of short-lived, stable brain topographies 

microstate potentially reflecting the electrophysiologi-
cal footprint of different cognitive processes [13–15]. 
These EEG microstates are considered the “atoms” of 
thought, the smallest building blocks of mental activ-
ity, and are linked to the brain’s spontaneous activity 
during rest [15]. Our focus on microstates stems from 
their proven synchrony with the brain’s default mode 
network, as detected by fMRI, suggesting that they may 
provide a window into the real-time dynamics of neu-
ral connectivity [16]. Furthermore, alterations in these 
microstates have been associated with various neuro-
logical disorders, including AD, where they may reflect 
disruptions in neural communication and integration 
[17–19]. By examining the nuances of these micro-
states, we aim to unearth subtle biomarkers of AD, 
contributing to a more nuanced understanding of the 
disease and enhancing the potential for early detection.

Although the altered pattern of EEG microstates in 
patients with AD and its spatiotemporal correspond-
ence with the intrinsic network of resting-state fMRI 
has been investigated [12, 20–23], the linkage to bio-
markers such as Aβ and tau proteins is less examined 
[24, 25]. The impact of these biomarkers on EEG 
microstate configurations and the resulting cognitive 
decline has not been fully explored, leaving a gap in 
understanding the pathological underpinnings and 
their cognitive implications in AD.

Based on the above, we propose the following 
hypotheses: (i) a reduction in dynamic brain activity, 
evidenced by microstate dynamics, is indicative of 
AD and correlates with clinical symptoms and cogni-
tive impairment. (ii) Disruptions in resting-state EEG 
microstate dynamics in AD patients might be associ-
ated with the accumulation of biomarkers like Aβ and 
tau proteins, which could serve as predictors for the 
extent of abnormal protein accumulation. We posit 
that resting-state EEG microstate metrics could serve 
as ancillary indicators for AD biomarkers, potentially 
offering novel insights into the disease’s pathophysi-
ology and aiding early diagnosis.

Methods

Participants

We recruited 56 patients with AD from the Mem-
ory Disorders Clinic of the First Affiliated Hospi-
tal of Anhui Medical University and 38 sex- and 
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age-matched healthy controls (HC) from the sur-
rounding community. All patients with AD were 
diagnosed with probable AD dementia according 
to the NIA-AA criteria [26]. The AD group con-
sisted of individuals aged between 50 and 80 years 
old who were right-handed, and Clinical Dementia 
Rating(CDR) is between 0.5 and 2. The control group 
comprised healthy elderly individuals who closely 
matched the age, sex, and educational level of the 
AD group. All participants underwent comprehensive 
medical and neuropsychological assessments, as well 
as resting-state EEG. Patients in the AD group under-
went CSF examinations to assess levels of Aβ1-42, 
Aβ1-40, phosphorylated-tau, total-tau, and neuro-
filament light chain protein. None of the participants 
exhibited neurological or imaging abnormalities unre-
lated to AD, such as normal pressure hydrocephalus 
or widespread microinfarction. Furthermore, none 
had a history of secondary dementias, serious mental 
illness, alcohol abuse, or drug abuse. This study was 
approved by the Ethics Committee of Anhui Medi-
cal University, and all participants provided written 
informed consent. All procedures were performed by 
the Declaration of Helsinki in its current form.

Neuropsychological assessments

All participants underwent exhaustive neuropsycho-
logical assessments by experienced neuropsycho-
logical examiners. The following neuropsychological 
tests were used to comprehensively evaluate cogni-
tive function and clinical symptoms: Mini-Mental 
State Examination (MMSE), Montreal Cognitive 
Assessment (MoCA), Lawton-Brody Activities of 
Daily Living Scale (ADL), CDR, Global Deteriora-
tion Scale (GDS), Hamilton Anxiety Scale (HAMA), 
and Hamilton Depression Scale (HAMD). To assess 
individual cognitive domains, several tests were uti-
lized. The Chinese Auditory Verbal Learning Test 
(CAVLT-Immediate, delayed, and recall, [CAVLT-
I/D/R]), digital span test (forward/backward [DST-
F/B]), Stroop color-word tests (SCWT-dot, words, 
and colored words [SCWT-D/W/CW]), and A verbal 
fluency test (letter/sematic [VFT-L/S]).

EEG acquisition and preprocessing

EEG recordings were performed in a soundproof, 
dimly lit room equipped with a comfortable chair. 

