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Abstract Both heart failure with preserved ejection 
fraction (HFpEF) and non-alcoholic fatty liver dis-
ease (NAFLD) develop due to metabolic dysregula-
tion, has similar risk factors (e.g., insulin resistance, 
systemic inflammation) and are unresolved clinical 
challenges. Therefore, the potential link between the 
two disease is important to study. We aimed to evalu-
ate whether NASH is an independent factor of car-
diac dysfunction and to investigate the age dependent 
effects of NASH on cardiac function. C57Bl/6 J mid-
dle aged (10 months old) and aged mice (24 months 
old) were fed either control or choline deficient 
(CDAA) diet for 8  weeks. Before termination, 

echocardiography was performed. Upon termina-
tion, organ samples were isolated for histological and 
molecular analysis. CDAA diet led to the develop-
ment of NASH in both age groups, without induc-
ing weight gain, allowing to study the direct effect of 
NASH on cardiac function. Mice with NASH devel-
oped hepatomegaly, fibrosis, and inflammation. Aged 
animals had increased heart weight. Conventional 
echocardiography revealed normal systolic function 
in all cohorts, while increased left ventricular vol-
umes in aged mice. Two-dimensional speckle track-
ing echocardiography showed subtle systolic and 
diastolic deterioration in aged mice with NASH. His-
tologic analyses of cardiac samples showed increased 
cross-sectional area, pronounced fibrosis and Col1a1 
gene expression, and elevated intracardiac  CD68+ 
macrophage count with increased Il1b expression. 
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Conventional echocardiography failed to reveal subtle 
change in myocardial function; however, 2D speckle 
tracking echocardiography was able to identify dias-
tolic deterioration. NASH had greater impact on aged 
animals resulting in cardiac hypertrophy, fibrosis, and 
inflammation.

Keywords Metabolic dysfunction · Inflammation · 
Fatty liver · Strain rate analysis · Liver fibrosis

Introduction

The ever-growing burden of chronic cardiometa-
bolic diseases, such as obesity, type 2 diabetes, 
hypertension, dyslipidemia, metabolic syndrome, 
systemic inflammation, and aging of the population, 
demands urgent resolution to these socio-economic 
and healthcare problems. Advanced stages of meta-
bolic and cardiovascular diseases, such as non-alco-
holic steatohepatitis (NASH) and heart failure with 
preserved and reduced ejection fraction (HFpEF 
and HFrEF), are leading causes of death worldwide 
[1, 2], with limited pharmacotherapeutic options.

Clinical observations suggest a potential inter-
play between non-alcoholic fatty liver disease 
(NAFLD), a progressive, chronic liver pathology, 
and heart failure with preserved ejection fraction 
(HFpEF), a complex syndrome with features of 
diastolic dysfunction, cardiac hypertrophy, fibrosis, 
enlarged atria [3–10]; however, a direct causal link 
between the two entity has not been established.

Both NASH and HFpEF are diseases with a 
large, heterogeneous population with coinciding 
comorbidities such as hypertension, diabetes, dys-
lipidemia, obesity, metabolic syndrome, and atrial 
fibrillation. Chronic systemic aged-dependent 
inflammation contributes to both diseases [11, 12]. 
There is a possibility that NASH, a meta-inflamma-
tory stage of NAFLD, itself might inflict damage on 
the heart, but with so many overlapping factors, it 
is hard to determine whether mediators of NASH or 
the systemic burden of the co-morbidities fuels this 
link. As such, we aimed, in this study, to investigate 
the cardiac effects of NASH in middle-aged and 
aged mice without the systemic burden of obesity, 
insulin resistance, and hypertension.

Materials and methods

Experimental animals, diets, and ethical approval

Eight-week-old C57Bl/6  J male mice were pur-
chased from Oncological Research Center, Depart-
ment of Experimental Pharmacology, Budapest, 
Hungary. Two-four mice were housed per each indi-
vidually ventilated cage, and were maintained under 
12–12 light–dark cycle under appropriate conditions 
(20–24  °C and 35–75% relative humidity). Standard 
chow diet and tap water were available ad libitum.

Control (CON, E 15668–04) diet and Choline Defi-
cient L-Amino Acid defined (CDAA, E15666–94) 
diet were purchased from SSNIFF GmbH (Soest, 
Germany). In short, CDAA diet is composed of crys-
talline amino acids with no choline and low methio-
nine, and 1% cholesterol content. The energy intake 
is comprised by 31 kJ% of fats, 58 kJ% of carbohy-
drates, and 11 kJ% of proteins.