All participants were instructed to wash their hair 
and ensure their scalp remained dry. A scalp elas-
tic cap with 64 electrodes was applied following the 
International 10–20 system for EEG data recording 
(Neuro Scan, Sterling, VA, USA). During the record-
ing, participants were instructed to close their eyes 
and sit quietly for 10 min while remaining awake to 
prevent drowsiness or fatigue. For resting-state EEG 
acquisition, the electrode positioned between FPz 
and Fz served as the ground, while EEG activity was 
recorded using the left mastoid electrode as an online 
reference [27]. A horizontal eye electrogram was 
placed 1 cm outside the bilateral eye corners. Verti-
cal electrooculograms were positioned above the mid-
point of the left eyebrow and 1 cm below the lower 
eyelid. The scalp resistance of all electrodes was 
maintained below 5 kΩ. The collected EEG data were 
displayed on an amplifier connected to another com-
puter. The amplifier was set to 0.1–100 Hz bandpass 
filtering and 1000 Hz continuous sampling.

The resting-state EEG data were analyzed using the 
MATLAB software (R2013b, The MathWorks Inc., 
Natick, MA, USA) and the EEGLAB (R13_0_0b) 
toolbox [28]. Initially, bandpass filtering and dip 
filtering were applied to the raw data from 60 chan-
nels, excluding bilateral mastoid and EOG twin elec-
trodes, with frequencies set at 0.1 to 40 Hz and 48 to 
52 Hz, respectively. After downsampling to 500 Hz, 
the clean data were divided into non-overlapping 2-s 
segments. Channel data were scrutinized for integrity, 
with faulty channels being identified and interpolated 
based on rigorously defined criteria: abnormal ampli-
tude excursions beyond ± 100  µV, sustained flat-line 
activity, and signal quality that deviated markedly 
from adjacent channels. Segments with noise—char-
acterized by amplitudes surpassing ± 100  µV, tran-
sient spikes, or rapid frequency fluctuations unchar-
acteristic of neural origins—were excised from the 
dataset. On average, we found that approximately 3 
channels per dataset were identified as noisy and sub-
sequently corrected through interpolation. This figure 
is based on the aggregate data from all subjects. Inde-
pendent component analysis (ICA) was subsequently 
deployed to isolate and exclude components typifying 
eye movements, head movements, electrode disconti-
nuities, and muscle artifacts. Rejection of components 
adhered to predetermined thresholds for their spatial 
footprint, temporal dynamics, and frequency signa-
tures that were distinctly non-neural—for instance, 
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those predominantly active within muscle artifact 
frequency bands or those spatially aligned with eye 
blinks or movements. A maximum of five compo-
nents were excluded from each dataset, a measure 
taken to preserve the neural signal’s authenticity. 
Artifact removal was further refined using the rejec-
tion extremum method, eliminating any EEG compo-
nents that fell outside the ± 100 µV range. Following 
this meticulous curation, data were recomputed to 
conform to a whole-brain average reference. Before 
advancing to microstate analysis, a manual inspection 
was performed to validate the data’s quality, ensuring 
its reliability for subsequent study phases [29].

Microstate analysis

Microstate analysis was performed using the 
EEGLAB microstates 3.0 plugin (https:// www. biorx 
iv. org/ conte nt/https:// doi. org/ 10. 1101/ 28985 0v1). 
Following the application of the average reference, 
the instantaneous peak values of Global Field Power 
were extracted from the bandpass-filtered EEG data 
(2–20 Hz) [10]. The EEG time points correspond-
ing to these peaks were then input into an atomized 
and agglomerated hierarchical clustering (AAHC) 
algorithm, resulting in the acquisition of the aver-
age microstate topology for each category [30]. The 
optimal number of microstates (k = 4) was determined 
by a multi-criteria approach, which included not 
only the consideration of Global Explained Variance 
(GEV) but also the application of a stopping crite-
rion for GEV’s rate of increase, model complexity, 
interpretability, comparison with existing literature, 
and a specific GEV threshold for minimal incremen-
tal gain. This comprehensive methodology ensures 
that the microstates effectively represent EEG data 
while maintaining model parsimony and interpret-
ability [31, 32]. During clustering, we accounted for 
polarity by treating inverse microstates equivalently. 
The topographies for each microstate category were 
averaged across participants to create a set of tem-
plate maps. Individual EEG datasets were backfitted 
against these templates by assigning each EEG data 
point to the template with the highest spatial corre-
lation. This method ensured that individual varia-
tions within the EEG data were maintained while still 
allowing for group-level analysis.

To define the microstate parameters, we measured 
the duration (milliseconds of persistence), occurrence 

(frequency per second), coverage (time proportion 
represented), and transition probabilities (likelihood 
of state changes). These metrics were calculated to 
assess the dynamics and prevalence of each micro-
state within the EEG recordings.