All experimental procedures were done in accord-
ance with the Guide for Care and Use of Labora-
tory Animals published by US National Institutes 
of Health (NIH publication No. 85–23, revised 
1996), with the EU Directive (2010/63/EU), and 
were approved by the National Scientific Ethi-
cal Committee on Animal Experimentation (PE/
EA/1912–7/2017, Budapest, Hungary) and in compli-
ance with the ARRIVE guidelines [13].

Non-alcoholic steatohepatitis model

Twenty mice were aged up to 10  months (middle-
aged cohort) and twenty more mice were aged up to 
24  months (aged cohort). Male mice were used due 
to their greater propensity to frailty-driven cardiac 
decline. In our previous study, we observed that male 
mice with NASH developed greater fibrosis com-
pared to females [14]. Additionally, liver fibrosis was 
identified as an elevated risk for mortality in patients 
with HFpEF [7], further supporting the choice of sex 
in our study.

At the start of the experiment, mice were rand-
omized by their bodyweight. Mice were fed with 
either control or choline deficient diet for 8  weeks. 
On the  7th week, experimental animals underwent 
conventional and 2D speckle tracking echocardiog-
raphy. Following termination, organ and serum sam-
ples were collected and stored. Although patients 
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either with NASH or HFpEF are mostly obese, the 
increased adiposity burdens both the liver and the 
cardiovascular system, and, furthermore, contributes 
to systemic inflammation by triggering the innate 
immune system.

Our aim in this study was to study the sole effects 
of NASH on the cardiac function; thus, we chose the 
CDAA diet, a diet that lacks adipogenic potential, 
because we wished to exclude the burden of obesity.

Echocardiography

Anesthesia was induced with 5% -, and was main-
tained with 2% isoflurane. Cardiac functions were 
analyzed with the Vevo 3100 high-resolution in vivo 
echocardiograph (Fujifilm VisualSonics, Toronto, 
Canada) with a MX400 transducer. Two-dimensional 
images were assessed by long-axis view for left ven-
tricular volumes, and short-axis view for left ventric-
ular diameter and wall thickness. Diastolic parameters 
were measured in apical four-chamber view. Early 
transmitral flow velocity (E) and septal mitral annular 
early diastolic velocity (e′) was measured with pulse 
wave and tissue Doppler, respectively.

Ejection fraction was calculated as 
[(LVEDV − LVESV)/LVEDV × 100]. Fractional 
shortening was calculated with the following formula: 
[(LVIDd − LVIDs)/LVIDd] × 100. Stroke volume 
(SV) was obtained as LVEDV − LVESV. Cardiac out-
put was determined as SV × HR/1000. Left ventricular 
mass was calculated as {[(LVIDd + AWTd + PWTd)3 
–  LVIDd3] × 1.0} × 0.8 + 0.14.

Echocardiographic recordings were evaluated with 
the VevoLab software by a blinded operator.

Strain analysis with 2D speckle tracking

Two-dimensional speckle tracking echocardiography 
was performed to investigate myocardial strain and 
strain rate. These parameters enable us to study defor-
mation of the longitudinal and circumferential cardiac 
myofibers. Long- and short-axis views of the left ven-
tricle were acquired as described above. The record-
ings were exported to an offline workstation and were 
analyzed with the 2D Cardiac Performance Analysis 
v1.2 software (TomTec Imaging Systems, Unter-
schleissheim, Germany). The analysis procedure was 
performed by an operator blinded to the study groups.

Three cardiac cycles were used to quantify global 
longitudinal strain (GLS). To quantify global circum-
ferential strain (GCS) and early diastolic strain rate 
(SrE), short-axis recordings were used with the same 
settings. Endocardial border was delineated manually; 
then, the software divided the left ventricle into six 
segments and tracked them. If low endocardial track-
ing fidelity was observed, the operator realigned the 
contour, and the calculation was repeated maximum 
three times. Systolic strains, and early diastolic strain 
rates of the 6 left ventricular segments were averaged 
over the three cardiac cycles, and were used to cal-
culate GLS, GCS, SrE values. E/SrE was calculated 
using the E waves assessed by pulse-wave Doppler.