Statistical analysis

SPSS 25 (IBM Corp., Armonk, NY, USA) was used 
for statistical analysis. The chi-square test was used to 
compare sex differences between groups. Other nor-
mal and non-normal measurements were compared 
between groups using an independent sample t-test 
and the Mann–Whitney U test, respectively. Concur-
rently, we applied the False Discovery Rate (FDR) 
method to calibrate various types of micro-state 
indicators through comparative analysis at the group 
level. Correlation analysis was performed using par-
tial correlation analysis. Sex, age, and years of edu-
cation were used as covariates to analyze intergroup 
differences in microstate parameters (duration, occur-
rence, coverage, and transition probability) in relation 
to neuropsychological assessments and cerebrospinal 
fluid biomarkers (Aβ1-42, Aβ1-40, phosphorylated-tau, 
total-tau, and neurofilament light chain protein) in 
AD and HC. Stepwise multiple linear regression was 
applied to validate the results of the partial correla-
tion analysis and explore whether microstate pattern 
impairment could predict CSF biomarkers in patients 
with AD.

In our study, we have refined our approach to 
evaluating EEG microstate features for the diag-
nosis and classification of patients with AD. Ini-
tially, these features were fed into a binary logistic 
regression model. However, to ensure robustness 
and address potential overfitting issues, we have 
now employed a decision tree model. The data was 
first divided into training and testing sets in an 8:2 
ratio through a random split, ensuring that both 
sets are representative of the overall dataset. For 
the training set, we applied a five-fold cross-valida-
tion method. This approach allowed us to evaluate 
the model’s performance on different subsets of the 
training data, enhancing the reliability of our find-
ings. Although we did not perform hyperparameter 
tuning in this study, aiming to assess the baseline 
performance of the model, the derived characteris-
tic values from this refined method were then used 
to construct Receiver Operating Characteristic 

https://www.biorxiv.org/content/
https://www.biorxiv.org/content/
https://doi.org/10.1101/289850v1
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(ROC) curves, facilitating a more rigorous assess-
ment of the model’s diagnostic and classification 
capabilities in distinguishing AD.

Results

Clinical and demographic data

Table 1 and Supplementary Table 1 provide a com-
prehensive overview of the demographics, neu-
ropsychological assessment scores, and AD bio-
markers for patients with AD and HC. There were 
no significant differences in sex(25 male/ 31 female 
vs. 14 male/ 24 female, χ2 = 0.567, P = 0.451), 
age(62.22 ± 8.41 vs. 60.28 ± 7.10, Z = -0.183, 
P = 0.855), HAMA, or HAMD between the AD 
and HC group (P > 0.05). However, the AD group 
exhibited impaired overall cognitive function and 
multi-domain cognitive function compared to the 
HC group (all P < 0.05).

EEG microstate

Table 2 provides an overview of EEG microstate pat-
terns in the AD and HC groups. The median num-
ber of optimal microstate categories in patients with 
AD and HC was 4. Therefore, we set the number of 
microstate categories to four, labeled A, B, C, and 
D [10]. The mean GEV of the four microstates in 
each group was 0.774 ± 0.048 in the AD group and 
0.785 ± 0.047 in the HC group (Fig. 1).

Compared with HC, the duration of micro-
states C (z = -2.412, P = 0.016) and microstates 
D (z = -2.465, P = 0.014) and mean duration 
(z = -2.057, P = 0.040) in patients with AD were 
significantly longer. Additionally, the occur-
rence of microstates B (t = -2.481, P = 0.015) and 
the mean occurrence (z = -2.281, P = 0.023) were 
considerably reduced. Furthermore, there was a 
reduction in the transition probability from micro-
states C to A (z = -1.880, P = 0.060). After FDR 
correction, only the duration of microstate C was 
still statistically significant (P = 0.040), while the 

Table 1  Demographic and clinical data of AD and HC(‾x ± s)

a  χ2 test; b Independent sample t test; c Mann–Whitney U test
AD = Alzheimer’s disease; HC = Healthy controls; P-Tau181 = Phosphorylated tau-181 protein; T-Tau = Total tau protein; NF-
Light = Neurofilament light chain protein

AD (n = 56) HC (n = 38) χ2/ T/Z Value P Value

Demographic characteristics
  Gender (male/female) a 25/31 14/24 0.567 0.451
  Age (years) c 62.22 ± 8.409 60.28 ± 7.096 -0.183 0.855
  Education (years) b 8.23 ± 4.355 12.41 ± 2.649 -5.370 P < 0.001

Clinical symptom measures
  Mini-Mental State Examination c 18.72 ± 6.364 28.46 ± 1.401 -6.547 P < 0.001
  Montreal Cognitive Assessment b 13.39 ± 6.435 26.39 ± 1.833 -13.809 P < 0.001
  Lawton-Brody Activities of Daily Living c 28.31 ± 7.315 20.18 ± 0.772 -6.757 P < 0.001
  Clinical Dementia Rating c 1.00 ± 0.454 0.09 ± 0.195 -7.352 P < 0.001
  Global Deterioration Scale c 3.65 ± 0.590 1.79 ± 0.568 -7.431 P < 0.001
  Hamilton Anxiety Rating Scale c 3.12 ± 4.736 3.67 ± 3.563 -1.471 0.141
  Hamilton Depression Rating Scale c 2.73 ± 3.578 2.44 ± 3.117 -0.071 0.944