Histologic analysis

Heart and liver samples were fixed in neutral buff-
ered formalin for 24 h, then dehydrated and embed-
ded in paraffin. Four µm thick sections were cut 
with microtome. All staining was imaged with 
Leica LMD6 microscope (Wetzlar, Germany) and 
with Leica DMI8 confocal microscope (Wetzlar, 
Germany).

Hematoxylin and eosin staining

Liver and cardiac tissues were deparaffinized, 
hydrated, and then stained with hematoxylin and 
counterstained with eosin.

Picrosirius‑red staining

Heart and liver sections were stained with 0.0125% 
picrosirius-red for 1  h, then washed with 1% ace-
tic acid. The level of fibrosis was quantified by the 
ImageJ software.

Lectin histochemistry

Heart sections were co-stained overnight at 4 °C for 
isolectin B4 and for wheat germ agglutinin with lec-
tins conjugated with fluorescein isothocyanate and 
DyLight 594, respectively. After three washing steps, 
nuclei were labeled with DAPI. Subsequent wash-
ing steps were followed by coverslip mounting with 
Prolong® Gold Antifade Reagent (CST 9071S, Cell 
Signaling Technology, USA). Images were obtained 
with Leica LMD6 microscope (Wetzler, Germany). 
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For further detail about the antibodies, please see 
Supplementary Table 1.

Immunohistochemistry

Antigens were retrieved in an acidic environment 
(citrate buffer pH = 6) for 15  min. Specimens were 
blocked with 3%  H2O2 for 10 min and, subsequently, 
with 2.5% goat bovine serum albumin (9998S, Cell 
Signaling Technology, USA) for 1 h for endogenous 
peroxidases and for off-target antigens, respectively. 
Primary antibody for Iba1 (in 2.5% goat serum) was 
incubated overnight at 4  °C. Sections were washed 
three times with PBS, then the specimens were incu-
bated with anti-rabbit IgG secondary antibody, then 
were washed and signals were developed with diam-
inobenzidine (ImmPact DAB EqV Peroxidase (HRP) 
Subrate, Vector Laboratories, Burlingame, CA, 
USA). For further details about the antibodies please 
see Supplementary Table 1.

qRT‑PCR

Total RNA was isolated from snap frozen liver and 
cardiac samples by using the chloroform/isopropanol 
precipitation method. Reverse transcription from 1 µg 
of total RNA was performed to obtain cDNA with a 
Sensifast cDNA synthesis kit (Bioline, London, UK). 
SensiFAST SYBR Green master mix (Bioline, UK) 
was used to amplify the target genes using a LightCy-
cler® 480 II (Roche, Germany) instrument. Results 
were obtained by using  2−ΔΔCp calculation method. 
The primer sequences are available in Supplementary 
Table 2.

ELISA

Serum IL-1β was measured from serum samples 
with a mouse specific IL-1β ELISA kit purchased 
from Thermo Fisher Scientific (Basingstoke, Hamp-
shire, UK) according to the manufacturer’s protocol. 
Briefly, after initial washing steps, 100 μL of blanks, 
standards, and samples were loaded and were incu-
bated for 2  h with biotin-labeled detection antibod-
ies. Following a washing step, Streptavidin-HRP was 
loaded and incubated for 1 h and after another round 
of washing, substrate solution was added and incu-
bated for 20 min; then, stop solution was loaded and 
the colorimetric reaction was measured at 450  nm 

with a ThermoFisher MultiSkan GO spectrophotom-
eter (Waltham, MA, USA).

Statistical analysis

All values are presented as mean ± standard error 
of mean (SEM). P < 0.05 was considered statisti-
cally significant. Normal distribution of data was 
tested by the Shapiro–Wilk normality test. One-way 
ANOVA followed by Fischer’s LSD post hoc test or 
Kruskal–Wallis test followed by uncorrected Dunn’s 
post hoc test were used for multiple comparison anal-
yses. ROUT analysis was performed to identify outli-
ers, with Q value = 1%. The statistical analyses were 
performed with the GraphPad Prism (version 8.0.1.) 
software.

Results

CDAA diet induces key histopathologic features of 
NASH

NASH is characterized by hepatic steatosis with 
displaced nuclei, extensive inflammation, and fibro-
sis [15]. In our previous studies, we already showed 
that 8  weeks of feeding with CDAA diet effectively 
induces classical histologic signs of NASH [14, 16] 
(Fig. 1A); nonetheless, we performed histologic and 
molecular analyses to evidence the development of 
NASH in the present cohort. The rationale for choice 
of model was that we wished to investigate the effects 
of NASH on the cardiovascular system without the 
systemic burden of obesity, insulin resistance, hyper-
tension, and dyslipidemia. As such, our animals did 
not differ in body weight (Fig.  1B), but the liver 
weight of animals with NASH was significantly ele-
vated, especially in the aged group (Fig. 1C).

Histologic analysis of the liver with picrosirius-red 
staining evidenced liver fibrosis in animals fed with 
CDAA diet. Subsequent quantification of the fibrosis 
revealed significant fibrosis in both middle-aged and 
aged mice fed with CDAA (Fig. 1D).

Quantitative real time PCR measurement showed 
elevated expression of pro-fibrotic genes, such as 
Col1a1, Col3a1, Tgfb, and Ctgf (Fig.  1E). Major 
inflammatory markers were examined as well. The 
gene expression of Il6, Ccl2, and Tnfa was sig-
nificantly increased compared to their age-matched 
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controls (Fig. 1F). Ccl2 gene expression was the high-
est, thus supporting its relevance in the pathomecha-
nism of NASH [17]. The hepatic expression of Il1b 
was increased only in middle aged mice with NASH 
(Fig. 1F).

In summary, CDAA diet induces NASH in both 
middle-aged and aged animals.

Strain rate analysis is able to identify diastolic 
dysfunction, while conventional echocardiography is 
not

In this section, we aimed to evaluate the cardiac 
geometry and function with both conventional and 
with 2D-speckle tracking echocardiography.

Aged mice had greater cardiac weight (Fig.  2A). 
Additionally, conventional echocardiographic analy-
sis of left ventricular mass showed increased chamber 
weight in aged animals (Fig.  2B). Analysis of par-
asternal long-axis (PSLAX) images showed declin-
ing, but still normal ejection fraction in middle-aged 
mice with NASH and in both aged groups (Fig. 2B). 
PSLAX view of the left ventricle revealed increased 
end-systolic- and end-diastolic volumes (LVESV, 
LVEDV) in aged animals with NASH (Fig. 2B). Par-
asternal short-axis (PSAX) images showed increased 
left ventricular end-systolic- and end-diastolic diam-
eter (ESD, EDD) in aged animals with NASH. Intra-
ventricular pressure was assessed by the ratio of early 
mitral inflow velocity-to-early diastolic mitral annu-
lus velocity (E/e′). This conventional parameter of 
diastolic function did not reveal sign of deterioration 
(Fig. 2B).

Deterioration of myocardial torsion and deforma-
tion could be an early sign of cardiac dysfunction. 
As such, a more sensitive method, two-dimensional 
speckle tracking echocardiography was performed. 
Peak global circumferential strain (GCS) confirmed 
the systolic decline evidenced by conventional echo-
cardiography (Fig. 2C). A relatively novel parameter 
is the ratio of early diastolic transmitral velocity (E) 
and early diastolic strain rate (SrE). Strain rate anal-
ysis measures the torsion of cardiac fibers in time. 
In our model, we observed a significant increase 
in E/CSrE in aged mice with NASH, suggesting an 
increase in diastolic filling pressure (Fig. 2C).

In summary, we report age-dependent decline of 
systolic function, increased LV mass, and diastolic 
dysfunction in aged animals with NASH.Fi
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a more pronounced inflammatory environment in the 
heart of aged animals with NASH (Fig. 3E). Lastly, we 
measured the serum level of IL-1β, and we found that 
aged mice with NASH had significantly higher level of 
this pro-inflammatory cytokine (Fig. 3E).

Discussion

In this paper, we report that there is a link between 
NASH and diastolic dysfunction, which is a major 
hallmark of HFpEF. Both diseases are increasing con-
cerns for healthcare professionals for several reasons: 
both diseases comprise a heterogenous population 
with a combination of a wide-variety of co-morbidi-
ties, little-to-no effective pharmacotherapy, difficulty 
of diagnosis, and most importantly with ever-growing 
number of patients. Consequently, understanding the 
pathomechanism and the potential link between the 
two diseases is crucial to develop pharmacotherapy 
capable of decreasing mortality and morbidity.