Cerebrospinal fluid examination (pg/ml)
  Aβ (1–42) 729.61 ± 395.492 - - -
  Aβ (1–40) 8885.68 ± 3651.200 - - -
  Aβ (1–42) /Aβ (1–40) 0.09 ± 0.043 - - -
  P-Tau181 111.94 ± 51.626 - - -
  T-Tau 546.01 ± 262.743 - - -
  NF-Light 1408.62 ± 1097.065
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duration of microstate D (P = 0.070), mean dura-
tion (P = 0.067), and the occurrence of microstate 
B (P = 0.075) only showed a difference trend. 
Notably, the duration, occurrence, contribution, 
and transition probability of the other microstate 
types did not show significant abnormalities (all 
P > 0.05) (Fig. 2).

Relation between EEG microstate and clinical/
cognitive function

Table 3 and Supplementary Table 2 present the cor-
relation analysis of different microstate patterns with 
cognitive function and clinical characteristics in the 
AD and HC groups, respectively. After adjusting 

Table 2  EEG microstate data in AD and HC groups(‾x ± s)

b  Independent sample t test; c Mann–Whitney U test; * After FDR correction, the difference was still statistically significant
AD = Alzheimer’s disease; HC = Healthy controls; TP = Transition probability; FDR = False Discovery Rate

AD (n = 56) HC (n = 38) T/Z Value P Value P FDR_corr
Value

Global explained variance b 0.774 ± 0.048 0.785 ± 0.047 -0.140 0.899 0.899
Total time c 271.101 ± 67.674 264.591 ± 56.180 -0.146 0.884 1.000
Duration (s)

  Duration A c 0.068 ± 0.016 0.069 ± 0.042 -1.656 0.098 0.123
  Duration B c 0.067 ± 0.015 0.063 ± 0.009 -1.387 0.166 0.166
  Duration C c 0.069 ± 0.015 0.063 ± 0.016 -2.412 0.016 0.040*
  Duration D c 0.068 ± 0.016 0.061 ± 0.015 -2.465 0.014 0.070
  Mean Duration c 0.071 ± 0.011 0.068 ± 0.017 -2.057 0.040 0.067

Occurrence (/s)
  Occurrence A b 3.720 ± 0.822 4.026 ± 1.010 -1.611 0.111 0.185
  Occurrence B b 3.805 ± 0.864 4.262 ± 0.894 -2.481 0.015 0.075
  Occurrence C c 3.639 ± 0.887 3.872 ± 0.841 -1.456 0.145 0.181
  Occurrence D b 3.745 ± 0.827 3.620 ± 0.874 0.704 0.483 0.483
  Mean Occurrence c 14.909 ± 1.925 15.779 ± 1.96 -2.281 0.023 0.145

Contribution
  Contribution A c 0.252 ± 0.092 0.266 ± 0.127 -0.562 0.574 0.765
  Contribution B b 0.251 ± 0.080 0.265 ± 0.075 -0.862 0.391 0.782
  Contribution C b 0.245 ± 0.079 0.245 ± 0.091 0.027 0.978 0.978
  Contribution D c 0.251 ± 0.089 0.224 ± 0.084 -1.502 0.133 0.532

Transition probability
  TP of A–-B c 0.088 ± 0.039 0.101 ± 0.045 -1.479 0.139 0.556
  TP of A–-C b 0.067 ± 0.010 0.072 ± 0.022 -1.082 0.285 0.570
  TP of A–-D c 0.084 ± 0.029 0.073 ± 0.026 -1.564 0.118 0.708
  TP of B–-A c 0.089 ± 0.037 0.099 ± 0.045 -0.886 0.376 0.546
  TP of B–-C b 0.081 ± 0.035 0.087 ± 0.034 -0.796 0.428 0.514
  TP of B–-D b 0.074 ± 0.011 0.070 ± 0.021 0.958 0.342 0.586
  TP of C–-A c 0.068 ± 0.010 0.074 ± 0.021 -1.880 0.060 0.720
  TP of C–-B c 0.082 ± 0.035 0.086 ± 0.034 -0.539 0.590 0.590
  TP of C–-D b 0.084 ± 0.039 0.077 ± 0.038 0.830 0.409 0.545
  TP of D–-A c 0.082 ± 0.029 0.073 ± 0.025 -1.410 0.159 0.477
  TP of D–-B b 0.074 ± 0.011 0.070 ± 0.020 1.198 0.236 0.566
  TP of D–-C c 0.086 ± 0.039 0.079 ± 0.038 -0.655 0.513 0.560
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Fig. 1  (A) AD group microstate maps and (B) HC group 
microstate maps. EEG signals were clustered into four subject-
specific terrains, and their time series were calculated. Topo-
graphic and temporal features were extracted from microstate 
activity. Example of Global Electric Field Power time course 

within a 2-s interval of continuous EEG signal from (C) a 
56-year-old male patient with AD and (D) a 59-year-old male 
HC. Abbreviations: AD = Alzheimer’s disease; HC = Healthy 
controls; GFP = Global Field Power; MS = microstate

Fig. 2  Microstate metrics. (A) Difference in the duration of 
each pair of microstates and mean duration between the two 
groups, measured in milliseconds, representing how long a 
given microstate type persists. (B) Intergroup differences in the 
occurrence of each pair of microstates and mean occurrence, 
quantifying how frequently a specific microstate type repeats 
per second. (C) Intergroup differences in the coverage of each 
pair of microstates, indicating the proportion of time each 

microstate type covers. (D) Differences in TP among groups, 
referring to the probability of mutual transition between micro-
states. The black dotted arrows connect the microscopic states 
of TP with no significant difference. The blue arrow indicates 
that pairwise TP C → A has a decreasing trend (P = 0.60). 
Abbreviations: TP = Transition probability; Note: Before FDR 
correction, * P-value significant at < 0.05; ** P-value signifi-
cant at < 0.01
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for sex, age, and years of education, the duration of 
microstates C in the AD group was significantly posi-
tively correlated with SCWT-D (ρ = 0.448, P = 0.010) 

and SCWT-W (ρ = 0.356, P = 0.045). The mean 
duration was significantly positively correlated with 
ADL (ρ = 0.349, P = 0.050), SCWT-D (ρ = 0.393, 

Table 3  Relationship between EEG microstate abnormalities and cognitive function in AD group

Adjusted for gender, age, and years of education; * P value significant at < 0.05 ** P value significant at < 0.01
CAVLT = Chinese version of the Auditory Verbal Learning Test; SCWT  = Stroop Color Word Test; TP of C–-A = Transition probabil-
ity of microstate C to A

Duration_C Duration_D Mean Duration Occurrence_B Mean Occurrence TP of C–-A

Clinical symptom measures
Mini-Mental State Examina-

tion
ρ Value -0.255 0.150 -0.289 -0.213 0.251 -0.330

P Value 0.160 0.411 0.109 0.242 0.166 0.065
Montreal Cognitive Assess-

ment
ρ Value -0.237 0.247 -0.286 -0.256 0.238 -0.308

P Value 0.192 0.172 0.113 0.157 0.189 0.086
Lawton-Brody Activities of 

Daily Living
ρ Value 0.213 0.035 0.349 -0.018 -0.307 0.149

P Value 0.243 0.848 0.050* 0.923 0.087 0.417
Clinical Dementia Rating ρ Value 0.149 0.000 0.297 0.107 -0.277 0.038

P Value 0.415 0.998 0.099 0.561 0.125 0.838
Global Deterioration Scale ρ Value 0.254 -0.111 0.292 0.172 -0.263 0.165

P Value 0.161 0.544 0.105 0.346 0.146 0.366
Multi-domain Cognition Assessments
Memory function Assessment
CAVLT-Immediate ρ Value -0.184 0.087 -0.231 -0.118 0.181 -0.196

P Value 0.313 0.638 0.204 0.522 0.322 0.282
CAVLT-Delay ρ Value -0.166 0.000 -0.280 -0.107 0.262 -0.092

P Value 0.363 0.998 0.121 0.559 0.148 0.616
CAVLT-Recognition ρ Value -0.004 -0.097 -0.192 -0.077 0.149 0.018

P Value 0.982 0.598 0.293 0.677 0.415 0.920
Attention function Assessment
Digital Span Test -Forward ρ Value -0.113 0.148 -0.245 -0.076 0.207 -0.162

P Value 0.540 0.419 0.177 0.678 0.256 0.374
Digital Span Test -Backward ρ Value -0.250 0.048 -0.260 -0.065 0.244 -0.005

P Value 0.167 0.795 0.151 0.723 0.178 0.978
Executive function Assessment
SCWT- Dot ρ Value 0.448 -0.196 0.393 0.120 -0.302 0.288

P Value 0.010* 0.283 0.026* 0.513 0.093 0.110
SCWT-Word ρ Value 0.356 -0.219 0.479 0.144 -0.385 0.229

P Value 0.045* 0.229 0.006** 0.431 0.030* 0.207
SCWT- Color Word ρ Value 0.225 -0.241 0.366 0.239 -0.334 0.197

P Value 0.216 0.184 0.040* 0.188 0.062 0.280
Language function Assessment
Verbal Fluency Test -Letter ρ Value -0.098 0.024 -0.289 0.063 0.282 -0.131

P Value 0.594 0.895 0.108 0.730 0.118 0.476
Verbal Fluency Test-Sematic ρ Value -0.159 0.136 0.010 -0.103 -0.067 -0.402

P Value 0.384 0.459 0.955 0.575 0.718 0.023*
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P = 0.026), SCWT-W (ρ = 0.479, P = 0.006) and 
SCWT-CW (ρ = 0.366, P = 0.040). The mean occur-
rence was significantly negatively correlated with 
SCWT-W (ρ = -0.385, P = 0.030). The transition 
probability of microstates C to A was significantly 
negatively correlated with VFT-S (ρ = -0.402, 
P = 0.023). There were no significant correlations 
between the other abnormal microstate patterns, clini-
cal symptoms, and cognitive function (all P > 0.05).