Within the field of cardiology, treatment of HFpEF 
is still an unmet need. One difficulty results from the 
heterogeneity of the patient population [19], thus 
demanding a distinctive subgroup specific therapy. 
As such several research groups aimed to cluster 
these wide-variety of HFpEF patients by phenomap-
ping [20–24]. Several clusters were suggested based 
on pathophysiologic, clinical, and biologic findings. 
Shah et  al., for example, proposed 7 phenotypes: 
(i) cardiometabolic, (ii) coronary artery disease-
associated and (iii) atrial fibrillation, (iv) right heart 
failure-dominant, (v) hypertrophic, (vi) valvular and 
(vii) restrictive cardiomyopathy-related ones [20]. 
Cardiometabolic phenotype of HFpEF comprises of 
hypertension, obesity, insulin resistance, chronic kid-
ney disease, and metabolic syndrome. As such, the 
question arises that whether NASH, a chronic meta-
inflammatory liver disease, contributes to the devel-
opment of the cardiometabolic HFpEF.

Clinical studies suggested a possible link between 
NAFLD and diastolic dysfunction, which is the most 
relevant functional abnormality of HFpEF. In 2006, 
it was reported for the first time that NAFLD might 
give rise to cardiac hypertrophy and diastolic dys-
function. They showed increased posterior, septal 
wall thickness and left ventricular mass, suggesting 
enlarged heart size, in patients with NAFLD. Further-
more, grade I—diastolic dysfunction was established 

Fig. 2  Conventional and two-dimensional speckle tracking 
echocardiography. Heart weight (n = 5–10) (A). Bar graphs of 
conventional echocardiographic parameters with representative 
images of parasternal short axis M-mode (n = 5–10) (B). Bar 
graphs of two-dimensional speckle tracking echocardiographic 
parameters with representative images of strain rate analysis 
(n = 5–10) (C). The dotted lines represent average values of 
young animals. CON, control diet; NASH, non-alcoholic stea-
tohepatitis; MID, middle aged; LV, left ventricle; LVESV, left 
ventricular end-systolic volume; LVEDV, left ventricular end-
diastolic volume; ESD, end-systolic diameter, EDD, end-dias-
tolic diameter; GCS, global circumferential strain; CSrE, early 
diastolic strain rate of circumferential fibers. One-way ANOVA 
followed by Fischer’s LSD post hoc test or Kruskal–Wallis test 
followed by uncorrected Dunn’s post hoc test, P < 0.05 was 
considered significant difference, * shows difference between 
age-matched cohorts, # show difference between control ani-
mals, ϕ shows difference between animals with NASH

◂

NASH triggers cardiac hypertrophy, fibrosis, and 
inflammation

Next, we aimed to evaluate the effects of NASH on 
cardiac morphology. First, we performed lectin his-
tochemistry to assess cardiac remodeling. Aged ani-
mals with NASH had increased cross-sectional area 
(CSA) of endocardial myofibers compared to middle-
aged animals with NASH. Aged animals with NASH 
were characterized with decreased capillary density 
(Fig.  3A). These data suggest a failure of the capil-
lary system to cope with cardiomyocyte hypertrophy 
in aged mice with NASH. Gene expression analysis 
showed that Myh6 and Myh7 expression increased 
in aged control animals (Fig. 3B). The gene expres-
sion level and serum level of B-type natriuretic pep-
tide (BNP) were only elevated in aged animals with 
NASH (Fig. 3B).

Furthermore, aged animals with NASH showed 
significant cardiac fibrosis as well. Among the inves-
tigated pro-fibrotic genes, Col1a1 was significant 
elevated in the cardiac samples of aged animals with 
NASH (Fig. 3C).