After adjusting for sex, age, and years of edu-
cation, the duration of microstates C in the HC 
group was significantly positively correlated with 
MMSE (ρ = 0.634, P = 0.015) and MoCA (ρ = 0.525, 
P = 0.037). The transition probability of microstates 
C to A was negatively correlated with SCWT-C 
(ρ = -0.887, P < 0.001) and SCWT-CW (ρ = -0.731, 
P = 0.003). Other microstate patterns were not sig-
nificantly associated with cognitive function (all 
P > 0.05).

Potential predictors of CSF biomarkers and disease 
classification in AD

Table 4 shows the correlation analysis between the 
differences in microstate patterns and CSF biomark-
ers in the AD group. After adjusting for sex, age, 
and years of education, the duration of microstates 

C in the AD group was negatively correlated with 
Aβ1-42(ρ = -0.387, P = 0.035) and Aβ1-40 (ρ = -0.362, 
P = 0.050). The mean duration was negatively cor-
related with Aβ1-42(ρ = -0.401, P = 0.028). The 
mean occurrence was positively correlated with 
Aβ1-42 (ρ = -0.453, P = 0.012).

In addition, we included six different EEG 
microstate indicators, sex, age, and years of edu-
cation, as independent variables in the multiple 
regression model for stepwise regression. Sup-
plementary Table  3a shows that the mean dura-
tion (Beta = 2.497, 95% Confidence interval: 
179.857 ~ 794.936, t = 3.241, P = 0.003), occurrence 
of microstates B (Beta = -0.477, 95% Confidence 
interval: -343.679 ~ -54.225, t = -2.812, P = 0.009) 
and mean occurrence (Beta = 1.908, 95% Confi-
dence interval: 13,015.144 ~ 119,827.546, t = 2.544, 
P = 0.017) were significant predictors of CSF Aβ1-42 
in AD. Supplementary Table 3b shows that micro-
states C’s duration (Beta = -0.380, 95% Confidence 
interval: -218618.220 ~ -21786.342, t = -2.491, 
P = 0.018) significantly predicted CSF Aβ1-40 in 
AD. Finally, we used all the EEG microstate values 
to predict AD. In contrast, the decision tree model, 
which was also subjected to five-fold cross-vali-
dation, yielded an accuracy of 72%, specificity of 
67%, and sensitivity of 76% (Table 5) (Fig. 3).

Table 4  Relationship between EEG microstate abnormalities and CSF in AD group

Adjusted for gender, age, and years of education; * P value significant at < 0.05 ** P value significant at < 0.01
TP of C–-A = Transition probability of microstate C to A; P_Tau181 = Phosphorylated-tau181; Aβ = amyloid beta; T_Tau = Total-tau; 
NF-Light = Neurofilament light chain protein

Duration_C Duration_D Mean Duration Occurrence_B Mean Occurrence TP of C–-A

Cerebrospinal fluid Biomarker
Aβ (1_42) ρ Value -0.387 -0.053 -0.401 0.017 0.453 0.046

P Value 0.035* 0.779 0.028* 0.927 0.012* 0.811
Aβ (1_40) ρ Value -0.362 -0.278 -0.160 0.311 0.183 0.157

P Value 0.050* 0.137 0.398 0.094 0.333 0.406
Aβ (1_42) / Aβ (1_40) ρ Value -0.110 0.126 -0.274 -0.197 0.297 -0.051

P Value 0.563 0.508 0.143 0.297 0.111 0.789
P_Tau181 ρ Value 0.077 -0.097 0.126 0.147 -0.173 0.171

P Value 0.685 0.610 0.506 0.437 0.361 0.366
T_Tau ρ Value -0.069 -0.264 -0.060 0.272 0.040 0.287

P Value 0.719 0.159 0.751 0.145 0.832 0.123
NF-Light ρ Value 0.263 0.015 0.137 -0.096 -0.123 -0.234

P Value 0.161 0.936 0.470 0.614 0.519 0.213
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Discussion

In this study, we used EEG microstates to assess the 
temporal characteristics of brain activity on subsec-
ond timescales. We investigated changes in brain 
dynamics among patients with AD and examined 
the relationships between EEG microstate dynam-
ics, cognitive function, and CSF biomarkers. Our 
findings indicated that the duration of microstates in 
patients with AD was prolonged, microstate occur-
rence decreased, and disturbance in microstates were 
associated with executive function and the severity 
of dementia in AD, as well as with the concentra-
tion of Aβ in CSF. Furthermore, the integration of 
all microstate measures for predictive classification 
demonstrated moderate effectiveness in distinguish-
ing patients with AD from control subjects. Our study 
proposed for the first time that the disturbance of rest-
ing EEG microstate dynamics in patients with AD 
could serve as an indicator for predicting the degree 

of Aβ deposition and for disease diagnosis, making it 
an effective complementary tool for AD biomarkers.

Our study shows that microstate dynamics were 
significantly slowed in patients with AD, suggest-
ing that a low-dynamics brain may be a feature of 
AD. Compared with HC, patients with AD exhibited 
prolonged periods within the same microstate, indi-
cating a slower transition between states. In patients 
with AD, the duration of microstates C and D, as 
well as the mean duration, were prolonged, while the 
occurrence of microstate B and the mean occurrence 
decreased. Additionally, the probability of transition 
from microstate C to A decreased. Previous stud-
ies on EEG microstates in patients with AD yielded 
inconsistent findings; some reported decreased micro-
state durations [27], while others found no statistical 
differences in microstate patterns between patients 
with AD and HC [33, 34]. Recent studies have con-
firmed that microstate dynamics slow in patients 
with AD, but the changes in microstate patterns are 
not entirely consistent [12, 20, 35]. These discrepan-
cies may be attributed to variations in sample size and 
EEG microstate analysis methods.

Additionally, we observed a decreasing trend in the 
probability of transitioning from microstate C to A in 
patients with AD. Some studies have suggested that, 
during normal brain development, the coverage of 
asymmetric microstates (classes A and B) decreases, 
while that of symmetrical microstates (classes C and 
D) increases. However, the microstates change at 
various stages of cognitive impairment [20, 21]. Our 

Table 5  Performance indicators of the model on the test set

AD = Alzheimer’s disease; HC = Healthy controls

Precision Recall F1-score Support

HC 0.67 0.67 0.67 12
AD 0.76 0.76 0.76 17
Accuracy 0.72 29
Macro avg 0.72 0.72 0.72 29
Weighted avg 0.72 0.72 0.72 29

Fig. 3  Classification results 
based on the microstate 
parameter. We used EEG 
microstates for predictive 
classification of AD, and 
the results showed that 
the accuracy, specificity, 
sensitivity and AUC of 
prediction were 72%, 67%, 
76%, and 72%, respec-
tively. Abbreviations: 
AD = Alzheimer’s disease; 
EEG = Electroencephalo-
gram
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findings can be interpreted as a suppressed transi-
tion from symmetry to asymmetry in patients com-
pared to healthy controls, which differs from previous 
research [12, 20, 25]. We speculate that this change 
in transition probability could reflect compensatory 
brain activity in these patients. However, this change 
was not statistically significant, and further expansion 
of the sample size is necessary to verify the results. 
Furthermore, our study also found that combining all 
microstate indicators resulted in moderate accuracy 
in disease classification, which further confirmed that 
microstate disruption in patients with AD represents 
a characteristic change and can serve as a supplemen-
tary basis for disease diagnosis and classification.

We further performed a correlation analysis and 
identified a close relationship between changes in 
microstate patterns and cognitive function. Previ-
ous studies have shown that EEG microstates can be 
used to characterize and understand neuronal activ-
ity in specific brain networks [36]. In addition, sev-
eral studies have demonstrated spatial correlations 
between the four typical microstate categories and 
fMRI resting state networks, which also have func-
tional implications [16, 36, 37]. Previous fMRI inves-
tigations in patients with AD have reported impaired 
functional connectivity within the resting-state brain 
network, including both increased and decreased 
functional connections [6, 8]. The aberrant organi-
zation and function of the three core neurocognitive 
networks—the default mode network, central execu-
tive network, and salience network—have been rec-
ognized as prominent features of AD [38]. Some 
studies have indicated that microstates A and B are 
associated with the auditory and visual networks [16], 
microstate C belongs to both the salience network and 
the subnetwork of the default mode network [37], and 
microstate D may overlap with the executive control 
network [10, 25, 37]. Therefore, we hypothesized 
that altered EEG microstate patterns may be a neuro-
electrophysiological mechanism underlying impaired 
cognitive function, which was supported by our study 
findings.