Cardiac macrophages were shown to contribute 
to the pathomechanism of diastolic dysfunction and 
HFpEF [18]. Immunohistochemistry was performed 
to determine whether  CD68+ monocytes/macrophages 
infiltrate into the heart in this model. Quantification of 
these cells showed elevated  CD68+ cell count only in 
aged mice with NASH (Fig.  3D). Quantitative real-
time PCR revealed elevated expression of Il1b and Ccl2 
in cardiac samples of aged NASH cohort, suggesting 
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in patients with NAFLD [25]. Fatty liver is the benign 
stage of NAFLD; nonetheless, cardiac deterioration 
has already developed at such an early phase of this 
progressive chronic disease. NAFLD patients in this 
clinical study had increased BMI (on average 31.4 kg/
m2); however, the authors did not observe correlation 
between BMI and E/A (r = 0.13, p = 0.6), an indirect 
marker of intraventricular pressure, or between BMI 
and left ventricular mass index (r = 0.06, p = 0.8), 
suggesting that besides the systemic burden of obe-
sity, other factors may fuel the deterioration of car-
diac function. The question arises whether NAFLD or 
its subsequent stage, NASH, is a contributing factor. 
A paper published in 2009 reported that patients with 
primary hypertension had greater prevalence of dias-
tolic dysfunction if NAFLD was present [26]. These 
results suggest that diastolic dysfunction develops 
due to multiple insults, and it is likely that NAFLD-
derived cardiometabolic inflammation is a major 
driver. The aforementioned two studies had a rela-
tively low participant number though. However, Van-
Wagner et  al. investigated close to 3000 patients of 
the CARDIA study to assess a potential link between 
NAFLD and heart failure. They found that patients 
with NAFLD had higher left ventricular filling pres-
sure and worse myocardial fiber strain. Furthermore, 
NAFLD was associated with subclinical cardiac 
remodeling [5]. The higher number of participants 
further increases the evidence for this hepato-car-
diac link. The extent of cardiac remodeling, epicar-
dial fat volume, and diastolic dysfunction is greatly 
associated with liver disease and/or fibrosis severity 
[27–31]. Additionally, NAFLD is associated with cor-
onary artery disease [31–34]; not surprisingly, since 

dyslipidemia is key risk factor for NAFLD, conse-
quently, one of the main outcomes for patients with 
NAFLD is cardiovascular death.

Participants of the previously cited studies have 1 
or more co-morbidities besides NAFLD; thus, it is 
important to delineate whether NAFLD or NASH is 
a mere facilitator of the cardiac remodeling and dys-
function promoting effect of other risk factors (e.g., 
obesity, hypertension) or whether it is a sole driver of 
the cardiometabolic phenotype of HFpEF. As such, 
we aimed to investigate whether diastolic dysfunction 
develops in a preclinical model of NASH, in which 
obesity, hypertension, and insulin resistance do not 
develop [35]. Although the CDAA diet is high in cho-
lesterol (2%), male mice did not develop hypercho-
lesterolemia nor hypertriglyceridemia in a previous 
study of ours [14]; thus, the burden of dyslipidemia 
can also be excluded.

We report that 8 weeks of CDAA diet induced key 
features of NASH, such as steatosis, inflammation, 
and fibrosis, in both middle-aged and aged C57Bl/6 J 
mice (Fig.  1). Elderly animals were characterized 
with greater heart weight (Fig.  2), translating to the 
findings of NAFLD patients undergo cardiac remod-
eling and develop cardiac hypertrophy resulting 
increased left ventricular muscle mass [5].

Conventional echocardiography supports the 
aforementioned increased left ventricular muscle 
mass and cardiac remodeling by evidencing increased 
left ventricular end-systolic and end-diastolic vol-
umes in aged animals (Fig.  2B). Furthermore, aged 
mice with NASH had increased intraventricular diam-
eter (Fig. 2B). Pulse wave and tissue Doppler did not 
evidence deterioration in diastolic indices. A previ-
ous study suggested that E/e′, an indirect marker of 
left ventricular pressure, is less reliable in scenarios 
where the ejection fraction is preserved [36]. Alter-
natively, two-dimensional speckle tracking echocardi-
ography was shown to be able to reveal even subtle 
myocardial deterioration before clinical dysfunction 
manifests [37, 38]. Early diastolic strain rate was 
shown to evidence subclinical diastolic deterioration 
in patients with aortic stenosis [39]. Consequently, 
we perform strain analysis to determine whether 
myocardial torsion and/or strain is affected by our 
disease model. Peak global circumferential strain 
significantly decreased in aged mice with NASH 
(Fig. 2C). In human studies, global longitudinal and 
radial strain deterioration was reported so far [4, 40]. 