We observed that, as the duration of microstate 
C increased, the executive function of patients with 
AD worsened. Similarly, with a longer mean dura-
tion, there was a decrease in mean occurrence, lead-
ing to poorer executive function and more severe 
clinical symptoms. Recent reviews have suggested 
that microstate C is associated with activity in the 

cognitive control network, mainly the salience net-
work, and involves activation of the anterior cingulate 
gyrus, which is part of the executive control network, 
as well as the insula. Simultaneously, microstate C is 
believed to reflect a component of the default mode 
network, often referred to as the task-negative net-
work, which exhibits reduced activity during cogni-
tive task performance [10, 36]. Previous studies have 
identified decreased functional connectivity of the 
left anterior cingulate region in patients with AD, 
explaining the correlation between microstate C and 
executive function [6]. Mean duration and occurrence 
serve as indicators of the stability of underlying neu-
ral components [19]. When these indicators deviate 
from the normal, the functional connectivity of the 
brain network corresponding to the disturbance of 
the four microstate patterns is impaired, affecting the 
cognitive function of patients with AD. Furthermore, 
we observed that the transition probability of micro-
state C to A correlated with language function. The 
transition probability reflects the dynamic changes 
and information exchange within the brain’s neu-
ral network, indicating the frequency of information 
flow between brain networks. This may be related to 
resource allocation and switching in the brain during 
complex tasks [19, 21]. When the network structure 
is compromised, connections between brain network 
functions are disrupted, impacting the brain’s behav-
ioral function [39].

We analyzed the relationship between EEG micro-
states and CSF biomarkers and found that the dura-
tion of microstate C, mean duration, and mean occur-
rence were related to the pathology of AD, but the 
correlation was only low to moderate. In our refined 
regression model, we incorporated microstate indi-
cators showing different trends and discovered that 
the occurrence of microstate B and the duration of 
microstate C, along with their mean duration and 
mean occurrence, were predictive of Aβ concentra-
tion in the CSF of patients with AD. Although these 
microstates did not show significant associations indi-
vidually, our comprehensive model revealed a statisti-
cally significant correlation with the CSF biomarker 
when considering these predictors collectively. This 
finding highlights the necessity of adopting a multi-
faceted approach to understanding the complex inter-
relationships in biological data. These microstate 
characteristics could serve as EEG markers reflecting 
changes in CSF pathology, specifically concerning 
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Aβ concentration. Previous research has established 
a connection between decreased Aβ levels in CSF 
and increased amyloid accumulation in the brain 
[40]. The amyloid cascade hypothesis, central to AD 
pathogenesis, suggests a causal relationship between 
amyloid accumulation and synaptic dysfunction 
within the Alzheimer’s continuum [41]. Furthermore, 
disruptions in the large-scale networks of functional 
brain tissues have been associated with AD progres-
sion [42]. Therefore, we propose that the large-scale 
disruption of brain networks due to AD pathology 
is related to the disturbance of microstate patterns, 
providing a rationale for utilizing duration and mean 
occurrence as predictors of CSF Aβ levels. In addi-
tion, a previous study indicated that pathological 
changes in AD predominantly affect the default mode 
network region [4], while another study suggested 
that AD pathology may initially manifest in the 
higher-order visual association region, with the visual 
network serving as a sensitive marker of AD progres-
sion [43, 44]. This may explain the observed correla-
tion between CSF Aβ levels and microstates C/B. The 
intricate collaboration of large-scale functional brain 
networks in task performance can lead to cognitive 
impairment when connectivity is compromised [4–6]. 
Therefore, we propose that pathological changes in 
AD lead to a wide range of functional brain network 
disorders, affecting EEG microstate patterns and con-
tributing to cognitive decline. However, to substanti-
ate these claims, further investigations are warranted, 
including mediation effect analyses with expanded 
sample sizes, as well as CSF and fMRI-EEG studies.

Our study has some limitations. First, we did not 
collect CSF samples from the HC group; therefore, 
we were unable to conduct a comprehensive two-
factor verification of the interaction between clinical 
factors and biomarker classification in determining 
EEG microstates. Second, we did not include patients 
with early or preclinical AD; therefore, we could not 
explore whether the identified microstate features 
could consistently describe decline at all stages of 
AD. Finally, some patients with AD were taking ace-
tylcholinesterase inhibitors, which may have affected 
the EEG data [45]. The comparison between the AD 
and control groups may have been influenced by the 
use of these drugs. Further prospective studies on 
medication use are required to address this issue.

In summary, we observed that the duration and 
occurrence of microstate patterns were disrupted in 

patients with AD compared to those in HC. These 
disruptions were associated with changes in executive 
and daily living abilities. Additionally, our study is 
the first to suggest that alterations in microstate pat-
terns can potentially serve as predictors of Aβ con-
centration in CSF, making EEG microstate markers 
valuable non-invasive tools for AD diagnosis. In the 
future, large-scale cohort and longitudinal studies 
should be conducted during the early or preclinical 
stages of AD to investigate whether changes in EEG 
microstate indicators in patients with AD can assist 
in CSF examination and predict the onset of MCI or 
AD.
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