Fig. 3  Characterization of cardiac morphology in mice with 
NASH. Lectin histochemistry (n = 5–10). Blue shows nuclei, 
red shows cardiac endothelial cells, and green shows the cell 
membrane of cardiomyocytes. Quantification of cross-sectional 
area and microvascular density (A). Bar graphs of cardiac 
hypertrophy markers (n = 4–6) and BNP serum level (n = 6–10) 
(B). Cardiac picrosirius red staining and its macroscopic quan-
tification. Bar graphs of pro-fibrotic genes (n = 5–10) (C). 
Immunostaining of  CD68+ macrophages and its quantification 
(n = 5–10) (D). Gene expression of pro-inflammatory cytokines 
in the heart and serum IL-1β level (n = 4–8) (E). CON, control 
diet; NASH, non-alcoholic steatohepatitis; MID, middle aged; 
BNP, b-type natriuretic peptide. One-way ANOVA followed by 
Fischer’s LSD post hoc test or Kruskal–Wallis test followed by 
uncorrected Dunn’s post hoc test, * shows difference between 
age-matched cohorts, # shows difference between control ani-
mals, ϕ shows difference between animals with NASH

◂
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Regarding the diastolic function, we report that the 
ratio of early trans mitral flow velocity-to-early dias-
tolic strain rate of the circumferential fibers increased 
in aged mice with NASH (Fig.  2C), suggesting an 
elevated left ventricular pressure. This finding proves 
that NASH in aged lean animals deleteriously affects 
myocardial relaxation. To further support the pre-
dictive value of speckle tracking echocardiography 
in patients with NAFLD, a clinical trial will shortly 
begin (NCT05790057).

After establishing the impact of NASH on cardiac 
function, we aimed to characterize the morphology and 
the potential remodeling of the heart. First, lectin his-
tochemistry was performed with wheat germ agglutinin 
(marker of cardiac cell membrane) and isolectin B4 
(marker of cardiac endothelial cells) (Fig. 3A). Cross-
sectional area (CSA) of cardiomyocytes increased in 
both aged cohorts. However, aged animals with NASH 
showed decreased microvascular density compared to 
middle-aged mice with NASH. This finding suggests 
that the capacity of the capillary system to cope with 
myocardial hypertrophy is exhausted in aged mice 
with NASH, supporting the hypothesis of endothelial 
microvascular dysfunction in HFpEF [41]. Further-
more, it has been shown that patients with HFpEF have 
decreased microvascular density [42]. Prevalence of 
left ventricular hypertrophy increases with age [43]. 
Age-related cardiac remodeling is usually fueled by 
increased afterload [44], i.e., vascular hypertrophy. The 
vascular system, as well, undergoes remodeling with 
age, characterized by increased media-to-lumen ratio, 
increased stiffness and inflammation [45]. Furthermore, 
speckle tracking studies revealed that the elders have 
diminished “untwisting” of myocardial fibers [46] and 
global circumferential strain, which is presumed to be 
caused by myocardial interstitial fibrosis [47].

Cardiac aging further limits the already limited 
regenerative potential of the heart [48], which may 
contribute to pathologic remodeling of the heart by 
resulting a tissue that is non-compliant and inflexible 
to insults.

Aging hearts have a distinctive metabolic profile 
compared to an adult heart. Lipid oxidation contrib-
utes to a lower extent to produce energy in aged car-
diomyocytes [49], while anaerobic glycolysis domi-
nates over glucose oxidation [50] promoting cardiac 
hypertrophy and systolic dysfunction [51]. Several 
secreted pro-inflammatory and non-inflammatory 
molecules might contribute to cardiac aging, such 

as interleukin-1β or interleukin-6 and insulin-like 
growth factors, by promoting atherosclerosis and 
insulin resistance [52, 53], respectively.

Although hypertrophy, in our model, can be attrib-
uted to aging, diastolic dysfunction is likely to be the 
consequence of the combination of aging and pro-
longed low-grade inflammatory signaling in the heart. 
Mouse models of metabolic syndrome are character-
ized by Th1 type inflammation resulting myocardial 
stiffness driven by fibrogenesis [54]. IL-1R signaling 
was shown to deleteriously affect diastolic function 
by changing the ratio of expression of phospholamban 
and sarcoplasmic  Ca2+ ATPase [55]. In a rat model, 
IL-6 was shown to promote cardiac remodeling and 
diastolic dysfunction [56]. CCL2 contributes to cardiac 
dysfunction via TLR4 [57]. In addition, several cross-
sectional observational studies showed that patients 
with diastolic dysfunction and/or diabetes were associ-
ated with increased IL-6, IL-8, and CCL2 [58, 59].

Previously, it was shown that CCL2 is the main 
driver of myeloid cell infiltration during NAFLD/
NASH [17]. Our results of increased cardiac Ccl2 
expression coincides with increased  CD68+ cell 
infiltration in aged mice with NASH. It was shown 
that increased number of  CD68+ macrophages pro-
motes fibrosis and inflammation [60], by secret-
ing interleukin-1β, which was shown to uncouple 
β-adrenergic receptors from l-type  Ca2+ channels 
[61], disturb cellular energetics [62], and deteriorate 
cardiac  Ca2+ homeostasis [63], through modulating 
phospholamban and SERCA expression [63].

Cardiac aging is often similar to a “hypothy-
roid state,” a condition when downregulation of the 
thyroid hormone receptor β1 results in differential 
expression of myosin heavy chain isoforms [64]. One 
of the first steps of cardiac remodeling is the upregu-
lation of contractile myofibrils resulting in hypertro-
phy and cardiac dysfunction. Additionally, hypothy-
roidism is often associated with NASH [65].

Next, we performed qRT-PCR to assess gene expres-
sion of cardiac hypertrophy markers. Genes of Myh6 
and Myh7 were increased in CON diet–fed aged ani-
mals (Fig. 3B). The expression of Nppb was increased 
in aged mice with NASH only. This finding was sup-
ported by measuring serum level of BNP (Fig.  3B). 
The guideline of the European Society of Cardiology 
2021 already includes elevated natriuretic peptide lev-
els as a key diagnostic criterion for HFpEF. However, 
it also highlights that 20% of patients with HFpEF have 
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normal or low levels of natriuretic peptides. Salah et al. 
proposed three NAFLD-driven phenotypes of HFpEF: 
obstructive, meta-inflammatory, and cirrhotic [66]. 
They argue that in the obstructive HFpEF phenotype, 
preload reserve depletion causes decreased intracardiac 
filling pressures resulting in low levels of natriuretic 
peptides [67, 68]. In our model, we report increased fill-
ing pressure (E/CSrE) and increased serum BNP level. 
Therefore, the suggested hepatic sinusoidal obstruction 
can be disregarded in our model. In the meta-inflamma-
tory phenotype, the common feature of both NALFD 
and HFpEF is inflammation. In our model, we report 
elevated intracardiac  CD68+ monocyte/macrophage 
count in the aged cohort with NASH (Fig. 3D). Some 
studies suggested that NAFLD might be a contributor 
of atrial fibrillation [69], and this finding was associated 
with macrophage-derived IL-1β [70]. Additionally, the 
gene expression of Il1b and Ccl2 was increased in the 
same group (Fig.  3E). ELISA measurement of serum 
IL-1β revealed that aged mice with NASH had higher 
levels, but the overall level was low compared to a 
major acute injury [71], further supporting the role of 
chronic low-grade inflammation.

Similarly to our previous publication [16], we 
established that IL-1β is relevant not only for the 
hepatic pathophysiology of NASH, but it is highly 
expressed in cardiovascular system as well. This 
highlights that inflammation could be an important 
therapeutical target, which is further supported by the 
CANTOS trial [72]. Most drug trials that aimed to 
treat NASH targeted metabolic processes, while clini-
cal trials targeting inflammation in NASH are low in 
number [73]. Additionally, we highlight that not only 
soluble mediators (i.e., IL-1β, CCL2) are relevant 
drug targets within this hepato-cardiac axis, but cellu-
lar culprits can also be identified, such as intracardiac 
infiltrating monocytes/macrophages [18].

We found that only aged mice with NASH devel-
oped significant cardiac fibrosis (Fig.  3B). In addi-
tion, collagen type I was significantly overexpressed 
in the heart of aged mice with NASH (Fig. 3B). Met-
abolic, hemodynamic, and immunologic stress facili-
tates myocardial fibrosis generation in HFpEF [74]. 
Accordingly, myocardial fibrosis was shown to be a 
major determinant in all-cause mortality in HFpEF 
patients [75].

In conclusion, we highlight that more specific 
methods are needed to evidence subtle myocardial 

deterioration in HFpEF, and show that speckle track-
ing echocardiography is capable to reveal such sub-
tle changes, allowing early diagnosis of this popula-
tion. Furthermore, we have found that NASH without 
any systemic burden is per se a contributing factor of 
diastolic dysfunction and/or HFpEF upon aging.

Limitations

Although echocardiographic analyses are considered 
important measurements to assess cardiac function, 
pressure–volume loop analysis would have shown the 
exact intraventricular conditions.
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